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Abstract. Process model extraction (PME) is a recently emerged inter-
discipline between natural language processing (NLP) and business pro-
cess management (BPM), which aims to extract process models from
textual descriptions. Previous process extractors heavily depend on man-
ual features and ignore the potential relations between clues of differ-
ent text granularities. In this paper, we formalize the PME task into
the multi-grained text classification problem, and propose a hierarchical
neural network to effectively model and extract multi-grained informa-
tion without manually-defined procedural features. Under this structure,
we accordingly propose the coarse-to-fine (grained) learning mechanism,
training multi-grained tasks in coarse-to-fine grained order to share the
high-level knowledge for the low-level tasks. To evaluate our approach,
we construct two multi-grained datasets from two different domains and
conduct extensive experiments from different dimensions. The experi-
mental results demonstrate that our approach outperforms the state-of-
the-art methods with statistical significance and further investigations
demonstrate its effectiveness.

Keywords: Process model extraction + Multi-grained text
classification - Coarse-to-fine learning - Convolutional neural network

1 Introduction

The widespread adoption of conversational agents such as Alexa, Siri and Google
Home demonstrates the natural demand for such assistive agents. To go beyond
supporting the simplistic queries such as “what should I do next?”, these agents
need domain-specific procedural knowledge [9]. Procedural knowledge, also called
“how-to-do-it” knowledge, is the knowledge related to the execution of a series of
interrelated tasks [26]. A major source of procedural knowledge is contained in
natural textual instructions [34], such as cooking recipes that describe cooking
procedures and maintenance manuals that describe repair procedures for various
devices and gadgets. While it is possible to manually understand, extract and
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Fig. 1. Illustration of the PME problem.

reuse such knowledge from texts, ultimately that is a very labor-intensive option
[20]. To facilitate reuse and repurpose of procedural knowledge, process model
extraction (PME) is emerging to automatically extract underlying process
models from process texts. As Fig. 1 illustrates, PME extracts and presents
the main actions (nodes) and their ordering relations (sequence flows) expressed
in the cooking recipe as a process model. This task can liberate humans from
the manual efforts of creating and visualizing procedural knowledge by making
assistive agents understand process texts intelligently [9].

However, PME is challenging as it requires agents to understand complex
descriptions of actions and involves multi-grained information mining. For exam-
ple, in Fig. 1, to extract the whole process model, the process extractor has to rec-
ognize whether a sentence is describing an action? (sentence-level information)
and who does what in a sentence describing an action? (word-level information).
Recent research efforts have been made to extract the main procedural knowl-
edge. For example, language-rule based extractors [12] used pre-defined language
rules to extract procedural knowledge. Pattern-matching based extractors [26]
used NLP tagging or parsing tools to analyze sentences and extract correspond-
ing information from triggered patterns. Knowledge-based extractors employed
pre-defined ontology [12] or world model [8] to help extract that information.
However, traditional methods suffer from weak generalizability when applied
in open-domain or open-topic scenarios since they: 1) require much large-scale
and domain-specific procedural features; and 2) ignore the relations between
sentence-level and word-level subtasks.

In this paper, we propose a new framework to extract process models from
process texts. Specifically, we first formalize the PME task into the multi-grained
text classification problem, and then propose a hierarchical neural network
to effectively model and extract multi-grained information without manually
defined procedural features. Under this hierarchical structure, we accordingly
propose the coarse-to-fine (grained) learning mechanism, training multi-grained
tasks in coarse-to-fine grained order, to share the high-level knowledge for the
low-level tasks. To train and evaluate our model, we construct two multi-grained
datasets from two different domains and conduct extensive experiments from
different dimensions. Experimental results demonstrate that our approach out-
performs state-of-the-art methods with statistical significance.
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In summary, this paper makes the following contributions:

o We first formalize the PME task into the multi-grained text classification
problem and design a new hierarchical network to model the conditional rela-
tion among multi-grained tasks. Supported by automatic feature extraction,
it can extract procedural knowledge without employing manual features and
defining procedural knowledge.

e We propose the coarse-to-fine learning mechanism that trains multi-grained
tasks in coarse-to-fine (grained) order to apply the sentence-level knowledge
for the word-level tasks.

e We construct two multi-grained datasets from two different domains to train
and evaluate multi-grained text classifiers. The results demonstrate that our
approach outperforms the state-of-the-art methods.

2 Related Work

Several language-rule based methods have been originally applied to process
extraction [18,29,32,34]. Specifically, [34] introduced a generic semantic repre-
sentation of procedures for analyzing instructions, using Stanford Parser to auto-
matically extract structured procedures from instructions. [32] described an app-
roach for the automatic extraction of workflows from cooking recipes resulting
in a formal description of cooking instructions. A chain of standard information
extraction pipeline was applied with the help of GATE. They were dedicated to
the special characteristics of textual cooking instructions (verb centric, restricted
vocabulary of ingredients, relatively independent sentences). Although they are
easy to develop and interpret, they require a large number of linguistic rules
created by domain experts.

Along this line, pattern-matching based methods [7,8,26-28,31] designed
various language patterns, considering basic language patterns [27], syntactic
tree [7,31] and anaphora resolution [26,28]. For example, [27] presented on the
step of anaphora resolution to enrich the process models extracted by introducing
a lexical approach and two further approaches based on a set of association
rules which were created during a statistical analysis of a corpus of workflows.
However, these studies are to some extent limited by domain-specific knowledge
bases, making them not applicable for open-domain or open-topic scenarios.

Recently, some knowledge based methods [10,12,13] have been applied
to this problem and they were shown to perform well. For example, [12] pro-
posed an ontology-based workflow extraction framework that extended classic
NLP techniques to extract and disambiguate tasks in texts. Using a model-
based representation of workflows and a domain ontology, the extraction process
used a context-based approach to recognize workflow components such as data
and control elements in a flow. However, they also require a large quantity of
cognition-level knowledge, such as a world model [8,10] or an ontology [12,13],
which would be time-consuming and labor-intensive to build.

There also exist some machine-learning based studies which incorpo-
rated traditional machine learning techniques into process extraction [20,23].
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[20] leveraged support vector machine to automatically identify whether a task
described in a textual process description is manual or automated. [23] used
semi-supervised conditional random fields and support vector machine to label
process texts and recognize main information.

Other process-related works include process state tracing, action extraction
and process search. For example, [3,4,30] proposed neural machine-reading mod-
els that constructed dynamic knowledge graphs from procedural text. [2] intro-
duced a network to understand the procedural text through simulation of action
dynamics. [24,25] set out to generate the textual descriptions from process mod-
els. [15] proposed a probabilistic model to incorporate aspects of procedural
semantics and world knowledge. [1] aimed to answer biological questions by pre-
dicting a rich process structure and mapping the question to a formal query.

3 Methodology

We first formalize the PME task into the multi-grained text classification prob-
lem. Given a process text 7 = (S, 52, ,S™) where S* = (W} Wi, --. ’WIiSi|>
is a sequence of words, Vi = 1,2,--- ,n. For each S* € T, the key of PME («) is to
predict a corresponding set of labels that describe the type of the sentence and
its corresponding word-level arguments, «(S*) = (sType, sSemantic, sArgs).
sType indicates the type of sentence S?, which can be Action or Statement.
The Action indicates that S? is an action mention and Statement refers to a
non-action sentence. If S? is categorized into Action type, then sSemantic is
& (empty marker) and sArgs = [aRole, aName, aObject] denotes the action’s
executor, action name and direct object respectively. Otherwise, sArgs is @ and
sSemantic can be one of {>,<,e,x,+} relation symbols that determine how
actions are coordinated. The five relations refer to the beginning of a block of
actions (block begins), the ending of a block of actions (block ends), a successive
relation, an optional relation and a concurrent relation, respectively.

Ezample 1. Consider the two sentences in Fig.1: S? = “you are required to
finish two steps” and S7 = “chill the mixture for about 20 min until it thickens”.
S% means that two following actions should be chosen and done concurrently,
thus it is labeled as a concurrency relation, a(S*) = (Statement,+, ). S7 is
an action mention, thus it is labeled with its role, action name and object,
a(S7) = (Action, @, 2, chill, mizture]).

We argue that PME involves three main text classification subtasks:

ST1 Sentence Classification (Sentence-level): identifying whether a sentence
is describing an action or a statement.

ST2 Sentence Semantics Recognition (Sentence-level): recognizing the
semantics of a Statement sentence to control the execution of following
actions, i.e., block begins, block ends, successive relation, optional relation
and concurrency relation.
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Fig. 2. High-level overview of the proposed method MGTC, which consists of two
stages: a) The coarse-grained learning phase combines the bi-directional encoding layer
and convolutional neural networks to pre-train two sentence-level tasks. b) The fine-
grained learning phase utilizes the learned sentence-level knowledge to fine-tune the
word-level task.

ST3 Semantic Role Labeling (Word-level): assigning semantic roles (aRole,
aName, aObject) to words or phrases in an Action sentence.

Note that these three tasks are not independent because ST2 and ST3 are
conditioned on ST1, i.e., for a single sentence, the result of ST1 determines
whether the sentence is passed to ST2 or ST3.

3.1 Overall Framework

To mine sentence-level and word-level information effectively, we propose a deep-
learning-based network to effectively avoid manually defining domain-specific
procedural features, called Multi-Grained Text Classifier (MGTC). Figure 2
shows the framework of our proposed approach. Specifically, we design a hierar-
chical structure to model the conditional relations between three subtasks and
to effectively extract textual clues from different granularities. Under this frame-
work, we accordingly propose the coarse-to-fine (grained) learning mechanism,
training coarse tasks in advance before training fine-grained tasks to share the
learned high-level knowledge to the low-level tasks, which conforms with the pro-
cedure of human learning more than those methods without the consideration
of different granularities. By problem mapping, the output of our model is the
sentence-level and word-level labels (see Fig. 1(b) and Example 1), which could
be further easily visualized (i.e., from Fig. 1(b) to Fig. 1(c)) as a specific/general
process model or a process structure tree [25] via intuitively creating nodes and
building sequence flows from the extracted procedural knowledge [8].

3.2 Coarse-Grained Learning of the Sentence-Level Knowledge.

The goal of this phase is to learn sentence-level knowledge in advance. First,
it takes a sequence of embedded words S* = (W{ Wi --.) as input. Then,
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the word vectors are bidirectionally encoded to capture inherent clues in a sen-
tence. Meanwhile, a convolutional neural network (CNN) is used to capture local
ngram features in a sentence. After concatenating ngram features and sentence
embedding, two sentence-level tasks are trained jointly, using a weight-sharing
multitask learning framework, to share learned high-level knowledge between
two tasks and improve the generalization ability.

Embedding Layer. We use BERT [5] or Word2Vec to obtain word vectors.
BERT is an autoencoding language model, which has been the currently state-of-
the-art pre-training approach. Given the input token sequence, a certain portion
of tokens are replaced by a special symbol [MASK], and the model is trained to
recover the original tokens from the corrupted version. Since density estimation
is not part of the objective, BERT is allowed to utilize bidirectional contexts for
reconstruction. This can close the aforementioned bidirectional information gap
in autoencoding language modeling, leading to improved performance.

Encoding Layer. As a special type of recurrent neural network (RNN), LSTM
[14] is particularly suitable for modeling the sequential property of text data.
At each step, LSTM combines the current input and knowledge from the pre-
vious steps to update the states of the hidden layer. To tackle the gradient
vanishing problem of traditional RNNs, LSTM incorporates a gating mechanism
to determine when and how the states of hidden layers can be updated. Each
LSTM unit contains a memory cell and three gates (i.e., an input gate, a for-
get gate, and an output gate). The input and output gates control the input
activations into the memory cell and the output flow of cell activations into the
rest of the network, respectively. The memory cells in LSTM store the sequen-
tial states of the network, and each memory cell has a self-loop whose weight
is controlled by the forget gate. Let us denote each sentence as (S;, L;), where
S; = [WE, W2 ... W] as a sequence of word vectors representing the plain text
and L; as its label; and [d',d?,--- ,d"] denotes the sequence of word vectors of
Si. At step t, LSTM computes unit states of the network as follows:

i = o (Ut + W;hED 4 1,) 1)
Ft) =o(Usdt + WhtD 4 b)) (2)
o(t) =a(U,d' + W,h*=Y +b,) (3)
c(t) = fr © "D +i® @ tanh(U.d' + Weh™D +b,) (4)
K =o® & tanh(c®) (5)

where i, f® o) ® and h®) denote the state of the input gate, forget gate,
output gate, memory cell, and hidden layer at step t. W, U, b respectively denote
the recurrent weights, input weights, and biases. ® is the element-wise product.
We can extract the latent vector for each step T' from LSTM. In order to capture
the information from the context both preceding and following a word, we use
the bi-directional LSTM (Bi-LSTM) [21]. We concatenate the latent vectors from
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both directions to construct a bi-directional encoded vector h; for every single
word vector W, which is:

N .

hi =LSTM(W}),i € [1,]Si]] (6)
hi =LSTM(W),i € [1,1;]] (7)
hi =[hi, ] (8)

Convolution Layer. We also employ multiscale filters to capture local
ngram information in a sentence. Let z7 refer to the concatenation of vectors
x1,2,- - ,o,. The convolution layer involves a set of filters w € R?*¥ which is
solely applied to a window of h to produce a new feature map v =:

o(w;zh + by) o(w;zh + by)
o(wizht + b)) o(wizh ™t 4+ by) o )
o(wizy_pq +01) o(wixy 4.+ b2)

where o(+) is the sigmoid function and b; is a bias term. Meanwhile, we use
the max-pooling operation: o = max(v;) to extract the most important features
within each feature map.

Multi-task Learning. The goal of this module is to incorporate the multi-
ple features for final sentence-level predictions. Since not all features contribute
equally to the final task, we employ the gate attention mechanism to weight each
concept information. For a feature representation z, we define the gate-attention
as follows: ¢ = o(Wz + b), where o denotes the sigmoid activation function,
which guarantees the values of ¢ in the range [0,1]. W and b are a weight and
a bias term which need to be learned. Then, all convoluted representations are
injected into the sentence representation by weighted fusing: z. = 27 ® (g ® 2),
where ® denotes element-wise multiplication, @& denotes concatenation and zp
is the BiLSTM representation. The effect of gate attention is similar to that of
feature selection. It is a “soft” feature selection which assigns a larger weight
to a vital feature, and a small weight to a trivial feature. Note that we addi-
tionally incorporate the hidden feature of ST1 into the input representations of
ST2 via a self-attention gate to model the conditional relation between the two
sentence-level tasks.

After concatenating all features, it is input into two fully connected multi-
layer perceptron (MLP) networks to realize feature fusion:

0; = softmax(Wy - (W1 -V +by) + ba) (10)

where W1, W5, by and by are parameters of a network. To obtain the probability

distribution on each type t € [1,7T], the softmaxz operation is computed by:
exp(o¢)

Pk = ST oo where T is the class number of a classification task.



An Approach for Process Model Extraction 275

Model Training (The Coarse-Grained Learning Phase). We use cross-
entropy loss function to train the coarse-grained learning phase, when given a set
of training data x;, y¢, e;, where x4 is the t-th training example to be predicted, y;
is one-hot representation of the ground-truth type and e; is the model’s output.
The goal of training is to minimize the loss function:

M t1=T1 M to=T1+T>5
J(01,02) = — A ( Z Z yi' - log(e!)) — Ao Z Z yi* - log(ef?)) 1
=1 t1=1 1=1 to=Th1+1 ( )

AM+A=1,2,22>0

where M is the number of training samples; 77 /5 is the category number of each
subtask; A; /5 is a linear balance parameter. The multi-task learning phase can
be further decomposed into learning two single tasks successively.

3.3 Fine-Grained Learning of the Word-Level Knowledge

Note that the features of a small-scale classification task may be higher quality
than the features of a large-scale classification tasks since the small-scale classi-
fication task has relatively sufficient training data [16]. Based on that, compared
with sentence-level tasks, we regard the word-level tasks as relatively “large-
scale” classification tasks, initializing parameters of the word-level task from
the sentence-level tasks and later fine-tuning it. The transfer of parameters can
provide a better starting point for the latter than training from scratch using
randomly initialized parameters [11].

As the right part of Fig.2 shows, we extract the last-hidden features z;
in ST1 as learned sentence-level knowledge and concatenate it with word-
level embedding z,, via the gate-attention mechanism. The fused representation
[2s,9(2w) @ 2] is fed into a MLP module to perform the word-level predic-
tion. In this phase, we freeze ST2 (the light gray part) since ST2 and ST3 are
independent.

Model Training (The Fine-Grained Learning Phase). Similarly, we use
cross-entropy loss function to train the fine-grained learning phase, when given
a set of training data x¢,y:, e;, where x; is the ¢-th training example to be
predicted, y; is one-hot representation of the ground-truth type and e; is the
model’s output. The goal of training is to minimize the loss function:

M t3=

J(03) ==Y Z yp* - log(e (12)

1=1 tz3=1

where M is the number of training samples; T3 is the category number of ST3.

4 Experiments

In this section, we first introduce the experimental setup (datasets, baselines
and implementation details). The experimental results are then demonstrated
to validate the effectiveness of our approach on different datasets.
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4.1 Datasets

Since traditional methods mainly use off-the-shelf NLP tools to analyze sen-
tences and extract corresponding information under the pre-defined features or
patterns; thus, there was no directly available multi-grained corpus for the PME
task. To this end, we constructed two multi-grained PME corpora for the task
of extracting process models from texts:

e Cooking Recipes (COR). We collected cooking recipes from the world’s
largest food-focused social network!. This corpora has a large and diverse
collection of more than 200 cooking recipes and covers every kind of meal
type including appetizers, breakfast, desserts, drinks, etc.

e Maintenance Manuals (ML AM). We collected raw maintenance manuals
from a wiki-based site? that teaches people how to fix almost all devices. This
corpora contains more than 160 maintenance descriptions and covers almost
all devices including computer hardware, phones, cars, game consoles, etc.

In the two raw corpora, we first split all documents into sentences and manu-
ally assigned labels to them. The sentence-level tags denote whether a sentence is
describing cooking ingredients or maintenance tools, performing main actions, or
executing conditions. Furthermore, we split all sentences into words and man-
ually assign labels to them to denote the executor, action name and ingredi-
ents/tools of actions, i.e., the semantic roles. The statistics of those datasets is
given in Table 1.

Table 1. Statistics of the two multi-grained datasets.

Domain COR |MAM
Recipe | Maintenance

# Labeled sentences 2,636 |2,172

# Labeled words 14,260 | 20,612

# Sentence-level categories | 5 5

7# Word-level categories 4 4

4.2 Baselines
We chose several representative baselines:

e A pattern-matching based method (PBSW) [27], which uses NLP tagging
tools to extract important linguistic patterns and adopts a set of heuristic
anaphora resolution mechanisms to extract corresponding procedural knowl-
edge.

! https://www.recipe.com.
2 https://www.ifixit.com.
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e A language-rule based method (ARWE) [28], which introduces a lexical app-
roach and two further approaches based on a set of association rules created
during a statistical analysis of a corpus of workflows.

e A traditional-learning based method (RPASVM) [20], which leverages SVM
to automatically identify whether a task described in a textual description is
manual, an interaction of a human with an information system or automated.

4.3 Implementation Details

We used BERT [5] with text representations of size 100 (also can use Word2Vec
[22] in our architecture). In training, we used a Rectified Linear Unit (ReLU)
as an activation function [19] and the Adam optimizer [17]. The network was
run for 1,000 iterations with a mini-batch size of 32 at the coarse and the fine
training. The learning rate is 1074, We implement MGTC using Python 3.7.3°
and Tensorflow 1.0.14. All of our experiments were run on a single machine
equipped with an Intel Core i7 processor, 32 GB of RAM, and an NVIDIA
GeForce-GTX-1080-Ti GPU. For comparison, all methods have been evaluated
with the same training and test data. We divide datasets into train/test sets
using an 8:2 ratio. The statistical significance between all baseline methods and
MGTC is tested using a two-tailed paired t-test [6]. Our code and data are
available at https://github.com/qianc62/MGTC.

4.4 Overall Performance

We compare all baseline methods, MGTC and its variants in terms of classifica-
tion accuracy. Besides, we extract corresponding process models from the clas-
sification results and compare the behavior similarity between extracted models
and the gold models using existing behavior evaluation methods [33]. The over-
all results (accuracy of predicted labels) are summarized in Table2. From the
evaluation results, we can make several key observations:

1) Our proposed model MGTC consistently outperforms all methods on all sub-
tasks with statistical significance. On ST1 (single sentence classification),
MGTC improves the accuracy by 7.97% and 7.24% on COR and MAM
against the strongest competitor, respectively. On ST2 (sentence semantics
recognition), MGTC improves the accuracy by 3.92% and 13.94% on COR
and MAM, respectively. On ST3 (semantic role labeling), MGTC still outper-
forms all methods, improving accuracy by 9.75% and 2.18%, respectively. We
believe that this is promising as word-level tasks face the problem of sparse-
ness and ambiguity compared with sentence-level tasks, i.e., words have not
relatively enough contextual information, which poses a great challenge for
ST3. Moreover, in terms of behavior similarity between the extracted models
and the gold models, employing the deep-learning-based framework improves

3 https://www.python.org.
4 https://www.tensorflow.org.
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Table 2. Experimental results (accuracy; %) of all baselines, MGTC and its variants.
DOP, PPP, TVC, OPM, ARM and FMS denote mechanisms applied in reference
papers. A and A indicate the best and the second-best performing methods among all

th

e baselines, respectively. The best performance among all methods is highlighted in

boldface. The * denotes statistical significance (p < 0.05) compared to MGTC.

Method Task & Dataset

ST1 ST2 ST3 PME

COR |MAM |COR |MAM |COR |MAM |[cor |[mam
PBSW+DOP 47.63, | A7.58, | 43.66, | 39.49, | 34.38, | 35.605 | 30.35, | 30.27,
PBSW-+DOP+PPP 51.52, | 52.55, | 45.40, | 45.67, |48.58, |A47.36, |38.04, |37.17.
PBSW+DOP+PPP+TVC | 66.53, | AT.42, | 55.48, | 46.65, | 50.28, | 49.62, | 46.27, | 36.07.
ARWE+OPM 70.66, | 60.46, | 62.43, | 62.45, |58.46, | 61.62, |52.46, |51.09,
ARWE+OPM+ARM 76.39, | 69.51, |56.52, |72.535 | 71.382 | 77.622 | 65.212 | 59.50,

ARWE+OPM+ARM+FMS | 71.63, | 69.60, | 61.37, |64.48, | 72.644 |78.26% |69.574 |66.11%
AN

RPASVM+1 gram 82.532 | 81.652 | 84.442 | 71.55, | 63.39, |60.39, | 57.76, |60.23,
RPASVM+1 gram+2 gram | 85.374 | 84.504 | 87.614 | 72.55% | 67.33. |64.53. |56.59, | 61.232
MGTC 93.34 | 91.74 |91.53 |86.49 |82.39 |80.44 |77.40 |75.77
MGTC\ Gate Mechanism | 90.37, | 88.58, |89.40, | 84.57, |77.62, |76.42, |67.39, |71.64,
MGTC\ Coarse-to-Fine 91.55, | 89.45, |88.31, |84.53, |79.44, |76.22, |74.46, | 72.29.

behavior accuracy by 7.83% and 12.66% respectively, which further verifies
that MGTC can extract procedural knowledge without employing manual
features and complex procedural knowledge.

From ablation studies, we can see that the performance improves after
employing the gate-attention mechanism and coarse-to-fine learning. For
example, employing coarse-to-fine learning improves the behavior similarity
by 2.94% and 3.48% on COR and MAM. That is to say, both the gate-
attention mechanism and coarse-to-fine learning can improve accuracy, which
shows the effectiveness of the two mechanisms. This is consistent with our
intuition that training coarse tasks in advance before fine-grained tasks can
learn to better learning procedural knowledge.

The experimental results also demonstrate the disadvantages of the manual-
feature-based methods. First, since traditional methods employ diverse man-
ual mechanisms or features, they suffer from the problems of poor quality and
lack of adaptability. In contrast, deep-learning-based methods learn hidden
contextual features automatically and always maintain their superior perfor-
mance. Second, by considering the long-term language changes, the framework
with mixture of multiscale filters can understand texts’ semantics better and
extract more accurate information. Third, over all subtasks and datasets, we
can see that MGTC can maintain more stable results, which suggests that
MGTC is more robust on different subtasks and datasets.

4.5 Further Investigation

To further investigate the independent effect of the key parameters or com-
ponents in our framework, we compare our method with those replacing with
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Fig. 3. Ablation analysis of different components (language models, ngram filters, the
number of hidden layers) on three subtasks. DS denotes the default settings. \ is the
removing operation. * denotes statistical significance (p < 0.05) compared to MGTC.

other standard components, using the default settings described in Sect. 4.3. The
results are shown in Fig. 3.

Effect of Language Models. Fig. 3(a) shows the performance of those variants
employing different language models (BERT, ELMo, GloVe and Word2Vec). It
can be observed that, when the default BERT is replaced with ELMo, GloVe or
Word2Vec, the performance consistently decreases. Particularly, on ST3, using
Word2Vec decreases the accuracy about 4.58 points, which shows that pre-
training on large-scale corpora can better capture linguistic information.

Effect of Multi-scale ngram. Fig. 3(b) shows the performance of the variants
after removing ngram (n = 1,2,3) filters from MGTC. It can be observed that,
when ngram filters are removed from the network, it decreases performance of
on average by 3.18%/4.02%/1.06% on the three tasks respectively. This demon-
strates that ngram filters make a contribution to the promising scores. In par-
ticular, removing & gram filters obviously influences the performance of ST2,
suggesting that 3 gram features play an important role in ST2.

Effect of the Number of Hidden Layers. From Fig. 3(c), we can observe
that the performance of two-layer MLP indicates that imposing some more non-
linearity is useful, and that the one-layer networks seem slightly weak for certain
subtasks. However, further increasing the number of layers may degrade the
performance because the model becomes too complicated to train. Using a two-
layer architecture seems like a good trade-off between speed and accuracy.

We also conducted more experiments to further investigate the performance
of traditional learning (TRAL) and our proposed coarse-to-fine learning method
(C2FL). From Fig.4(a) we can observe that ST1 first converges after a 1.8e
average duration (le = 10° ms), followed by ST2 (4.1e) and ST3 (8.2¢). More-
over, comparing the results of TRAL and C2FL, one can see that C2FL con-
sistently magnifies and scatters the time consumption on three subtasks. The
main reason for this is that coarse-to-fine learning architecture would leverage
learned features from sentence-level tasks to word-level tasks in a gradual man-
ner; thus, word-level tasks (ST3) would consume more time than sentence-level
tasks (ST1 and ST2). From Fig.4(b), the N-fold cross-validation results show
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that the generalization performance of C2FL is remarkably higher than TRAL’s
on all subtasks. This further indicates that employing coarse-to-fine learning is
more useful in extracting information with different granularities. Therefore, we
can conclude that, although at the expense of longer running time, coarse-to-fine
learning tends to converge to a higher performance.

20e

m | g
£ 1] g 90
S16e =85
Q ] L] Seo [OST1 (TRAL) @ST1 (C2FL)
8 & L] B 234567 891011121314151617181920
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Fig. 4. Further investigation of the traditional learning (TRAL) and our proposed
coarse-to-fine learning (C2FL).

5 Discussion

Note that many publicly-available model-text pairs (e.g., [8]) are not considered
as our datasets, because our supervised method inevitably needs much-larger
scale of labeled (both sentence- and word-level) training data than traditional
rule-based ones. Both requirements (data scale and label) are not fully satisfied
on previous datasets which are almost uniformly small or unlabeled.

Moreover, the datasets used in this paper consist of relatively general process
texts. Thus, a classic pattern-matching based method [8] is not considered in
this version because it mainly focuses on extracting Business Process Model and
Notation (BPMN) that contains many specific elements, such as swimlanes and
artifacts, whose attributes currently have no corresponding specifically-defined
labels to perform procedural knowledge extraction via our “relatively general”
model. Adding such features is a possible extension of our work.

It is also worth mentioning that although we aim to extract from general
process texts, our model might suffer from low external validity. One main reason
is that both recipes and manuals are rather sequential by nature, which means
that we can expect a rather small number of concurrent streams of actions
and complex choices. However, note that deep-learning-based methods, to some
extent, tend to be more generalized than pattern-based ones, due to their ability
for “adaptive knowledge learning” (rather than those that work with a fixed
human-defined knowledge). This limitation further motivates us to design more
general and robust models in future work.
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6 Conclusion

In this paper, we formalize the PME task into the multi-grained text classi-
fication problem and propose a hierarchical multi-grained network to model
and extract multi-grained information without manually defined procedural fea-
tures. Under this structure, we accordingly propose the coarse-to-fine learning
mechanism, training multi-grained tasks in coarse-to-fine grained order, to apply
the high-level knowledge for the low-level tasks. The results demonstrate that
our approach outperforms the state-of-the-art methods with statistical signifi-
cance and the further investigations demonstrate its effectiveness. Therefore, we
draw two main conclusions as follows: 1) The deep-learning-based process extrac-
tor can effectively capture procedural knowledge without the need for defining
domain-specific procedural features; and 2) Our proposed hierarchical network
and the coarse-to-fine learning mechanism can better learn the word-level clues
based on pre-learned sentence-level knowledge.
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