
I.J. Intelligent Systems and Applications, 2018, 1, 34-45
Published Online January 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.01.05

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

An Approach for the Generation of Higher Order

Mutants Using Genetic Algorithms

Anas Abuljadayel and Fadi Wedyan
Department of Software Engineering, Hashemite University, Zarka 13315, Jordan

E-mail: abuljadayel1990@gmail.com, fadi.wedyan@hu.edu.jo

Received: 18 June 2017; Accepted: 29 July 2017; Published: 08 January 2018

Abstract—Mutation testing is a structural testing

technique in which the effectiveness of a test suite is

measured by the suite ability to detect seeded faults. One

fault is seeded into a copy of the program, called mutant,

leading to a large number of mutants with a high cost of

compiling and running the test suite against the mutants.

Moreover, many of the mutants produce the same output

as the original program (called equivalent mutants), such

mutants need to be minimized to produce accurate results.

Higher order mutation testing aims at solving these

problems by allowing more than one fault to be seeded in

the mutant. Recent work in higher order mutation show

promising result in reducing the cost of mutation testing

and increasing the approach effectiveness. In this paper,

we present an approach for generating higher order

mutants using a genetic algorithm. The aim of the

proposed approach is to produce subtle and harder to kill

mutants, and reduce the percentage of produced

equivalent mutants. A Java tool has been developed,

called HOMJava (Higher Order Mutation for Java),

which implements the proposed approach. An

experimental study was performed to evaluate the

effectiveness of the proposed approach. The results show

that the approach was able to produce subtle higher order

mutants, the fitness of mutants improved by almost 99%

compared with the first order mutants used in the

experiment. The percentage of produced equivalent

mutants was about 4%.

Index Terms—Higher order mutant, mutation testing,

genetic algorithm, software testing, equivalent mutants,

evolutionary approach.

I. INTRODUCTION

Software testing is a process that aims at making sure

that a software realizes the needed requirements such as

dependability and functionality as well as exhibiting high

quality. A main challenge in software testing is increasing

the process effectiveness within the given time and

money constraints.

Mutation Testing is a white-box fault-based testing

technique that works by introducing faults in a program

in order to measure the adequacy of the test suite [1-2].

Empirical studies show that mutation testing is more

effective in finding faults compared with other testing

approaches [3-4]. The effectiveness of the test suites is

measured by their ability to find the seeded faults, this is

called Mutation Score (MS), or mutation adequacy [1-2],

[5-6] which is computed using the equation given in (1).

 (1)

A test suite is run against all faulty versions of the

program with the aim of detecting the seeded faults. The

modified versions of the program that contain seeded

faults are called mutants. If a fault is detected by any test

case in the test suite; the mutant is said to be killed. When

a fault is not detected by any test case in the test suite; the

mutant is said to be alive, which suggest improving the

test suite by adding more test cases to kill these mutants.

However, a large percentage of alive mutants cannot be

killed by any test case because they produce the same

output as the original program. These mutants are called

equivalent mutants and need to be identified and

eliminated if possible. Budd and Angluin [9] proved that

detecting equivalent mutants is an undecidable problem.

Many approaches were proposed to solve the problem

of equivalent mutants including: compiler optimizations

techniques [12], [13], approaches using mathematical

constraints to automatically detect equivalent mutants

[14], [15], using program slicing to assist in the detection

of equivalent mutants [16], selective mutation [17],

examining the impact of equivalent mutants on coverage

[18], examining changes in coverage to distinguish

equivalent mutants [19], and co-evolutionary search

techniques [20].

Another problem of mutation testing is that in order to

improve the effectiveness of a test suite, a large number

of mutants needs to be generated. This requires more

effort in terms of time and resources to execute these

mutants which increases the execution time required to

run the test suite against the generated mutants. Many

approaches were proposed to solve this mutation problem

including: selective mutation [17], weak mutation [21],

mutant sampling approach [22], [23], using clustering

algorithms to choose a subset of mutants [24], and strong

nutation [25].

A promising technique to overcome the mutation

testing problems is higher order mutation. Higher Order

mutation testing is a mutation testing technique in which

a mutant contains more than one fault. A number of

mailto:fadi.wedyan@hu.edu.jo

 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms 35

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

studies (e.g., [26-33]) shows that higher order mutation

supports solving the two problems of mutation testing,

that is, help in reducing the number of generated mutants

and reducing the number of equivalent mutants.

The main purpose of this paper is to present an

approach for solving the problem of the large number of

higher order mutants, and to reduce the number of

equivalent mutants. The first problem is targeted by

generating higher order mutants that are harder to kill. A

hard to kill mutant is measured as a ratio of test cases that

kill a higher order mutant to the whole number of test

cases. A mutant that is harder to kill is also less likely to

be an equivalent mutant, this is because higher order

mutants include more than one fault. Therefore, the

proposed approach can be used to reduce the number of

equivalent mutants.

The proposed approach uses a genetic algorithm [35]

for generating higher order mutants. Several studies had

used genetic algorithms to generate higher order mutants,

and the results they obtained are promising (e.g., [27-29]).

In order to apply the proposed approach, a software tool

has been implemented with Java called HOMJava

(Higher Order Mutation for Java). HOMJava is an

extension of a tool called muJava [36], which is a well-

known tool generating first order mutants and executing

tests against mutants.

The rest of the paper is organized as follows: Section 2

presents a background on higher order mutation testing,

muJava, and Genetic Algorithms. Section 3 presents

related work Section 4 presents the proposed approach.

Section 5 presents the HOMJava tool implementation.

Section 6 presents the experimental setup and the results

of the experiment. Section 7 presents the conclusions and

outlines future work.

II. BACKGROUND

This section presents important terms and concepts

related to the higher order mutation testing and necessary

software testing terms that are used throughout this paper.

A. Higher Order Mutation Testing

Mutation testing is performed on a copy of the program

by injecting the program with a single fault. The faulty

version of the program is called mutant. Table 1 shows an

example of an original program and a mutant.

Table 1. An original program and mutants

Program Version Source Code

Original Program

int sum (int x, int y){

 return x+y;

}

Mutant
int sum (int x, int y){
 return x/y;

}

Equivalent Mutant

int sum (int x, int y){

 return x+y++;

}

Equivalent mutant is a mutant that produces the same

output as the original program, therefore, the fault that is

seeded in the mutant cannot be detected by the test suite.

A study by Schuler et al. [19] show that, on average, it

takes about 15 minutes to manually detect a single mutant.

An example of equivalent mutant is shown in Table 1.

In higher order mutation testing, instead of injecting

single fault in a mutant, two or more faults are injected.

The order of mutant represents the number of injected

faults, that is, a mutant with two faults is a second order

mutant; a mutant with three faults is a third order mutant.

Table 2 shows an example of a higher order mutant with

two faults, i.e. a second order mutant.

Table 2. An Example of Higher Order Mutant

Program Version Source Code

Original Program

double average (int x, int y){

 double sum, avg;

 sum=x+y;

 avg=sum/2

 return avg;

}

Higher Order Mutant 1

double average (int x, int y){

 double sum, avg;

 sum=x-y;

 avg=sum*2
 return avg;

}

B. muJava

muJava [36] is a well-known Java tool for mutation

testing developed by the Korean Advanced Institute of

Science and Technology in South Korea and George

Mason University in the United States

muJava uses two techniques: Mutant Schemata

Generation (MSG) [37] and bytecode translation. MSG is

used for the process of generating a mutants that is called

a meta-mutant, this meta-mutant is created at the source

code level, and it is created so that it represents more than

one mutant. While Bytecode translation is a technique for

the modification and inspection of Java bytecode [36].

There are three main functions of muJava: the first

function is generating mutants (first order mutants), the

second function is analyzing mutants, and the third

function is running test cases that the user provides

against mutants. muJava uses the JDK class

com.sun.tools.javac.Main for the compilation of mutants.

muJava has a Graphical User Interface (GUI) that

consists of an interface for generating mutants, an

interface for analyzing mutants, an interface for running

test cases, and an interface for showing results of running

test cases in terms of mutation score.

C. Genetic Algorithm

A genetic algorithm (GA) is based on theorem of

natural evolution, it uses the evolution as a way to solve

optimization problems in search space. Genetic

algorithms were first introduced by John Holland [35].

The idea of genetic algorithms is to use techniques

inspired from natural evolution including: selection,

crossover and mutation to generate solutions to

optimization problems. The algorithm starts with a

population of candidate solutions, also called individuals.

36 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

Initial population is randomly generated.

The algorithm works through performing a number of

iteration, after each iteration, the population evolves by

having more fit solutions. In each iteration, a fitness

function is evaluated for each individual. The

optimization problem being solved has an objective

function, which also has a value, the value is the fitness

of each individual. As each generation rises, the fitness is

increased and the more fit individuals are selected from

the current population after a number of techniques such

as crossover and mutation are applied. The process then

repeats until a maximum number of generations has been

reached or until a predefined stopping criterion is met.

Selection is applied to the population where a

proportion of the current population is selected to form

the new generation, the selection is based on the fitness of

each individual, where the more fit individuals are more

likely to be selected. After selection, the algorithm

produces the next generation via the application of

crossover on the selected individuals. Crossover is done

by choosing two parent individuals from those selected

and then they are combined to form a child (new

individual), the child shares properties of the two parents

depending on where the crossover occurs.

III. RELATED WORK

This section presents a review of the related work on

higher order mutation testing. Jia and Harman [27]

proposed the concept of subsuming higher order mutants,

which are mutants that are harder to kill than mutants that

were used to create them. They used search based

optimization techniques to achieve the task of finding

subsuming HOMs for 10 C programs. Their results

showed that such mutants existed for the studied

programs.

Polo et al. [26] introduced an approach for reducing the

cost of mutation testing by using second order mutants.

Their approach was based on combining the set of

generated mutants; that is, combining the set of first order

mutants that contain one fault. By doing this, the number

of mutants is reduced to half. Langdon et al. [28]

proposed an approach based on the pareto-optimal

approach [38], the genetic algorithm, and genetic

programming to search for HOMs that are hard to kill.

Their main intent was to find out the relationship between

a mutants’ syntax and its semantics, where semantics is

also referred to as the behavior of the program. In doing

this they needed to know whether the large syntax

changes are worse than small ones, and if there are

HOMS that are close to the semantic of the original

program.

Omar and Ghosh [29] proposed four approaches for

generating higher order mutants for AspectJ programs,

with a tool that automates these approaches and creates

HOMs. AspectJ faults are classified according to where

they occur, that is, faults that can occur in base classes,

aspects, or in the interaction between the base classes and

aspects. The four approaches proposed are based on

aspect oriented programming fault models presented in

[33], [39-40].

Wedyan and Ghosh [33], and Wedyan et al. [54] used

higher order mutation to generate faults for AspectJ

programs. Their intend was to produce mutants of fault

types that first order mutants missed. These fault types

require at least two faults to exist in the program. Mateo

et al. [30] presented an approach for reducing the cost of

mutation testing by reducing the number of mutants

through the combination of first order mutants to create

second order mutants. Their study was based on the idea

that testing is done at the system level instead of at the

unit level (e. g. Class or method), this allows to test the

interaction between interfaces, methods and classes, or

the interaction with other systems.

Madeyski et al. [34] presented a systematic literature

review on the equivalent mutant problem. In their review

they highlighted the methods and approaches that try to

solve the equivalent mutant problem, either in first order

mutation or higher order mutation. They divided the

solutions into three categories: Detecting equivalent

mutants, suggesting equivalent mutants, and avoiding

equivalent mutant generation. They proposed four second

order mutation testing strategies, some of them was based

on previous algorithms by Polo et al. [26].

Omar et al. [31] proposed an approach for producing

subtle higher order mutants for Java and AspectJ

programs using three algorithms: genetic algorithm, local

search, and random search. They developed a tool for

higher order mutation called HOMAJ [41] for mutating

Java and AspectJ programs. The tool does the

functionality of the creation, compilation and the

execution of first order and higher order mutants.

Omar et al. [32] continued on their previous proposed

approach [31] by introducing three new search techniques

for finding subtle HOMs. The three new algoirthms are:

Guided Local Search, Restricted Random Search, and

Restricted Enumeration Search. To find subtle higher

order mutants, they used the same objective function that

they used in their previous study [31].

Derezinska et al. [42] proposed four algorithms to

produce HOMs for Python programs. These algorithms

are: Between-Operators, Each-Choice, FirstToLast, and

Random. Their results show that the number of generated

second order mutants was about half the number of first

order mutants, and the third order mutants was about 33%.

Kintis et al. [43] introduced a classification technique

called Isolation Equivalent Mutants (I-EQM). The

technique uses second order mutants to isolate first order

mutants that are likely to be equivalent. The technique

uses the impact of first order mutant on another first order

mutant. Nguyen and Madeyski [44] proposed an

approach that is centered on the search for valuable

Strongly Subsuming Higher Order Mutants, with the use

of a multi objective optimization algorithm.

Tokumoto et al. [48] proposed four high-speed higher

order mutation testing techniques. The four techniques

are: metamutation, mutation on virtual machine, higher

order split-stream execution, and online adaptation

technique. They implemented these techniques in a tool

called MuVM. They goals are: (1) reducing compilation

 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms 37

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

cost by using bit-code mutation and metamutation in C,

(2) reducing the time of testing, and (3) reducing the

number of mutants. In their experiment, they compared

their tool to an existing tool called MILU using two

attributes, the number of generated mutants and the

execution time of the mutants. The results indicate that

MuVM tool is significantly superior in comparison to

MILU.

Nguyen et al. [49] continued on their previous

proposed approach [44] on higher order mutation testing

by presenting an empirical evaluation for their approach.

They applied different algorithms of multi-objective

optimization, and they used their classification of HOMs,

and their proposed fitness and objective functions from

their previous work [44, 50-52]. Their aim was to search

for HOMs that are both reasonable and of high quality,

that are able to replace all of their constituent first order

mutants, without risking the effectiveness of tests. Their

results showed that the cost of mutation testing was

reduced due to the reduction in the number of HOMs.

The HOMs were also hard to kill.

In their recent study, Omar et al. [53] studied and

evaluated the generation of hard to kill HOMs using six

algorithms. These algorithms are: Restricted Enumeration,

Local Search, Genetic Algorithm, Test-Case Guided

Local Search, Data-Interaction Guided Local Search, and

Restricted Random Search. They conducted an empirical

study using 10 Java and AspectJ programs. Their results

showed that all the proposed techniques were able to find

subtle HOMs, but the Local Search and the two Guided

local search algorithms were more effective than others.

They also found that different algorithms can find

different sets of subtle HOMs, which encourages the use

of different algorithms for the production of subtle HOMs

effectively.

IV. THE PROPOSED APPROACH

The proposed approach aims to solve two problems in

mutation testing, these are:

1. Cost, by reducing the number of mutants

2. The high percentage of equivalent mutants

The proposed approach uses a genetic algorithm for

generating higher order mutants. Genetic algorithms are

suitable for problems which require searching for optimal

solutions in a search space. In our case, we are searching

the space of higher order mutants for the fittest (hard to

kill) mutants.

Genetic algorithm uses a population that consists of

individuals which represent possible solutions. A solution

contains chromosomes that represent the properties of

that individual. In our case, the individual represents a

Java source code file and a chromosome represent a line

of code. Since each individual represents a higher order

mutant, they contain two faults, where each fault is

contained in a specific line of code.

The algorithm begins with a population of candidate

solutions. Each solution in the search space is a higher

order mutant. These mutants have various properties in

terms of fitness and hardness to be killed. In order to

begin the algorithm, at first the fitness for each of these

mutants has to be calculated.

After that, selection is applied on the most-fit mutants,

and crossover is performed. Then, fitness is calculated

again for the newly produced mutants by crossover, and

the whole process is done again. The population then

evolves towards better solutions. The algorithm

terminates when a predefined number of generations is

reached.

The following is a detailed procedure of how the

proposed genetic algorithm works:

The higher order mutants are generated using a tool

called HOMAJ [41]. These generated mutants are the

input to the genetic algorithm.

The genetic algorithm process is applied on the

provided higher order mutants, that is, it starts with the

process of selection. In order to perform selection, fitness

for the whole population of mutants is calculated using

(2). The fitness function ranges between 0, and 1. When

the fitness of a higher order mutant is closer to 1, this

means that the mutant is a very weak mutant, that is, it is

killed by most of the test cases in the test suite. On the

other hand, when a fitness of a higher order mutant is

closer to 0, it means that this mutant is a strong mutant

and it is killed by a few number of test cases from the test

suite.

 ()

 (2)

After calculating the fitness for every mutant, selection

is applied. Selection is done by eliminating the 10% least

fit mutants from the population, these eliminated mutants

has to be replaced by newly produced ones. This is done

by choosing a subset of the remaining mutants in the

population to form the parents in the crossover step. For

example, if the population consists of 100 mutant, then

the 10 least fit mutants will be eliminated from the

population, and will be replaced by another 10 newly

produced mutants, these new mutants are produced by

selecting a subset of the remaining mutants as parents, so

10 parents are chosen to produce 10 new children to

replace the eliminated mutants.

The next step is the crossover. In our approach, we

used crossover by replacement. In this method the

crossover is performed in such a way that chromosomes

from the first parent are replaced with chromosomes from

the second parent. In our case, a higher order mutant has

two faults, chromosomes are the lines of code. So

replacement is done to faults, the two parents that enter

the crossover are of the most fit mutants, the goal is to

produce two new children that share the properties of

these parents.

After crossover by replacement, the next step is to

calculate fitness for the second generation, that is, the

population after eliminating the least fit mutants and

producing the new mutants. Test cases are again run

against mutants from the second generation and fitness is

calculated based on the fitness formula given in (2).

38 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

The algorithm continues to iterate with the same steps

and repeats the process until the number of predefined

generations has been reached. Fig. 1 shows the process of

the proposed approach.

Fig.1. The process of the proposed approach

The following figures show an example of crossover

by replacement. Fig. 2 represents the original code

without faults, Fig. 3 and Fig. 4 show the higher order

mutants with two faults represented as parents, Fig. 5

shows the new child that is produced after the crossover

by replacement.

1 public double average (int x, int y, int z){
2 double avg=0.0;

3 int sum=0;

4 sum=x+y+z;
5 avg=sum/3;

6 return avg;

7 }

Fig.2. Original source code of average method.

Fig. 3 shows the first HOM, which is the first parent.

Note that the fifth line has the first fault, instead of

adding x,y and z, it became subtracting x,y and adding z.

The second fault is located in the sixth line, which

changes from a division to a multiplication for the

variable sum.

1 public double average (int x, int y, int z){

2 double avg=0.0;

3 int sum=0;
4 sum=x-y+z;

5 avg=sum*3;

6 return avg;
7 }

Fig.3. Parent-1 source code of average method.

1 public double average (int x, int y, int z){
2 double avg=0.0;

3 int sum=0;

4 sum=x+y*z;
5 avg=sum-3;

6 return avg;

7 }

Fig.4. Parent-2 source code of average method.

Fig. 4 shows the second HOM, which is the second

parent. Note that the fourth line also has the first fault,

instead of adding x,y and z, it became adding x,y and

then multiplying by z. The second fault is located in the

sixth line, which changes from a division to a subtraction

for the variable sum.

Fig. 5 shows the first child that is produced after

performing the crossover between parent 1 and parent 2.

The first child has two faults, the first fault is from parent

2 and the second fault is from parent 1. Specifically, the

fourth line has the first fault, which is the multiplication

from parent 2, and the sixth line has the second fault,

which is the multiplication from parent 1.

1 public double average (int x, int y, int z) {
2 double avg=0.0;

3 int sum=0;

4 sum=x+y*z;
5 avg=sum*3;

6 return avg;

7 }

Fig.5. New child-1 source code of average method.

Fig. 6 shows the second child that is produced after

performing the crossover between parent 1 and parent 2.

1 public double average (int x, int y, int z){
2 double avg=0.0;

3 int sum=0;

4 sum=x-y+z;
5 avg=sum-3;

6 return avg;

7 }

Fig.6. New child-2 source code of average method.

The second child also has two faults, the first fault

from parent 1 and the second fault from parent 2.

Specifically, the fourth line has the first fault, which is

the subtraction from parent 1, and the sixth line has the

second fault, which is the subtraction from parent 2. Fig.

7 shows a pseudo-code of the genetic algorithm.

 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms 39

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

Fig.7. Genetic algorithm pseudo-code

V. HOMJAVA IMPLEMENTATION

The tool developed in this study is programmed in Java,

and intended to be used with Java programs. We named

our tool HOMJava. It is an extension of muJava [36],

which was intended for first-order mutation testing. The

tool performs the following functions: (1) creating higher

order mutants, (2) running test cases against higher order

mutants, (3) search for harder to kill higher order mutants

using genetic algorithm.

The expected result of the tool is to apply the proposed

approach and find a harder to kill higher order mutants

through the use of the genetic algorithm with the

application of the proposed approach. The genetic

algorithm tries to find optimal solutions in the space of

possible solutions, in this case higher order mutants, these

mutants has to be harder to kill than the rest of the

possible solutions.

A. Architecture of HOMJava

The architecture of the tool consists of a three layers:

the GUI layer, the functional layer, and the external layer.

Each layer contains a number of components each

performing a well-defined task. Fig. 8 shows the

architecture of HOMJava tool.

As shown in Fig. 8, each layer consists of the

following components:

Fig.8. Architecture of HOMJava

 GUI Layer: this layer represents the user interface

and contains one component, the Main Window.

This component contains three buttons to specify

original program source code file, the directory of

the higher order mutants, and the directory of test

suite.

 Functional Layer: contains the core functionalities

performed by the tool. It consists of the following

components: (1) Genetic Algorithm: contains the

implementation of the genetic algorithm, including:

crossover by replacement, selection, fitness

calculation, and iterating the algorithm for the

specified number of generations. (2) Test Executer:

includes the module that runs the JUnit test suite

against the specified higher order mutants, and

reports the results. It also checks whether the class

under test and the JUnit test suite and the directory

of higher order mutants are correctly specified and

match in terms of class name and package name.

This component uses the external libraries of JUnit

and muJava in order to read and run tests on

mutants and report results. (3) File Management:

this component encapsulates operations for file

management including: (a) reading files, either

source files (.java) or binary files (.class), (b)

modifying files, updating of files occurs as a result

of the crossover operation which is performed on

the source files of the mutants, (3) writing files,

occurs when files are modified and saved after

each update. (new mutant is produced, or mutated).

Source files are then compiled using a Java

compiler. This component uses the external library

called ―commons IO‖ for handling file

management.

 External layer: contains external libraries that are

used and integrated in this tool. These libraries are:

(1) JUnit: the unit testing framework for writing

and running unit tests on programs in Java. This

library requires another library called ―hamcrest‖

to be also specified and integrated with the tool, (2)

muJava: is used in our tool does for executing

tests on mutants and assuring that mutants and

original class and the test suite are correctly

specified in terms of class name and package name

and directories of files, (3) Commons IO: this

external library is used to support the file

management component, and (4) Java Compiler:

used to compile the newly produced source code

of the child mutants after the crossover operation.

B. Process of HOMJava

Fig. 9 shows the process of the tool. The process goes

through the following steps:

40 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

Fig.9. Flowchart representing the process of HOMJava.

1. The input to the tool is the file of the original class

to be tested, either in (.java or .class) extension.

The directory of higher order mutants, in which

each mutant is contained in a separate folder inside

that directory, and the test suite file, which

contains all the test cases. The main window of the

tool is shown in Fig. 10.

2. After all the required inputs are specified, the tool

starts first through the input handler component,

which processes the three inputs to the tool. First,

it reads the original class to be tested. Then, it

reads the directory of the mutants, and finally, it

reads the test suite file.

3. Test suite is run against all mutants through the

test runner component. This step is necessary in

order to find the fitness of the starting population.

The test runner uses a component from Junit to run

the test cases.

4. The genetic algorithm is then started. The GA uses

a component for computing the fitness value for

each individual. This component, in turn, uses the

result of running the test suite to calculate the

fitness. The GA goes through the iterations of

crossover and replacement. The GA uses a

component for performing each step (crossover

component, replacement component). The new

produced mutants are compiled to a new higher

order mutants that will replace the least-fit mutants

and then are used to replace the discarded least-fit

mutants. After each iteration, new mutants are

saved in files, so in the end of the GA, the set of

fittest mutants are produced after the last iteration.

The GA uses the HOM handler component for

managing files.

5. The results after the GA run are displayed in the

text area as shown in Fig. 10. The output handler

component is used prepare and display the results

Fig.10. Main window of HOMJava

C. User Interface of HOMJava

The main window of HOMJava is shown in Fig. 10,

this is the main and only window of the tool. The

following are the contents of the window:

1. The upper (first from above) ―Browse‖ button is

for choosing the source code file of the original

program. It opens a file open chooser dialog for

navigating the file system or entering the name of

the file.

2. The middle (second from above) ―Browse‖ button

is for choosing the directory that contains the

higher order mutants. Each higher order mutant

has its own directory that contains the source code

file and the byte code file. This button also opens a

file chooser dialog to navigate to or type the

directory of the higher order mutants.

3. The lower (third from top) ―Browse‖ button is for

choosing the test suite folder. It also opens a file

chooser dialog to navigate to or type the folder

containing the test suite, which has to contain the

source code and byte code files of the test suite.

4. The text area is where the output will be shown

while running the tool.

5. The ―Run GA‖ button is for starting the genetic

algorithm.

VI. EXPERIMENT SETUP

In this section, we describe the setup of the experiment

we performed to evaluate our approach. We begin by

stating the research questions the experiment aims to

 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms 41

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

answer, then we describe the subject program, generation

of mutants, and generation of test cases.

The experiment is performed in order to answer the

following research questions:

RQ1: Can the proposed approach produce subtle higher

order mutants?

RQ2: What is the approximate percentage of equivalent

mutant produced by the proposed approach?

A. Subject Program

We used one program to perform the experiment, the

program is called OrdSet [45-46] which implements a set

of ordered integers that includes a number of operations

performed on this set. The program consists of 315 lines

of code, contains one class which has 23 methods.

B. Generation of Mutants

For this step, mutants have been generated for the

OrdSet class, using HOMAJ [41].

The first step was to generate first order mutants, and

then using these mutants to generate higher order mutants

with each mutant containing two faults. The mutants

generated have mutation operators of both class level and

method level (i.e. traditional mutants), with a number of

operators presented in Table 3.

Table 3 shows the name of each operator, the type for

each operator (method or class), a description of each

operator, and number of first order mutants that were

generated with each operator.

Table 3. Mutation operators used.

Operator Type Description
FOMs

Generated

AODS
Method

level

Deletes arithmetic

operator
4

AOIU
Method

level
Inserts arithmetic

operator
10

COD
Method

level

Deletes conditional

operator
1

COR
Method

level

Replaces
conditional

operator

10

LOI
Method

level

Inserts logical

operator
10

ROR
Method

level
Replaces relational

operator
50

COI
Method

level

Inserts conditional

operator
10

AORB
Method

level
Replaces

arithmetic operator
40

AORS
Method

level

Replaces

arithmetic operator
11

AODU
Method

level
Deletes arithmetic

operator
5

EAM
Class

level

Changes accessor

method
16

IOD
Class

level

Overrides method

deletion
1

JSD
Class
level

Deletes a static
modifier

3

JSI
Class

level

Inserts a static

modifier
5

C. Generation of Test Cases

We used a tool called Randoop [47] for generating test

cases. Randoop generates test cases for Java, given the

source code of the program to be tested, Randoop can

generate a large number of tests according to settings the

user choses in terms of number of tests and a time out for

the generation process. The test suite we used consisted

of 800 test case. Table 4 shows the characteristics of the

subject program, the number of mutants, and number of

test cases used in the experiment.

Table 4. Summary of the main attributes for the subject program.

Measure Value

Program Name OrdSet

#Lines of Code 315

#Classes 1

#Methods 23

#First Order Mutants 176

#Higher Order Mutants 12159

#Test Cases 800

As shown in Table 4, the number of generated higher

order mutants was 12159, these higher order mutants

were generated using a number of 176 first order mutants.

The generation of mutants was performed using HOMAJ

[41].

D. Genetic Algorithm setup

We configured the genetic algorithm to run for 50

generations. We run the experiments on a PC with a core-

i7 processor and a 6GB of memory.

The number of mutants that entered the genetic

algorithm is 2000, which were chosen from the total

generated HOMs in terms of the best-fit mutants, those

that are killed by the least number of test cases.

In doing this, we ran our tool on the generated HOMs

and used the test suite that was generated by Randoop,

and picked the 2000 most-fit mutants to enter the GA.

Table 5 shows the GA configuration.

Table 5. Genetic Algorithm configuration.

Measure Value

Program Name OrdSet

#Generations 50

#Higher Order Mutants 2000

#Test Cases 800

Total Run Time
Approximately 530
minutes

For 50 generations, the 2000 mutants we run against a

test suite of 800 test cases and then these mutants are

evaluated based on the number of tests that kill each

mutant from the total number of tests. In each generation,

the 10% least-fit. In other words 200 mutants were

replaced by newly produced 200 mutants. The new 200

mutants are produced by selecting 200 mutants of those

42 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

that are most fit, and these are used to produce new

mutants in the crossover by replacement process, where

the 200 parent mutants will produce new 200 child

mutants to replace the 200 weakest and least fit mutants.

VII. RESULTS

This section reports the results of the experiment that

we performed in order to answer the research questions.

A. Can the proposed approach produce subtle higher

order mutants?

In Table 6, we show the fitness reported of the initial

population of mutants used by the genetic algorithm. The

fitness is calculated using a test suite consisting of 800

test cases on a set of 12159 mutants.

Table 6. Numbers of mutants, test cases, and fitness.

Measure Value

#Higher Order Mutants 12159

#Test Cases 800

Average Fitness 0.0714243

Best Fitness 0.0

Best Fitness but killed by at least 1 test 0.00125

Worst Fitness 0.98375

The best fitness was 0, and that’s expected since there

are mutants that are not killed by any test case, which can

be either hard to kill or a possible equivalent mutant. For

that reason, the best fitness of a mutant that was killed by

at least 1 test case was considered, so that we can

evaluate the fitness of a mutant that is surely not

equivalent. The last number in the Table is the worst

fitness, which represents the mutant that was killed by

most number of test cases.

Then, the 2000 most-fit mutants were picked to enter

the genetic algorithm. We calculated the fitness of the

population of 2000 higher order mutants and the mutation

score before starting the genetic algorithm, and after the

genetic algorithm terminates. The results are shown in

Table 7.

Table 7. Fitness and mutation score before and after genetic algorithm

Measure
Before Genetic

Algorithm

After Genetic

Algorithm

#Mutants 2000 2000

#Test Cases 800 800

Fitness 0.00109625 0.000004375

Mutation Score 50% 0.2%

As shown in Table 7, the mutants became stronger

after running the genetic algorithm, and the fitness

improved by about 99%. Which means that the genetic

algorithm did produce subtle mutants, and those mutants

were more fit that the ones used at the start of the

algorithm.

It is important to mention that these results are based

on a test suite of 800 test cases, results will most likely

differ from these when another test suite is used since

different test suite can vary in their effectiveness. If we

used another test suite that is stronger, mutation score

will be higher, fitness will most likely become lower too.

But that does not affect that the higher order mutants are

subtle because what affects the mutants before entering

the genetic algorithm will also affect the result after the

genetic algorithm.
In other words, the mutants that had a fitness of 0.5

when using test suite T1, might have a fitness of 0.4 when

using test suite T2, which means that this mutant might

not have the same chance of being selected to enter the

genetic algorithm, or during the genetic algorithm, it may

not proceed to the next generation. So, the test suite that

is used before the genetic algorithm has to be used also

during the genetic algorithm to achieve reliable results.

The mutation score result shows that the the genetic

algorithm was able to produce subtle mutants. The test

suite before the genetic algorithm killed half of the

mutants, which after the genetic algorithm it killed less

than 1% of the mutants.

B. What is the approximate percentage of equivalent

mutants produced after executing the approach?

After running the genetic algorithm, a number of

mutants were not killed by any test case, and had a fitness

of 0. Which means that these can be equivalent mutants.

In order to estimate the percentage of equivalent mutants,

we run a larger test suite of about 500 test on a sample of

100 mutants with fitness 0. The goal of increasing the

size of the test suite is to check whether adding more test

cases can kill some of the mutants with fitness 0. Adding

500 test cases did kill 78 mutants, and only 22 mutants

remained with a fitness of 0. Table 8 shows the results of

the performed analysis.

Table 8. Results of testing a sample of 100 mutants with 0 fitness.

Measures for sample of 100

mutant
Equivalency possibility

500 Test case 22%

1500 Test case 17%

Manually written tests 4%

As shown in Table 8, a larger test suite of 1500 test

was then used on the same sample of 100 mutants, after

running the test cases on the mutants, only 17 mutants

still had a fitness of 0. These remaining 17 mutants were

manually analyzed, and manually written test cases were

created to kill them, which resulted in 4 of these 17 that

remained equivalent, which means, in our experiment,

from the total sample of 100 mutants, only 4% were

equivalent.

VIII. CONCLUSIONS AND FUTURE WORK

We presented an approach for producing hard to kill

and less possibly equivalent higher order mutants. The

approach is based on using a genetic algorithm to produce

higher order mutants from the fittest mutants in an initial

 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms 43

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

population of higher order mutants that represent the

search space.

Our contribution is a crossover by replacement in the

genetic algorithm, in which faults from two parent

mutants are replaced to produce two new mutants that

have some properties of their parents, and in this case, the

parents that are harder to kill are the ones chosen for the

crossover by replacement.

The algorithm keeps running for a predefined number

of generations, where every generation produces new

mutants that will replace the weakest, least fit mutants.

We also developed a Java tool that applies the

proposed approach, the tool is called HOMJava. To

assess the effectiveness of the proposed approach, we

performed an experiment using a subject program called

OrdSet, which handles a set of ordered integers. Mutants

were generated using HOMAJ. Test suite was generated

using Randoop. The genetic algorithm was set to run for

50 generations.

The results showed that the mutants produced after

running the genetic algorithm were subtle and harder to

kill than those that were used at the beginning of the

algorithm. The fitness was improved by about 99%

compared to what it was before running the algorithm.

In terms of equivalent mutants, a sample of 100

possible equivalent mutants was taken and further tests

were run on them. Of the taken sample, about 4%

remained possibly equivalent mutants, and the rest were

killed by at least one test case, some mutants’ required

manually written tests in order to be killed.

For future work, larger experiments can be performed

on the proposed approach to further assess and evaluate

its effectiveness using larger programs. Our future work

plans include also extending the tool for other object-

oriented programming languages (e.g., C#, and C++).

ACKNOWLEDGMENT

The authors wish to thank Jeff Offutt for providing the

source code of muJava, and El Mahdi Omar for providing

us the HOMAJ tool. This work was supported in part by

grant #2015/3 from Hashemite University to Fadi

Wedyan.

REFERENCES

[1] R. DeMillo, R. Lipton, and F. Sayward, ―Hints on test

data selection: Help for the practicing programmer,‖

Computer, vol. 11(4), pp. 34-41, 1978.

[2] R. Hamlet, ―Testing programs with the aid of a compiler,‖

IEEE Transactions on Software Engineering, vol. 3(4), pp.

279-290, 1977.

[3] P. G. Frankl, S. N. Weiss, and C. Hu, ―All-Uses vs

Mutation Testing: An Experimental Comparison of

Effectiveness,‖ Journal of Systems and Software, vol.

38(3), pp. 235-253, 1997.

[4] J. Offutt, J. Pan, K. Tewary, and T. Zhang, ―An

Experimental Evaluation of Data Flow and Mutation

Testing,‖ Software Practice and Experience, vol. 26(2),

pp. 165-176, 1996.

[5] T. A. Budd, R. DeMillo, R. Lipton, and F. Sayward, ―The

design of a prototype mutation system for program

testing,‖ in: AFIPS National Computer Conference,

Anaheim, New Jersey, USA, 1978, pp. 623-627.

[6] H. Zhu, P. A. V. Hall, J. H. R. May, ―Software unit test

coverage and adequacy,‖ ACM Computing Surveys, vol.

29, pp. 366-427, 1997.

[7] J. Offutt and R. Untch, ―Mutation 2000: Uniting the

orthogonal,‖ Mutation testing for the new century, 2001,

34-44.

[8] J. Offutt and J. Pan, ―Automatically detecting equivalent

mutants and infeasible paths,‖ Software Testing,

Verification and Reliability, vol. 7, pp. 165-192, 1997.

[9] T. A. Budd and D. Angluin, ―Two notions of correctness

and their relation to testing,‖ Acta Informatica, vol. 18, pp.

31-45, 1982.

[10] R. DeMillo, R. Lipton, and F. Sayward, ―Hints on test

data selection: help for the practical programmer,‖ IEEE

Computer, vol. 11(4), pp. 31-41, 1978.

[11] P. Frankl P and O. Iakounenko, ―Further empirical studies

of test effectiveness,‖ in: Proceedings of the 6th ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, Orlando, USA, 1998, pp. 153-162.

[12] D. Baldwin and F. Sayward, ―Heuristics for determining

equivalence of program mutations,‖ DTIC Document,

Tech. Rep., 1979.

[13] J. Offutt and W. Craft, ―Using compiler optimization

techniques to detect equivalent mutants,‖ Software Testing,

Verification and Reliability, vol. 4(3), pp. 131-154, 1994.

[14] J. Offutt and J. Pan, ―Detecting equivalent mutants and the

feasible path problem,‖ in: Proceedings of the Eleventh

Annual Conference on Computer Assurance, 1996, pp.

224-236.

[15] J. Offutt and J. Pan, ―Automatically detecting equivalent

mutants and infeasible paths,‖ Software testing,

verification and reliability, vol. 7(3), pp. 165-192, 1997.

[16] R. Hierons, M. Harman, and S. Danicic, ―Using program

slicing to assist in the detection of equivalent mutants,‖

Software Testing, Verification and Reliability, vol. 9(4),

pp. 233-262, 1999.

[17] E. Mresa and L. Bottaci, ―Efficiency of mutation

operators and selective mutation strategies: An empirical

study,‖ Software Testing Verification and Reliability, vol.

9(4), pp. 205-232, 1999.

[18] B. Grun, D. Schuler, and A. Zeller, ―The impact of

equivalent mutants,‖ in: Software Testing, Verification

and Validation Workshops, Denver, Colorado, USA, 2009,

pp. 192-199.

[19] D. Schuler, A. Zeller, ―Covering and uncovering

equivalent mutants,‖ Software Testing, Verification and

Reliability, vol. 23(5), pp. 353-374, 2013.

[20] K. Adamopoulos, M. Harman, and R. Hierons, ―How to

overcome the equivalent mutant problem and achieve

tailored selective mutation using co-evolution,‖ in:

Genetic and Evolutionary Computation–GECCO,

Heidelberg, 2004, pp. 1338-1349.

[21] J. Offutt and S. Lee, ―An empirical evaluation of weak

mutation,‖ IEEE Transactions on Software Engineering,

vol. 20(5), pp. 337-344, 1994.

[22] A. Acree, ―On Mutation,‖ Ph.D. Dissertation, Atlanta,

GA, USA, Georgia Institute of Technology, 1980.

[23] T. Budd, ―Mutation analysis of program test data,‖ Ph.D.

Dissertation, New Haven, CT, USA, Yale University,

1980.

[24] S. Hussain, ―Mutation clustering,‖ Master Thesis, Strand,

London, Kings College London, 2008.

[25] W. Howden, ―Weak mutation testing and completeness of

test sets,‖ IEEE Transactions on Software Engineering,

vol. 4, pp. 371-379, 1982.

[26] M. Polo and M. Piattini, ―Decreasing the cost of mutation

44 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

testing with second-order mutants,‖ Software Testing,

Verification and Reliability, vol. 19(2), pp. 111–131, 2009.

[27] Y. Jia and M. Harman, ―Higher order mutation testing,‖

Information and Software Technology, vol. 51(10), pp.

1379–1393, 2009.

[28] W. Langdon, M. Harman, and Y. Jia, ―Efficient multi-

objective higher order mutation testing with genetic

programming,‖ Journal of systems and Software, vol.

83(12), pp. 2416–2430, 2010.

[29] E. Omar and S. Ghosh, ―An exploratory study of higher

order mutation testing in aspect-oriented programming,‖

in: IEEE 23rd International Symposium on Software

Reliability Engineering (ISSRE), Dallas, TX, USA, 2012,

pp. 1–10.

[30] P. Reales Mateo, M. Polo, M. Usaola, and J. Fernandez

Aleman, ―Validating second-order mutation at system

level,‖ IEEE Transactions on Software Engineering, vol.

39(4), pp. 570–587, 2013.

[31] E. Omar, S. Ghosh, and D. Whitley, ―Constructing subtle

higher order mutants for Java and AspectJ programs,‖ in:

IEEE 24th International Symposium on Software

Reliability Engineering (ISSRE), Pasadena, CA, USA,

2013, pp. 340–349.

[32] E. Omar, S. Ghosh, D. Whitley, ―Comparing search

techniques for finding subtle higher order mutants,‖ in:

Proceedings of the 2014 conference on Genetic and

evolutionary computation, ACM, Vancouver, BC, Canada,

2014, pp. 1271–1278.

[33] F. Wedyan and S. Ghosh, ―On generating mutants for

aspect programs,‖ Information and Software Technology,

vol .54(8), pp. 900–914, 2012.

[34] L. Madeysk, W. Orzeszyna, R. Torkar, and M. Jozala,

―Overcoming the equivalent mutant problem: A

systematic literature review and a comparative experiment

of second order mutation,‖ IEEE Transactions on

Software Engineering, vol. 40(1), pp. 23-42, 2014.

[35] J. Holland,‖Genetic Algorithms and the Optimal

Allocation of Trial,‖ SIAM Journal on Computing, vol.

2(2), pp. 88-105, 1973.

[36] Y. Ma, J. Offutt, and Y. Kwon, ―MuJava: an automated

class mutation system,‖ Software Testing, Verification and

Reliability, vol. 15(2), pp. 97-133, 2005.

[37] R. Untch, J. Offutt, and M. Harrold, ―Mutation analysis

using program schemata,‖ in: Proceedings of the 1993

International Symposium on Software Testing, and

Analysis (ISSTA), ACM Press, Cambridge, MA, 1993, pp.

139–148.

[38] C. Fonseca and P. Fleming, ―Genetic algorithms for

multiobjective optimization: formulation, discussion and

generalization,‖ in: Proceedings of the 5th International

Conference on Genetic Algorithms, ICGA-93, 1993, pp.

416–423.

[39] J. S. Baekken and R. T. Alexander, ―A candidate fault

model for AspectJ pointcuts,‖ in: International

Symposium on Software Reliability Engineering, Raleigh,

North Carolina, USA, 2006, pp. 169–178.

[40] F. Ferrari, J. Maldonado, and A. Rashid, ―Mutation

Testing for Aspect-Oriented Programs,‖ in: International

Conference on Software Testing, Verification, and

Validation, Lillehammer, Norway, 2008, pp. 52-61.

[41] E. Omar, S. Ghosh, and D. Whitley, ―HOMAJ: A tool for

higher order mutation testing in AspectJ and Java,‖ in:

IEEE Seventh International Conference on Software

Testing, Verification and Validation Workshops (ICSTW),

Cleveland, Ohio, USA, 2014, pp. 165–170.

[42] A. Derezinska and K. Halas, ―Experimental evaluation of

mutation testing approaches to python programs,‖ in:

IEEE 7th International Conference on Software Testing,

Verification and Validation Workshops (ICSTW),

Cleveland, Ohio, USA, 2014, pp. 156–164.

[43] M. Kintis, M. Papadakis, and N. Malevris, ―Employing

second order mutation for isolating first-order equivalent

mutants,‖ Software Testing, Verification and Reliability,

vol. 25(5-7), pp. 508-535, 2014.

[44] Q. V. Nguyen and L. Madeyski, ―Searching for Strongly

Subsuming Higher Order Mutants by Applying Multi-

objective Optimization Algorithm,‖ in: Advanced

Computational Methods for Knowledge Engineering,

2015, pp. 391-402.

[45] S. Mouchawrab, L. Briand, M. Penta, ―Assessing,

comparing, and combining state machine-based testing

and structural testing: a series of experiments,‖ IEEE

Transactions on Software Engineering, vol. 37(2), pp.

161-187, 2011.

[46] H. Do, S. Elbaum, and G. Rothermel, ―Supporting

controlled experimentation with testing techniques: an

infrastructure and its potential impact,‖ Empirical

Software Engineering, vol. 10(4), pp. 405-435, 2005.

[47] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball, ―Feedback-

directed random test generation,‖ in: Proceedings of the

29th international conference on Software Engineering,

Minneapolis, MN, USA, 2007, pp. 75–84.

[48] S. Tokumoto, H. Yoshida, K. Sakamoto, and S. Honiden,

"MuVM: Higher Order Mutation Analysis Virtual

Machine for C," in: IEEE International Conference on

Software Testing, Verification and Validation (ICST),

Chicago, IL, USA, 2016, pp. 320-329.

[49] Q.V. Nguyen and L. Madeyski, "Addressing mutation

testing problems by applying multi-objective optimization

algorithms and higher order mutation," Journal of

Intelligent & Fuzzy Systems, vol. 32(2), pp. 1173-1182,

2017.

[50] Q.V. Nguyen and L. Madeyski, "Empirical evaluation of

multiobjective optimization algorithms searching for

higher order mutants," Cybernetics and Systems, vol.

47(1-2), pp. 48–68, 2016.

[51] Q.V. Nguyen and L. Madeyski, "Higher order mutation

testing to drive development of new test cases: An

empirical comparison of three strategies," in: Intelligent

Information and Database Systems: 8th Asian Conference,

ACIIDS, Da Nang, Vietnam, 2016, pp. 235–244. Springer,

Berlin Heidelberg, 2016.

[52] Q.V. Nguyen and L. Madeyski, "On the relationship

between the order of mutation testing and the properties

of generated higher order mutants," in: Intelligent

Information and Database Systems: 8th Asian Conference,

ACIIDS, Da Nang, Vietnam, 2016, pp. 245–254. Springer,

Berlin Heidelberg, 2016.

[53] E. Omar, S. Ghosh, and D. Whitley, ―Subtle higher order

mutants,‖ Journal Information and Software Technology,

vol. 81(C), pp. 3-18, 2017.

[54] F. Wedyan, S. Ghosh, and L. Vijayasarathy, ―An

Approach and Tool for Measurement of State Variable

Based Data-Flow Test Coverage for Aspect-Oriented

Programs‖, Information and Software Technology, vol. 59,

no. 3, pp. 233-254, March 2015.

 An Approach for the Generation of Higher Order Mutants Using Genetic Algorithms 45

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 1, 34-45

Authors’ Profiles

Anas S. Abuljadayel received his Masters

degree in Software Engineering from the

Hashemite University, Jordan in 2016. He

completed his bachelor's degree in Software

Engineering from The Hashemite University,

Jordan in 2012. His research interest is in

Software Engineering with focus on

Software Testing and Mutation Testing.

Fadi I. Wedyan is an Associate Professor in

the department of Software Engineering at the

Hashemite University, Jordan. He completed

his Ph.D. in computer science at Colorado

State University (2011). He received his

Master in computer science from Colorado

State University (2008). He also holds a

masters in Computer Science from Al-albayt University, Jordan

(1999). He received his B.S. in computer science from Yarmouk

University, Jordan (1995). His research interest is software

testing, software design, aspect-oriented testing and

development, static analysis, and mobile computing.

How to cite this paper: Anas Abuljadayel, Fadi Wedyan, "An

Approach for the Generation of Higher Order Mutants Using

Genetic Algorithms", International Journal of Intelligent

Systems and Applications(IJISA), Vol.10, No.1, pp.34-45, 2018.

DOI: 10.5815/ijisa.2018.01.05

