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Abstract: This paper is devoted to investigating a numerical scheme for solving the Caputo–Hadamard
uncertain fractional differential equations (UFDEs) arising from nonlinear uncertain dynamic sys-
tems. In our approach, we define an α-path, which is a link between a Caputo–Hadamard UFDE
and a Caputo–Hadamard fractional differential equation and is the inverse uncertainty distribution
of a Caputo–Hadamard UFDE. Then, a formula for calculating the expected value of the Caputo–
Hadamard UFDE is studied. With the help of the modified predictor–corrector method, some
numerical algorithms for the inverse uncertainty distribution and the expected value of the solution
of Caputo–Hadamard UFDEs are designed. Corresponding numerical examples are given to confirm
the validity and accuracy of the proposed algorithms.

Keywords: uncertain fractional differential equation; Caputo–Hadamard derivative; α-path; predictor–
corrector scheme; inverse uncertainty distribution

1. Introduction

In the real world, a system is commonly disturbed by noise. If the noise is described
by stochastic factors, the tool of probability theory is usually used to deal with the system,
which requires sufficient data and needs to ensure that the estimated probability distribution
is very close to the real frequency. When lacking historical data on research problems, we can
use the experience of experts in the relevant field to estimate the brief degree of the event
happening. In order to rationally deal with the likelihood that something will happen,
Liu [1] proposed the uncertainty theory in 2007 and perfected this theory in 2010 [2]. To
describe the uncertain system more accurately, Liu [3,4] investigated uncertain processes
and applied them to uncertain differential equations (UDEs). Then, Chen and Liu [5]
proved the existence and uniqueness theorem of the solutions of UDEs and gave some
analytic scheme.

In 1974, Oldham and Spanier [6] proposed fractional calculus, which received the
attention of many scholars [7–11]. Since fractional differential equations (FDEs) can well
describe a system with memory and heritability, they have been deeply studied in vari-
ous fields, such as chaos, electrochemistry, rheology, and so on [12–14]. At present, the
theoretical research on fractional calculus mainly discusses the Riemann–Liouville type
and the Caputo type. While for some logarithmic problems, the Hadmard type and
Caputo–Hadamard type are more appropriate, which were studied by Hadamard [15] and
Jarad et al. [16], respectively. Subsequently, Kilbas [17] studied some basic properties of
Hadamard type fractional differentiation and integration. Gohar et al. [18] studied the
existence and uniqueness of the solutions of Caputo–Hadamard FDEs.

In order to make an uncertain system have the memory property, Zhu [19] incorporated
the uncertainty into the FDE and defined the uncertain fractional differential equation
(UFDE). Then, the analytic solutions for some special Riemann–Liouville and Caputo
UFDEs were given. At the same time, Zhu [20] proved the existence and uniqueness
theorem of solutions of UFDEs under Lipschitz and linear growth conditions. Subsequently,
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Lu et al. [21] extended the definitions of Riemann–Liouville and Caputo UFDEs from order
p ∈ (0, 1) to order p > 0. Mohammed et al. [22] considered the existence and uniqueness
of the solutions of Riemann–Liouville uncertain fractional backward difference equations.
Liu et al. [23] gave the definition of Caputo–Hadamard UFDEs and proved the existence
and uniqueness theorem of their solutions.

For many nonlinear differential equations, it is difficult to obtain an analytic solution,
while in reality, they are extensively used for describing important physical phenomena.
Rashid et al. [24] studied nonlinear time-fractional partial differential equations arising in
physical systems involving the natural decomposition method. Khan et al. [25] investigated
space–time fractional diffusion equations to describing anomalous diffusion. Studying
numerical algorithms has become a hot research topic. In 2013, Yao and Chen [26] pro-
posed the concept of the α-path, establishing the connection between UDEs and ODEs.
Gao [27] designed a new numerical algorithm for solving UDEs by the Milne method.
Wang et al. [28] presented a numerical algorithm for solving UDEs via the Adams–Simpson
method. Diethelm et al. [29,30] studied the Adams type predictor–corrector method suit-
able for solving numerical solutions of FDEs. Lu and Zhu [31] introduced a numerical
method for solving UFDEs based on the predictor–corrector method. Gohar et al. [32] gave
the modified predictor–corrector method applied to the Caputo–Hadamard derivative.
However, there is no research on numerical algorithms for Caputo–Hadamard UFDEs.

In this paper, we mainly discuss the numerical algorithm for solving the nonlinear
Caputo–Hadamard UFDEs. The rest of this paper is arranged as follows: in Section 2, we
introduce some basic concepts and conclusions that are used later. In Section 3, the concept
of the α-path is proposed, and an important theorem is proved on the basis of the α-path. In
Section 4, an expected value formula of the solution with respect to the Caputo–Hadamard
UFDE is given. In Section 5, numerical algorithms for computing the inverse uncertainty
distribution and expected value are presented. In Section 6, some numerical examples are
given to verify the effectiveness and accuracy of the proposed algorithm. Section 7 is the
conclusion of this paper.

2. Preliminary

For preparing the later study about the numerical solutions of Caputo–Hadamard
UFDEs, some basic notions and conclusions of the uncertainty theory, such as an uncer-
tain measure, uncertain variable, uncertainty distribution, uncertain differential equation,
excepted value, etc., can be seen in [1,2,27,28]. An uncertain process Ct is said to be a
Liu process if (i) C0 = 0 and almost all sample paths are Lipschitz continuous, (ii) Ct has
stationary and independent increments and (iii) every increment Cs+t − Cs is a normal
uncertain variable with expected value zero and variance t2. For an uncertain variable ξ

with a regular distribution Φ(x), the expected value of ξ is E[ξ] =
∫ 1

0 Φ−1(α)dα.
In this section, we introduce some concepts and results of Caputo–Hadamard UFDEs.

Definition 1 ([23]). Consider n− 1 < p ≤ n having n ∈ N+ with δ = t d
dt , Ct a Liu process and

f and g two continuous functions on [a, ∞)× R→ R. The Caputo–Hadamard UFDE with initial
conditions is defined as

CHDp
a+Xt = f (t, Xt) + g(t, Xt)

dCt
dt , t ≥ a > 0,

δkXt

∣∣∣
t=a

= xk, k = 0, 1, . . . , n− 1.
(1)
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The solution of (1) is an uncertain process Xt with the following integral equation

Xt =
n−1

∑
k=0

(
log t

a
)k

Γ(k + 1)
xk + J

p
a+ f (t, Xt) + J p

a+

(
g(t, Xt)

dCt

dt

)

=
n−1

∑
k=0

(
log t

a
)k

Γ(k + 1)
xk +

1
Γ(p)

∫ t

a

(
log

t
s

)p−1
f (s, Xs)

ds
s

+
1

Γ(p)

∫ t

a

(
log

t
s

)p−1
g(s, Xs)

dCs

s
. (2)

Lemma 1 ([23]). (Existence and uniqueness) If functions f (t, x) and g(t, x) in (1) satisfying
the Lipschitz condition

| f (t, x)− f (t, y)|+ |g(t, x)− g(t, y)| ≤ L|x− y|, ∀x, y ∈ R, t ≥ a > 0 (3)

and the linear growth condition

| f (t, x)|+ |g(t, x)| ≤ L(1 + |x|), ∀x ∈ R, t ≥ a > 0, (4)

where L is a positive constant, then the Caputo–Hadamard UFDE (1) has a unique solution
almost surely.

Some definitions of fractional calculus and FDEs can be seen in [7,8].

Remark 1. (i) For any function f (t), the Hadamard integral of order p > 0 is defined by

J p
a+ f (t) =

1
Γ(p)

∫ t

a

(
log

t
s

)p−1
f (s)

ds
s

, a < t. (5)

(ii) For n− 1 < p ≤ n having n ∈ N+ with δ = t d
dt and δn = δ · δn−1, the Caputo–Hadamard

derivative of order p > 0 for a function f (t) is defined by

CHDp
a+ f (t) =

1
Γ(n− p)

∫ t

a

(
log

t
s

)n−p−1
δn f (s)

ds
s

, a < t, (6)

where n− 1 < p ≤ n ∈ N+, δ = t d
dt and δn = δ · δn−1.

Lemma 2 ([33]). For any continuous functions f (t, x), F(t, x) : [a, T]× R→ R satisfying

f (t, x) ≤ F(t, x), (t, x) ∈ [a, T]× R. (7)

and 0 ≤ n− 1 < p ≤ n ∈ N+, x = u(t) and x = v(t) are solutions of

(E3)
CHDp

a+x = f (t, x), x(k)(t)
∣∣∣
t=a

= xk, k = 0, 1, . . . , n− 1, (8)

(E4)
CHDp

a+x = F(t, x), x(k)(t)
∣∣∣
t=a

= xk, k = 0, 1, . . . , n− 1, (9)

respectively. If inequality (7) is strict, then u(t) < v(t), ∀t ∈ (a, T]. If (E3) and (E4) have a
unique solution, respectively, then u(t) ≤ v(t), ∀t ∈ (a, T].

3. The α-Path of Caputo–Hadamard UFDEs

In this section, the concept of the α-path of Caputo–Hadamard UFDEs is proposed,
which is essentially the solution of a Caputo–Hadamard FDE.
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Definition 2. For n− 1 < p ≤ n having n ∈ N+ with δ = t d
dt , Ct a Liu process and f and

g two continuous functions on [a, ∞) × R → R, the Caputo–Hadamard UFDE subject to the
initial conditions 

CHDp
a+Xt = f (t, Xt) + g(t, Xt)

dCt
dt , T ≥ t ≥ a > 0,

δkXt

∣∣∣
t=a

= xk, k = 0, 1, . . . , n− 1
(10)

is said to have an α-path Xα
t which is a function of t and solves the corresponding Caputo–Hadamard

FDE with initial conditions
CHDp

a+Xt = f (t, Xt) + |g(t, Xt)|Φ−1(α), T ≥ t ≥ a > 0,

δkXt

∣∣∣
t=a

= xk, k = 0, 1, . . . , n− 1,
(11)

where α ∈ (0, 1) and Φ−1(α) is the inverse standard normal uncertainty distribution, i.e.,

Φ−1(α) =

√
3

π
ln

α

1− α
, 0 < α < 1. (12)

Here are some examples to illustrate Definition 2.

Example 1. For any 0 < p ≤ 1, u, v > −1, the Caputo–Hadamard UFDE subject to the
initial condition {

CHDp
1+Xt = a(log t)u + b(log t)v dCt

dt , t ∈ [1, T],

Xt|t=1 = x0
(13)

has an α-path which is a solution of the following Caputo–Hadamard FDE with initial condition{
CHDp

1+Xt = a(log t)u +
∣∣b(log t)v∣∣Φ−1(α), t ∈ [1, T],

Xt|t=1 = x0,
(14)

that is,

Xα
t = x0 +

aΓ(u + 1)
Γ(p + u + 1)

(log t)p+u +
|b|Γ(v + 1)

Γ(p + v + 1)
(log t)p+v

√
3

π
ln

α

1− α
. (15)

Example 2. For any 0 < p ≤ 1, u, v > 0, the Caputo–Hadamard UFDE subject to the
initial condition {

CHDp
1+Xt = atu + btv dCt

dt , t ∈ [1, T],

Xt|t=1 = x0
(16)

has an α-path which is a solution of the following Caputo–Hadamard FDE with initial condition{
CHDp

1+Xt = atu + |btv|Φ−1(α), t ∈ [1, T],

Xt|t=1 = x0,
(17)

that is,

Xα
t = x0 + au−ptu + |b|v−ptv

√
3

π
ln

α

1− α
. (18)
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Example 3. For any 0 < p ≤ 1, v > −1, the Caputo–Hadamard UFDE subject to the
initial condition {

CHDp
1+Xt = aXt + b(log t)v dCt

dt , t ∈ [1, T],

Xt|t=1 = x0
(19)

has an α-path which is a solution of the following Caputo–Hadamard FDE with initial condition{
CHDp

1+Xt = aXt + b(log t)vΦ−1(α), t ∈ [1, T],

Xt|t=1 = x0,
(20)

that is,

Xα
t = x0Ep,1

(
a(log t)p)+ |b|Γ(v + 1)(log t)p+vEp,p+v+1

(
a(log t)p)√3

π
ln

α

1− α
. (21)

Next, we introduce an important theorem, which establishes the relation between a
Caputo–Hadamard UFDE and a Caputo–Hadamard FDE.

Theorem 1. For n− 1 < p ≤ n having n ∈ N+, Ct a Liu process and f and g two continuous
functions on [a, ∞)× R → R, let Xt and Xα

t be the unique solution and α-path of the Caputo–
Hadamard UFDE (10), respectively. Then, we have

M{Xt ≤ Xα
t , a.e. t ∈ (a, T]} = α (22)

and
M{Xt > Xα

t , a.e. t ∈ (a, T]} = 1− α. (23)

Proof. For any x ∈ R and α ∈ (0, 1), divide the time interval (a, T] into two disjoint subsets

Ω+ = {t ∈ (a, T] |g(t, x) ≥ 0}, Ω− = {t ∈ (a, T] |g(t, x) < 0}.

It is easy to get that Ω+ ∩Ω− = φ and Ω+ ∪Ω− = (a, T]. Denote

Λ+
1 = {γ |dCt

dt
≤ Φ−1(α), a.e. t ∈ Ω+}, Λ−1 = {γ |dCt

dt
≥ Φ−1(1− α), a.e. t ∈ Ω−},

where Φ−1(α) is the inverse uncertainty distribution of a standard normal uncertain vari-
able. Considering that Ct is a Liu process with independent increments and Ω+ ∩Ω− = φ,
we get

M{Λ+
1 } = α, M{Λ−1 } = α, M{Λ+

1 ∩Λ−1 } = α.

For each γ ∈ Λ+
1 ∩Λ−1 and a.e. t ∈ (a, T], we have

g(t, x(t))
dCt

dt
≤ |g(t, x(t))|Φ−1(α).

Since Xt and Xα
t are unique solutions to a Caputo–Hadamard UFDE (10) and a Caputo–

Hadamard FDE (11), respectively. It follows from Lemma 2 that

Xt(γ) ≤ Xα
t (γ), a.e. t ∈ (a, T].

Thus, we can get that

Λ+
1 ∩Λ−1 ⊂ {Xt ≤ Xα

t , a.e. t ∈ (a, T]}.
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Then, for all t ∈ (a, T], we have

M{Xt ≤ Xα
t , a.e. t ∈ (a, T]} ≥ M{Λ+

1 ∩Λ−1 } = α. (24)

Denote

Λ+
2 = {γ |dCt

dt
> Φ−1(α), a.e. t ∈ Ω+}, Λ−2 = {γ |dCt

dt
< Φ−1(1− α), a.e. t ∈ Ω−}.

Similarly, we have

M{Λ+
2 } = 1− α, M{Λ−2 } = 1− α, M{Λ+

2 ∩Λ−2 } = 1− α.

Then, for all γ ∈ Λ+
2 ∩Λ−2 and t ∈ (a, T], we have

g(t, x(t))
dCt

dt
> |g(t, x(t))|Φ−1(α)

It follows from Lemma 2 that

Xt(γ) > Xα
t (γ), a.e. t ∈ (a, T].

Then, we have
Λ+

2 ∩Λ−2 ⊂ {Xt > Xα
t , a.e. t ∈ (a, T]}

and
M{Xt > Xα

t , ∀t ∈ (a, T]} ≥ M{Λ+
2 ∩Λ−2 } = 1− α. (25)

It follows from the duality axiom in the uncertainty theory that

M{Xt ≤ Xα
t , a.e. t ∈ (a, T]}+M{Xt � Xα

t , a.e. t ∈ (a, T]} = 1.

Since
{Xt > Xα

t , a.e. t ∈ (a, T]} ⊂ {Xt � Xα
t , a.e. t ∈ (a, T]}.

It follows from the monotonicity of the uncertain measureM that

M{Xt ≤ Xα
t , a.e. t ∈ (a, T]}+M{Xt > Xα

t , a.e. t ∈ (a, T]} ≤ 1. (26)

Combining Equations (24)–(26), we have

M{Xt ≤ Xα
t , a.e. t ∈ (a, T]} = α, M{Xt > Xα

t , a.e. t ∈ (a, T]} = 1− α.

The proof ends.

Theorem 2. For n− 1 < p ≤ n having n ∈ N+, Ct a Liu process and f and g two continuous
functions on [a, ∞)× R → R, let Xt and Xα

t be the unique solution and α-path of the Caputo–
Hadamard UFDE (10), respectively. Then, Xt has an inverse uncertainty distribution

Ψ−1
t (α) = Xα

t , a.e. t. (27)

Proof. Since {Xs ≤ Xα
s , a.e. s} ⊂ {Xt ≤ Xα

t } and {Xs > Xα
s , a.e. s} ⊂ {Xt > Xα

t }, a.e. t.
According to Theorem 1 and the monotonicity of the uncertain measureM, we have

M{Xt ≤ Xα
t } ≥ M{Xs ≤ Xα

s , a.e. s} = α, a.e. t. (28)

and
M{Xt > Xα

t } ≥ M{Xs > Xα
s , a.e. s} = 1− α, a.e. t. (29)
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Since {Xt ≤ Xα
t } and {Xt > Xα

t } are opposite, it follows from the duality axiom in the
uncertainty theory that

M{Xt ≤ Xα
t }+M{Xt > Xα

t } = 1. (30)

Combining Equations (28)–(30), we haveM{Xt ≤ Xα
t } = α a.e. t ∈ (a, T]. Thus, Xt

has an inverse uncertainty distribution Ψ−1
t (α) = Xα

t , a.e. t.

Next, we use some examples to illustrate the validity of Theorem 2.

Example 4. The Caputo–Hadamard UFDE (13) has a solution

Xt = x0 +
aΓ(u + 1)

Γ(p + u + 1)
(log t)p+u +

b
Γ(p)

∫ t

1

(
log

t
s

)p−1
(log s)v dCs

s
. (31)

Solution (31) has an inverse uncertainty distribution

Ψ−1
t (α) = x0 +

aΓ(u + 1)
Γ(p + u + 1)

(log t)p+u +
|b|Γ(v + 1)

Γ(p + v + 1)
(log t)p+v

√
3

π
ln

α

1− α
, (32)

that is also the α-path of the Caputo–Hadamard UFDE (13).

Example 5. The Caputo–Hadamard UFDE (16) has a solution

Xt = x0 + au−ptu + b
∫ t

0

(
log

t
s

)p−1
sv dCs

ds
. (33)

Solution (33) has an inverse uncertainty distribution

Ψ−1
t (α) = x0 + au−ptu + |b|v−ptv

√
3

π
ln

α

1− α
, (34)

that is also the α-path of the Caputo–Hadamard UFDE (16).

Example 6. The Caputo–Hadamard UFDE (19) has a solution

Xt = x0Ep,1
(
a(log t)p)+ b

∫ t

1
(log

t
s
)p−1Ep,p(a(log

t
s
)p)(log t)v dCs

ds
. (35)

Solution (35) has an inverse uncertainty distribution

Ψ−1
t (α) = x0Ep,1

(
a(log t)p)+ |b|Γ(v + 1)(log t)p+vEp,p+v+1

(
a(log t)p)√3

π
ln

α

1− α
, (36)

that is also the α-path of the Caputo–Hadamard UFDE (19).

4. Expected Value of a Monotonic Function

In this section, we propose an expected value theorem for calculating the expected
value of the solutions of Caputo–Hadamard UFDEs.

Theorem 3. Let pi (i = 1, 2, . . . , q) be real numbers with 0 ≤ ni − 1 < pi ≤ ni, where ni
(i = 1, 2, . . . , q) is a positive integer. Let fi(t, x), gi(t, x) : [a, T]× R → R (i = 1, 2, . . . , q) be
continuous functions. Assume that Xi,t and Xα

i,t are the solution and α-path of Caputo–Hadamard
UFDEs with initial conditions

CHDpi
a+Xi,t = fi(t, Xi,t) + gi(t, Xi,t)

dCi,t
dt , t ≥ a > 0,

δkXi,t

∣∣∣
t=a

= xik, k = 0, 1, . . . , ni − 1
(37)
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for i = 1, 2, . . . , q, where Ci,t (i = 1, 2, . . . , q) are independent Liu processes. Assume that the
function J

(
x1, x2, . . . , xq

)
is strictly increasing with respect to x1, x2, . . . , xm and strictly decreasing

with respect to xm+1, xm+2, . . . , xq. Then, the expected value of J
(

x1, x2, . . . , xq
)

can be calculated
by the integral

E[J(X1,t, X2,t, . . . , Xq,t)] =
∫ 1

0
J(Xα

1,t, Xα
2,t, . . . , Xα

m,t, X1−α
m+1,t, X1−α

m+2,t, . . . , X1−α
q,t )dα. (38)

Proof. According to Theorem 2, the inverse uncertainty distribution of the solution of a
Caputo–Hadamard UFDE (37) is

Ψ−1
i,t (α) = Xα

i,t, a.e. t, i = 1, 2, . . . , q. (39)

Then, the inverse uncertainty distribution of the function J(X1,t, X2,t, . . . , Xq,t) is

Υ−1
t (α) = J(Xα

1,t, Xα
2,t, . . . , Xα

m,t, X1−α
m+1,t, X1−α

m+2,t, . . . , X1−α
q,t ), a.e. t ∈ [a, T]. (40)

That is to say, the expected value of J
(
x1, x2, . . . , xq

)
is

E[J(X1,t, X2,t, . . . , Xq,t)] =
∫ 1

0
Υ−1

t (α)dα

=
∫ 1

0
J(Xα

1,t, Xα
2,t, . . . , Xα

m,t, X1−α
m+1,t, X1−α

m+2,t, . . . , X1−α
q,t )dα.

(41)

The proof ends.

5. Numerical Algorithms for Caputo–Hadamard UFDE

For most Caputo–Hadamard UFDEs, it is difficult to obtain analytic solutions. When
a Caputo–Hadamard UFDE is nonlinear, there may be no analytic solution. Thus, to
propose a corresponding numerical algorithm for finding the numerical solution of a
Caputo–Hadamard UFDE is required.

Based on the α-path and the modified predictor–corrector method [32], an algorithm
for solving the inverse uncertainty distribution of the solutions of Caputo–Hadamard
UFDEs (1) is given in Algorithm 1.

Algorithm 1: Inverse uncertainty distribution of the solutions of Caputo–
Hadamard UFDEs.

Step 1. For t ∈ [a, T], divide the interval [a, t] into N parts. Let h = (t− a)/N be the
step length. Set α = 0 and the step length ∆α.

Step 2. Update α← α + ∆α, i← i + 1.
Step 3. Applying the modified predictor–corrector method [32] to the grid ti = 1 + ih,

solve the following Caputo–Hadamard FDE with initial conditions
CHDp

a+Xα
t = f (t, Xt) + |g(t, Xt)|Φ−1(α),

δkXt

∣∣∣
t=a

= xk, k = 0, 1, . . . , n− 1

to get Xα
ti

.
Step 4. Output Ψ−1

ti
(α) = Xα

ti
.

Step 5. If α + ∆α < 1 and ti < t, go back to Step 2.
Step 6. Output Ψ−1

t (α) = Xα
t .

In particular, when ∆α = 0.01, we can get the 99-table as Table 1.
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Table 1. Ninety-nine-table.

α 0.01 0.02 · · · 0.99

Xα
t X0.01

t X0.02
t · · · X0.99

t

According to Theorem 3, the expected value can be calculated by the integral equation

E[J(Xt)] =
∫ 1

0
J(Xα

t )dα. (42)

When the above integral is an improper integral, we cannot operate the integral at the
improper points. Thus, let the small enough positive number ε such that

∫ 1
0 J(Xα

t )dα =

limε→0
∫ 1−ε

ε J(Xα
t )dα. We apply Simpson’s rule to the above integral and the expected

value of the strictly monotonic function J(Xt) is computed by Algorithm 2.

Algorithm 2: Expected value of the solution of a Caputo–Hadamard UFDE.

Step 1. For t ∈ [a, T], give a small error ε > 0. Let α = 0, set the step length ∆α = 1
M ,

where M is an even number.
Step 2. For each αi = ∆α · i (i = 1, 2, . . . , M− 1), we can obtain Xε

t , X1−ε
t and Xαi

t by
Algorithm 1.

Step 3. Apply Simpson’s rule to calculate the expected value of the strictly
monotonic function J(Xt). That is,

E[J(Xt)] =
∆α

3

[
J(Xε

t ) + 2
M−1

∑
i=1

J(Xαi
t ) + 2

M/2

∑
i=1

J(Xα2i−1
t ) + J(X1−ε

t )

]
.

6. Numerical Experiments

In this section, first, we analyze an example when the analytic solution can be obtained
and compare the inverse uncertainty distribution of the numerical solution and the analytic
solution to illustrate the accuracy of the proposed algorithms.

Example 7. Let 1 < p ≤ 2; the following Caputo–Hadamard UFDE with initial conditions
is considered: {

CHDp
1+Xt = a(log t)u + b(log t)v dCt

dt , t ∈ [1, T],

Xt|t=1 = x0, δXt|t=1 = x1,
(43)

where the solution Xt of (43) has an inverse uncertainty distribution

Ψ−1
t (α) =x0 + x1(log t) +

aΓ(u + 1)
Γ(p + u + 1)

(log t)p+u

+
|b|Γ(v + 1)

Γ(p + v + 1)
(log t)p+v

√
3

π
ln

α

1− α
(44)

by Theorem 2. We choose the parameters as p = 1.6, a = 6, b = 10, u = 2, v = 1 and
T = 2. Let the initial conditions x0 = 1, x1 = 4 and the step length h = 0.01, N = 100 and
∆α = 0.01. The inverse uncertainty distributions of the numerical solution and the analytic
solution are obtained by Algorithm 1 and Equation (44), respectively, as shown in Figure
1. The absolute error between the inverse uncertainty distribution of the numerical and
analytic solutions is less than 1.4× 10−4, as shown in Figure 2. It follows from Figures 1
and 2 that the numerical solution calculated by Algorithm 1 is close to the analytic solution.
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Figure 1. Numerical and analytic solutions of inverse uncertainty distribution of XT .

Figure 2. Absolute error of numerical solution and analytic solution.

For different fraction orders p, we calculate the maximum absolute errors of the
analytic and numerical solutions under the given parameters a = 6, b = 10, u = 2, v = 1,
T = 2, x0 = 1, x1 = 4, h = 0.01, N = 100 and ∆α = 0.01, as shown in Table 2. The
maximum absolute error of the analytic and numerical solutions is 1.2557× 10−4.

Table 2. The maximum absolute error of the analytic and numerical solutions with different orders p.

p 1.2 1.4 1.6 1.8

Absolute error 1.0846× 10−4 1.2557× 10−4 1.2520× 10−4 1.1716× 10−4

For different parameters a and b, we calculate the maximum absolute errors of the
analytic and numerical solutions under the given parameters p = 1.6, u = 2, v = 1, T = 2,
x0 = 1, x1 = 4, h = 0.01, N = 100 and ∆α = 0.01, as shown in Table 3. The maximum
absolute error of the analytic and numerical solutions is 1.5534× 10−4.
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Table 3. The maximum absolute error of the analytic and numerical solutions with different parame-
ters a and b.

b = 9 b = 10 b = 11 b = 12

a = 5 1.1013× 10−4 1.1883× 10−4 1.2752× 10−4 1.3622× 10−4

a = 6 1.1650× 10−4 1.2520× 10−4 1.3390× 10−4 1.4259× 10−4

a = 7 1.2288× 10−4 1.3157× 10−4 1.4027× 10−4 1.4897× 10−4

a = 8 1.2925× 10−4 1.3795× 10−4 1.4664× 10−4 1.5534× 10−4

For different parameters u and v, we calculate the maximum absolute errors of the
analytic and numerical solutions under the given parameters p = 1.6, a = 6, b = 10, T = 2,
x0 = 1, x1 = 4, h = 0.01, N = 100 and ∆α = 0.01, as shown in Table 4. The maximum
absolute error of the analytic and numerical solutions is 2.3870× 10−4.

Table 4. The maximum absolute error of the analytic and numerical solutions with different parame-
ters u and v.

u = 1 u = 2 u = 3 u = 4

v = 1.0 1.0755× 10−4 1.2520× 10−4 1.1214× 10−4 1.0429× 10−4

v = 1.5 2.2105× 10−4 2.3870× 10−4 2.2564× 10−4 2.1779× 10−4

v = 2.0 1.8207× 10−4 1.9972× 10−4 1.8667× 10−4 1.7881× 10−4

v = 2.5 1.5058× 10−4 1.6823× 10−4 1.5517× 10−4 1.4732× 10−4

It can be seen from the above results that the parameters p, a, b, u and v have little
influence on Algorithm 1. Thus, Algorithm 1 has a high conservatism.

Let J(x) = x and ε = 0.00001. The numerical result and the analytic result of the
expected value of solution XT are calculated by Algorithm 2 and Equation (42), respectively,
as shown in Table 5 with different orders p. The absolute error of the numerical result and
the analytical result is less than 3.3458× 10−5.

Table 5. Expected value E[XT ] with different orders p.

p 1.2 1.4 1.6 1.8

Numerical result 4.24141 4.11312 4.01231 3.93971
Analytic result 4.25138 4.11309 4.01228 3.93969
Absolute error 3.3458× 10−5 2.8880× 10−5 2.4237× 10−5 1.9829× 10−5

For different parameters a and b, we calculate the absolute error of the analytic and
numerical results of the expected value under the given parameters p = 1.6, u = 2, v = 1,
T = 2, x0 = 1, x1 = 4, h = 0.01, N = 100 and ∆α = 0.01, as shown in Table 6. The
maximum absolute error of the analytic and numerical solutions is 3.2316× 10−5.

Table 6. The absolute error of expected value E[XT ] with different parameters a and b.

b = 9 b = 10 b = 11 b = 12

a = 5 2.0197× 10−5 2.0197× 10−5 2.0197× 10−5 2.0197× 10−5

a = 6 2.4237× 10−5 2.4237× 10−5 2.4237× 10−5 2.4237× 10−5

a = 7 2.8276× 10−5 2.8276× 10−5 2.8276× 10−5 2.8276× 10−5

a = 8 3.2316× 10−5 3.2316× 10−5 3.2316× 10−5 3.2316× 10−5

For different parameters u and v, we calculate the absolute error of the analytic and
numerical results of the expected value under the given parameters p = 1.6, a = 6, b = 10,
T = 2, x0 = 1, x1 = 4, h = 0.01, N = 100 and ∆α = 0.01, as shown in Table 7. The
maximum absolute error of the analytic and numerical solutions is 2.4237× 10−5.
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Table 7. The absolute error of expected value E[XT ] with different parameters u and v.

u = 1 u = 2 u = 3 u = 4

v = 1.0 0.0000× 10−5 2.4237× 10−5 1.5180× 10−5 1.0106× 10−5

v = 1.5 0.0000× 10−5 2.4237× 10−5 1.5180× 10−5 1.0106× 10−5

v = 2.0 0.0000× 10−5 2.4237× 10−5 1.5180× 10−5 1.0106× 10−5

v = 2.5 0.0000× 10−5 2.4237× 10−5 1.5180× 10−5 1.0106× 10−5

It can be seen from the above results that the parameters p, a, b, u and v have little
influence on Algorithm 2. The expected value E[XT ] has nothing to do with the change in
the parameters b and v. Thus, the Algorithm 2 has a high conservatism.

Next, we give a numerical example when the analytic solution cannot be obtained,
and use Algorithms 1 and 2 to calculate the inverse uncertainty distribution and expected
value of the solution, respectively.

Example 8. Let 1 < p ≤ 2; the following Caputo–Hadamard UFDE with initial conditions
is considered: {

CHDp
1+Xt =

√
Xt + 1 + (1 + log t)dCt

dt , t ∈ [1, T],

Xt|t=1 = x0, δXt|t=1 = x1.
(45)

The α-path Xα
t of (45) satisfies{
CHDp

1+Xα
t =

√
Xα

t + 1 + |1 + log t|Φ−1(α), t ∈ [1, T],

Xα
t |t=1 = x0, δXα

t |t=1 = x1.
(46)

We choose the parameters as p = 1.5 and t = 3. Let the initial conditions be x0 = 2,
x1 = 1 and the step length h = 0.01, with N = 200 and ∆α = 0.01. For different α’s, the
distribution of Xα

t is shown in Figure 3. The uncertainty distribution of Xt at time t = 3 for
different orders p is shown in Figure 4.

Figure 3. Plots of α-paths of (45) with order p = 1.5.
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Figure 4. The uncertainty distribution of X3 with different orders p.

Let J(x) = x2, ε = 0.00001, and t = 3. For different orders p, the expected value
of J(Xt) can be computed by Algorithm 2, as shown in Table 8. As can be seen from
Table 8, the larger the parameter p, the smaller the expected values of J(Xt). Thus, when
the analytic solution of the Caputo–Hadamard UFDE does not exist, we can obtain the
numerical solution by the proposed Algorithm 1. The expected values of J(Xt) can also be
obtained by the proposed Algorithm 2.

Table 8. Expected values of J(Xt) with different orders p.

p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

E[X3
2] 31.24 29.53 27.87 26.28 24.79 23.39 22.08 20.88 19.76

7. Conclusions

In this paper, we mainly discussed numerical algorithms for solving Caputo–Hadamard
UFDEs. The definition of the α-path was given, and the Caputo–Hadamard UFDE was
connected with the Caputo–Hadamard FDE through the definition of the α-path. An
important theorem that the α-path of a Caputo–Hadamard UFDE is the inverse uncertainty
distribution of the solution was proved. For Caputo–Hadamard UFDEs driven by an
independent Liu process, the theorem for calculating the expected value of a strictly
monotonic function was proposed. Subsequently, a numerical algorithm was designed to
calculate the inverse uncertainty distribution of solutions of Caputo–Hadamard UFDEs. At
the same time, on the basis of Algorithm 1, an algorithm for solving the expected value of a
strictly monotonic function was given by applying Simpson’s rule. Finally, some numerical
examples were given to illustrate the accuracy and effectiveness of the proposed algorithm.
For future work, we will discuss the stability of Hadamard UFDEs.
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