
Research Article

AnApproachofCommunity SearchwithMinimumSpanningTree
Based on Node Embedding

Jinglian Liu ,1,2 Daling Wang ,1 Shi Feng,1 and Yifei Zhang1

1School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
2School of Information Engineering, Suihua University, Suihua 152061, China

Correspondence should be addressed to Daling Wang; wangdaling@cse.neu.edu.cn

Received 5 December 2020; Revised 22 February 2021; Accepted 14 March 2021; Published 15 April 2021

Academic Editor: Hocine Cherifi

Copyright © 2021 Jinglian Liu et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Community search is a query-oriented variant of community detection problem, and the goal is to retrieve a single community
from a given set of nodes. Most of the existing community search methods adopt handcrafted features, so there are some
limitations in applications. Our idea is motivated by the recent advances of node embedding. Node embedding uses deep learning
method to obtain feature representation of nodes directly from graph structure automatically and offers a newmethod to measure
the distance between two nodes. In this paper, we propose a two-stage community search algorithm with a minimum spanning
tree strategy based on node embedding. At the first stage, we propose a node embedding model NEBRW and map nodes to the
points in a low-dimensional vector space. At the second stage, we propose a new definition of community from the distance
viewpoint, transform the problem of community search to a variant of minimum spanning tree problem, and uncover the target
community with an improved Prim algorithm. We test our algorithm on both synthetic and real-world network datasets. +e
experimental results show that our algorithm is more effective for community search than baselines.

1. Introduction

Community detection is one of the most popular problems
in social network analysis, and its goal is to identify all
communities in a network [1–3]. Discovering communities
in social networks may offer insight on how the networks are
organised and have many applications [4, 5]. However, there
are many application scenarios in which we are interested in
a particular community instead of all communities in net-
works. For example, in a scholar network such as DBLP, we
are interested in a group of data mining experts, but not all
experts in the community are known [6]. As another ex-
ample in recommendation systems, for offering a tourist the
most relevant and personalized local venue recommenda-
tions, his local interesting community needs to be mined
first [7]. Both of the above examples are query-oriented
variant of community detection problem where only a single
community shall be detected [8–10]. +e community search
problem has also been studied as local community detection
[11, 12] or seed set expansion [6, 13, 14].

+e traditional community detection methods aim to
enumerate all the communities in a network, and the
running time is proportional to the size of the entire graph;
thus, their efficiency is inadequate for community search
which aims to find a particular community [15]. To address
this limitation, a lot of research studies have been devoted in
the community search problem. Luo et al. [16], Huang et al.
[17], Ma et al. [18], and Liu et al. [19] study the scenario in
which only a query node requires to be pre-known in the
target community C, but sometimes they perform poorly
since they have no size limitation of the algorithmic returned
results. Kloumann and Kleinberg [6] and Clauset [20] study
the scenario in which a researcher need to pre-know the
number of members in target community C, and Kloumann
and Kleinberg [6] make a further assumption that a node set
of size |C|/10 in C also requires to be pre-known which is
hard to set in real application.

In this paper, we focus on a particular case of community
search problem: for a graph G, given a node s ∈ G, the goal is
to find k nodes which are in the same community with s.
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Motivated by node embedding providing a new approach to
learn node features from graph structure directly, we pro-
pose a two-stage community search algorithm. At the first
stage, we propose a Node Embedding model with a Biased
Random Walk (NEBRW) based on the Skip-gram model
and map nodes to the points in a low-dimensional vector
space. Moreover, we transform the proximity between each
pair of nodes into their distance. At the second stage, we
define the community of a query node as the nodes which are
connected via shortest distance. +erefore, the problem of
community search is transformed to a variant of minimum
spanning tree problem. For the purpose, we define a new
measurement of the distance between two nodes and im-
plement a new community search algorithm with a mini-
mum spanning tree-based approach.

To sum up, our main contributions in this paper are
summarized as follows:

We propose a node embedding model NEBRW based
on the Skip-grammodel andmap nodes to the points in
a low-dimensional vector space. Moreover, we define a
new measurement of the distance between two nodes.

We propose a new definition of community from
distance viewpoint: each community is a group of
nodes which are connected via the shortest distance
and transform the problem of community search to a
variant of minimum spanning tree problem.

Based on the above definition, we design a novel
Community Search algorithm with a Minimum
Spanning Tree approach (CSMST) and test the algo-
rithm on both synthetic and real-world network
datasets. +e experimental results show that our al-
gorithm is more effective at community search than
baselines.

+e rest of the paper is organised as follows. Section 2
introduces some related work.We give a formal definition of
the community search problem in section 3 and give the
detailed algorithm in section 4. We report experimental
results in section 5, followed by conclusions in section 6.

2. Related Work

Our work is partly inspired by the work on community
search and partly by the work on node embedding. In this
section, we review both lines of work below.

2.1. Community Detection and Community Search.
Community detection is an interesting problem in social
network analysis, and various types of algorithms have been
proposed, including modularity maximization model [3],
hierarchical clustering model [21], and distance dynamics
model [22]. +e goal of community detection is to enu-
merate all the communities in a network, and the recent
work is reviewed in the literature [2, 4]. Community search
is a query-oriented variant of community detection problem,
and the goal is to obtain a single community from a given set
of nodes [8, 10]. +e traditional community detection

methods aim to enumerate all the communities in a network;
thus, their efficiency is inadequate for community search.

Community search has attracted a lot of attention, and
lots of algorithms have been proposed. However, the
problem definition is not in complete accord. Among them,
a mainstream direction of efforts focuses on querying the
community from a query node. Luo et al. [16] define a local
modularityM and identify the subgraph with the maximum
value of M starting from a query node with a locally op-
timized approach. Huang et al. [17] introduce a similarity-
based community quality function tightness and design an
algorithm LTE for revealing the natural community of a
query node via local optimization of the tightness measure.
Different from Huang’s similarity measure which only fo-
cuses on the adjacent nodes, Ma et al. [18] introduce a d-NS
measure which also takes into account nonadjacent vertices
within a distance away and propose a d-NS based com-
munity search algorithm. In addition, Clauset [20] and
Panagiotakis et al. [23] also assume that the approximate size
of target community requires to be pre-known. Clauset [20]
defines a local modularity measure R and proposes an al-
gorithm to identity the community with a fixed number of
nodes by maximizing R in a greedy fashion. Panagiotakis
et al. [23] propose a flow propagation algorithm FlowPro to
find the community surrounding a query node. Another
direction of efforts focuses on finding the community from a
set of query nodes. Kloumann and Kleinberg [6] study the
scenario in which a researcher needs to pre-know an initial
node set of size |C|/10 from C.

Furthermore, there is another kind of minimum span-
ning tree-based community detection algorithms. Saoud and
Moussaoui [24] construct the minimum spanning tree of the
network based on the dissimilarities of nodes for each edge
and get groups of nodes by removing the highest edges
dissimilarities, and then, they merge group pairs to identify
the final community structure maximizing the modularity.
In order to overcome the limitation of modularity maxi-
mization, Asmi et al. [25] propose a new algorithm to reveal
the communities in social networks based on minimum
spanning tree and the strength of similarity between two
nodes.

2.2. Node Embedding. +e key challenge in networked data
mining is how to find a proper representation of network
structure that can be exploited by downstream tasks [19, 26].
Most of the existing data mining models are designed to
handle vectorized data, and the networked data cannot be
directly input into these models. Node embedding enables
the automatic discovery of vector representation of nodes
directly from graph structure [27], and the relevant work is
reviewed in the literature [28–30]. Besides homogeneous
networks, there are also some heterogeneous networks [31]
based on embedding approaches [27, 32, 33] proposed in
recent years.

According to literature [30], network graph embedding
output includes node embedding, edge embedding, hybrid
embedding, and whole-graph embedding. Our work belongs
to node embedding. +e most related work to ours is the
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word2vec-based node embedding algorithms, such as
DeepWalk [34], node2vec [35], and NEMCNB [19]. By
viewing nodes as words and randomwalk paths on networks
as sentences, these methods generalize word embedding
techniques in natural language processing from lists of
sentences to graphs [14]. +ese algorithms usually include
two steps. Firstly, node paths are generated by performing
randomwalks on a network. Secondly, vector representation
of nodes is learned by adopting word embedding technique.

Recently, research on incorporating node embedding
into community detection has attracted great interest of
scholars. A line of research is to learn low-dimensional
vector representations of nodes from network topology and
feed them as node features to clustering algorithms such as
k-means. For improving the community detection accuracy,
Jin et al. [36] define a new pairwise Markov Random Field
framework which not only utilizes network embedding but
also uses network topology to adjust of the improper di-
vision of nodes.

Motivated by the above work, we propose a new node
embedding model to learn vector representation of nodes
and design a minimum spanning tree-based community
search algorithm.

3. Problem Definition and Solution Approach

A network can be represented by graph G � (V, E), whereV
is the set of nodes and E is the set of edges. A community in
network G is a subgraph within which the nodes are in close
proximity. +e general community search problem is de-
fined as follows.

Problem 1. (community search). For a given network G, we
are interested in a potential community C ⊂ G, but pre-
know only a member s ∈ C, and the goal is to find out the
members in C.

+e traditional way of quantifying the quality of a
community focuses on the density of internal edges, e.g.,
local modularityM [16] is the ratio of the number of internal
edges to external edges and R [20] is the fraction of boundary
edges which are internal to the community. In this paper, we
quantify the quality of a community with the shortest dis-
tance connecting all nodes in it from a viewpoint of distance.
Based on this, we formally define the community search
problem based on minimum spanning tree as follows.

Problem 2. (community search based on minimum span-
ning tree). For a network G � (V, E) and distance function
dis between nodes, given a query node s ∈ V and a size
constraint k, we seek to find an induced subgraph
H � (VH, EH) of G, such that

(1) H contains s

(2) |VH| � k

(3) H is connected

(4) ∑(u,v)∈EHdis(u, v) is minimized among all feasible
choices for H

We now discuss the problem of finding subgraph H.
Firstly, H is a connected subgraph, and there are at least
k − 1 edges in it. For a connected subgraph H, there are at
most k − 1 edges in it when ∑(u,v)∈EHdis(u, v) is minimized.

We put these two things together and get the conclusion that
there are exactly k − 1 edges in H. Secondly, suppose a

subgraph H′ � (VH′ , EH′) and VH′ � VH, for any nodes
u, v ∈ VH′ , if (u, v) ∈ E, then (u, v) ∈ EH′ . When∑(u,v)∈EHdis(u, v) is minimized, it means that connecting all

nodes in H′ with shortest total length; thus, H is the

minimum spanning tree of graph H′.
Based on the above discussion, the community search

problem is transformed into a variant of minimum spanning
tree problem which starts from node s and contains only k
nodes. However, our problem is different from the classic
minimum spanning tree [37, 38]. +e problem definition of
classical minimum spanning tree is described as follows.
Given a set of nodes, connect them by a network having the
smallest sum of the edge lengths [38]. It differs from our
problem in two aspects. +e first aspect is that the classic
minimum spanning tree aims to connect all nodes in net-
work G with shortest edge lengths, while we aim to connect
the nodes inH′ which is a small part of G. +e second is that
the nodes in G are pre-known, but we do not know which
nodes belong in H′(H) except that node s belongs in it and
there are k nodes in it. +us, we cannot adopt the classic
minimum spanning tree algorithms directly. In our solution,
we design an improved Prim algorithm to solve this
problem.

To solve Problem 2, we propose a two-stage community
search algorithm CSMST which includes node embedding
representation and community search. +e illustration is
shown as Figure 1.

At the first stage, we focus on the representation of
complex networks. How to represent networked data is an
important aspect when we apply data mining techniques to
analyze network datasets. Instead of traditional handcrafted
feature extraction based on domain experts’ knowledge, we
learn vector representation of nodes automatically from the
graph structure via node embedding technique.

At the second stage, we focus on community search
problem. Based on the vector representation of nodes ob-
tained at the first stage, we define a distance measurement
between pairs of nodes. We treat the community of a query
node s as the node set connected via shortest distance and
implement a community search algorithm with a minimum
spanning tree approach.

4. The Algorithm of CSMST

CSMST is an algorithm with two stages. At the first stage, we
focus on the network representation problem and propose a
Node Embedding model with a Biased Random Walk
(NEBRW) to learn low-dimensional vector representations
for nodes. Moreover, a distance measurement between
nodes based on their vector representations is given. At the
second stage, we identify the target community of a query
node with a variant minimum spanning tree approach.
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4.1. OurNode EmbeddingAlgorithm. +is is the first stage of
our CSMST process. We first introduce a Skip-gram model
for network and then give our node embedding model
NEBRW.

4.1.1. Skip-Gram Model for Network. Given a network
G � (V, E), the goal of node embedding is to learn a
mapping from nodes to a low-dimensional space,
f: V⟶ Rd, where d≪ |V| and each node u in V is as-
sociated with a real-valued d-dimensional vector f[u]. By
viewing nodes as words and random walk paths on G as a
corpus, we can learn the embedding of nodes via Skip-gram
model [39].

Given a random walk walk � [v1, v2, . . . , vl], the context
of node vi, denoted as C(vi), is the nodes in a window of size
w centered at vi, i.e., C(vi) � [vi−w, . . . , vi−1, vi+1, . . . , vi+w].
+e embedding of nodes is learned by the maximizing
objective function:

max
f
∑
vi∈V

logp C vi( )|f vi( )( ) (1)

where we assume that the nodes in C(vi) is independent of
each other; thus, equation (1) can be expressed as

max
f
∑
vi∈V

∏
u∈C vi( )

logp u|f vi( )( )
(2)

+e learned vectors are expected to be able to preserve as
many properties of the network as possible; thus, they can be
an alternative to traditional handcrafted features extracted
from the graph [40].

4.1.2. Node Embedding Model NEBRW. In this section, we
introduce our node embedding model NEBRW, a method
for learning low-dimensional vector representations of
nodes in a network based on the Skip-gram model. We learn
node representations from a network in two steps, and the
process is shown in Figure 2.

In line 2 to 10, by simulating random walk on G of fixed
length l starting from each node r times, we get a list of node
paths. In line 11 to 13, by viewing nodes as words and random

walk paths on G as a corpus, we leverage the Skip-gram model
to learn vector representations of nodes inG.+e detailed node
embedding algorithm is shown in Algorithm 1.

+e main difference among NEBRW, DeepWalk, and
node2vec is that they adopt different randomwalk strategies.
DeepWalk [34] uses pure random walk over networks.
node2vec [35] adopts a biased random walk method by
capturing the first-order and second-order proximity be-
tween nodes. In detail, we adopt a closest-neighbor biased
random walk method [19] in the NEBRW model. Formally,
we use [v1, v2, . . . , vl] to denote a random walk of fixed
length l, and vi is the ith node in the walk. In the process of a
random walk, suppose the current node is vi, and Γ(vi) is the
neighbor node set of vi. We use additional information wxvi
for the neighbor node x of vi in order to estimate the
proximity between vi and x:

wxvi �
Γ(x)∩Γ vi( )∣∣∣∣ ∣∣∣∣
Γ(x)∪ Γ vi( )∣∣∣∣ ∣∣∣∣. (3)

+e probability of a neighbor node x being the next node
vi+1 is proportional to, i.e.,

px �
wxvi∑u∈Γ vi( )wuvi

. (4)

+e detailed algorithm of biased random walk is shown
in Function rw (Algorithm 2).

After mapping nodes to points in a low-dimensional
vector space, the proximity of nodes can be measured by
their distance. +e distance between two nodes grows in
inverse proportion to their similarity.+erefore, the distance
dis between nodes u and v is defined as follows:

dis(u, v) �
1 − $f[u] · f[v]$, (u, v) ∈ E,
∞, (u, v) ∉ E,

{ (5)

where f[u] · f[v] is the dot product of f[u] andf[v], which
is the proximity score between nodes u and v.

4.2. 0e Algorithm of Community Search with Minimum
Spanning Tree. +is is the second stage of our CSMST
process. Based on the learned vector representations of
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Figure 1: An illustration of CSMST.
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Figure 2: +e illustration of NEBRW.

Input: a network G � (V, E); walks per node r; walk length l;
windows size ws; dimension dn
Output: vector representations f of nodes in G

(1) begin
(2) initialize walks �
(3) loop � 0
(4) while loop< r do
(5) foreach v ∈ V do

//rw is a random walk function
(6) walk � rw(G, v, l)
(7) append walk into walks
(8) end
(9) loop+ � 1
(10) end
(11) construct a corpus T consisting of r∗ |V| sentences which are stored in walks
(12) use the Skip-gram to learn the mapping f by treating walks as a corpus
(13) return f
(14) end

ALGORITHM 1: Node embedding model NEBRW.

Function rw(G, u, l)
Input: network G; start node u; walk length l
Output: node path walk

(1) begin
(2) Initialize walk � [u];
(3) i � 1;
(4) while i< l do
(5) cur � walk[i];
(6) nbrs weight �;
(7) foreach v ∈ Γ(cur) do
(8) nbrs weight[v] � pv;
(9) end
(10) randomly select a node in Γ(cur) with the probabilities in nbrs weight, denoted as x;
(11) add x to walk;
(12) i + +;
(13) end
(14) return walk;
(15) end

ALGORITHM 2: Biased random walk function rw.
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nodes, we compute the distance between pairs of nodes by
formula (5) and propose a novel community search algo-
rithm CSMST.

In what follows, we give the description of CSMST.
According to the analysis of Problem 2, we identify the target
community of a query node s by constructing a minimum
spanning tree H with k nodes. We initialize a target com-
munityH � s{ }, a shell node setN � Γ(s), and expandH by
iteratively adding the node b ∈ N, which has shortest length
with the current subgraphH, at a time until its node number
reaches k. Figure 3 shows an example of our minimum
spanning tree algorithm. Starting from a query node s inG, a
compact subgraph H with 8 nodes is discovered by con-
structing a minimum spanning tree. +e pseudocode of
CSMST is shown in Algorithm 3.

5. Experiments

In this section, we evaluate the effectiveness of our com-
munity search algorithm CSMSTon synthetic as well as real-
world networks.

5.1. Experiment Setup. To validate the performance of
CSMST, we give the experiment setup in this section.

5.1.1. Baselines. We compare CSMST against the following
five community search algorithms for proving the advantage
of our community search method:

(1) Clauset’s algorithm [20]: this is a classical commu-
nity search algorithm which discovers the target
community by maximizing metric R.

(2) GMAC [18]: this is a classical similarity-based
community search algorithm which uses Sdxy as the
node similarity measurement. We fix d � 3 in the
following experiments as suggested by the authors.

(3) FlowPro [23]: this is a representative community
search algorithm based on flow propagation. When
the algorithm converges, the flow stored in the nodes
that belong to the community of query node is higher
than that stored in the nodes of other communities.
+e top k nodes with higher flow stored are chosen as
the predicted community.

(4) NEMCNB [19]: it is a recent proposed community
search algorithm which discovers the target com-
munity by adding a node iteratively from the shell
node set to the target community that has the largest
similarity with nodes in the current community. +e
purpose of choosing NEMCNB as a baseline is to
evaluate the effectiveness of retrieving communities
with a minimum spanning tree strategy.

(5) MSTW [25]: this is a community detection algorithm
based onminimum spanning tree and the strength of
similarity between two nodes W proposed by Asmi
et al. +e purpose of choosing MSTW as a baseline is
to evaluate the effectiveness of node similarity
measurement using node embedding.

For fair comparison with the other community search
algorithms, a few modifications are required. GMAC,
NEMCNB, and MSTW do not specify the number of
nodes k to be added to the predicted community as the
stopping condition. +us, we naturally choose the top k
members from algorithmic result as the predicted com-
munity. We also compare our node embedding model
NEBRW in CSMST against the following two embedding
baselines:

(1) DeepWalk [34]: this is the first node embedding
algorithm which generalized the advancements of
word embedding in natural language processing
from sequences of words to graphs.

(2) node2vec [35]: this is another node embedding al-
gorithm based on a biased random walk procedure
that can explore neighborhoods in a BFS as well as
DFS fashion. For learning representations where
nodes that are close in the original network have
similar embeddings, we set p � 1 and q � 2 in the
following experiments which are also adopted by the
authors in their experiments.

In the experiments, we use DeepWalk and node2vec to
learn the vector representations of nodes and then retrieve
communities with the minimum spanning tree strategy
which is adopted by CSMST. +e purpose of choosing
DeepWalk and node2vec is to evaluate the effectiveness of
our node embedding method NEBRW.

5.1.2. Datasets and Evaluation Metrics. We employ both
synthetic and real-world networks for the evaluations. +e
widely used synthetic benchmark for community detection
is a class of LFR benchmark networks introduced by Lan-
cichinetti et al. [41]. We generate four groups of LFR
benchmark networks, and in each group, there are ten
networks.

In addition, we use four real-world network datasets to
evaluate the performance of the community search algo-
rithms. (1) Zachary Karate Club Network (Karate for short)
[42], in which there are 34 nodes and 78 edges, describes the
friendships among 34 members of a karate club at a US
university. (2) NCAA football network (Football for short)
[1], in which there are 115 nodes and 613 edges, describes
American football games between Division IA colleges
during regular season Fall 2000. (3) Books about US politics
network (Polbooks for short) [43], in which there are 105
nodes and 441 edges, is a network of books about US politics
published around the time of the 2004 presidential election
and sold by Amazon.com. (4) YouTube social network
(YouTube for short) [44], in which there are 1134890 nodes
and 2987624 edges, is a video-sharing website that includes a
social network.

Both the synthetic and real-world networks have
ground-truth community structure. In the experiments, we
set the same query node s and the same number of returned
nodes k for different algorithms. If an algorithmic result
contains more corrected nodes, it will obtain a higher value
of recall and precision:
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recall �
|C∩D|
|C|

,

precision �
|C∩D|
k

,

(6)

where C is the set of nodes in ground-truth community of
the query node and D is the set of nodes obtained by
community search algorithm. In the experiments, we set
k � |C|, and the value of recall is equal to precision. So, we
use the evaluation metric recall to compare algorithmic
performance.

5.2. Evaluation onSyntheticNetworks. +e parameters of the
LFR network generating model are introduced as follows:
the number of nodes n, the average degree of nodes k, the
maximum degree of nodes kmax, and others except mixing
parameter μ are set to their default values. Mixing parameter
μ is the fraction of the number of edges of each node outside

its community, which is used to control the difficulty of
community detection [4], and larger μ would result in lower
community detection accuracy.

We generate four groups of LFR networks by varying
parameter n and mixing parameter μ. In each group of LFR
networks, we vary mixing parameter μ from 0.05 to 0.5 with
a span of 0.05 and get ten networks. +e detailed parameter
values are set as Table 1. +ere are total forty networks with
ground-truth communities.

For experiments of each algorithm on each dataset,
we repeat the community search experiments for n (n is
the number of nodes in the network) times which start
from each node at a time, and then report algorithmic
average recall on this dataset. We evaluate our algorithm
on these four groups of LFR network datasets, together
with five community search baselines and two node
embedding methods. We set the common parameter
values as following for NEMCNB, CSMST, DeepWalk,
and node2vec: walks per node r � 10, walk length l � 80,
dimension dn � 100, and window size ws � 10. LFR30K

s

(a)

s

H

(b)

Figure 3: An example of the improved Prim algorithm. (a) Graph G and a query node s. (b) A minimum spanning treeH in G with 8 nodes
starting from s.

Input: network G and its node embedding f; query node s; expected number of returned nodes k
Output: target community D
begin

initialize D � [s], N � Γ(s)
define a variable dis of map type
foreach node v ∈ N do

dis[(s, v)] � 1 − f[s] · f[v]
end
while len(dis)> 0 and |D|< k do

find edge (a, b) such that dis[(a, b)] is minimum
add b to D
foreach node
y ∈ Γ(b) do
if y ∈ D then

del dis[(y, b)]
end
else
dis[(b, y)] � 1 − f[b] · f[y]

end
end

end
return D

end

ALGORITHM 3: CSMST.
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and LFR50K networks are too big for FlowPro to handle
because of its high time complexity. +us, we only
compare CSMST with the other baselines on these two
groups of networks. +e experimental results are shown
in Figures 4 and 5, respectively, and we can get the
following conclusions.

Firstly, combining Figures 4 and 5, we can discover that
increasing mixing parameter μ leads to performance deg-
radation due to increased difficulty of community detection.
+is is because the higher the mixing parameter μ of a
network, the weaker community structure it has. Empirical
studies of the community search algorithms on the four
groups of LFR networks verify this.

Secondly, Figure 4 shows that, with the increase of μ,
the performances of Clauset and MSTW drop rapidly;
meanwhile, the other algorithms drop slowly. Compared
with the other five community search baselines, CSMST
algorithm achieves the best performance on the four
groups of LFR networks, followed by NEMCNB, Flow-
Pro, and GMAC. +e main difference between CSMST
and NEMCNB is that the community expansion strategy
adopted is different, and the comparison results show
that minimum spanning tree strategy is better than
similarity-based strategy. +e main difference between
CSMST and MSTW is that the node similarity mea-
surement adopted is different, and the comparison re-
sults show that the node similarity measurement based
on node embedding is better than that based on network
structure.

+irdly, Figure 5 shows that our node embedding al-
gorithm NEBRW is better than DeepWalk and node2vec in
community search experiments on LFR networks.

5.3. Evaluation onReal-WorldNetworks. We adopt the same
experimental method on real-world networks as that, on
synthetic networks and report algorithmic average recall on
these datasets. Firstly, we perform the experiments on Ka-
rate, Football, and Polbooks. +e common parameters are
set as the following for NEMCNB, CSMST, DeepWalk, and
node2vec: walks per node r � 400, walk length l � 6, di-
mension dn � 10, and window size ws � 2. +e comparison
results with both community search and node embedding
baselines on these real-world network datasets are reported
in Figures 6 and 7, respectively.

+en, we perform the experiment on YouTube. +e
common parameters are set as follows: r � 10, l � 30,
dn � 100, and ws � 3.We compare with Clauset, DeepWalk,
and MSTW because the network is too big for other algo-
rithms to handle due to their high time complexity. +e
comparison results are reported in Figure 8.

Compared with the other five community search base-
lines, we can see that CSMST algorithm achieves the best
performance on Karate, Football, and YouTube datasets. On
Polbooks, MSTW achieves the best performance; however,
the difference amongMSTW, CSMST, Clauset, and FlowPro
is small.

Compared with DeepWalk and node2vec, NEBRW
achieves the best performance on Karate and Polbooks
datasets. And, on Football dataset, DeepWalk algorithm
achieves the best performance; however, the differences
among DeepWalk, NEBRW, and node2vec are small.
+is further proves that NEBRW model and CSMST
algorithm have greater advantage in community search
tasks.

5.4. Discussion of Parameter k. Parameter k is important in
the definition of community search problem, and it is
interpreted as the number of nodes in the target com-
munity. However, there are some scenarios in which we do
not pre-know it. In this section, we discuss the effect of
parameter k in CSMST algorithm. We choose
LFR5K(μ � 0.2), LFR5K(μ � 0.35), and LFR5K(μ � 0.5) as
the test network datasets. We perform experiments by
varying parameter k from 0.2n to 1.8n with a span of 0.4n
(n is the number of nodes in the ground-truth commu-
nity). +e larger kwill return more corrected nodes, which
leads to a higher recall value but a lower precision value.
+us, in addition to the recall and precision metrics, we
also adopt F − score to measure algorithmic performance
of different values of k. +e experimental results are shown
in Figure 9:

F − score � 2∗ precision∗ recall
precision + recall

. (7)

We discuss the experimental results in detail. Firstly,
with the increasing of mixing parameter μ, the difficulty of
community detection on correspondent LFR networks is
increasing. +e experimental results verify this point.
Secondly, on each test network dataset, the experimental
results show a consistent pattern that, with the increase of
parameter k, the values of precision metric decrease, the
values of recall metric increase, and the values of F − score
increase first and then decrease. +e larger the parameter
k is, the more nodes are returned; thus, the recall metric
shows an upward tendency and the precision metric
shows a downward tendency. +e F − score achieves the
maximal value when the value of parameter k is equal to
the number of nodes in target community.

Table 1: LFR datasets.

Group name n k kmax μ

LFR5K 5000 10 50 0.05, 0.1, . . ., 0.5
LFR10K 10000 10 50 0.05, 0.1, . . ., 0.5
LFR30K 30000 10 50 0.05, 0.1, . . ., 0.5
LFR50K 50000 10 50 0.05, 0.1, . . ., 0.5
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Figure 4: Comparison results on LFR networks with community search baselines. (a) Comparison results on LFR5K. (b) Comparison
results on LFR10K. (c) Comparison results on LFR30K. (d) Comparison results on LFR50K.
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Figure 6: Comparison results on real-world networks with community search baselines. (a) Comparison result on Karate. (b) Comparison
result on Football. (c) Comparison result on Polbooks.
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Figure 7: Comparison results on real-world networks with node embedding baselines. (a) Comparison result on Karate. (b) Comparison
result on Football. (c) Comparison result on Polbooks.
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Figure 8: Comparison results on YouTube network.
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Figure 9: Experimental results of varying parameter k. (a) Experimental result with different k (0.2n∼1.8n) on LFR5K (μ � 0.2).
(b) Experimental result with different k (0.2n∼1.8n) on LFR5K (μ � 0.35). (c) Experimental result with different k (0.2n∼1.8n) on LFR5K
(μ � 0.5).
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6. Conclusion and Future Work

In this paper, we study communities from the viewpoint of
distance and transform community search problem into a
variant of minimum spanning tree problem. Moreover, we
propose a node embedding model NEBRW based on Skip-
gram and design a new community search algorithm CSMST
via an improved Prim-based approach. Communities detected
by CSMST are the node sets connected with minimum total
distance. CSMST algorithm achieves good performance on
both synthetic and real-world networks.

In the future, we will study the node embedding tech-
nique in heterogeneous social media networks and study the
community search problem in heterogeneous networks.
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