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An Approach for Robotic Leaning Inspired by

Biomimetic Adaptive Control
Chao Zeng, Member, IEEE, Hang Su, Member, IEEE, Yanan Li, Senior Member, IEEE,

Jing Guo, and Chenguang Yang, Senior Member, IEEE

Abstract—How to enable robotic compliant manipulation has
become a critical problem in the robotics field. Inspired by a
biomimetic adaptive control strategy, this work presents a novel
representation model named human-like compliant movement
primitives (Hl-CMPs) which could allow a robot to learn human-
like compliant behaviours. The state-of-the-art approaches can
hardly learn complete compliant profiles for a specific task.
Comparatively, our model can encode task-specific parametric
movement trajectories, correspondingly associated with dynamic
trajectories including both impedance and feedforward force
profiles. The compliant profiles are learned based on a biomimetic
control strategy derived from the human motor learning in
the muscle space, enabling the robot to simultaneously learn
the impedance and the force while executing the movement
trajectories obtained from human demonstration. Furthermore,
both the kinematic and the dynamic profiles are learned in the
parametric space, thus enabling the representation of a skill
using corresponding parameters (i.e, task-specific parameters).
Hl-CMps can allow the robot to automatically learn compliant
behaviours in an online manner after kinematic demonstration.
Our approach is validated by an insertion task and a cutting
task based on a KUKA LBR iiwa robot.

Index Terms—Adaptive impedance/force control; Robot con-
trol; Impedance learning; Human-robot interaction; Robotics

I. INTRODUCTION

Humans have an amazing ability of compliantly performing

tasks, although we have not completely understood the deep

reasons behind this yet. It is, therefore, natural for us to

ask two questions: can we enable a robot to learn such an

ability from humans, and how? For the first question the

answer is arguably yes. Actually, it has become an agreement

that learning from demonstration can be an efficient way to

transfer human behaviours to robots [1–4], and is being widely

utilized for robot programming. For the second one, however,

it still remains quite challenging, especially when it comes to

compliant manipulation skills [5]. This work aims to take one

step forward toward this goal.
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Figure 1: General description of state-of-the-art approaches

which are focused on (a) kinematics transfer and (b) learning

of partial dynamics profiles (impedance or feedforward force),

and (c) the proposed approach. Our work seeks to provide a

unified representation for online learning of kinematics and

dynamics profiles. After the kinesthetic demonstration of a

task, our approach allows a robot to compliantly reproduce the

task by automatically learning the dynamics profiles during the

execution of the movement trajectories.

Although many efforts have been recently made to allow

robots to perform tasks in a compliant manner based on

adaptive control strategies [6–10], so far few works have

ever considered to integrate the human arm adaptive control

strategy in the muscle space into a robotic learning system

so that the robots can behave in a human-like way to deal

with force-relevant tasks [11]. More specifically, most of

the previous studies in this domain focused on the learning

of robotic impedance while leaving alone the force, or the

opposite way. As a matter of fact, it has already been made

clear that in a dynamic task we humans can simultaneously

learn the arm impedance and the feedforward force to meet

the task requirements [12]. This work, instead, will integrate

this principle found in human motor learning into the robotic

skill learning model.

A general description of the state-of-the-art and the pro-

posed approaches is shown in Fig. 1. In this paper, we propose

a unified approach for the parametric representation (i.e., Hl-

CMPs) of a robotic compliant skill including not only the

kinematic movement trajectories, but also the impedance and

force profiles, in order to facilitate the learning of human-

like behaviours. The impedance and the feedforward force are

adapted in the parameter space instead of directly learned in

the trajectory level, which is different from previous works.

Our approach includes a two-step procedure: the first step is to
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obtain the task-specific movement trajectories by demonstra-

tion, for which there are several ways that can be utilized here

including teleoperation and kinesthetic demonstration through

physical interaction. The parameters for these demonstration

movement trajectories are then learned through supervised

learning. During the second step, the robot can reproduce the

demonstrated task in a compliant manner since the robot can

automatically learn the compliant behaviour along the execu-

tion of the reference movement trajectories which are encoded

by the dynamical movement primitives (DMPs) in advance,

thanks to the proposed Hl-CMPs built on the biomimetic

control.

The contributions of our work are summarized as: i) a

novel robotic compliant skill learning approach that integrates

the DMP-based motion trajectory encoding model and the

biomimetic adaptive control strategy is first established; and ii)

The adaptation of the compliant profiles including impedance,

damping and force is extended from the previous work in

trajectory-space to parametric space in this work. The con-

tributions will be comparatively explained in detail in the

following section.

II. RELATED WORK

A. Learning of robotic complaint movements

Robotic compliant movement profiles mainly include

kinematic trajectories and dynamic (i.e., impedance and

force/torque) trajectories [13]. During the last two decades

a number of models have been developed to address the

encoding of kinematic trajectories. Among these models,

DMPs has been widely used in a number of imitation learning

tasks. Similar as in [14], in this work we take DMPs as the

representation constituting the kinematic part of the Hl-CMPs,

thanks to its many advantageous properties such as adaptation

and generalization.

In order to achieve compliant manipulation, variable

impedance based torque control has been recently proposed

and validated for robotic task execution. Variable impedance

control is a very wide topic in this domain, but the core

question in robotic learning is how to learn proper impedance

profiles for a specific task.

One solution to this question is to enable the robot to learn

impedance from humans. To this end, the human user’s limb

impedance is first estimated by processing Electromyography

(EMG) signals extracted from the human user during demon-

stration [15], and then transferred to the robotic arm through

the impedance mapping between the human and the robot.

Human-robot impedance transfer has successfully enabled the

robots to learn/generalize several compliant skills such as co-

carrying [16] and pushing [17]. However, one drawback of

this approach lies in its requirement of an off-line complex

parametric identification process and the need for force and

EMG sensors for the estimation of the human arm impedance.

Another approach is based on reinforcement learning (RL).

Policy improvement with path integrals (PI2) is one of the RL-

based algorithms that can be utilized to learn robotic variable

impedance profiles [18, 19]. It has been applied to several

robotic tasks such as opening a door [18] and robust grasping

Figure 2: The diagram of the proposed biomimetic control

strategy which is adapted from the previous work [24]. The

yellow blocks represent the trajectory learning part completed

before the reproduction of the task; the blue blocks repre-

sent the online adaptation of the feedforward force and the

impedance in order to deal with the interaction force from the

environment.

[20]. RL-based approaches optimize the impedance profiles,

often initialized with constant stiffness/damping trajectories,

based on predefined cost objective functions. A number of

trials may be required until the cost objective functions are

eventually minimized/maximized.

Variable impedance profiles can also be estimated by ex-

tracting the mapping between the sensed force and the corre-

sponding position variation, which has been used in some task

scenarios [5, 21]. A force sensor is required and mounted onto

the endpoint of the robotic arm to collect the force signals for

stiffness estimation, thus inevitably increasing the total cost

of the robotic system. Furthermore, the estimated stiffness

strongly depends on the sensed force signals.

In [22], the stiffness profiles are adapted along with the

execution of the known movement trajectories based on per-

turbations imposed by a human teacher through physical

interaction, which means human inference is required during

the learning process. A linear quadratic tracking approach is

used in [23] to obtain stiffness, damping and feedforward

force profiles depending on the precomputed model param-

eters. Very recently, compliant movement primitives (CMPs)

is proposed for the learning of robotic compliant behaviours.

Different from the approaches mentioned above, CMPs aims to

acquire not the variable impedance profiles but the feedforward

dynamic torque trajectories, referred as task-specific torque

primitives (TPs) [14]. TPs is obtained through the execution

of the desired movement trajectories by the robot under a

high-gain control mode which may be harmful to the robotic

platform. CMPs is further improved in [13] to avoid this

problem through autonomous learning of the TPs profiles.

Unlike the work mentioned above, this paper aims to

enable the learning of both impedance and feedforward torque

profiles simultaneously and automatically during the robot

reproduction of a task.

B. Biomimetic control based on human motor learning

Biomimetic control for robotic compliant manipulation can

be inspired by human motor learning and control. With the

aid of the progress made in neuroscience study (e.g., [12]),
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actually, several biomimetic controllers have been developed

for the transfer of control strategies in human muscle space

to a robotic arm in joint/Cartesian space, in order to learn

human-like compliant behaviours. Typically, [25] derived a

biomimetic controller from human motor control by construct-

ing a cost function with muscle activation parameters, based

on which using gradient descent the impedance and the force

profiles can be learned concurrently. This controller is further

improved and integrated into motion planning for compliant

interaction, and this approach was evaluated in a simulated

two planar robot collaborative lifting task.

Another biomimetic robotic controller was developed in

[26] that can allow the robot to deal with not only stable

tasks but also unstable tasks during the interaction with its

environment or a human user. Recently, [24] improved the

controller for the learning of dynamic profiles, and beyond

that movement adaptation was also considered in the con-

troller. Their approach has been validated by several tasks

such as drilling and haptic identification [24]. In our work,

the adaptation of movement trajectory is neglected because

it can be directly learned from human demonstration. In

order to facilitate robotic learning of human-like skills in a

unified representation, we do not directly adapt the dynamic

profiles (impedance, damping and force) but update the task

parameters representing these dynamic profiles, namely, they

are learned in the parametric space.

To summarize, we seek to provide a compact and unified

representation for learning all the dynamics profiles including

impedance and feedforward force. Inspired by the concept

CMPs proposed in [13, 14], here we name our approach

human-like compliant movement primitives (Hl-CMPs) indi-

cating that our approach is derived from the human motor

learning strategy.

III. PRELIMINARY

A. Human motor learning

This subsection briefly presents some neuroscience findings

in human motor learning.

In [12], it has been already shown that humans have the

ability to adapt both impedance and feedforward force in

unknown dynamical environments under the control of the

central nervous system (CNS), which is a step forward from

the previous finding that only the force is adapted to deal with

stable tasks.

More importantly, it is observed that the impedance umus.

and the force vmus. are learned in an independent way, and

the sum of the two terms forms the motor command τmus. in

the human muscle space, i.e.,

τmus. = umus. + vmus. (1)

Furthermore, it has also demonstrated that the feedforward

command, i.e. vmus. and the feedback command, i.e. umus.

are concurrently learned to guarantee the minimization of both

movement error and effort during a specific task. Based on

these findings in human motor learning, several biomimetic

controllers have been developed recently for the robotic com-

pliant control, e.g, [25]. We would like not to explain too much

about human motor learning in this work, so please refer to

[24, 26] for the details.

B. Robotic control

The dynamics of a rigid-body robot in the task space can

be given by

M(q)ẍ+ C(q, q̇)ẋ+G(q) = fc + fext (2)

where q is the joint angle, and q̇ and q̈ are corresponding

joint velocity and acceleration, respectively. x represents the

position of the robotic arm endpoint. M(q), C(q, q̇) and

G(q) represent inertia, the Coriolis and centrifugal forces, and

gravitational force, respectively. The sum of these three forces

is considered as fdyn which is assumed to be known in this

paper. fc is the control input, and fext represents the external

force exerted on the robot by its environment or a human user.

According to the human muscle motor learning principles,

the control input can be split into two parts

fc = −u− v (3)

where u and v represent impedance and feedforward force,

respectively.

And impedance is usually given by

u = Kse+Kdė (4)

with
{

e = x− xd

ė = ẋ− ẋd
(5)

where Ks and Kd are stiffness and damping, respectively. e

and ė are position and velocity errors, respectively. xd and ẋd

are desired position and desired velocity, respectively.

IV. METHODOLOGY

First, DMPs model is briefly introduced. We then present

how to reform DMPs as Hl-CMPs. Finally, we will elaborate

how to learn Hl-CMPs based on biomimetic motor control.

A. Recall of DMPs

DMPs has been widely used to encode robotic motion

trajectories in joint or Cartesian space. Generally, we can

encode a 1-DOF (degree of freedom) point-to-point trajectory

by the following equations.

τ ż = α(β(pgoal − p)− z) + f(s) (6)

τ ṗ = z (7)

τ ṡ = −αss (8)

f(s) =
ΣN

n=1
ωn(s)θn

ΣN
n=1

ωn(s)
s(pgoal − p0) (9)

with

ωn(s) = exp(−0.5hn(s− cn)
2) (10)

where p is motion position and z is the corresponding velocity.

pgoal is the goal of the motion trajectory. α and β are constant

parameters which are set properly in advance before learning

of the model. τ is a temporal scaling coefficient that can
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Table I: The learning procedure of Hl-CMPs

I Demonstration
A human user demonstrates the robot to perform a task, during
which the robotic motion states are recorded.

II Learning of motion trajectory parameter θp
Fit the DMP model based on the recorded data using LWR

III Learning of stiffness, damping, force parameters θk , θd, θv
Initialize these parameters, θk(t0), θd(t0) and θv(t0)
Set constant matrices/coefficients, e.g., Qk , Qd and Qv

For each time step t, do

Sense robot current states and compute sliding error (Eq. 29)

Compute the increment rates θ̇k(t), θ̇d(t), θ̇v(t) (Eq. 31)
Update these parameters, i.e., θk(t), θd(t), θv(t)
Update the impedance and feedforward force
Calculate the desired joint torque commands using Eq. 3
Send the generated commands to the robotic actuators

End For

modify the execution duration of the motion trajectory. s is

phase variable determined by Eq. 8 with a constant coefficient

αs. The non-linear force term f(s) can modify the shape of the

motion trajectory, and it is defined by Eq. 9 that can be seen

as a linear combination of a set of basis functions. Usually,

radial basis function (Eq. 10) is chosen to form the force term

with a width hn and a center cn. N is the number of radial

basis functions.

The system can be guaranteed to converge to the goal by

choosing proper constants, i.e., α, β, αs and τ . For details

about the stability and other characteristics of this model we

suggest to refer to [27].

B. Representation of Hl-CMPs

First, for the encoding of motion data we rewrite DMPs in

the following equations

τ ż = α(β(pgoal − p)− z) + θp · gp (11)

with motion parameters θp. (·) denotes dot product operation.

θp = [θp,1, θp,2, · · · , θp,n, · · · , θp,N ]

and the basis functions gp.

gp = [gp,1, gp,2, · · · , gp,n, · · · , gp,N ]T

The n-th element in gp is determined by

[gp]n =
ωn(s)s

∑N

n=1
ωn(s)

(pgoal − p0) (12)

Then, we use the following equations for the encoding of

compliant movement profiles.

For the m-th DOF, the stiffness:

Ks,m = θk,m · g (13)

with

θk,m = [θk,1, θk,2, · · · , θk,n, · · · , θk,N ]

The damping term:

Kd,m = θd,m · g (14)

with

θd,m = [θd,1, θd,2, · · · , θd,n, · · · , θd,N ]

and the feedforward force:

vm = θv,m · g (15)

with

θv,m = [θv,1, θv,2, · · · , θv,n, · · · , θv,N ]

They share the same basis vector g that is determined by

[g]n =
ωn(s)

∑N

n=1
ωn(s)

(16)

Thus, a robotic compliant skill can be represented by

specific parameters as below

θ = {θp,i, θk,i, θd,i, θv,i}
M
i=1

(17)

where M is the number of DOFs.

C. Learning of Hl-CMPs

The learning of Hl-CMPs parameters θ is divided into two

parts. The first part is to learn the motion trajectories, i.e.,

the motion parameters θp. In the second part, then, the other

parameters are learned along the execution of the learned

motion trajectories.

1) Learning of motion parameters: Eq. 7 is first substituted

into Eq. 11 to yield a second-order system

θp,m · gp = τ2p̈+ ατṗ− αβ(pgoal − p) (18)

Given the m-th DOF reference trajectory position pm,t, and

its corresponding first-order and second-order derivatives ṗm,t

and p̈m,t, the target force function is then derived as

ftarget,i(st) = τ2p̈m,t + ατṗm,t − αβ(pgoal − pm,t) (19)

with

pgoal = pm,T , t = [1, 2, . . . , T ] (20)

Then, θp can be obtained by

min ‖ftarget(s)− θp · gp‖
2 (21)

which is considered as a supervised learning problem which

can be efficiently solved by using regression algorithms, e.g.,

Locally Weighted Regression (LWR) and Gaussian Process

Regression (GPR).

2) Learning of parameters of compliant profiles: In the

following we will derive the learning law of θk, θd and θv
based on a recently developed biomimetic controller [24, 26].

First, θ∗k(t), θ
∗

d(t) and θ∗v(t) are assumed to be the desired

parameters of the corresponding desired stiffness, damping

and feedforward force that can maintain stability, and they

are represented as follows

Φ∗(t) =[θ̄∗Tk , θ̄∗Td , θ̄∗Tv ]T (22)

where θ̄∗k, θ̄∗d and θ̄∗v are the row average vectors of θ∗k, θ∗d and

θ∗v , respectively.

According to the human motor learning, we can assume

that CNS could automatically adapt the stiffness, damping and

feedforward force to approach the desired ones by minimizing

the cost function

Jc =
1

2
Φ̃TQ−1Φ̃ (23)
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Table II: Dimension of the main parameters.

Parameter description Notations Dimension

position and velocity x, ẋ, xd, ẋd, e, ė, ε M × 1
force and torque fc, fext, u, v M × 1

stiffness and damping Ks, Kd M × M
basis function vector gp, g N × 1
Hl-CMP model para. θp, θk, θd, θv M × N

cost functions Jall, Jc, Je 1 × 1
learning rates. Qk , Qd, Qv M × M

where

Φ̃ = Φ− Φ∗ = [θ̃Tk , θ̃
T
d , θ̃

T
v ]

T (24)

with

Φ =[θ̄Tk , θ̄
T
d , θ̄

T
v ]

T (25)

and

θ̃k = θ̄k − θ̄∗k, θ̃d = θ̄d − θ̄∗d, θ̃v = θ̄v − θ̄∗v (26)

where θ̄k, θ̄d and θ̄v are the row average vectors of θk, θd and

θv , respectively.

The constant matrix Q is defined by

Q = diag(Qk ⊗ I, Qd ⊗ I, Qv ⊗ I) (27)

where Qk, Qd and Qv are symmetric positive-definite ma-

trices, corresponding to the stiffness, damping and the feed-

forward force, respectively, i.e., Qk = diag{Qk,m}, Qv =
diag{Qv,m}, Qv = diag{Qv,m}, m ∈ [0, · · · ,M ]. And I is

the identity matrix.

For minimization of the motion tracking error, the following

cost function can be considered

Je =
1

2
εTM(q)ε (28)

where the sliding error

ε = ė+ πe (29)

with a positive constant coefficient π.

Therefore, the overall cost function is the sum of the two

above-mentioned cost functions

Jall = Jc + Je (30)

The minimization of the cost function can be achieved

through the following learning laws. They are adapted at each

time step for the m−th (m ∈ [0, · · · ,M ]) DOF as:

θ̇Tk,m = Qk,mεmemg

θ̇Td,m = Qd,mεmėmg

θ̇Tv,m = Qv,mεmg

(31)

A brief proof for Eq. 31 can be found in the Appendix. Until

now, all the task parameters in Eq. 17 can be obtained. The

diagram of the biomimetic control strategy is shown in Fig.

2. The whole learning procedure of Hl-CMPs is summarized

in Table I. And Table II summarizes the size of the main

parameters used for the updating law.

Figure 3: The experimental setup for the insertion task.
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Figure 4: The online learning results of the compliant profiles

while executing the reference movement trajectory in z axis.

FF represents the feedforward force, and CF represents the

commanded force.

D. Insertion task

V. EXPERIMENTAL STUDY

In this section we show that our approach is validated by

an insertion task. The experimental set-up is shown in Fig.

3. The KUKA LWR4+ robot is controlled in the task space

under the force control mode. A force sensor (M8128C6, SRI)

is mounted between the robotic endpoint and the tool that is

used to collect the interaction force signals. Two tasks, i.e.,

insertion and cutting, are conducted to verify the performance

of the proposed method.

In the first task, the robot is controlled to insert the tool

into the foam plank during demonstration. The main setting

of the parameters for the Hl-CMPs is chosen by heuristics:

QK = diag{3000, 3000, 3000}, QD = diag{90, 90, 90},

Qv = diag{9, 9, 9}. The parameters θk, θd and θv are

initialized with zero. An example of the online learning of

the compliant profiles (i.e., stiffness, damping and feedforward

force) is shown in Fig. 4. It shows the adaptation of these

profiles along the movement trajectory in z axis. During

the reaching phase (from the very beginning to about 400th

time steps), the feedforward force and the stiffness stay at

comparatively lower values, thus allowing the robot to compli-

antly contact with the foam plank. Subsequently, they slowly



6

-0.38

-0.36

-0.34

x 
[m

]
reference

cons. stiff. 500

cons. stiff. 1000

cons. stiff. 2000

proposed

0.42

0.44

0.46

0.48

y 
[m

]

0 200 400 600 800 1000

Time step

0

0.2

0.4

z 
[m

]

(a)

-5

0

5

F
x 

[N
]

cons. stiff. 500

cons. stiff. 1000

cons. stiff. 2000

proposed

-5

0

5

F
y 

[N
]

0 200 400 600 800 1000

Time step

-10

0

10

20

F
z 

[N
]

(b)

Figure 5: The measured endpoint (a) position trajectories and

(b) force profiles in x, y and z axes during robot reproduction

under the different control conditions.

increase during the insertion phase, resulting in the increasing

of the command force, in order to deal with the external

resistance applied onto the tool. After the tool piercing the

foam plank, during the third phase the force and the impedance

start to decrease since the external resistance becomes smaller.

It is interesting to find that in our experiment the feedforward

force and the command force almost share the same shape,

and more interestingly, the value of the feedforward force at

each time step is almost half of that of the command force,

i.e., u ≈ v ≈
1

2
τc. Of course, this might not be always true

for other tasks since the dynamics vary largely in different

situations. For instance, different inserting objects would result

in different task dynamics [24].

Conventionally, the robot is often controlled in a constant

impedance mode to perform a specific task. For comparison,

the robot is also enabled under this mode to perform the

insertion task, with different constant stiffness values (i.e.,

500, 1000 and 2000[N/m]) for each axis. The measured

endpoint position trajectories and force profiles during robot

reproduction are shown in Fig. 5. To quantitatively compare

the performances, we visualize i) the average absolute values
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Figure 6: The average absolute values of the position errors

between the reference and measured trajectories.
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Figure 7: The average absolute values of the force profiles.
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Figure 8: The sum of the absolute values of the second

derivative of the force profiles.

of the position errors between the reference and measured

trajectories in Fig. 6; ii) average absolute values ( 1

N

∑N

i ‖fi‖)

of the force profiles in Fig. 7; and iii) the sum of the absolute

values of the second derivative (
∑N

i ‖f̈i‖) of the force profiles

in Fig. 8, which can approximately illustrate the smoothness

of force profiles. We can see that larger stiffness would result

in a better performance of position tracking. However, it is

also observed that the constant impedance control would easily

cause unstable interactions during the insertion process even

using a comparatively low stiffness value (e.g., 500 [N/m]).

Our approach, on the other hand, can allow the robot to learn

compliant behaviours resulting in more smooth force profiles

which are slowly and stably adapted during the interaction

between the robot and the environment. Furthermore, the force

profiles are almost kept zero in x and y axes, which means

the proposed Hl-CMPs model can automatically decouple the

dynamics profiles in different axes and then selectively adapt

the task-related ones, but the fixed impedance mode could not

do so.

The direct visual results are shown in Fig. 9. We can see the

surface of the foam plank tends to be more easily damaged

by the tool under the constant impedance mode than using the

Hl-CMPs, due to the lack of the adaptability.
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Figure 9: The visual results of the reproduction of the insertion

task, using the proposed Hl-CMPs and constant impedance.

(a) (b)

Figure 10: (a) The experimental setup for the cutting task, and

(b) a cartoon illustration of the cutting process.

A. Cutting task

The second task, i.e., a cutting task is further performed

to verify the generalizability of our approach in different task

situations. The task setting is sown in Fig. 10(a), and a cartoon

illustration of the cutting process is sown in Fig. 10(b). During

this task the robot is first demonstrated by a human user to

lightly cut the surface of an object, following three steps:

reaching and contacting the object from the start point; cutting

it in x− y plane; and finally lifting the robot arm. Then, the

robot is controlled to reproduce the process with the proposed

Hl-CMPs algorithm, and with constant stiffness values 500

and 1000[N/m] for each DOF.

The parameter settings for the Hl-CMPs in this task are:

QK = diag{4000, 4000, 4000}, QD = diag{50, 50, 50},

Qv = diag{9, 9, 9}. The learning results are shown in Fig 11.

The three subplots show all the learned profiles including the

position trajectories, feedforward force, stiffness and damping

profiles, as well as the commanded forces in the Cartesian

space along x, y and z axes, respectively. From the curves,

we can see that during the first step, i.e., the free-motion

reaching stage, the impedance and feedforwrd force do not

change much in x and y directions, but in z axis they gradually

increase to enable the robot endpoint to contact the object as if

there was a virtual force attached to it by a human user. During

the cutting step (approximately from 400 to 1600 time steps),

the compliant profiles in x and z directions do not adapt as

obviously as in y direction. This may be explained by the fact

that the task dynamics in y axis is more difficult than that in

the other two axes, and thus the impedance and feedforward

(a) (b)

(c) (d)

Figure 13: The simulation results using (a) the proposed

approach and the adaptive impedance controller in [21] with

different settings (b) fd = 0.5N, (c) fd = 1.5N, and (d)

fd = 5N.

force profiles have to be largely adapted to deal with it. And

during the third step, it is similar to the first step that the

impedance and force in z direction are accordingly adapted,

and that in the other directions almost keep constant. In this

task it can be observed again that our approach can enable the

robot to adapt the dynamics profiles selectively in different

axes according to the task requirement. The measured force

of the robot endpoint in z axis during the task is shown in Fig.

12(a), and the sum of absolute values of the second derivative

of these force profiles is shown in 12(b). Compared with the

constant stiffness impedance control, our approach enables a

more compliant cutting behaviour which is illustrated by a

more smooth force profile.

B. Comparison with variable impedance controller in [21]

In this subsection, we illustrate the performance of our

control strategy in simulation, compared with the variable

impedance controller in [21]. In the simulation task, a 1-DOF

robot is controlled to cut an object with the desired cutting

depth 0.15[m], starting from the start point at the timestamp

t = 0, i.e., x0 = 0, and xd = −0.15[m]. And from the

timestamp t = 10[s], the robot is required to return back to

the start point, i.e., x0 = −0.15[m], and xd = 0.

The stiffness of the environment is set as 10[N/m], and the

inertia of the robot M = 5. The parameters of our control

strategy are set as QK = 2000, QD = 500, Qv = 0. The

variable impedance controller developed in [21] requires an

additional input variable, i.e., the desired interaction force fd.

To illustrate the comparative results, we set three values for

this variable, i.e., fd = 0.5N, fd = 1.5N, and fd = 5N.

The simulation results are shown in Fig. 13. We can observe

that our approach can enable the robot to efficiently cut into

the object, and complete the task more smoothly [see Fig.
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Figure 11: The online learning results of the compliant profiles in the cutting task while executing the reference movement

trajectory in x, y and z axes.

0 400 800 1200 1600 2000

Time step

-5

0

5

10

15

F
z 

[N
]

cons. stiff. 500 cons. stiff. 1000 proposed

(a)

cons. stiff.500 cons. stiff.1000 proposed
0

20

40

60

A
b
s
. 
v
a
lu

e
s
 o

f 
s
e
c
. 
d
e
ri
v
a
ti
v
e

(b)

Figure 12: (a) The measured endpoint force profiles in z axis during robot reproduction under the different control conditions,

and (b) the sum of absolute values of the second derivative of these force profiles.

13(a)], compared with the controller in [21]. Moreover, the

predefined desired force fd has a large influence on the control

performance and an improper value may result in the failures

of tracking of the desired position. Even with an proper fd
that allows the desired cutting depth, it cannot achieve a fast

response compared to our approach. This suggests that our

approach has an advantage to deal with this kind of tasks.

Despite these results, we would like to point out that we cannot

claim that our approach is better than the one in [21] for all

tasks. The controller in [21] may outperform ours in other

tasks where explicit force control is required.

VI. DISCUSSION AND CONCLUSION

A robotic learning approach (i.e., Hl-CMPs) is introduced

in this paper, which can provide a novel strategy to address

the question how to enable the robot to learn compliant

behaviours. Our approach is based on a biomimetic control

strategy inspired by the recent neuroscience findings of the

human motor learning principles in the muscle space. Two

typical robot-environment physical interaction tasks, i.e., in-

sertion and cutting tasks, have been conducted to validate the

performance of the proposed approach. From the experiment

results, we can observe that the constant impedance control

mode (including high and low stiffness values) may result in

unstable and large contact force profiles [see Figs. 5(b), 7 and

8 for the insertion task and Fig. 12 for the cutting task]. On

the contrary, the proposed approach could achieves a more

smooth profile. It means that Hl-CMPs allows the robot to

deal with this kind of physical interaction tasks with a versatile

manipulation skill

Compared with the state-of-the-art approaches in the learn-

ing of robotic compliant movement, as stated above, the

most important advantages of our approach lie in two as-

pects: i) all the compliant profiles (stiffness, damping and

feedforward/task-specific force) are simultaneously obtained,

instead of a separate identification/calibration procedure; and

ii) they are all online learned during the execution of a specific

task, without the need for an offline estimation process.

In our experiments, for simplicity the learning rates QK ,

QD and Qv are set the same values for all the DOFs. Hl-CMPs

leaves the flexibility that one can particularly set different

values for different DOFs in a specific task. Furthermore, if

the parameters are too small it would be too slow to obtain the

proper dynamics profiles; but if they are set too large, it may

cause system instability. One can start by setting relatively low

values, and then increase them progressively until an accept-

able range of impedance parameters is achieved. Furthermore,

it could be explored to improve our approach in future work



9

by estimating these parameters from the demonstration data

as suggested in [22, 23].

Compared with the high impedance control, the perfor-

mance in position tracking of the proposed approach is not

good enough. In the future work, we will consider to include

demonstration force information into the Hl-CMPs model,

namely, the demonstration force will also be encoded during

the learning process, to address this issue. The Hl-CMPs model

may be further improved by generalizing the learned dynam-

ics profiles (including impedance and feedforward force) to

novel tasks. For the sake of unification, generalization should

be achieved in the parametric space. A possible method is

utilizing regression algorithms (see, e.g., [13]) to model the

dynamics parameters corresponding to task parameters (i.e.,

queries), and then generalizing these dynamics parameters

(i.e., θk, θd and θv) according to the variations of the queries

to deal with new tasks.

APPENDIX

First, we assume that the external force fext as

fext = K∗

s e+K∗

d ė+ v∗ (32)

Then, Eq. 3 is adapted by adding another term f0 that

considers the dynamics of the robot

fc = f0 − u− v (33)

where

f0 = Mq̈e + Cq̇e +G− Lε (34)

with a symmetric positive-definite matrix L with minimal

eigenvalue, and ẋe is an auxiliary variable, ẋe = ẋd − πe.

Using Eq. 33 and Eq. 2, we obtain

Mε̇+ Cε = −u− v + fext − Lε (35)

Combining with Eq. 32 further yields

Mε̇+ Cε = −K̃se− K̃dė− ṽ − Lε (36)

The first derivative of Jc is

J̇c =Φ̃TQ−1 ˙̃Φ ≈ θ̃Tk Q
−1

k

˙̃
θk + θ̃Td Q

−1

d

˙̃
θd + θ̃Tv Q

−1

v
˙̃
θv (37)

And the first derivative of Je is

J̇e =εTMε̇+
1

2
εT Ṁε = εT (Mε̇+ Cε)

=− [εT (K̃se+ K̃dė+ ṽ)]− εTLε

(38)

with

K̃s = diag{θ̃k · g}, K̃d = diag{θ̃d · g}, ṽ = θ̃v · g (39)

Subsequently, the first derivative of the overall cost is

J̇all =J̇c + J̇e = θ̃Tk Q
−1

k

˙̃
θk − εT diag{θ̃k · g}e

+ θ̃Td Q
−1

d

˙̃
θd − εT diag{θ̃d · g}ė

+ θ̃Tv Q
−1

v
˙̃
θv − εT (θ̃v · g)− εTLε

(40)

The stiffness, damping and feedforward force are then

adapted to minimize the cost. For the stiffness, we have

θ̃Tk Q
−1

k

˙̃
θk = εT diag{θ̃k · g}e (41)

Here we assume that the dynamics of the environment is

time-invariant, i.e.,
˙̃
θk = θ̇k − θ̇∗k = θ̇k.

For the m-th DOF, we design the following adaptation law

to satisfy Eq. 41

θ̇Tk,m = Qk,mεmemg (42)

The updating law for damping and feedforward force are

obtained in a similar way.
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