
I.J. Information Technology and Computer Science, 2015, 04, 79-86
Published Online March 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.04.09

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 79-86

An Approach for Test Case Prioritization Based

on Three Factors

Manika Tyagi
Department of C.S.E., U.I.E.T. Kurukshetra University, Kurukshetra, India

Email: tmanika @gmail.com

Sona Malhotra
Department of C.S.E., U.I.E.T. Kurukshetra University, Kurukshetra, India

Email: sonamalhotrakuk @gmail.com

Abstract— The main aim of regression testing is to test the

modified software during maintenance level. It is an expensive

activity, and it assures that modifications performed in software

are correct. An easiest strategy to regression testing is to re-test

all test cases in a test suite, but due to limitation of resource and

time, it is inefficient to implement. Therefore, it is necessary to

discover the techniques with the goal of increasing the

regression testing’s effectiveness, by arranging test cases of test

suites according to some objective criteria. Test case

prioritization intends to arrange test cases in such a manner that

higher priority test cases execute earlier than test cases of lower

priority according to some performance criteria. This paper

presents an approach to prioritize regression test cases based on

three factors which are rate of fault detection [6], percentage of

fault detected and risk detection ability. The proposed approach

is compared with different prioritization techniques such as no

prioritization, reverse prioritization, random prioritization, and

also with previous work of kavitha et al [6], using APFD

(average percentage of fault detected) metric. The results

represent that proposed approach outperformed all approaches

mentioned above.

Index Terms— Regression Testing, Test Case Prioritization,

Average Percentage of Fault Detected (APFD) Metric, Severity.

I. INTRODUCTION

The process of software testing is very important and

necessary during the development of software. The main

goal of software testing is to detect errors and to provide

confidence that the software is free from errors. Software

testing occurs in almost all phases of the software

development life cycle (SDLC) such as from requirement

phase to maintenance phase. In requirement gathering

and analysis phase, software requirements are validated

to ensure that they are feasible or not. In the design phase,

software design is validated to ensure that it is built

according to specification, in implementation phase

software is tested to ensure that it performs its function

according to intended software and so on. A variety of

testing techniques are available to test the software

product. Some techniques are used to check the overall

functionalities of system, some are used to check the

internal structure of the code. Regression testing is a type

of software testing, aims to validate enhanced software,

and it confirms that all the modifications done on

software are correct. It occurs at maintenance level, and it

is an expensive activity, yet it is necessary also. As the

software evolves, there is a need to carry out regression

testing, new test cases are generated and added to the test

suite as a result of this regression testing’s cost rises. To

re-execute all test cases of the entire test suite is the

easiest and simplest strategy of regression testing, but due

to certain constraints (time and resources), it is inefficient

to implement this. For example, to execute all test cases

of test suite for a product having approximately 20,000

lines of code, consumes seven weeks [1]. Therefore, it is

necessary to discover the techniques with the goal of

increasing the regression testing’s effectiveness, by

arranging test cases of test suites according to some

objective criteria.

The Test case prioritization techniques [2] intend to

arrange test cases for regression testing in such a manner,

with the goal of amplifying some criteria. Rothermel et al.

[1] and Elbaum et al. [3] proposed a variety of test case

prioritization techniques to the boost fault detection rate.

Test case prioritization can address to boost a diversity of

objective functions such as rate of fault detection, rate of

detection of high-risk faults, likelihood of revealing

regression errors, coverage of coverable code, and

confidence in the reliability of the system under test [1].

Numerous techniques have been investigated to arrange

test cases for regression testing, with an attempt to test

modified software, nine different test case prioritization

techniques have been explained by Rothermel et al. [1].

We have presented an approach for prioritizing regression

test cases on the basis of three factors which are rate of

fault detection (RFT), percentage of fault detected (PFD)

and risk detection ability (RDA). RFT is defined as the

average number of defects found per minute by a test

case [6]. PFD is the percentage of fault detected by a test

case. RDA is defined as the ability of test case to detect

severe faults per unit time. For every test case all these

three factors are computed, then test case ranking (TCR)

is calculated for every test case by adding the value of

these factors. For prioritization, we are scheduling the test

cases in decreasing order of TCR value. And hence, we

obtained the prioritized order of test cases. We have also

compared our approach with other prioritization

80 An Approach for Test Case Prioritization Based on Three Factors

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 79-86

approaches and also with previous work [6] by

calculating APFD for every technique.

The paper is organized as follows: section 2 discusses

the related work, section 3 describes the proposed work,

section 4 presents an experimental analysis, section 5

discusses the comparison of the proposed approach with

other prioritization techniques and section 6 concludes

the paper.

II. RELATED WORK

This section discusses the test case prioritization

problem as given by Elbaum et al. [3] and literature

Survey.

A. Test Case Prioritization Problem

Test case prioritization intends to order test cases for

regression testing in such a manner that test cases with

higher priority executes earlier than those with lower

priority, according to some performance criteria. The

problem of Test Case Prioritization described in [3] as

follows.

It is given that, T be the test suite, PT is the set of

permutations of T and f is a function from PT to real

numbers. The problem is to find T' which belongs to PT,

such that, for every T", T" belongs to PT and (T" ≠T')

[f (T') ≥f (T")]

In the above definition, PT denotes the set of all

possible prioritization or order of T, f is the function

which is applied to any such order, and returns an award

value for it.

B. Literatutre Survey

To maximize the regression testing’s effectiveness,

researchers have investigated various metrics and

techniques for prioritizing regression test cases, in recent

years. Rothermel et al. [1], Elbaum et al. [3] and

Malishevsky et al. [5] investigated various techniques for

test case prioritization. Rothermel et al. [1] discussed

numerous test case prioritization techniques and each

technique was empirically evaluated for their ability to

boost the rate of fault detection. It can be defined as how

rapidly faults are found by test cases during the testing

phase. The result of their study was that prioritization

techniques can boost the rate of fault detection of test

suite and this result also exists for a least expensive

technique, the results reflects tradeoffs between various

prioritization techniques.

Rothermel et al. [1] and Elbaum et al. [3] proposed a

APFD (average percentage of fault detected) metric, for

measuring fault detection rate as a means of objective

criteria, prioritization techniques such as total statement

coverage and additional statement coverage, function

coverage, additional function coverage, FEP coverage

have discussed to improve the rate of fault detection.

APFD metric and these techniques consider that the costs

of all test cases and defects severities are same. Elbaum

et al. [4] and Malishevsky et al. [5] investigated a new

metric APFD which includes fluctuating test case costs

and fault severities into test case prioritization, to

overcome APFD metric. Kavitha et al. [6] proposed a

test case prioritization approach, which consider two

factors: rate of fault detection (average number of defects

found per minute by a test case) and fault impact. Testing

efficacy could be progressed by emphasizing on test

cases which detect greater percentage of severe faults.

Thus, severity value was allocated to every fault

depending on the fault’s impact on software.

Jeffrey and Gupta proposed an approach that used

relevant slices to prioritize test cases [7]. Qu et al. [8]

proposed an approach to prioritize test cases in black box

environment. Korel et al. [9, 10] presented a model based

technique that used information about the system model

and its behavior for test case prioritization. Zhang et al

[11] proposed technique based on changing priorities of

testing requirements and test case costs to prioritize test

cases. Kavitha et al. [14] proposed an approach for test

case prioritization based on software requirement

specification with the aim to increase the rate of detection

of severe faults and to increase customer’s satisfaction by

providing quality products. Their approach used three

factors which are changes in requirement, customer’s

priority and implementation complexity to prioritize test

cases. Maheswari et al. [15] proposed a hamming

distanced based approach to prioritized test cases. Faults

revealed by test cases can be represented in binary form.

For two strings with equal length, hamming distance can

be defined as the number of positions at which

corresponding symbols mismatched. Kayes [16] proposed

a new metric and an approach for test case prioritization,

the metric was used for evaluating rate of fault

dependency. It can be defined as how rapidly dependency

observed among faults. This new metric was used to

determine the effectiveness of the proposed prioritized

order and compare it with non prioritized order.

Various algorithms such as search algorithms and

metaheuristic algorithms are also used to solve test case

prioritization problem. Singh et al. [17] used ant colony

optimization(ACO) algorithm to solve test case

prioritization problem in a time constraint environment.

ACO is an optimization algorithm that has been inspired

from the behaviour of real ants while searching for food.

The proposed approach was compared with other

techniques by computing the average percentage of fault

detected (APFD) for each. And it was concluded that

APFD percentage of proposed techniques was equal to

optimal ordering. Li et al [18] applied various algorithms

such as greedy algorithm, additional greedy algorithm, 2-

optimal algorithm, hill climbing and genetic algorithm to

prioritize test cases and the results was that the genetic

approach performed better.

Hla et al. [19] applied particle swarm optimization

(PSO) algorithm to solve test case prioritization problem,

by adjusting test cases to best position based on changes

in software unit. PSO is a swarm intelligence based

optimization algorithm, which search the best positions of

objects from the search space. For the test case

prioritization problem, the proposed algorithm finds the

best positions of test cases on the basis of altered

software parts, and prioritized test cases, according to

 An Approach for Test Case Prioritization Based on Three Factors 81

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 79-86

new best order such that the test cases with higher new

priority execute first. The conclusion drawn from the

application of PSO algorithm to prioritize test cases was

that it was effective and efficient to order test cases

according to their new best positions. Li et al. [26]

performed a simulation experiment to solve the problem

of test case prioritization by applying five search

algorithms, such as Total Greedy algorithm, 2- Optimal

Greedy algorithm, additional Greedy algorithm, Hill

Climbing, Genetic algorithm. They compared the

performance of these algorithm, the goal of the study was

to have detailed research or investigation, and to obtained

generalized results.

Sabharwal et al. [20] presented an approach based on

genetic algorithm for test case prioritization in the static

testing environment. Mala et al. [21] used artificial bee

colony optimization algorithm to prioritize test. They

compared artificial bee colony optimization with ant

colony optimization in test suite optimization and

concluded that, artificial bee colony based approach has

various advantages over an ant colony optimization based

optimization. Huang et al. [22] proposed cost-cognizant

approach to prioritized test cases on the basis of using

historical data with genetic algorithm. Souza [25]

designed a constrained PSO algorithm to solve the

problem of test case selection. They considered

requirement coverage and execution effort of test cases,

the execution effort taken as a constraint in the search,

and requirement coverage treated as fitness function.

Binary Constrained PSO (BCPSO) and BCPSO

integrated with forward selection (FS), BCPSO-FS were

implemented, and both of these algorithm outperformed

random search approach.

Sherriff et al. [23] proposed an approach for regression

test case prioritization based on to figure out the impact

of modification and by collecting software modification

records and examining them through singular value

decomposition. The approach produced clusters of files

which tend to modify together historically and these

clusters merged with test cases information that resulted

in a matrix which was multiplied by a vector indicating a

system change for test case prioritization. Alsmadi and

Alda [24] proposed various approaches for test case

selection to perform regression testing of web services.

Test case selection aims to select a subset of test cases

from test suite according to some performance criteria or

some objective function. They suggested two proposals,

the first is to build a pre-test execution component, which

have the ability to evaluate generated test cases and

optimize the selection for execution, from these generated

test cases.

III. PROPOSED APPROACH

We proposed an approach to solve the test case

prioritization problem based on three factors, which are

rate of fault detection, percentage of fault detected and

risk detection ability. For each of the test case in the test

suite, all the three factors are calculated, then test case

ranking is computed for every test case by adding these

factors. For prioritization, test cases are arranged in

decreasing order of test case ranking value. Test cases are

arranged in such a way that those with greater test case

ranking values executes earlier. Fig.1. represent the

diagrammatic representation of the proposed approach.

In this section the factors taken for prioritization and

proposed prioritization technique are described.

A. Factors Taken For Proposed Approach

We consider three factors for proposed prioritization

technique. These factors are discussed as follows.

 Rate of Fault Detection

The rate of fault detection (RFT) is defined as the

average number of defects found per minute by a test

case [6]. For test case Tj, RFTj have been computed using

number of defects found by Tj and the time needed by Tj

to detect those defects. Kavitha et al. [6] express the

equation as follows.

10
j

j
j

time

N
RFT (1)

Where Nj is Number of faults detected by test case Tj

and timej refers to the time taken by test case Tj.

 Percentage of Fault Detected

The percentage of fault detected (PFD) for test case Tj

can be computed by using number of faults found by test

case Tj and total number of faults, expressed as follows.

10

N

N
PFD

j

j (2)

Where Nj is the number of faults detected by test case

Tj and N refers to the total number of faults. To calculate

percentage of fault detected, instead of multiplying by

100, we are multiplying by 10, to make the calculation

easy.

 Risk Detection Ability

It can be defined as the ability of test case to detect

severe faults per unit time. Testing efficacy could be

progressed by emphasizing on test cases which detect

greater percentage of severe faults. We presented an

approach for prioritizing regression test cases by

associating them with defect severity. The term severity

is defined as time needed to pinpoint and rectify a fault,

or the factors consider by practitioners are harm to

persons or property, expense of ruined business and so on

[4]. Thus, severity value was allocated to every fault

depending on the fault’s impact on software. To every

fault a severity value has been allocated based on a 10

point scale in [6] expressed as follows.

Very High Severe: SV of 10

High Severe: SV of 8

Medium Severe: SV of 6

Less Severe: SV of 4

Least Severe: SV of 2.

82 An Approach for Test Case Prioritization Based on Three Factors

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 79-86

Kavitha et al [6] discussed the severity value (Sj) for

test case Tj which can be expressed as equation (3), here t

denote the number of faults detected by the test case Tj.

t

k

j SVS
1

 (3)

For test case Tj, RDAj have been computed using

severity value Sj, Nj is the number of defects found by Tj,

and timej is the time needed by Tj to find those defects.

The equation for RDA can be expressed as follows.

j

jj

j
time

NS
RDA

 (4)

 Test Case Ranking

Test case Ranking is the summation of the three factors

which are RFT, PFD and RDA. For test case Tj, Test case

ranking (TCRj) can be calculated by the equation given

below-

jjjj RDAPFDRFTTCR (5)

For execution, test cases are arranged in decreasing

order of TCR. Test cases are ordered in such a manner,

that those with greater TCR value executes earlier.

B. Proposed test Case Prioritization Approach

The proposed prioritization technique expressed as

follows.

Input: Test suite T, and test case ranking (TCR) for

every test case are inputs of the algorithm.

Output: Prioritized order of test cases.

Algorithm:

1. Begin

2. Set T’ empty

3. For each test case Tj ε T do

4. Calculate test case ranking using equation (5)

5. end for

6. Sort T according to descending order of TCR value

7. Let T’ be T

8. end

Fig. 1. Diagrammatic representation of proposed Approach

IV. EXPERIMENT AND ANALYSIS

For experimentation and analysis, we considered the

same test suite as used in Kavitha et al. [6], they

conducted an experiment to perform testing on two

projects by inserting 10 faults with different severities in

both projects, and finally time required by every test case

to detect faults have noted by them. Table 1 represents

the sample data, table 2 represents the number of faults

detected by every test case, the time required to detect

faults, and severity value of faults for every test case [6].

Table 1. Test case along with faults, here ‘*’ represents a corresponding

fault is detected by the test case

Test
Cases/

Faults

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

F1 * *

F2 * * *

F3 * * *

F4 * *

F5 *

F6 * *

F7 * * *

F8 * *

F9 * * *

F10 * *

Table 2. Number of faults detected by every test case, the time required

to detect faults, and severity value of faults for every test case

Test cases
No. of
faults

detected

Time

Severity

T1 2 9 6

T2 2 8 6

T3 2 14 6

T4 3 9 10

T5 2 12 8

T6 3 14 10

T7 1 11 4

T8 4 10 20

T9 2 10 12

T10 2 13 6

The values of rate of fault detection (RFT), percentage

of fault detected (PFD) and risk detection ability (RDA)

for test cases T1..T10 is calculated by using equation (1),

equation (2) and equation (4) respectively. Table 3

represents the values for all three factors which are RFT,

PFD, RDA for test case T1..T10 respectively.

 An Approach for Test Case Prioritization Based on Three Factors 83

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 79-86

Table 3. RFT, PFD, RDA for test cases T1..T10

Test cases RFT PFD RDA

T1 2.22 2 1.33

T2 2.5 2 1.5

T3 1.428 2 0.857

T4 3.33 3 3.333

T5 1.66 2 1.333

T6 2.142 3 2.142

T7 0.9 1 0.3636

T8 4.0 4 8

T9 2.0 2 2.4

T10 1.538 2 0.923

For test cases, T1..T10, TCR value computed from

equation (5) as given below. Table 4 shows test case

ranking for each test case.

Table 4. Test case ranking for T1..T10 respectively

Test cases
Test case ranking

TCR=RFT+PFD+RDA

T1 5.55

T2 6

T3 4.285

T4 9.66

T5 4.993

T6 7.284

T7 2.263

T8 16

T9 6.4

T10 4.461

For execution, test cases are arranged in decreasing

order of TCR. Test cases are ordered in such a manner,

that those with greater TCR value executes earlier. Hence,

the prioritized order for test cases is:

T8,T4,T6,T9,T2,T1,T5,T10,T3,T7.

V. COMPARISON

To quantify the aim to increase the rate of fault

detection of the test suite, an APFD metric is used [1, 3,

13]. The APFD is calculated by taking the weighted

average of the number of faults detected during the

execution of the test suite. Let the test suite T is under

evaluation, with n number of test cases. Let the number

of faults contained in the program P is m. TFi be the

position of first test case in test suite T that expose fault i.

The formula for APFD is as follows.

nnm

TFTFTF
APFD m

2

1..
1 21 (6)

The formula for APFD indicates that prior information

about faults should be available for computation of APFD.

The proposed approach is compared with different

prioritization techniques such as no prioritization, reverse

prioritization, random prioritization, and also with

previous work of kavitha et al [6]. These approaches are

compared by computing APFD (average percentage of

fault detected) for each technique.

A. Comparison with previous work of kavitha et al.[6]

In this section, the proposed prioritized order is

compared with previous work of kavitha et al [6]. Table 5

represents proposed order of test cases and the prioritized

order proposed by kavitha et al [6] for the same set of test

cases. APFD percentage for Kavitha et al. [6] is

represented in Fig. 4.

Table 5. Test cases ordering for proposed approach and previous work

[6].

Proposed order Prioritized order in [6]

T8 T8

T4 T4

T6 T9

T9 T6

T2 T5

T1 T2

T5 T1

T10 T10

T3 T3

T7 T7

B. Comparison with other Prioritization Techniques

In this section, the proposed approach is compared

with other prioritization techniques such as random

prioritization, no prioritization, reverse prioritization. In

random prioritization techniques, test cases are arranged

in a random manner, in non-prioritized order test cases

are arranged in the same way they are generated, in

reverse prioritization, test cases are arranged in reverse

way of, they are generated. Table 6 represents ordering of

test cases for different prioritization techniques.

Table 6. Test cases ordering according to no prioritization, random,

reverse and proposed prioritization techniques

No order Random order Reverse order Proposed order

T1 T2 T10 T8

T2 T4 T9 T4

T3 T5 T8 T6

T4 T1 T7 T9

T5 T10 T6 T2

T6 T7 T5 T1

T7 T8 T4 T5

T8 T3 T3 T10

T9 T6 T2 T3

T10 T9 T1 T7

84 An Approach for Test Case Prioritization Based on Three Factors

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 79-86

Fig. 2. APFD percentage for random prioritization

The APFD percentage for random order, reverse order,

previous work [6], no order and proposed order is

represented in Fig. (2-6) respectively.

Fig. 3. APFD percentage for reverse prioritization

Fig. 4. APFD percentage for previous work[6]

Fig. 5. APFD percentage for no order

Fig. 6. APFD percentage for proposed order

C. Analysis

The APFD percentage for no prioritization, random

prioritization, reverse prioritization, previous work [6]

and proposed order represented in Table 7. The APFD

percentage for proposed approach is greater than other

approaches. And it can be concluded from table 7 that

proposed approach outperformed other prioritization

techniques, and it is a better approach.

Table 7. APFD % for no prioritization, random, reverse, previous work

[6] and proposed prioritization techniques

Prioritization Technique APFD %

No order 62

Random order 67

Reverse order 69

Previous work [6] 78

Proposed order 85.5

VI. CONCLUSION

In this paper, an algorithm to prioritize test cases based

on three factors which are rate of fault detection [6],

percentage of fault detected and risk detection ability is

 An Approach for Test Case Prioritization Based on Three Factors 85

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 79-86

proposed. Testing efficacy could be progressed by

emphasizing on test cases which detect greater percentage

of severe faults. For every test case all the three factors

are calculated and test case ranking is computed by

adding these factors for each test case. To solve the

problem of test case prioritization we prioritize test cases,

according to decreasing order of test case ranking value,

and we obtain the prioritized order of test cases. The

proposed approach is compared with different

prioritization techniques such as no ordering, reverse

prioritization, random prioritization, and also with

previous work of kavitha et al. [6], using APFD metric.

The APFD is calculated by taking the weighted average

of the number of faults detected during the execution of

the test suite. The results represent that proposed

approach outperformed all approaches mentioned above.

REFERENCES

[1] G. Rothermel, R. Untch, C. Chu and M. Harrold, “Test

case prioritization: An empirical study,” In Software

Maintenance, 1999. (ICSM’ 99) proceedings. IEEE

International conference, on pages 179-188 IEEE, 1999.

[2] W. Wong, J. Horgan, S. London and H. Agrawal, “A study

of effective regression testing in practice,” In Proc. of the

Eighth Intl. Symp. on Softw. Rel. Engr., pages 230–238,

Nov. 1997.

[3] S. Elbaum, A. Malishevsky, and G. Rothermel,

“Prioritizing test cases for regression testing,” Proc. The

2000 ACM SIGSOFT International Symposium on

Software Testing and Analysis, Portland, Oregon, U.S.A.,

August 2000, 102–112.

[4] S. Elbaum, A. Malishevsky and G. Rothermel,

“Incorporating Varying Test Costs and Fault Severities

into Test Case Prioritization,” 23rd International

Conference on Software Engineering, Ontario, Canada,

May 2001, pp. 329-338.s

[5] A. Malishevsky, J. R. Ruthruff, G. Rothermel, S. Elbaum,

“Cost-cognizant Test Case Prioritization,” Technical

Report TR-UNL-CSE-2006-004, Department of Computer

Science and Engineering, University of Nebraska–Lincoln,

Lincoln, Nebraska, U.S.A., March 2006.

[6] R. Kavitha, N. Sureshkumar, “Test Case Prioritization for

Regression Testing based on Severity of Fault,” College of

Engineering and Technology Madurai, Tamilnadu, India

(IJCSE) International Jthenal on Computer Science and

Engineering 2010.

[7] D. Jeffrey and N. Gupta, “Test case prioritization using

relevant slices,” Proc. Computer Software and

Applications Conference, 2006, 411–420.

[8] B. Qu, C. Nie, B. Xu and X. Zhang, “Test case

prioritization for black box testing,” Proc. Computer

Software and Applications Conference, July 2007, 465–

474.

[9] B. Korel, G. Koutsogiannaki and L. H. Tahat, “Model-

based test prioritization heuristic methods and their

evaluation,” Proc. International Conference on Software

Maintenance, 2007, 34–43.

[10] B. Korel, L. Tahat and B. Vaysburg, “Model based

regression test reduction using dependence analysis,” Proc.

International Conf. on Software Maintenance, 2002, 214–

223.

[11] X. Zhang, C. Nie, B. Xu and B. Qu, “Test case

prioritization based on varying testing requirement

priorities and test case costs,” Proc. International

Conference on Quality Software, 2007, 15–24.

[12] J. Black, E. Melachrinoudis and D. Kaeli, “Bi Criteria

Models for All uses Test Suite-Reduction,” 26th

International Conference on Software Engineering

(ICSE’04).

[13] S. Elbaum, A. Malishevsky and G. Rothermel,”Test case

prioritization: A family of empirical studies,” IEEE

Transactions on Software Engineering, vol. 28(2), 2002,

pp. 159–182.

[14] R. Kavitha, V. R. Kavitha, N. Suresh, “Requirement Based

Test Case Prioritization,” IEEE, ICCCCT, 2010.

[15] R. Maheswari, and D. Mala, “A Novel Approach For Test

Case Prioritization,” IEEE International conference on

computational intelligence and computing research. 2013.

[16] I. Kayes, “Test Case Prioritization for Regression Testing

Based on Fault Dependency,” IEEE, 2011.

[17] Y. Singh, A. Kaur and B. Suri, “Test case prioritization

using ant colony optimization,” ACM SIGSOFT Software

Engineering Notes, Vol.35 No.4, pages 1-7, July 2010.

[18] Z. Li, M. Harman and R. M. Hierons, “Search Algorithms

for Regression Test Case Prioritization,” IEEE Trans.

Software Eng., pp.225-237Apr.2007.

[19] K. H. S. Hla, Y. Choi, J. S. Park, “Applying Particle

Swarm Optimization to Prioritizing Test Cases for

Embedded Real Time Software Retesting,” Proceedings of

the IEEE 8th International Conferenceon Computer and

Information Technology Workshops, pp. 527-532. 2008.

[20] S. Sabharwal, R. C. Sibal, C. Sharma, “A genetic algorithm

based approach Forprioritization of test case scenarios in

static testing,” Proceedings of the 2nd International

Conference on computer and Communication Technology,

IEEE Xplore Press, Allahabad, pp: 304-309. Sept. 15-17,

2011.

[21] D. J. Mala, M. Kamalapriya, R. Shobana, V. Mohan, “A

non-pheromone based intelligent swarm optimization

technique in software test suite optimization,” IEEE, 2009.

[22] Y. C. Huang, C. Y. Huang, J. R. Chang, T. Y. Chen,

“Design and Analysis of Cost Cognizant Test Case

Prioritization using Genetic Algorithm with Test History,”

34th Annual Computer Software and Applications

Conference, IEEE, 2010.

[23] M. Sherriff, M. Lake, L. Williams, “Prioritization of

Regression Tests using Singular Value Decomposition

with Empirical Change Records,” 18th IEEE International

Symposium on Software Reliability Engineering, 2007.

[24] I. Alsmadi and S. Alda, “Test Case Reduction and

Selection Optimization in Testing Web Services,”

International Journal of Information Engineering and

Electronic Business,2012, MECS Publisher.

[25] L. S. Souza, R. B. C. Prudencio, and F. d. A. Barros, “A

constrained particle swarm optimization approach for test

case selection,” in In Proceedings of the 22nd

International Conference on Software Engineering and

Knowledge Engineering(SEKE 2010), Redwood City, CA,

USA, 2010.

[26] S. Li, N. Bian, Z. Chen, D. You, Y. He, “A Simulation

Study on Search Algorithms for Regression test Case

Prioritization,” 10th International Conference on Quality

Software, 2010.

Authors’ Profiles

Manika Tyagi is born in India. She is presently Assistant

Professor in computer science and engineering department at

Shobhit University, Meerut, India. She has got M.Tech degree

86 An Approach for Test Case Prioritization Based on Three Factors

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 79-86

from University Institute of Engineering and Technology,

Kurukshetra University, kurukshetra, Haryana, India in 2014.

Prior to it, she was lecturer in Vidya Bhawan College for

Engineering and Technology, Kanpur, Uttar Pradesh, India. She

has completed B.Tech in Computer Science and Engineering

from Maharana Pratap Engineering College, Kanpur, Uttar

Pradesh, India in 2011. Her research area includes regression

testing, test case prioritization, test case selection, minimization.

Sona Malhotra is presently head of department in computer

science and engineering department at University Institute of

Engineering and Technology, Kurukshetra University,

Kurukshetra, Haryana, India. She has got PhD degree from

computer Science and Engineering Department of Kurukshetra

University, Kurukshetra, Haryana, India. Her area of

specialization includes Software Engineering, Data Structure

and Operating System.

How to cite this paper: Manika Tyagi, Sona Malhotra,"An

Approach for Test Case Prioritization Based on Three Factors",

International Journal of Information Technology and Computer

Science(IJITCS), vol.7, no.4, pp.79-86, 2015. DOI:

10.5815/ijitcs.2015.04.09

