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Abstract—Mutation testing is a structural testing 

technique in which the effectiveness of a test suite is 

measured by the suite ability to detect seeded faults. One 

fault is seeded into a copy of the program, called mutant, 

leading to a large number of mutants with a high cost of 

compiling and running the test suite against the mutants. 

Moreover, many of the mutants produce the same output 

as the original program (called equivalent mutants), such 

mutants need to be minimized to produce accurate results. 

Higher order mutation testing aims at solving these 

problems by allowing more than one fault to be seeded in 

the mutant. Recent work in higher order mutation show 

promising result in reducing the cost of mutation testing 

and increasing the approach effectiveness. In this paper, 

we present an approach for generating higher order 

mutants using a genetic algorithm. The aim of the 

proposed approach is to produce subtle and harder to kill 

mutants, and reduce the percentage of produced 

equivalent mutants. A Java tool has been developed, 

called HOMJava (Higher Order Mutation for Java), 

which implements the proposed approach. An 

experimental study was performed to evaluate the 

effectiveness of the proposed approach. The results show 

that the approach was able to produce subtle higher order 

mutants, the fitness of mutants improved by almost 99% 

compared with the first order mutants used in the 

experiment. The percentage of produced equivalent 

mutants was about 4%.  

 

Index Terms—Higher order mutant, mutation testing, 

genetic algorithm, software testing, equivalent mutants, 

evolutionary approach.  

 

I.  INTRODUCTION 

Software testing is a process that aims at making sure 

that a software realizes the needed requirements such as 

dependability and functionality as well as exhibiting high 

quality. A main challenge in software testing is increasing 

the process effectiveness within the given time and 

money constraints. 

Mutation Testing is a white-box fault-based testing 

technique that works by introducing faults in a program 

in order to measure the adequacy of the test suite [1-2]. 

Empirical studies show that mutation testing is more 

effective in finding faults compared with other testing 

approaches [3-4]. The effectiveness of the test suites is 

measured by their ability to find the seeded faults, this is 

called Mutation Score (MS), or mutation adequacy [1-2], 

[5-6] which is computed using the equation given in (1). 

 

   
                

                   
                   (1) 

 

A test suite is run against all faulty versions of the 

program with the aim of detecting the seeded faults. The 

modified versions of the program that contain seeded 

faults are called mutants. If a fault is detected by any test 

case in the test suite; the mutant is said to be killed. When 

a fault is not detected by any test case in the test suite; the 

mutant is said to be alive, which suggest improving the 

test suite by adding more test cases to kill these mutants. 

However, a large percentage of alive mutants cannot be 

killed by any test case because they produce the same 

output as the original program. These mutants are called 

equivalent mutants and need to be identified and 

eliminated if possible. Budd and Angluin [9] proved that 

detecting equivalent mutants is an undecidable problem. 

Many approaches were proposed to solve the problem 

of equivalent mutants including: compiler optimizations 

techniques [12], [13], approaches using mathematical 

constraints to automatically detect equivalent mutants 

[14], [15], using program slicing to assist in the detection 

of equivalent mutants [16], selective mutation [17], 

examining the impact of equivalent mutants on coverage 

[18], examining changes in coverage to distinguish 

equivalent mutants [19], and co-evolutionary search 

techniques [20]. 

Another problem of mutation testing is that in order to 

improve the effectiveness of a test suite, a large number 

of mutants needs to be generated. This requires more 

effort in terms of time and resources to execute these 

mutants which increases the execution time required to 

run the test suite against the generated mutants. Many 

approaches were proposed to solve this mutation problem 

including: selective mutation [17], weak mutation [21], 

mutant sampling approach [22], [23], using clustering 

algorithms to choose a subset of mutants [24], and strong 

nutation [25]. 

A promising technique to overcome the mutation 

testing problems is higher order mutation. Higher Order 

mutation testing is a mutation testing technique in which 

a mutant contains more than one fault. A number of 
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studies (e.g., [26-33]) shows that higher order mutation 

supports solving the two problems of mutation testing, 

that is, help in reducing the number of generated mutants 

and reducing the number of equivalent mutants. 

The main purpose of this paper is to present an 

approach for solving the problem of the large number of 

higher order mutants, and to reduce the number of 

equivalent mutants. The first problem is targeted by 

generating higher order mutants that are harder to kill. A 

hard to kill mutant is measured as a ratio of test cases that 

kill a higher order mutant to the whole number of test 

cases. A mutant that is harder to kill is also less likely to 

be an equivalent mutant, this is because higher order 

mutants include more than one fault. Therefore, the 

proposed approach can be used to reduce the number of 

equivalent mutants.  

The proposed approach uses a genetic algorithm [35] 

for generating higher order mutants. Several studies had 

used genetic algorithms to generate higher order mutants, 

and the results they obtained are promising (e.g., [27-29]). 

In order to apply the proposed approach, a software tool 

has been implemented with Java called HOMJava 

(Higher Order Mutation for Java). HOMJava is an 

extension of a tool called muJava [36], which is a well-

known tool generating first order mutants and executing 

tests against mutants.  

The rest of the paper is organized as follows: Section 2 

presents a background on higher order mutation testing, 

muJava, and Genetic Algorithms. Section 3 presents 

related work Section 4 presents the proposed approach. 

Section 5 presents the HOMJava tool implementation. 

Section 6 presents the experimental setup and the results 

of the experiment. Section 7 presents the conclusions and 

outlines future work. 

II.  BACKGROUND 

This section presents important terms and concepts 

related to the higher order mutation testing and necessary 

software testing terms that are used throughout this paper.  

A.  Higher Order Mutation Testing 

Mutation testing is performed on a copy of the program 

by injecting the program with a single fault. The faulty 

version of the program is called mutant. Table 1 shows an 

example of an original program and a mutant. 

Table 1. An original program and mutants 

Program Version Source Code 

Original Program 

int sum (int x, int y){ 

    return x+y; 

} 

Mutant  
int sum (int x, int y){ 
    return x/y; 

} 

Equivalent Mutant  

int sum (int x, int y){ 

    return x+y++; 

} 

 

Equivalent mutant is a mutant that produces the same 

output as the original program, therefore, the fault that is 

seeded in the mutant cannot be detected by the test suite. 

A study by Schuler et al. [19] show that, on average, it 

takes about 15 minutes to manually detect a single mutant. 

An example of equivalent mutant is shown in Table 1. 

In higher order mutation testing, instead of injecting 

single fault in a mutant, two or more faults are injected. 

The order of mutant represents the number of injected 

faults, that is, a mutant with two faults is a second order 

mutant; a mutant with three faults is a third order mutant. 

Table 2 shows an example of a higher order mutant with 

two faults, i.e. a second order mutant. 

Table 2. An Example of Higher Order Mutant 

Program Version Source Code 

Original Program 

double average (int x, int y){ 

    double sum, avg; 

    sum=x+y; 

    avg=sum/2 

    return avg; 

} 

Higher Order Mutant 1 

double average (int x, int y){ 

    double sum, avg; 

    sum=x-y; 

    avg=sum*2 
    return avg; 

} 

B.  muJava 

muJava [36] is a well-known Java tool for mutation 

testing developed by the Korean Advanced Institute of 

Science and Technology in South Korea and George 

Mason University in the United States  

muJava uses two techniques: Mutant Schemata 

Generation (MSG) [37] and bytecode translation. MSG is 

used for the process of generating a mutants that is called 

a meta-mutant, this meta-mutant is created at the source 

code level, and it is created so that it represents more than 

one mutant. While Bytecode translation is a technique for 

the modification and inspection of Java bytecode [36]. 

There are three main functions of muJava: the first 

function is generating mutants (first order mutants), the 

second function is analyzing mutants, and the third 

function is running test cases that the user provides 

against mutants. muJava uses the JDK class 

com.sun.tools.javac.Main for the compilation of mutants.  

muJava has a Graphical User Interface (GUI) that 

consists of an interface for generating mutants, an 

interface for analyzing mutants, an interface for running 

test cases, and an interface for showing results of running 

test cases in terms of mutation score. 

C.  Genetic Algorithm 

A genetic algorithm (GA) is based on theorem of 

natural evolution, it uses the evolution as a way to solve 

optimization problems in search space. Genetic 

algorithms were first introduced by John Holland [35].  

The idea of genetic algorithms is to use techniques 

inspired from natural evolution including: selection, 

crossover and mutation to generate solutions to 

optimization problems. The algorithm starts with a 

population of candidate solutions, also called individuals. 
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Initial population is randomly generated.  

The algorithm works through performing a number of 

iteration, after each iteration, the population evolves by 

having more fit solutions. In each iteration, a fitness 

function is evaluated for each individual. The 

optimization problem being solved has an objective 

function, which also has a value, the value is the fitness 

of each individual. As each generation rises, the fitness is 

increased and the more fit individuals are selected from 

the current population after a number of techniques such 

as crossover and mutation are applied. The process then 

repeats until a maximum number of generations has been 

reached or until a predefined stopping criterion is met. 

Selection is applied to the population where a 

proportion of the current population is selected to form 

the new generation, the selection is based on the fitness of 

each individual, where the more fit individuals are more 

likely to be selected. After selection, the algorithm 

produces the next generation via the application of 

crossover on the selected individuals. Crossover is done 

by choosing two parent individuals from those selected 

and then they are combined to form a child (new 

individual), the child shares properties of the two parents 

depending on where the crossover occurs. 

 

III.  RELATED WORK 

This section presents a review of the related work on 

higher order mutation testing. Jia and Harman [27] 

proposed the concept of subsuming higher order mutants, 

which are mutants that are harder to kill than mutants that 

were used to create them. They used search based 

optimization techniques to achieve the task of finding 

subsuming HOMs for 10 C programs. Their results 

showed that such mutants existed for the studied 

programs. 

Polo et al. [26] introduced an approach for reducing the 

cost of mutation testing by using second order mutants. 

Their approach was based on combining the set of 

generated mutants; that is, combining the set of first order 

mutants that contain one fault. By doing this, the number 

of mutants is reduced to half. Langdon et al. [28] 

proposed an approach based on the pareto-optimal 

approach [38], the genetic algorithm, and genetic 

programming to search for HOMs that are hard to kill. 

Their main intent was to find out the relationship between 

a mutants’ syntax and its semantics, where semantics is 

also referred to as the behavior of the program. In doing 

this they needed to know whether the large syntax 

changes are worse than small ones, and if there are 

HOMS that are close to the semantic of the original 

program. 

Omar and Ghosh [29] proposed four approaches for 

generating higher order mutants for AspectJ programs, 

with a tool that automates these approaches and creates 

HOMs. AspectJ faults are classified according to where 

they occur, that is, faults that can occur in base classes, 

aspects, or in the interaction between the base classes and 

aspects. The four approaches proposed are based on 

aspect oriented programming fault models presented in 

[33], [39-40]. 

Wedyan and Ghosh [33], and Wedyan et al. [54] used 

higher order mutation to generate faults for AspectJ 

programs. Their intend was to produce mutants of fault 

types that first order mutants missed. These fault types 

require at least two faults to exist in the program. Mateo 

et al. [30] presented an approach for reducing the cost of 

mutation testing by reducing the number of mutants 

through the combination of first order mutants to create 

second order mutants. Their study was based on the idea 

that testing is done at the system level instead of at the 

unit level (e. g. Class or method), this allows to test the 

interaction between interfaces, methods and classes, or 

the interaction with other systems.  

Madeyski et al. [34] presented a systematic literature 

review on the equivalent mutant problem. In their review 

they highlighted the methods and approaches that try to 

solve the equivalent mutant problem, either in first order 

mutation or higher order mutation. They divided the 

solutions into three categories: Detecting equivalent 

mutants, suggesting equivalent mutants, and avoiding 

equivalent mutant generation. They proposed four second 

order mutation testing strategies, some of them was based 

on previous algorithms by Polo et al. [26]. 

Omar et al. [31] proposed an approach for producing 

subtle higher order mutants for Java and AspectJ 

programs using three algorithms: genetic algorithm, local 

search, and random search. They developed a tool for 

higher order mutation called HOMAJ [41] for mutating 

Java and AspectJ programs. The tool does the 

functionality of the creation, compilation and the 

execution of first order and higher order mutants.  

Omar et al. [32] continued on their previous proposed 

approach [31] by introducing three new search techniques 

for finding subtle HOMs. The three new algoirthms are: 

Guided Local Search, Restricted Random Search, and 

Restricted Enumeration Search. To find subtle higher 

order mutants, they used the same objective function that 

they used in their previous study [31]. 

Derezinska et al. [42] proposed four algorithms to 

produce HOMs for Python programs. These algorithms 

are: Between-Operators, Each-Choice, FirstToLast, and 

Random. Their results show that the number of generated 

second order mutants was about half the number of first 

order mutants, and the third order mutants was about 33%. 

Kintis et al. [43] introduced a classification technique 

called Isolation Equivalent Mutants (I-EQM). The 

technique uses second order mutants to isolate first order 

mutants that are likely to be equivalent. The technique 

uses the impact of first order mutant on another first order 

mutant. Nguyen and Madeyski [44] proposed an 

approach that is centered on the search for valuable 

Strongly Subsuming Higher Order Mutants, with the use 

of a multi objective optimization algorithm. 

Tokumoto et al. [48] proposed four high-speed higher 

order mutation testing techniques. The four techniques 

are: metamutation, mutation on virtual machine, higher 

order split-stream execution, and online adaptation 

technique. They implemented these techniques in a tool 

called MuVM. They goals are: (1) reducing compilation 
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cost by using bit-code mutation and metamutation in C, 

(2) reducing the time of testing, and (3) reducing the 

number of mutants. In their experiment, they compared 

their tool to an existing tool called MILU using two 

attributes, the number of generated mutants and the 

execution time of the mutants. The results indicate that 

MuVM tool is significantly superior in comparison to 

MILU.  

Nguyen et al. [49] continued on their previous 

proposed approach [44] on higher order mutation testing 

by presenting an empirical evaluation for their approach. 

They applied different algorithms of multi-objective 

optimization, and they used their classification of HOMs, 

and their proposed fitness and objective functions from 

their previous work [44, 50-52]. Their aim was to search 

for HOMs that are both reasonable and of high quality, 

that are able to replace all of their constituent first order 

mutants, without risking the effectiveness of tests. Their 

results showed that the cost of mutation testing was 

reduced due to the reduction in the number of HOMs. 

The HOMs were also hard to kill.  

In their recent study, Omar et al. [53] studied and 

evaluated the generation of hard to kill HOMs using six 

algorithms. These algorithms are: Restricted Enumeration, 

Local Search, Genetic Algorithm, Test-Case Guided 

Local Search, Data-Interaction Guided Local Search, and 

Restricted Random Search. They conducted an empirical 

study using 10 Java and AspectJ programs. Their results 

showed that all the proposed techniques were able to find 

subtle HOMs, but the Local Search and the two Guided 

local search algorithms were more effective than others. 

They also found that different algorithms can find 

different sets of subtle HOMs, which encourages the use 

of different algorithms for the production of subtle HOMs 

effectively.  

 

IV.  THE PROPOSED APPROACH 

The proposed approach aims to solve two problems in 

mutation testing, these are: 

 

1. Cost, by reducing the number of mutants 

2. The high percentage of equivalent mutants 

 

The proposed approach uses a genetic algorithm for 

generating higher order mutants. Genetic algorithms are 

suitable for problems which require searching for optimal 

solutions in a search space. In our case, we are searching 

the space of higher order mutants for the fittest (hard to 

kill) mutants.   

Genetic algorithm uses a population that consists of 

individuals which represent possible solutions. A solution 

contains chromosomes that represent the properties of 

that individual. In our case, the individual represents a 

Java source code file and a chromosome represent a line 

of code. Since each individual represents a higher order 

mutant, they contain two faults, where each fault is 

contained in a specific line of code. 

The algorithm begins with a population of candidate 

solutions. Each solution in the search space is a higher 

order mutant. These mutants have various properties in 

terms of fitness and hardness to be killed. In order to 

begin the algorithm, at first the fitness for each of these 

mutants has to be calculated. 

After that, selection is applied on the most-fit mutants, 

and crossover is performed. Then, fitness is calculated 

again for the newly produced mutants by crossover, and 

the whole process is done again. The population then 

evolves towards better solutions. The algorithm 

terminates when a predefined number of generations is 

reached. 

The following is a detailed procedure of how the 

proposed genetic algorithm works:  

The higher order mutants are generated using a tool 

called HOMAJ [41]. These generated mutants are the 

input to the genetic algorithm. 

The genetic algorithm process is applied on the 

provided higher order mutants, that is, it starts with the 

process of selection. In order to perform selection, fitness 

for the whole population of mutants is calculated using 

(2).  The fitness function ranges between 0, and 1. When 

the fitness of a higher order mutant is closer to 1, this 

means that the mutant is a very weak mutant, that is, it is 

killed by most of the test cases in the test suite. On the 

other hand, when a fitness of a higher order mutant is 

closer to 0, it means that this mutant is a strong mutant 

and it is killed by a few number of test cases from the test 

suite. 

 

       ( )   
                          

                 
             (2) 

 

After calculating the fitness for every mutant, selection 

is applied. Selection is done by eliminating the 10% least 

fit mutants from the population, these eliminated mutants 

has to be replaced by newly produced ones. This is done 

by choosing a subset of the remaining mutants in the 

population to form the parents in the crossover step. For 

example, if the population consists of 100 mutant, then 

the 10 least fit mutants will be eliminated from the 

population, and will be replaced by another 10 newly 

produced mutants, these new mutants are produced by 

selecting a subset of the remaining mutants as parents, so 

10 parents are chosen to produce 10 new children to 

replace the eliminated mutants. 

The next step is the crossover. In our approach, we 

used crossover by replacement. In this method the 

crossover is performed in such a way that chromosomes 

from the first parent are replaced with chromosomes from 

the second parent. In our case, a higher order mutant has 

two faults, chromosomes are the lines of code. So 

replacement is done to faults, the two parents that enter 

the crossover are of the most fit mutants, the goal is to 

produce two new children that share the properties of 

these parents. 

After crossover by replacement, the next step is to 

calculate fitness for the second generation, that is, the 

population after eliminating the least fit mutants and 

producing the new mutants. Test cases are again run 

against mutants from the second generation and fitness is 

calculated based on the fitness formula given in (2). 



38 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms  

Copyright © 2018 MECS                                                             I.J. Intelligent Systems and Applications, 2018, 1, 34-45 

The algorithm continues to iterate with the same steps 

and repeats the process until the number of predefined 

generations has been reached. Fig. 1 shows the process of 

the proposed approach. 

 

 

Fig.1. The process of the proposed approach 

The following figures show an example of crossover 

by replacement. Fig. 2 represents the original code 

without faults, Fig. 3 and Fig. 4 show the higher order 

mutants with two faults represented as parents, Fig. 5 

shows the new child that is produced after the crossover 

by replacement. 

 
1 public double average (int x, int y, int z){ 
2 double avg=0.0; 

3 int sum=0; 

4 sum=x+y+z;  
5 avg=sum/3; 

6 return avg;     

7 } 

Fig.2. Original source code of average method. 

Fig. 3 shows the first HOM, which is the first parent. 

Note that the fifth line has the first fault, instead of 

adding x,y and z, it became subtracting x,y and adding z. 

The second fault is located in the sixth line, which 

changes from a division to a multiplication for the 

variable sum. 

 
1 public double average (int x, int y, int z){ 

2 double avg=0.0; 

3 int sum=0; 
4 sum=x-y+z; 

5 avg=sum*3; 

6 return avg; 
7 } 

Fig.3. Parent-1 source code of average method. 

1 public double average (int x, int y, int z){ 
2 double avg=0.0; 

3 int sum=0; 

4 sum=x+y*z; 
5 avg=sum-3; 

6 return avg;  

7 } 

Fig.4. Parent-2 source code of average method. 

 

Fig. 4 shows the second HOM, which is the second 

parent. Note that the fourth line also has the first fault, 

instead of adding x,y and z, it became adding x,y and 

then multiplying by z. The second fault is located in the 

sixth line, which changes from a division to a subtraction 

for the variable sum. 

Fig. 5 shows the first child that is produced after 

performing the crossover between parent 1 and parent 2. 

The first child has two faults, the first fault is from parent 

2 and the second fault is from parent 1. Specifically, the 

fourth line has the first fault, which is the multiplication 

from parent 2, and the sixth line has the second fault, 

which is the multiplication from parent 1.  

 
1 public double average (int x, int y, int z) { 
2 double avg=0.0; 

3 int sum=0; 

4 sum=x+y*z; 
5 avg=sum*3; 

6 return avg; 

7 } 

Fig.5. New child-1 source code of average method. 

Fig. 6 shows the second child that is produced after 

performing the crossover between parent 1 and parent 2.  

 
1 public double average (int x, int y, int z){ 
2 double avg=0.0; 

3 int sum=0; 

4 sum=x-y+z; 
5 avg=sum-3; 

6 return avg; 

7 } 

Fig.6. New child-2 source code of average method. 

The second child also has two faults, the first fault 

from parent 1 and the second fault from parent 2. 

Specifically, the fourth line has the first fault, which is 

the subtraction from parent 1, and the sixth line has the 

second fault, which is the subtraction from parent 2. Fig. 

7 shows a pseudo-code of the genetic algorithm. 
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Fig.7. Genetic algorithm pseudo-code 

 

V.  HOMJAVA IMPLEMENTATION 

The tool developed in this study is programmed in Java, 

and intended to be used with Java programs. We named 

our tool HOMJava. It is an extension of muJava [36], 

which was intended for first-order mutation testing. The 

tool performs the following functions: (1) creating higher 

order mutants, (2) running test cases against higher order 

mutants, (3) search for harder to kill higher order mutants 

using genetic algorithm. 

The expected result of the tool is to apply the proposed 

approach and find a harder to kill higher order mutants 

through the use of the genetic algorithm with the 

application of the proposed approach. The genetic 

algorithm tries to find optimal solutions in the space of 

possible solutions, in this case higher order mutants, these 

mutants has to be harder to kill than the rest of the 

possible solutions. 

A.  Architecture of HOMJava 

The architecture of the tool consists of a three layers: 

the GUI layer, the functional layer, and the external layer. 

Each layer contains a number of components each 

performing a well-defined task. Fig. 8 shows the 

architecture of HOMJava tool.  

As shown in Fig. 8, each layer consists of the 

following components: 

 

 

Fig.8. Architecture of HOMJava 

 

 

 

 

 GUI Layer: this layer represents the user interface 

and contains one component, the Main Window. 

This component contains three buttons to specify 

original program source code file, the directory of 

the higher order mutants, and the directory of test 

suite.  

 Functional Layer: contains the core functionalities 

performed by the tool. It consists of the following 

components: (1) Genetic Algorithm: contains the 

implementation of the genetic algorithm, including: 

crossover by replacement, selection, fitness 

calculation, and iterating the algorithm for the 

specified number of generations. (2) Test Executer: 

includes the module that runs the JUnit test suite 

against the specified higher order mutants, and 

reports the results. It also checks whether the class 

under test and the JUnit test suite and the directory 

of higher order mutants are correctly specified and 

match in terms of class name and package name. 

This component uses the external libraries of JUnit 

and muJava in order to read and run tests on 

mutants and report results. (3) File Management: 

this component encapsulates operations for file 

management including: (a) reading files, either 

source files (.java) or binary files (.class), (b) 

modifying files, updating of files occurs as a result 

of the crossover operation which is performed on 

the source files of the mutants, (3) writing files, 

occurs when files are modified and saved after 

each update. (new mutant is produced, or mutated). 

Source files are then compiled using a Java 

compiler. This component uses the external library 

called ―commons IO‖ for handling file 

management. 

 External layer: contains external libraries that are 

used and integrated in this tool. These libraries are: 

(1) JUnit: the unit testing framework for writing 

and running unit tests on programs in Java. This 

library requires another library called ―hamcrest‖ 

to be also specified and integrated with the tool, (2) 

muJava: is used in our tool does for executing 

tests on mutants and assuring that mutants and 

original class and the test suite are correctly 

specified in terms of class name and package name 

and directories of files, (3) Commons IO: this 

external library is used to support the file 

management component, and (4) Java Compiler: 

used to compile the newly produced source code 

of the child mutants after the crossover operation.  

B.  Process of HOMJava 

Fig. 9 shows the process of the tool. The process goes 

through the following steps: 
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Fig.9. Flowchart representing the process of HOMJava. 

1. The input to the tool is the file of the original class 

to be tested, either in (.java or .class) extension. 

The directory of higher order mutants, in which 

each mutant is contained in a separate folder inside 

that directory, and the test suite file, which 

contains all the test cases. The main window of the 

tool is shown in Fig. 10. 

2. After all the required inputs are specified, the tool 

starts first through the input handler component, 

which processes the three inputs to the tool. First, 

it reads the original class to be tested. Then, it 

reads the directory of the mutants, and finally, it 

reads the test suite file. 

3. Test suite is run against all mutants through the 

test runner component. This step is necessary in 

order to find the fitness of the starting population. 

The test runner uses a component from Junit to run 

the test cases.  

4. The genetic algorithm is then started. The GA uses 

a component for computing the fitness value for 

each individual. This component, in turn, uses the 

result of running the test suite to calculate the 

fitness. The GA goes through the iterations of 

crossover and replacement. The GA uses a 

component for performing each step (crossover 

component, replacement component). The new 

produced mutants are compiled to a new higher 

order mutants that will replace the least-fit mutants 

and then are used to replace the discarded least-fit 

mutants. After each iteration, new mutants are 

saved in files, so in the end of the GA, the set of 

fittest mutants are produced after the last iteration. 

The GA uses the HOM handler component for 

managing files. 

5. The results after the GA run are displayed in the 

text area as shown in Fig. 10. The output handler 

component is used prepare and display the results 

 

 

Fig.10. Main window of HOMJava 

C.  User Interface of HOMJava 

The main window of HOMJava is shown in Fig. 10, 

this is the main and only window of the tool. The 

following are the contents of the window: 

 

1. The upper (first from above) ―Browse‖ button is 

for choosing the source code file of the original 

program. It opens a file open chooser dialog for 

navigating the file system or entering the name of 

the file.  

2. The middle (second from above) ―Browse‖ button 

is for choosing the directory that contains the 

higher order mutants. Each higher order mutant 

has its own directory that contains the source code 

file and the byte code file. This button also opens a 

file chooser dialog to navigate to or type the 

directory of the higher order mutants. 

3. The lower (third from top) ―Browse‖ button is for 

choosing the test suite folder. It also opens a file 

chooser dialog to navigate to or type the folder 

containing the test suite, which has to contain the 

source code and byte code files of the test suite. 

4. The text area is where the output will be shown 

while running the tool. 

5. The ―Run GA‖ button is for starting the genetic 

algorithm. 

 

VI.  EXPERIMENT SETUP 

In this section, we describe the setup of the experiment 

we performed to evaluate our approach. We begin by 

stating the research questions the experiment aims to 
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answer, then we describe the subject program, generation 

of mutants, and generation of test cases.  

The experiment is performed in order to answer the 

following research questions: 

RQ1: Can the proposed approach produce subtle higher 

order mutants? 

RQ2: What is the approximate percentage of equivalent 

mutant produced by the proposed approach? 

A.  Subject Program 

We used one program to perform the experiment, the 

program is called OrdSet [45-46] which implements a set 

of ordered integers that includes a number of operations 

performed on this set. The program consists of 315 lines 

of code, contains one class which has 23 methods. 

B.  Generation of Mutants 

For this step, mutants have been generated for the 

OrdSet class, using HOMAJ [41]. 

The first step was to generate first order mutants, and 

then using these mutants to generate higher order mutants 

with each mutant containing two faults. The mutants 

generated have mutation operators of both class level and 

method level (i.e. traditional mutants), with a number of 

operators presented in Table 3. 

Table 3 shows the name of each operator, the type for 

each operator (method or class), a description of each 

operator, and number of first order mutants that were 

generated with each operator. 

Table 3. Mutation operators used. 

Operator Type Description 
FOMs 

Generated 

AODS 
Method 

level 

Deletes arithmetic 

operator 
4 

AOIU 
Method 

level 
Inserts arithmetic 

operator 
10 

COD 
Method 

level 

Deletes conditional 

operator 
1 

COR 
Method 

level 

Replaces 
conditional 

operator 

10 

LOI 
Method 

level 

Inserts logical 

operator 
10 

ROR 
Method 

level 
Replaces relational 

operator 
50 

COI 
Method 

level 

Inserts conditional 

operator 
10 

AORB 
Method 

level 
Replaces 

arithmetic operator 
40 

AORS 
Method 

level 

Replaces 

arithmetic operator 
11 

AODU 
Method 

level 
Deletes arithmetic 

operator 
5 

EAM 
Class 

level 

Changes accessor 

method 
16 

IOD 
Class 

level 

Overrides method 

deletion 
1 

JSD 
Class 
level 

Deletes a static 
modifier 

3 

JSI 
Class 

level 

Inserts a static 

modifier 
5 

 

 

C.  Generation of Test Cases 

We used a tool called Randoop [47] for generating test 

cases. Randoop generates test cases for Java, given the 

source code of the program to be tested, Randoop can 

generate a large number of tests according to settings the 

user choses in terms of number of tests and a time out for 

the generation process. The test suite we used consisted 

of 800 test case. Table 4 shows the characteristics of the 

subject program, the number of mutants, and number of 

test cases used in the experiment. 

Table 4. Summary of the main attributes for the subject program. 

Measure Value 

Program Name OrdSet 

#Lines of Code 315 

#Classes 1 

#Methods 23 

#First Order Mutants 176 

#Higher Order Mutants 12159 

#Test Cases 800 

 

As shown in Table 4, the number of generated higher 

order mutants was 12159, these higher order mutants 

were generated using a number of 176 first order mutants. 

The generation of mutants was performed using HOMAJ 

[41]. 

D.  Genetic Algorithm setup 

We configured the genetic algorithm to run for 50 

generations. We run the experiments on a PC with a core-

i7 processor and a 6GB of memory.  

The number of mutants that entered the genetic 

algorithm is 2000, which were chosen from the total 

generated HOMs in terms of the best-fit mutants, those 

that are killed by the least number of test cases.  

In doing this, we ran our tool on the generated HOMs 

and used the test suite that was generated by Randoop, 

and picked the 2000 most-fit mutants to enter the GA. 

Table 5 shows the GA configuration. 

Table 5. Genetic Algorithm configuration. 

Measure Value 

Program Name OrdSet 

#Generations 50 

#Higher Order Mutants 2000 

#Test Cases 800 

Total Run Time 
Approximately 530 
minutes 

 

For 50 generations, the 2000 mutants we run against a 

test suite of 800 test cases and then these mutants are 

evaluated based on the number of tests that kill each 

mutant from the total number of tests. In each generation, 

the 10% least-fit. In other words 200 mutants were 

replaced by newly produced 200 mutants. The new 200 

mutants are produced by selecting 200 mutants of those 
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that are most fit, and these are used to produce new 

mutants in the crossover by replacement process, where 

the 200 parent mutants will produce new 200 child 

mutants to replace the 200 weakest and least fit mutants.  

 

VII.  RESULTS 

This section reports the results of the experiment that 

we performed in order to answer the research questions. 

A.  Can the proposed approach produce subtle higher 

order mutants?  

In Table 6, we show the fitness reported of the initial 

population of mutants used by the genetic algorithm. The 

fitness is calculated using a test suite consisting of 800 

test cases on a set of 12159 mutants.  

Table 6. Numbers of mutants, test cases, and fitness. 

Measure  Value 

#Higher Order Mutants 12159 

#Test Cases 800 

Average Fitness 0.0714243 

Best Fitness 0.0 

Best Fitness but killed by at least 1 test 0.00125 

Worst Fitness 0.98375 

 

The best fitness was 0, and that’s expected since there 

are mutants that are not killed by any test case, which can 

be either hard to kill or a possible equivalent mutant. For 

that reason, the best fitness of a mutant that was killed by 

at least 1 test case was considered, so that we can 

evaluate the fitness of a mutant that is surely not 

equivalent. The last number in the Table is the worst 

fitness, which represents the mutant that was killed by 

most number of test cases. 

Then, the 2000 most-fit mutants were picked to enter 

the genetic algorithm. We calculated the fitness of the 

population of 2000 higher order mutants and the mutation 

score before starting the genetic algorithm, and after the 

genetic algorithm terminates. The results are shown in 

Table 7. 

Table 7. Fitness and mutation score before and after genetic algorithm 

Measure 
Before Genetic 

Algorithm 

After Genetic 

Algorithm 

#Mutants 2000 2000 

#Test Cases 800 800 

Fitness  0.00109625 0.000004375 

Mutation Score  50% 0.2% 

 

As shown in Table 7, the mutants became stronger 

after running the genetic algorithm, and the fitness 

improved by about 99%. Which means that the genetic 

algorithm did produce subtle mutants, and those mutants 

were more fit that the ones used at the start of the 

algorithm.  

It is important to mention that these results are based 

on a test suite of 800 test cases, results will most likely 

differ from these when another test suite is used since 

different test suite can vary in their effectiveness. If we 

used another test suite that is stronger, mutation score 

will be higher, fitness will most likely become lower too. 

But that does not affect that the higher order mutants are 

subtle because what affects the mutants before entering 

the genetic algorithm will also affect the result after the 

genetic algorithm. 
In other words, the mutants that had a fitness of 0.5 

when using test suite T1, might have a fitness of 0.4 when 

using test suite T2, which means that this mutant might 

not have the same chance of being selected to enter the 

genetic algorithm, or during the genetic algorithm, it may 

not proceed to the next generation. So, the test suite that 

is used before the genetic algorithm has to be used also 

during the genetic algorithm to achieve reliable results.  

The mutation score result shows that the the genetic 

algorithm was able to produce subtle mutants. The test 

suite before the genetic algorithm killed half of the 

mutants, which after the genetic algorithm it killed less 

than 1% of the mutants.  

B.  What is the approximate percentage of equivalent 

mutants produced after executing the approach? 

After running the genetic algorithm, a number of 

mutants were not killed by any test case, and had a fitness 

of 0. Which means that these can be equivalent mutants. 

In order to estimate the percentage of equivalent mutants, 

we run a larger test suite of about 500 test on a sample of 

100 mutants with fitness 0. The goal of increasing the 

size of the test suite is to check whether adding more test 

cases can kill some of the mutants with fitness 0. Adding 

500 test cases did kill 78 mutants, and only 22 mutants 

remained with a fitness of 0. Table 8 shows the results of 

the performed analysis. 

Table 8. Results of testing a sample of 100 mutants with 0 fitness. 

Measures for sample of 100 

mutant 
Equivalency possibility 

500 Test case 22% 

1500 Test case 17% 

Manually written tests 4% 

 

As shown in Table 8, a larger test suite of 1500 test 

was then used on the same sample of 100 mutants, after 

running the test cases on the mutants, only 17 mutants 

still had a fitness of 0. These remaining 17 mutants were 

manually analyzed, and manually written test cases were 

created to kill them, which resulted in 4 of these 17 that 

remained equivalent, which means, in our experiment,  

from the total sample of 100 mutants, only 4% were  

equivalent. 

 

VIII.  CONCLUSIONS AND FUTURE WORK 

We presented an approach for producing hard to kill 

and less possibly equivalent higher order mutants. The 

approach is based on using a genetic algorithm to produce 

higher order mutants from the fittest mutants in an initial 
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population of higher order mutants that represent the 

search space.  

Our contribution is a crossover by replacement in the 

genetic algorithm, in which faults from two parent 

mutants are replaced to produce two new mutants that 

have some properties of their parents, and in this case, the 

parents that are harder to kill are the ones chosen for the 

crossover by replacement.  

The algorithm keeps running for a predefined number 

of generations, where every generation produces new 

mutants that will replace the weakest, least fit mutants.  

We also developed a Java tool that applies the 

proposed approach, the tool is called HOMJava. To 

assess the effectiveness of the proposed approach, we 

performed an experiment using a subject program called 

OrdSet, which handles a set of ordered integers. Mutants 

were generated using HOMAJ. Test suite was generated 

using Randoop. The genetic algorithm was set to run for 

50 generations.  

The results showed that the mutants produced after 

running the genetic algorithm were subtle and harder to 

kill than those that were used at the beginning of the 

algorithm. The fitness was improved by about 99% 

compared to what it was before running the algorithm.  

In terms of equivalent mutants, a sample of 100 

possible equivalent mutants was taken and further tests 

were run on them. Of the taken sample, about 4% 

remained possibly equivalent mutants, and the rest were 

killed by at least one test case, some mutants’ required 

manually written tests in order to be killed. 

For future work, larger experiments can be performed 

on the proposed approach to further assess and evaluate 

its effectiveness using larger programs.  Our future work 

plans include also extending the tool for other object-

oriented programming languages (e.g., C#, and C++). 
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