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Abstract— Our work provides a fast approach-path-
independent framework for the problem of place recognition
and robot localization in indoor environments. The approach-
path independence is achieved by using highly viewpoint-
invariant 3D junction features extracted from stereo pairs of im-
ages; these are based on stereo reconstructions of the JUDOCA
junctions extracted from the individual images of a stereo
pair. The speed in place-recognition and robot-localization is
achieved by using a novel cylindrical data structure — we refer
to it as the Feature Cylinder — for representing either all of
the 3D junction features found in a hallway system during the
learning phase of the robot or a set of locale signatures derived
from the data. For the case when all data is placed on the
Feature Cylinder, we can use the 3D-POLY polynomial-time in
a hypothesize-and-verify approach to place recognition. On the
other hand, in the locale signature based approach, we can use
the same data structure for constant-time place recognition.

Index Terms— Viewpoint independent indoor recognition,
robot localization, junction detection, hypothesis generation and
verification

I. INTRODUCTION

The problem of place recognition and robot localization

has attracted much research attention lately for both outdoor

and indoor environments. For example, for outdoors, there

now exist several contributions that have demonstrated the

use of satellite imagery and the photo collections available

from the Internet for solving the place recognition problem.

These approaches depend on either the geo-tagging of the

images or the GPS information associated with the images.

The matching of a sensed image (also referred to as a

query image) with the images in a collection for the purpose

of place recognition is frequently based on a point-cloud

representation of the interest-point descriptors extracted from

the images [11], [18], [9].

In contrast with the place recognition work in outdoor

environments, place recognition research in indoor environ-

ments has received relatively little attention [7]. The indoor

problems are more daunting because we do not have access

to geo-tagged resource of images such as the satellite or

Internet image databases for outdoors. Additional difficulties

faced by indoor robots consist of the problems caused by

illumination and other environment variations such as those

caused by the additions/removals of wall hangings, etc.

The indoor-environment techniques used in the past for

place recognition and robot localization run the gamut from

beacons to ultrasonic sensors, from single-camera vision

to multi-camera vision, from laser-based distance-to-a-point
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measurements to full-scale ladar imaging. The key idea in

the techniques based on beacons, as with WiFi or radar [3],

is to first construct a database of measured signal strengths

at the different locations in an indoor environment and then

to carry out place recognition by comparing the recorded

signals with the signals stored in the database.

When using images for place recognition and robot lo-

calization, we see two different types of approach in the

literature: (1) point cloud based; and (2) salient landmark

based. The former typically create a database of SIFT or

SURF interest points [2] to represent all of the interior

space. Place recognition then consists of matching the point

descriptors in a query image (which is the image recorded

at the current location of the robot) with the descriptors

stored in the database. The latter approach, the one based on

landmarks, is similar in spirit to the former [16], in the sense

that you still create a database of points and their descriptors,

except that the points are now distinct and meaningful to

humans visually.

There are two issues that are basic to the effectiveness

of any image-based approach to place recognition and robot

localization:

• The extent of approach-path invariance; and

• Whether or not the indexing strategy used in the global

database of point clouds (or landmarks) allows for fast

retrieval of the correct place in response to a query set

of points (or landmarks).

We claim that the approach-path invariance made possi-

ble by SIFT or SURF like interest points, while probably

sufficient for a system of narrow hallways, is unlikely to

yield correct results for more complex interior space. The

viewpoint invariance associated with SIFT and SURF like

features usually extends to ±30◦ from the direction from

which the image was recorded. Given a narrow system of

hallways, as in Fig. 1(a), one may assume that the robot’s

camera will generally subtend a view angle of 45◦ on a wall

and, with that view angle, a ±30◦ invariance of the point

descriptors would be sufficient for the needed approach-path

independence (although one could argue that if you needed

place recognition independent of the direction of traversal in

a hallway system of the type depicted, you would need a

viewpoint invariance that is much larger than ±30◦ for the

place recognition algorithms to work).

But now consider a more complex interior space, such as the

one shown in Fig. 1(b). Now we have much wider hallways

and the hallways meet in large halls.

As should be obvious from the geometrical construction,
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Fig. 1: (a) An example of a narrow system of hallways (b)

An example of a wider system of hallways

especially if the reader keeps in the mind the fact that

in wide hallways and large halls the robot is less likely

to view the space with more or less the same orientation

(as could happen in narrow hallways) on account of the

maneuvering needed for collision avoidance, the viewpoint

invariance made possible by the use of interest points like

SIFT and SURF will not be sufficient for place recognition

and robot localization.

With regard to the second important issue related to the

use of image-based strategies for place recognition and robot

localization, the approaches we have seen so far simply use a

bag-of-words approach for creating the database of descrip-

tors associated with the interest points (or the landmarks).

The problem with the bag-of-words approach is that it does

not ameliorate the exponential combinatorics of matching

the interest points extracted from a query image with the

candidate descriptors stored in the database.

In this paper, we address both of these fundamental issues.

With regard to approach-path independence, we show that

our 3D junction features based on the JUDOCA junctions

[8] extracted from the images possess far greater invariance

than several other popular interest points such as SIFT

and SURF. (We refer to these features as 3D-JUDOCA for

obvious reasons.) And with regard to the indexing of the

global database for fast matching, we present a new data

structure called the Feature Cylinder for representing either

all of the 3D-JUDOCA features found in a hallway system

during the learning phase of the robot or a set of locale

signatures derived from the data. For the case when all data

is placed on the Feature Cylinder, we use the polynomial-

time 3D-POLY algorithm [4], which is guaranteed to return

the correct location of the robot in low-order polynomial

time. On the other hand, when the data structure is used to

represent just the locale signatures, we can achieve constant-

time place recognition and robot localization. The former

approach works well for hallway systems that are as large as

those found in typical institutional buildings. Whether or not

it would scale up to hallways of arbitrary size and complexity

is open to question. On the other hand, the signature based

framework has greater potential in terms of scalability, but

its robustness is yet to be fully explored.

The remaining sections are organized as follows: Section II

presents an overview of the related work for the recognition

and localization problem. Sec. III introduces the 3D junction

features, their extractions from stereo images and discusses

their properties and viewpoint-invariance evaluation. Section

IV explains what we mean by locales and their associ-

ated signatures. Section V focuses on describing our novel

Feature Cylinder data structure. Section VI describes our

hypothesize-and-verify matching algorithms based on using

the Feature Cylinder. Section VII presents our experimental

results. Lastly, Section VIII draws conclusions from this

study and presents some future work directions.

II. RELATED WORK

Recent research in indoor and outdoor place recognition

and robot localization is represented by the work reported

in [17], [18], [11], [7] and [6]. Wu et al. [17] have pro-

posed a technique based on viewpoint invariant patches

(VIP) that are extracted from orthogonal projections of

3D textures obtained from dense 3D reconstruction of a

scene using Structure from Motion (SfM). A key aspect

of their work is that, using SIFT descriptors, each VIP

feature uniquely defines a camera pose hypothesis vis-a-

vis the 3D scene. Their matching algorithm is based on a

hierarchical matching method called Hierarchical Efficient

Hypothesis Testing (HEHT). HEHT is applied sequentially

to prune out the matches based on first the scale, then the

rotation, and lastly, the translation. All possible hypotheses

are exhaustively tested to determine the final set of inlier VIP

correspondences. In contrast to this work, the technique we

present in this paper does not require dense 3D reconstruction

to extract the features. Our features are instead obtained from

sparse 3D reconstructions. Additionally, compared to HEHT,

our matching approaches are based on fast algorithms — 3D-

POLY when we place all of the feature data on the Feature

Cylinder and signature-based matching when we use locale

signatures — that should yield faster localization results even

when complex environments are involved.

In [7] and [6], Elias and Elnahas propose a fast localization

approach in indoor environments. Their work is based on

using 2D JUDOCA features for localizing a user roam-

ing inside a building wearing a camera-phone. An affine

based correlation approach is used as their image matching

algorithm. The problem with this approach is that their

correlation based matching requires exhaustive search of

all the features, which is extremely slow compared to the

matching algorithms we employ in this paper. Additionally,

we are using 3D junction features that are more robust to

viewpoint changes compared to the 2D junction features used

by these authors.

Another approach proposed by Wu et al. [18] employs a

visual word based recognition scheme for image localization

assuming unknown scales and rotations in satellite imagery.

The visual words, each a SIFT descriptor, are indexed for

more efficient retrieval in response to a query image. For

expediting the retrieval process, they also use an inverted

index in which the keys are the descriptors and the entries

for each key consist of all the image identifiers that are

known to contain that key. The unknown scale and rotation



are handled by comparing the query image with the database

at multiple scales and rotations through a hypothesize and

verify approach. Along the same lines is the work reported

in [11]. A potential shortcoming of these approaches is that

they do not provide performance guarantees with regard to

the speed with which a match for a query image can be

established if it is present in the database. Comparatively

speaking, our matching algorithms come with low-order

polynomial-time guarantees with regard to this performance

measure.

III. 3D JUNCTION FEATURES (3D-JUDOCA)

In this section we introduce 3D-JUDOCA, the 3D junction

features based on a stereo reconstruction of the 2D JUDOCA

features extracted from stereo pairs of images. As we will

show, 3D-JUDOCA features possess much greater viewpoint

invariance (and therefore approach-path invariance) in com-

parison with other features.

A. Extracting 3D Junctions from Stereo Images

3D junction features are extracted from stereo pairs of

images obtained from a calibrated stereo camera mounted

on the robot.

The 3D-JUDOCA features are derived from the 2D JU-

DOCA junctions that are extracted from the individual

images of a stereo pair. The algorithm for extracting 2D

JUDOCA junction features is described in [8] and [5]. Basi-

cally, a 2D JUDOCA junction feature is defined by a triangle

corresponding to the vertex where two edge fragments meet.

The JUDOCA algorithm draws a circular mask of radius λ
around the vertex and then finds the points of intersection of

the two edge fragments with the circle. The point where the

edge fragments emanating from the vertex meet the circle

are referred to as the anchors, as shown in Fig. 2(a).

To form a 3D-JUDOCA feature from the 2D JUDOCA

junctions, epipolar constraints are first applied to create a

candidate list of junctions in the right image for any junction

in the left image. Subsequently, the NCC (normalized cross-

correlation) metric is used to prune this candidate list. This

is followed by the use of the RANSAC algorithm to get

rid of the outliers from the candidate list. These processing

steps are very much along the lines of what is described

in [10]. After finding the matching 2D junction in the

right image for any given junction in the left image, stereo

triangulation is applied to both the vertices and the anchors

of a corresponding pair of junctions in order to create a truly

3D junction that we call a 3D-JUDOCA feature. Fig. 2(b)

shows an orthonormal view of 3D-JUDOCA features derived

from several 2D JUDOCA stereo correspondences. The

normalization is done very similar to the method described

in [17] with the help of an orthographic camera using the

normal vector to the plane containing all the highlighted 3D-

JUDOCA features. In Fig. 2(c), we show an example from

an indoor hallways highlighting some of the extracted 3D-

JUDOCA features.
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Fig. 2: (a) An example of JUDOCA junction extraction high-

lighting some of the junction descriptors (b) An orthonormal

view of several 3D-JUDOCA features (c) An example of 3D-

JUDOCA features in an indoor hallways

B. A Descriptor-based Representation of a 3D-JUDOCA

Feature

Being a geometrical entity in 3D, a 3D-JUDOCA feature

is viewpoint invariant (to 3D stereo-based measurements,

obviously). This makes any place recognition based on 3D-

JUDOCA robust to viewpoint changes as long as the robot

follows the basic strategy of using its stereo cameras to ex-

tract such features for matching with the database collection

of similar features.

Each 3D-JUDOCA feature contains the minimum set of

points required to compute a 3D transformation that consists

of a rotation matrix R and a translation vector T . What that

implies is that a single 3D-JUDOCA feature correspondence

between the data collected at a given position of the robot and

the database uniquely defines the 3D transformation between

the current position of the robot and the position of the

robot corresponding to the matching features in the database.

This property plays a critical role in constructing candidate

hypotheses regarding the location of a given query image

as will be seen later when presenting our hypothesize-and-

verify matching algorithms in Sec. VI.

We associate a descriptor with each 3D-JUDOCA feature.

This descriptor consists of the following: (i) the 2D/3D

locations of the junction and the associated anchors (q1,q2);

(ii) the orientations (θ1,θ2), the strengths (s1,s2) of the edges

forming the junction, and the center of the junction in a local

coordinate frame in relation to the junction vertex [8]; (iii)

the width and the height of the minimum bounding rectangle

for the junction, as shown in Fig. 2(a); (iv) the average

color of the triangle formed at the junction; (v) pointers to

the neighboring 3D-JUDOCA features; and (vi) the normal



vector to the plane confined to the 3D-JUDOCA feature

triangle. Some of these attributes that go into a descriptor

are highlighted in Fig. 2(a). Part of this descriptor is derived

from the 2D junction textures in the original stereo image

pair. Thus, for that part of the descriptor to be viewpoint

invariant, the image textures associated with the 2D junctions

are first normalized by an affine transformation. In fact, the

3D information — the normal vector to the plane in 3D that

is formed by the 3D-JUDOCA feature triangle — is used

to construct an orthographic camera and the normalization

is carried out as discussed in [17]. The right side of Fig.

2(a) shows the normalization to the junction textures that

are shown in the middle of the same sub-figure.

C. Viewpoint Invariance of 3D-JUDOCA

In this subsection, we provide an evaluation of the robust-

ness of 3D-JUDOCA features against viewpoint changes. We

compare 3D-JUDOCA with other well known features for

representing interest points in images, these being BRISK

[13], SIFT, SURF, 2D JUDOCA, Harris-Affine, Hessian-

Affine, Intensity Based Region (IBR), Edge Based Region

(EBR), and Maximally Stable Extremal Region (MSER).

The metric we used is the repeatability metric [1]. Our

evaluation setup is similar to the method used in [14] and

[17]. Our test data is a sequence of stereo image pairs of

indoor storage cabinets taken with increasing angles between

the optical axis and the cabinets’ normal. Each of the stereo

pair of images has a known homography to the first stereo

image, which was taken with image plane fronto-parallel

to cabinets. Using this homography we extract a region of

overlap between the first stereo image and each other stereo

pairs. We extract features in this area of overlap and measure

the repeatability using the following equation:

Repeatability = 100×
Ni

No

(1)

where Ni is the number of inlier correspondences found in

the overlapping region and No is the number of features in

the overlapping region found in the fronto-parallel view. Fig.

3 shows this dataset (top row). Only the left images of the

stereo pairs are shown. Also shown are the projection and

overlapping regions of the images numbered (2-5) to the

reference image 1.

Fig. 4 shows that the 3D-JUDOCA features generate a

significantly larger repeatability over a wide range of angles

compared to other feature detectors. This establishes the

robustness of 3D-JUDOCA to viewpoint changes.

IV. THE NOTION OF AN INDOOR LOCALE AND ITS

ASSOCIATED SIGNATURES

A locale in a system of an indoor hallways is defined

as an indoor region rich in visual features (3D-JUDOCA)

visible to the robot. Typically, in order to decide whether to

characterize a point in a hallway as an identifiable locale, the

robot situates itself in the middle of the hallway as it orients

itself straight down the hallway. The robot subsequently ana-

lyzes the stereo images from that vantage point for its visual

Fig. 3: The dataset used for evaluating the 3D-JUDOCA

features against viewpoint changes
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across viewpoint angle

content in terms of the 3D-JUDOCA features extracted and

their height distribution. Based on a user-defined threshold

on the number of features found, a locale is identified. Fig.

5 shows an example of an identified locale in a hallway.

The robot associates with each locale its spatial location

with respect to the world frame which corresponds to the

location and the orientation of the robot at the beginning

of the training phase. Each locale is characterized with the

following two signatures: (1) a Differential Signature (DS)

that is a height-based histogram of the differences in the 3D-

JUDOCA feature counts collected from the left side and from

the right side up to a certain threshold distance beyond the

current position of the robot; and (2) A Radial Signature (RS)

that is a radial histogram of the 3D-JUDOCA features at the

current location of the robot. As mentioned previously, the

robot tries to center itself the best it can between the hallway

walls and orients itself so that it is looking straight down a

hallway before constructing these signatures. Construction of

a DS is illustrated in Fig. 6 for the locale depicted in Fig. 5.

Fig. 7, on the other hand, depicts the construction of an RS

for the same locale.



Fig. 5: An example of a locale in a hallway. The left image

shows the 3D-JUDOCA points in a 3D reconstruction of

the locale. One of the images used for the reconstruction is

shown on the right

0 0.2

x 10
4

0

2000

4000

6000

8000

−0.2

x mm

y
m

m

Robot
Position

Robot
Orientation

Segmented Features
Histogram 1 Histogram 2

Differential Signature  =|Histogram1-Histogram2| 

...

Histogram
 Bins

...
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V. THE FEATURE CYLINDER DATA STRUCTURE

We now describe the Feature Cylinder data structure that

is used in two different modes in our work for the purpose

of expediting place recognition. A Feature Cylinder (FC),

inspired by the notion of a Feature Sphere in 3D-POLY [4],

consists of an abstract cylinder that is tessellated both radially

and vertically as shown in Fig. 8. The tessellation process

depends on the user-defined sampling parameters θ , l that

are associated respectively with the cylinder circumference

and height sampling rates. Each cell of the cylinder holds

a pointer to a unique directional attribute of a feature. We

associate a floor-to-ceiling height with the FC. The FC is

used for either representing the 3D-JUDOCA features or for

representing the differential signatures of the locales during

the learning phase of the robot. When 3D-JUDOCA features

are mapped directly on to FC, we first associate a principal

direction and height with each feature and then place pointer

to the feature in the corresponding cell of FC.
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Note that the notion of a principal direction associated with

a feature is exactly the same notion used in [4]. Basically,

the principal direction of a point feature is defined as the

normalized position vector of that feature with respect to the

centered coordinate system of the FC. The principal direction

of a feature gives us a fix on its directional orientation with

respect to the other features that are likely to be seen in the

same general portion of the interior space. The directional

reference for this purpose is the orientation of the robot when

it first starts to learn about the environment (world coordinate

frame). On the other hand, when a locale signature is mapped

to FC, each vertical facet of FC — a vertical facet consists of

all the cells that are at the same angular orientation — stores

the height distribution of a DS. That is, the differential count

at a given height in a DS is stored in the corresponding cell

of the FC along with a pointer to ID of the DS and its locale.

Note that of the two signatures at each locale, only the DS

is mapped on to FC. The other signature, RS, is stored in a

bag for a direct comparison with a query RS at testing time.
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A tessel mapping function (TMF) is defined to control

the mapping mentioned above for either the 3D-JUDOCA

features or the locales’ differential signatures. So, for a given

3D-JUDOCA feature represented by its (x,y,z) coordinates

(with respect to the centered coordinate frame of the FC), the

TMF maps this feature to the nearest tessel on the cylinder

using only two parameters i, j as follows (Obviously this

mapping should depend on the uncertainty associated with

the feature):

i =

{

⌊φ/θ⌋ i f φ ≥ 0

⌊(360◦+φ)/θ⌋ i f φ < 0
, j = ⌊z/l⌋ (2)

where φ = tan−1(Φ2/Φ1) denotes the directional angle of the

feature that is computed from its principle direction, which

is given by Φ =
〈x,y,z〉

√

x2 + y2 + z2
= 〈Φ1,Φ2,Φ3〉. Fig. 9 shows

an example of the FC in indoor hallways and how the TMF

maps one of the 3D-JUDOCA features to the nearest tessel

on the cylinder surface.

To briefly mention the role played by FC in place recog-

nition with the help of the two locale signatures DS and

RS, as mentioned earlier, only the DS is mapped directly

onto FC; RS is used only for locale hypothesis formation, as



explained in the next section. As before, the TMF maps the

robot’s location/orientation at (px, py, pφ ) to FC using Eq. 2,

but now only the index i is needed since the index j spans

all of the cells at the same angular orientation. In general,

this mapping should also take into account the uncertainty

associated with the robot orientation at a locale. Associated

with a differential count in each cell is a pointer to a locale

ID.
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Fig. 9: An example of using the FC to represent the extracted

3D-JUDOCA features in a system of indoor hallways

VI. MATCHING ALGORITHMS – HYPOTHESIS

GENERATION AND VERIFICATION

Our framework for place recognition and robot localization

may be viewed as a classification problem in which there

are two main phases: training (learning) and testing (recog-

nition). During the training phase, 3D-JUDOCA features are

extracted from the stereo pairs of images recorded by the

robot. We refer to the extracted 3D-JUDOCA features as

the model features and to the computed locale signatures

as the model signatures. In the testing phase, the goal is

to find a match for a query stereo image using one of the

two different modes: (1) an FC-based hypothesize-and-verify

approach along the lines of the 3D-POLY algorithm; and (2)

a hypothesize-and-verify approach in which the RS extracted

from the query images is compared with the bag of all RS

constructed during training for creating locale hypotheses

that are subsequently subject to verification using DS stored

on FC.

A. 3D-POLY Hypothesize-and-Verify Algorithm

In this approach, the 3D-JUDOCA features are used

directly to generate a 3D transformation hypothesis regarding

the current location of the robot with respect to the global

frame used in the training phase. Although a single 3D-

JUDOCA feature correspondence between the model and

the data features is sufficient to generate this hypothesis, as

mentioned in Sec. III-B, more robust hypotheses can be gen-

erated by matching neighboring groups of data features with

groups of model features. Toward that end, we associated

with each 3D-JUDOCA feature a set of k-nearest neighbors.

The training phase creates a bag of all such k + 1 feature

groupings. The matching between two groups of k + 1 of

features, one from the query data and the other from the

training data, is based on scanning the bag and establishing

a similarity between the query grouping and a bag grouping

on the basis of the 3D-JUDOCA descriptor values presented

in Sec. III-B. A successful match leads to the calculation

of a 3D transformation hypothesis regarding the current

location of the robot. Subsequently, verification of a given

transformation hypothesis is carried out by applying the

transformation in question to all the other feature groupings

in the query data and establishing their presence on FC

in low-order polynomial time according to the 3D-POLY

algorithm. Basically, the verification can be thought of as

placing all of the test data on a test FC, applying the

hypothesized transformation to the test FC, and checking for

congruences between the test FC and the FC on which all

the training data resides.

Regarding the time complexity of the matching process

as described above, the overall complexity is obviously

directly related to the effort required for hypothesis gen-

eration and then for hypothesis verification. The worst-

case time complexity for hypothesis generation is obviously

O(n×m), where m is the total number of feature groupings

collected during the training time and n the number of feature

groupings extracted from the data at a given location of the

robot during testing time. In the worst case, we may have to

compare every one of the feature groupings from the test data

with all of the feature groupings in the model data. Regarding

the complexity of verification, it is given by O(n×q)≈ O(n)
where q is the largest number of features placed in a cell

of FC at training time and where we have assumed that

q << n in general. Combining the hypothesis generation and

verification complexities, we get O(m× n2) for the overall

time complexity of this approach to localization.

B. Signature-Based Hypothesize-and-Verify Algorithm

In the locale signature based approach, a locale hypothesis

is formed by using the radial signature (RS) collected from

the current position of the robot during test time with all of

the radial signatures collected during training time. The test

RS is compared with each of the training RSs using the Earth

Movers Distance (EMD) metric [15]. The set of hypotheses

generated in this manner are evaluated for verification in

the order of how strongly they matched the test RS. If nl

is the number of locales, the complexity of the hypothesis

generation stage is O(nl) since each locale is characterized

by a single RS. The verification complexity for any given

hypothesis is O(nh) where nh is the vertical divisions of

the FC. Recall, a hypothesis generated by an RS gives us

a height-based DS histogram which must be matched with

the histograms stored in the vertical facets of the FC. The

orientation at which this match takes place must correspond

to the transformation hypothesis created by the RS. The

computing required for verification is merely the cell-by-cell

comparison of the two height-based histograms.



VII. EXPERIMENTAL RESULTS

This section presents experimental support for our match-

ing algorithms for place recognition and robot localization

in indoor hallways. After the training phase is over, the

matching algorithms we have presented work in real time

as the robot asked to localize itself when taken to a random

place in the same environment. Since it would be difficult

to include such demonstrations in a paper, we will base

the experimental results in this section on a database of

1000 pairs of stereo images recorded by our robot with a

sampling interval of 2.5m in the hallways of Purdue’s MSEE

building.1 Each image in the database has a resolution of 640

x 480 pixels. The average number of 3D-JUDOCA features

detected per stereo image pair was around 97. To help the

reader visualize the nature of the interior space used for

experimental validation, Fig. 10(c) shows a 3D map of the

interior space using the framework presented in [12]. This

3D map was built using the same 1000 stereo images that

we used for the experimental evaluation we report in this

section.

For the hypothesize-and-verify experiments reported here,

the tessellation parameters for the FC are: θ = 1◦, l =
100mm,h = 2700mm. The training time takes roughly 568

seconds on a 2.67 GHz PC class machine. The experimental

evaluation consisted of recording additional 100 pairs of

stereo images at known locations and orientations of the

robot and then testing whether the robot could figure out

those locations and orientations using the matching algo-

rithms presented in this paper. These 100 test stereo images

were recorded at different times of the day (in order to allow

for different ambient illumination) and at locales of what

appeared to be of different visual complexity.

Fig. 10(a) shows an example of one of the query images

(only the left image of the stereo pair is shown). Fig. 10(b)

shows the position and the orientation of the robot as calcu-

lated by both the matching algorithms presented in this paper

— the position and the orientation of the robot is illustrated

by a reconstruction of the locale using the same framework

that is presented in [12]. The recognition processing time for

the query image that is shown in Fig. 10(a) was 1.35 secs

for the 3D-POLY based matching framework and 0.98 secs

for the RS/DS locale signatures based matching framework.

Table I shows the average localization error and average

processing time for all the 100 stereo images in the test

dataset with the 3D-POLY based matching algorithm.

TABLE I: The average localization error and average pro-

cessing time for the 100 test images using the 3D-POLY

based matching algorithm

Average Localization Error
Average Processing Time (sec)

Position (cm) Heading (deg)

18 1.5 1.3

The localization and place recognition with the RS/DS

locale signature approach requires a slightly different proce-

1This database is being publicly available at https://

engineering.purdue.edu/RVL/Research/Research.html

(a) (b)

Robot LocationWorld Coordinate Frame

Data 3D-JUDOCA Features

Model 3D-JUDOCA Features

(c)

Fig. 10: The lower frame shows a 3D map of the indoor

environment that was constructed from the 1000 stereo pairs

of images used in the evaluation of the 3D-POLY algorithm

for robot self localization. The upper two frames illustrate

on the left a sample test image (only one image of the stereo

pair is shown) and, on the right, the localization achieved for

the test image.

dure — it requires that the interior be sampled at a higher

rate than was the case for the previous evaluation. The reason

for that is the fact that a signature match can only yield a

position and orientation corresponding to one of the training

signatures. Therefore, if the training images are recorded at

too coarse a sampling interval, the robot may fail to match

a test-time signature with any of the training signatures.2

Therefore, our results with the locale signature are based

on a training dataset of 333 stereo images recorded with

a sampling interval of 0.25m in the RVL hallways of our

building. For the purpose of visualization, we show in Fig.

11 a 3D map reconstruction obtained from these 333 images

using the framework described in [12]. For each pair of

stereo images in the training dataset, we recorded the position

and the orientation of the robot. For testing, we recorded

separately 50 new stereo pairs of images (along with the

position and the orientation of the robot for each pair to

serve as the ground-truth for evaluation). Table II shows the

overall localization results obtained for the 50 test stereo

images.

TABLE II: The average localization error and average pro-

cessing time for the 50 query images using the RS/DS locale

signatures based matching framework

Average Localization Error
Average Processing Time (sec)

Position (cm) Heading (deg)

32 0.17 1.05

Finally, we want to demonstrate an example of the de-

2This also implies that the localization error with the signature-based
approach is lower-bounded by the sampling interval used at the training
time for signature collection.



Fig. 11: Shown here is the 3D map reconstructed from the

333 pairs of training images used in the evaluation of the

locale signature based approach to robot self localization.

gree of viewpoint invariance of our approaches to robot

self localization. Fig. 12 demonstrates two experiments for

two different scenes specifically selected to measure the

extent to which the 3D-JUDOCA features and our matching

approaches are robust against viewpoint changes. In each

experiment, we used two image sequences of each scene

with different viewpoints. The viewpoint change was 45◦ in

the first experiment and 90◦ in the second one. As seen in

Fig. 12, our approach using 3D-JUDOCA features was able

to successfully recognize and match these views. Additional

offsets were added to the scenes in order to have clear

visualization of the matches. We compared such matching

that achieved when replaced the 3D-JUDOCA feature by

the 3D-SIFT features. 3D-SIFT descriptors were constructed

from the more popular 2D SIFT feature descriptors in a

manner similar to how we constructed 3D-JUDOCA fea-

tures from 2D-JUDOCA features. A least-squares method

with RANSAC was used to evaluate the 3D transformation

between the point matches obtained with 3D-SIFT. In gen-

eral, the matches achieved with 3D-SIFT had fewer inliers

compared to 3D-JUDOCA features. For the two cases shown

in Fig. 12, the results obtained with 3D-SIFT and with 3D-

JUDOCA were comparable for the case on the left. However,

3D-SIFT failed for the case at the right because of the large

change in the viewpoint.

(a) Scene1: 45◦ viewpoint change (b) Scene2: 90◦ viewpoint change

Fig. 12: Two experiments for recognizing the same scenes

under different viewpoint changes showing that our approach

is robust against viewpoint changes

VIII. CONCLUSIONS

This paper presented two different hypothesize-and-verify

approaches for fast place recognition and self-localization by

indoor mobile robots. The 3D-JUDOCA features we used

give us the large viewpoint invariance we need and the

feature cylinder data structure gives us fast verification of

hypotheses regarding the location/orientation of the robot.

Our evaluation demonstrates that the proposed matching

approaches work well even under large viewpoint changes.

All of the work presented in this paper is based on the

premise that a robot wants to carry out place recognition

and self-localization with zero prior history. This is a worst

case scenario. In practice, after a robot has recognized a

place and localized itself, any subsequent attempts at doing

the same would need to examine a smaller portion of the

search space compared to the zero-history case. Our goal is

to create a complete framework that allows prior history to

be taken into account when a robot tries to figure out where

it is in a complex indoor environment.
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