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0 INTRODUCTION

There are two standard (and in some sense dual) ways to construct the closure of a subset A

of a topological space X . The first way is to form the intersection (or infimum in the lattice

of subobjects of X) of the family of all closed sets that contain A. The second way is to add

limit points to A, i.e., to form the union (or supremum in the lattice of subobjects of X) of

the family of all sets that contain A as a dense subset. In general a given closure operator

on a category X cannot be reconstructed using either of the above approaches, since these two

processes usually yield different results. In the case of a weakly hereditary and idempotent closure

operator, however, (as is the case with the usual closure in topology) both processes do recover

the original closure operator. In fact, weakly hereditary and idempotent closure operators may

be characterized by this fact; i.e., they can be reconstructed from the corresponding class of

“closed” subobjects as well as from the corresponding class of “dense” subobjects.

Both constructions described above generalize to arbitrary classes of subobjects. For classes

of subobjects induced by a class of objects in a specific way, closure operators that result from the

first (or infimum) procedure are called “regular” or closure operators of “Salbany” type. In this

paper we continue to investigate them and also concentrate our attention on closure operators

1 Research supported by the University of Puerto Rico, Mayagüez Campus during a sabbatical visit

at Kansas State University (KS) and at the University of L’Aquila (Italy).
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that arise from object-induced classes of subobjects via the second (or supremum) approach. It

turns out that in an (E,M)-category for sinks the crucial new notion needed for this analogue

is that of E-sink stability.

In Section 1 we present preliminary definitions and results that are necessary for the remain-

der of the paper.

Section 2 contains our main results. A canonical idempotent closure operator is obtained

from any pullback-stable family ofM-subobjects. Also this construction is shown to give rise to

a natural factorization of the global Galois connection the coadjoint part of which associates to

each idempotent closure operator its class of closedM-subobjects. Similarly, a canonical weakly

hereditary closure operator is obtained from any E-sink stable family of M-subobjects. This

construction is shown to be symmetric to the first construction in that it gives rise to a natural

factorization of the global Galois connection the adjoint part of which associates to each weakly

hereditary closure operator its class of dense M-subobjects. Finally, in a slightly more special

setting a new Galois connection is introduced that relies on squares of objects and diagonal

morphisms. It turns out that this connection is the key link between objects in our category and

the canonical weakly hereditary closure construction discussed above. Surprisingly, its dual turns

out to be its own symmetric analogue, which fits as the link between objects in our category and

the Salbany regular closure construction.

Section 3 contains applications of the theory.

Notice that some of the results presented in this paper can be obtained from the general the-

ory developed in [CKS]. However, to keep this paper reasonably self-contained we have included

the corresponding proofs.

We use the terminology of [AHS] throughout the paper2.

1 PRELIMINARIES

We begin by recalling the following

DEFINITION 1.1

A category X is called an (E,M)-category for sinks, if there exists a collection E of X -sinks,

and a classM of X -morphisms such that:

(0) each of E and M is closed under compositions with isomorphisms;

(1) X has (E,M)-factorizations (of sinks); i.e., each sink s in X has a factorization s = m ◦ e

2 Paul Taylor’s commutative diagrams macro package was used to typeset most of the diagrams in

this paper.
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with e ∈ E and m ∈M, and

(2) X has the unique (E,M)-diagonalization property; i.e., if B
g
−→ D and C

m
−→ D are X -

morphisms with m ∈ M, and e = (Ai
ei−→ B)I and s = (Ai

si−→ C)I are sinks in X with

e ∈ E, such that m ◦ s = g ◦ e, then there exists a unique diagonal B
d
−→ C such that for

every i ∈ I the following diagrams commute:

Ai
ei−→ B

si





y

ւd

C

and

B

dւ




y

g

C −→
m

D

That X is an (E,M)-category implies the following features ofM and E (cf. [AHS] for the

dual case):

PROPOSITION 1.2

(0) Every isomorphism is in both M and E (as a singleton sink).

(1) Every m in M is a monomorphism.

(2) M is closed under M-relative first factors, i.e., if n ◦m ∈M, and n ∈M, then m ∈M.

(3) M is closed under composition.

(4) Pullbacks of X -morphisms in M exist and belong toM.

(5) The M-subobjects of every X -object form a (possibly large) complete lattice; suprema are

formed via (E,M)-factorizations and infima are formed via intersections.

Throughout the paper we assume that X has equalizers and is an (E,M)-category for sinks

and thatM contains all regular monomorphisms.

DEFINITION 1.3

A closure operator C on X (with respect to M) is a family {( )
C

X
}X∈X of functions on the

M-subobject lattices of X with the following properties that hold for each X ∈ X :

(a) [growth] m ≤ (m)
C

X
, for everyM-subobject M

m
−→ X ;

(b) [order-preservation] m ≤ n⇒ (m)
C

X
≤ (n)

C

X
for every pair ofM-subobjects of X ;

(c) [morphism-consistency] If p is the pullback of the M-subobject M
m
−→ Y along some X -

morphism X
f
−→ Y and q is the pullback of (m)

C

Y
along f , then (p)

C

X
≤ q, i.e., the closure

of the inverse image of m is less than or equal to the inverse image of the closure of m.

The growth condition (a) implies that for every closure operator C on X , everyM-subobject

M
m
−→ X has a canonical factorization
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M
t
−→ (M)

C

X

mց




y

(m)
C

X

X

where ((M)
C

X
, (m)

C

X
) is called the C-closure of the subobject (M, m).

When no confusion is likely we will write m
C

rather than (m)
C

X
and for notational symmetry

we will denote the morphism t by m
C
.

If M
m
−→ X is an M-subobject, X

f
−→ Y is a morphism and M

e
−→ f(M)

f(m)
−→ Y is the

(E,M)-factorization of f ◦m then f(M)
f(m)
−→ Y is called the direct image of m along f .

REMARK 1.4

(1) Notice that the morphism-consistency condition (c) of the above definition is equivalent

to the following statement concerning direct images: if M
m
−→ X is an M-subobject and

X
f
−→ Y is a morphism, then f((m)

C

Y
) ≤ (f(m))

C

Y
, i.e., the direct image of the closure of m

is less than or equal to the closure of the direct image of m; (cf. [DG]).

(2) Both order-preservation and morphism-consistency, i.e., conditions (b) and (c) together are

equivalent to the following: given (M, m) and (N, n)M-subobjects of X and Y , respectively,

if f and g are morphisms such that n ◦ g = f ◦m, then there exists a unique morphism d

such that the following diagram

M
g - N

@@@
m

C

R
@@@

n
C

R
M

C d -

n

N
C

	��
�
m

C 	���
n

C

X

m

?

f
- Y

?

commutes.

(3) If we regardM as a full subcategory of the arrow category of X , with the codomain functor

from M to X denoted by U , then the above definition can also be stated in the following

way: A closure operator on X (with respect to M) is a pair C = (γ, F ), where F is an

endofunctor onM that satisfies UF = U , and γ is a natural transformation from idM to F

that satisfies (idU )γ = idU (cf. [DG]).
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DEFINITION 1.5

Given a closure operator C, we say that m ∈ M is C-closed if m
C

is an isomorphism. An

X -morphism f is called C-dense if for every (E,M)-factorization (e, m) of f we have that m
C

is an isomorphism. We call C idempotent provided that m
C

is C-closed for every m ∈ M. C is

called weakly hereditary if m
C

is C-dense for every m ∈M.

Notice that morphism-consistency (1.3(c)) implies that pullbacks of C-closedM-subobjects

are C-closed.

We denote the collection of all closure operators onM by CL(X ,M) pre-ordered as follows:

C ⊑ D if m
C

≤ m
D

for each m ∈ M (where ≤ is the usual order on subobjects). Notice that

arbitrary suprema and infima exist in CL(X ,M), they are formed pointwise on theM-subobject

fibers. iCL(X ,M) and wCL(X ,M) will denote the collection of all idempotent and all weakly

hereditary closure operators, respectively.

For more background on closure operators see, e.g., [C1], [CKS], [DG], [DGT] and [K].

We now recall a few basic facts concerning Galois connections. For a pre-ordered class

X = (X,⊑) we denote the dually ordered class (X,⊒) by X op.

DEFINITION 1.6

For pre-ordered classes X = (X,⊑) and Y = (Y,�), a Galois connection F from X to Y

(denoted by X
F=〈F∗,F∗〉

−−−−−−−−−→• Y) consists of a pair of order preserving functions X −→←−
F∗

F∗

Y that

satisfy F∗ ⊣ F ∗, i.e., x ⊑ F ∗F∗(x) for every x ∈ X and F∗F
∗(y) � y for every y ∈ Y . (F ∗ is the

adjoint part and F∗ is the coadjoint part).

Notice that for every such Galois connection F from X to Y up to equivalence F∗ and F ∗

uniquely determine each other, and we also have a dual Galois connection F op = 〈F ∗, F∗〉 from

Yop to X op. Moreover, given a Galois connection G = 〈G∗, G
∗〉 from Y to Z, one can form the

composite Galois connection G ◦ F = 〈G∗ ◦ F∗, F
∗ ◦G∗〉 from X to Z.

DEFINITION 1.7

For a class A we let P (A) denote the collection of all subclasses of A, partially ordered by

inclusion. Any relation R between classes A and B, i.e., R ⊆ A×B induces a Galois connection

P (A)
φ

−−−−→• P (B)op, called a polarity, whose adjoint and coadjoint parts are given by

φ∗(U) = {b ∈ B : ∀ a ∈ U, (a, b) ∈ R} for U ⊆ A

φ∗(V ) = {a ∈ A : ∀ b ∈ V, (a, b) ∈ R} for V ⊆ B

Various properties and many examples of Galois connections can be found in [EKMS].
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2 GENERAL RESULTS

We recall from [CKS] the following commutative diagram of Galois connections

CL(X ,M)

∆̈ր• ց•∇̇

wCL(X ,M) iCL(X ,M)

∆̇ր• ց•∇̈

P (M) −−−−−−−−−−−−−−−−−−→•
ν

P (M)op

The above Galois connections are as follows.

(1) ∆̇∗ associates to each weakly hereditary closure operator its class of C-denseM-subobjects

and ∆̇∗ is its corresponding coadjoint. Notice that ∆̇∗ ◦ ∆̇∗ ≃ idwCL(X ,M) (cf. [CKS,

Proposition 2.12(0)]).

(2) ∆̈∗ associates to each closure operator its weakly hereditary core (i.e., the supremum of all

smaller weakly hereditary closure operators) and ∆̈∗ is the inclusion.

(3) ∇̇∗ associates to each closure operator its idempotent hull (i.e., the infimum of all larger

idempotent closure operators) and ∇̇∗ is the inclusion.

(4) ∇̈∗ associates to each idempotent closure operator its class of C-closed M-subobjects and

∇̈∗ is its corresponding adjoint. Notice that ∇̈∗ ◦ ∇̈∗ ≃ idiCL(X ,M) (cf. [CKS, Proposition

2.12(0)]).

(5) ν is the polarity induced by the relation ⊥⊆ M×M defined by: m ⊥ n iff for every pair

of morphisms f, g such that f ◦m = n ◦ g, there exists a unique morphism d such that both

triangles of the following diagram
•

g
−→ •

m





y

dր




y

n

• −→
f

•

commute.

A direct consequence of the general theory of Galois connections (cf. [EKMS]) and the above

statements is the following proposition.

PROPOSITION 2.1

(1) Let ∇ be the composite CL(X ,M)
∇̇

−−−−→• iCL(X ,M)
∇̈

−−−−→• P (M)op. Then,

CL(X ,M)
∇∗−→ P (M)op and P (M)op ∇∗

−→ CL(X ,M) are given by:
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∇∗(C) = {m ∈M : m is C-closed}

∇∗(N ) = sup{C ∈ CL(X ,M) : ∇∗(C) ⊇ N}.

(2) Let ∆ be the composite P (M)
∆̇

−−−−→• wCL(X ,M)
∆̈

−−−−→• CL(X ,M). Then,

P (M)
∆∗−→ CL(X ,M) and CL(X ,M)

∆∗

−→ P (M) are given by:

∆∗(C) = {m ∈M : m is C-dense}

∆∗(N ) = inf{C ∈ CL(X ,M) : ∆∗(C) ⊇ N}.

A few remarks concerning the symmetry of the diagram above are in order. LetM⋄M be

the collection of composable pairs of morphisms in M, and let W be the composition functor

from M ⋄M to M. In [CKS] this functor was shown to be a bifibration, i.e., the notions of

W -inverse image and of W -direct image make sense. If one restricts W fromM⋄M toM via the

second projection (which was the vital ingredient in the definition of ∇̈) the notion of stability

under W -inverse images translates to the usual notion of stability under pullbacks. If, on the

other hand, one restricts the notion of stability under W -direct images along the first projection

from M⋄M to M, the following notion of E-sink stability is obtained:

DEFINITION 2.2

(1) A subclass N ofM is called E-sink stable, if for every commutative square

M
f
−→ N

m





y





y

n

X −→
g

Y

with n ∈ M and the 2-sink (g, n) ∈ E we have that m ∈ N implies n ∈ N .

(2) Pes(M) denotes the collection of all E-sink stable subclasses ofM, ordered by inclusion.

(3) Ppb(M) denotes the collection of all pullback-stable subclasses ofM, ordered by inclusion.

In view of the construction of ∆̈ and ∇̈ as given in [CKS], one can expect these Galois

connections to factor through Pes(M) and through Ppb(M), respectively. We now provide the

details of these factorizations.

THEOREM 2.3

(1) Let N ∈ Ppb(M). If for everyM-subobject M
m
−→ X , we define:

mSN = inf{m′ ∈ N : M ′ m′

−→ X and m ≤ m′}

then SN is an idempotent closure operator with respect to M.

(2) Let N ∈ Pes(M). If for everyM-subobject M
m
−→ X , we define:

mCN = sup{(N
n
−→ X) ∈M : ∃(M

t
−→ N) ∈ N with n ◦ t = m}
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then CN is a weakly hereditary closure operator with respect to M.

Proof:

(1) Clearly, for everyM-subobject M
m
−→ X , we have that m ≤ mSN .

To prove order-preservation, we just observe that if M
m
−→ X and N

n
−→ X are M-

subobjects such that m ≤ n, then any M-subobject N ′ n′

−→ X that satisfies n ≤ n′ also

satisfies m ≤ n′. Therefore, taking the intersection yields mSN ≤ nSN .

To show morphism-consistency, let X
f
−→ Y be an X -morphism, let N

n
−→ Y be an M-

subobject and let (Ni
ni−→ Y )i∈I be the family of allM-subobjects in N such that n ≤ ni, for

every i ∈ I. By taking the pullbacks f−1(n) and f−1(ni) of n and ni along f , respectively,

we obtain the following commutative diagram

f−1(N) - N

@@@R
@@@R

f−1(Ni) -

n

Ni

	���
f−1(ni) 	��

�
ni

X

f−1(n)

?

f
- Y

?

Since N is pullback-stable, we have that f−1(ni) ∈ N for every i ∈ I. By the definition

of pullback, we have that f−1(n) ≤ f−1(ni), for every i ∈ I. Thus, because pullbacks and

intersections commute we have that (f−1(n))SN ≤ ∩f−1(ni) ≃ f−1(∩ni) ≃ f−1(nSN ).

Thus SN is a closure operator; i.e., it satisfies Definition 1.3.

To show that SN is idempotent let M
m
−→ X be an M-subobject. We first observe that by

definition we have that mSN ≤ (mSN )SN . Now if n ∈ N satisfies m ≤ n, then it also satisfies

mSN ≤ n. This clearly implies that (mSN )SN ≤ mSN . Therefore, (mSN )SN ≃ mSN .

(2) This follows by the symmetry mentioned above. However, for clarity and completeness we

provide the following proof.

It is clear from the definition of CN that for every monomorphism M
m
−→ X , m ≤ mCN .

To prove order-preservation, let us consider the following commutative diagram

M
d

−−−−−−−−→ N

t





y

mց ւn

X
m′ ր տp





y

e1

M ′ −−−−−−−−→
e2

P

where m ≤ n are twoM-subobjects, t ∈ N and ((e1, e2), p) is the (E,M)-factorization of the

2-sink (n, m′). Notice that the closure ofM underM-relative first factors implies that e1 ∈

8



M. E-sink stability of N yields that e1 ∈ N . This, together with the fact that suprema are

formed via (E,M)-factorizations immediately yields via the (E,M)-diagonalization property

a diagonal morphism d with nCN ◦ d = mCN . Therefore we can conclude that mCN ≤ nCN .

To show morphism-consistency, let X
f
−→ Y be a morphism and let m = m′′

i ◦ m′
i be a

factorization of m with m′
i ∈ N and m′′

i ∈ M. By taking the direct images of m and m′′
i

along f , we obtain the following commutative diagram where ti is induced by the (E,M)-

diagonalization property.

M
e - f(M)

@@@
m′

i

R
@@@

ti
R

M ′
i e′′i

-

f(m)

f(M ′
i)

	���
m′′

i
	��

�
f(m′′

i )
X

m

?

f
- Y

?

Let (ẽ, mCN ) and (ê, (f(m))CN ) be the (E,M)-factorizations that yield the CN -closures of

m and f(m) and suppose that ẽ and ê are indexed by I and J , respectively. For every i ∈ I

notice that since e′′i belongs to E, so does the 2-sink (e′′i , ti). Since N is E-sink stable, we

conclude that ti ∈ N . Therefore for every i ∈ I there exists some j(i) ∈ J such that the

following diagram commutes

M ′
i

e′′i - f(M ′
i)

@@@
ẽi

R 	���
êj(i)

MCN (f(M))CN

	���
mCN

@@@(f(m))CN R
X

m′′
i

?

f
- Y

?

f(m′′
i )

Using the (E,M)-diagonalization property we obtain a morphism MCN
d
−→ f(M)CN such

that d ◦ ẽi = êj(i) ◦ e′′i and f ◦mCN = (f(m))CN ◦ d. Let (eCN , f(mCN )) be the (E,M)-

factorization of f ◦mCN . Since we have that f(mCN ) ◦ eCN = (f(m))CN ◦ d, the diagonal-

ization property implies the existence of a morphism d̃ such that (f(m))CN ◦ d̃ = f(mCN ).

Therefore we can conclude that f(mCN ) ≤ (f(m))CN , i.e., that condition (c) of Definition

1.3 is satisfied (cf. Remark 1.4(1)).
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To show that CN is weakly hereditary, let us consider the following commutative diagram

•
(mCN

)CN

−−−−−−→ MCN

(mCN
)CN

x





րmCN





ymCN

M −−−−→
m

X

Clearly we have that (mCN
)CN ◦(mCN

)CN
= mCN

. On the other hand, any M
m′

−→M ′ ∈ N

used in the construction of mCN is also used in the construction of (mCN
)

CN , which implies

that mCN ≤ mCN ◦(mCN
)CN

. Thus (mCN
)CN is an isomorphism. This completes the proof.

THEOREM 2.4

(1) Let iCL(X ,M)
R∗−→ Ppb(M)op and Ppb(M)op R∗

−→ iCL(X ,M) be defined by:

R∗(C) = {m ∈M : m is C-closed}

R∗(N ) = SN .

Then, iCL(X ,M)
R

−−−−→• Ppb(M)op is a Galois connection that is a coreflection; i.e.,

R∗ ◦R∗ ≃ idiCL(X ,M).

(2) Let wCL(X ,M)
K∗

−→ Pes(M) and Pes(M)
K∗−→ wCL(X ,M) be defined by:

K∗(C) = {m ∈ M : m is C-dense}

K∗(N ) = CN .

Then, Pes(M)
K

−−−−→• wCL(X ,M) is a Galois connection that is a reflection; i.e.,

K∗ ◦K∗ ≃ idwCL(X ,M).

Proof:

(1) By the preceding lemma and the definition of closure operator, it is clear that R∗ and R∗

have domains and codomains as indicated.

If C ⊑ C′, then C′-closed implies C-closed, which implies R∗(C
′) ⊆ R∗(C), i.e., R∗(C) ≤

R∗(C
′) in Ppb(M)op. Hence R∗ is order-preserving.

Clearly,M1 ≤M2 ⇒M2 ⊆M1 ⇒ SM1 ⊑ SM2 . Thus R∗ is order-preserving.

If N ∈ Ppb(M)op and m ∈ N , then m is SN -closed, which implies that N is a subclass of

(R∗ ◦R∗)(N ). Thus, (R∗ ◦R∗)(N ) ≤ N .

Let C be a closure operator, let M
m
−→ X be an M-subobject and let (Ni

ni−→ X)I be the

family of all M-subobjects with the property that m ≤ ni and ni is C-closed. Then, for

each i ∈ I, m
C

≤ n
C

i ≃ ni, which implies that m
C

≤ ∩{ni : i ∈ I} ≃ m
(R∗◦R∗)(C)

. Thus

C ⊑ (R∗ ◦ R∗)(C). Also, since C is idempotent, m
C

is C-closed and so is one of the ni’s
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originally chosen. Therefore, mR∗◦R∗ ≤ m
C

. Thus R∗ ◦R∗ ≃ idiCL(X ,M).

(2) This again follows by the symmetry mentioned above. However, for clarity and completeness

we provide the following proof.

If C ⊑ C′, then C-dense implies C′-dense, which implies K∗(C) ⊆ K∗(C′), i.e., K∗(C) ≤

K∗(C′).

Clearly, ifM1 ≤M2, i.e.,M1 ⊆M2, then CM1 ≤ CM2 .

If N ∈ Pes(M) and M
t
−→ N ∈ N , we can consider the factorization t = idN ◦ t. Clearly

this implies that (M)CN

N ≃ N , i.e., t ∈ (K∗ ◦K∗)(N ). Thus, N ≤ (K∗ ◦K∗)(N ).

Now first notice that if C is a closure operator then K∗(C) is E-sink stable, so that K∗(C) ∈

Pes(M). Let M
m
−→ X be anM-subobject and let m = ni ◦ ti be a family of factorizations

with ti C-dense for every i ∈ I. Clearly, we have that ni ≃ (m)C
N ≤ (m)C

X . Therefore,

ni ≤ (m)C
X implies that (m)CN

X ≃ sup ni ≤ (m)C
X . Thus (K∗ ◦K∗)(C) ⊑ C. Also, since C

is weakly hereditary, m
C

is C-dense and so is one of the ti’s originally chosen. Therefore,

m
C

≤ m(K∗◦K∗)(C). Thus (K∗ ◦K∗)(C) ≃ C.

REMARK 2.5

A direct consequence of the above results is that a closure operator C ∈ CL(X ,M) is weakly

hereditary and idempotent if and only if C ≃ ∇̇∗ ◦R∗ ◦R∗ ◦ ∇̇∗(C) ≃ ∆̈∗ ◦K∗ ◦K∗ ◦ ∆̈∗(C).

Unfortunately the notion of E-sink stability is less easy to verify than stability under pull-

backs. Therefore next we give some criteria that are easier to check and are equivalent to it.

PROPOSITION 2.6 (Characterization of E-sink stability)

A subclass N ofM is E-sink stable if and only if it satisfies the following two conditions:

(a) whenever M
m
−→ X and N

n
−→ X areM-subobjects with m ≤ n, then for every factorization

m = m′′ ◦m′ with m′ ∈ N and m′′ ∈ M, there exists a factorization n = n′′ ◦ n′ of n with

n′ ∈ N and n′′ ∈M such that m′′ ≤ n′′.

(b) N is closed under direct images along E-morphisms.

Proof:

Suppose that N is E-sink stable. Let M
m
−→ X be an N -subobject and let X

g
−→ Y be an

E-morphism. If (e, g(m)) is the (E,M)-factorization of g ◦m, then the 2-sink (g, g(m)) belongs

to E and E-sink stability immediately implies that g(m) ∈ N , i.e., (b) holds. To show that (a)

also holds, let us consider the following commutative diagram
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M
t - N

@@@
m
R 	���

n

X

��
�
m′′
� I@@@p

M ′

m′

?

e2

- P
?

e1

where m, n and m′′ areM-subobjects, m′ ∈ N and ((e1, e2), p) is the (E,M)-factorization of the

2-sink (n, m′′). Notice that the closure ofM underM-relative first factors implies that e1 ∈ M.

E-sink stability yields that e1 ∈ N . Thus (a) holds.

Now let us assume that N satisfies (a) and (b) and consider the following commutative

diagram

M
f
−→ N

m





y





y

n

X −→
g

Y

with m ∈ N , n ∈ M and the 2-sink (g, n) ∈ E. Now let (e, p) be the (E,M)-factorization of

g, and let (e′, e(m)) be the (E,M)-factorization of e ◦ m. Due to the (E,M)-diagonalization

property, we obtain a morphism d such that the following diagram is commutative.

M
t - N

@@@
e′

R ���
d �

e(M)

P
?
e(m)

���
e � @@@

p
R

X

m

?

g
- Y

?

n

Notice that condition (b) implies that e(m) ∈ N . Now let us consider theM-subobject p ◦ e(m)

of Y . Clearly, p ◦ e(m) ≤ n and from condition (a) there exists a factorization of n, n = n′′ ◦ n′

with n′ ∈ N and n′′ ∈ M such that p ≤ n′′. Let h be the morphism such that p = n′′ ◦ h. We

therefore obtain the following commutative diagram
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N

@@@
n
R

X
g - Y

@@@h ◦ e R
N ′
?
n′

n′′
- Y

?
idY

Since the 2-sink (g, n) ∈ E, the (E,M)-diagonalization property implies the existence of a mor-

phism Y
k
−→ N ′ such that n′′ ◦ k = idY . Since n′′ is a monomorphism and a retraction, we have

that n′′ is an isomorphism. Thus, n′′ ∈ E, so since n = n′′ ◦ n′, we have that n is a direct image

of n′ along an E-morphism and so by (b) it belongs to N . Hence N is E-sink stable.

The proof of the following proposition is rather easy so we omit it.

PROPOSITION 2.7

(1) Let Ppb(M)op Q∗
−→ P (M)op and P (M)op Q∗

−→ Ppb(M)op be defined by:

Q∗(M′) =M′

Q∗(N ) = {m ∈ M : m is a pullback of some n ∈ N}.

Then, Ppb(M)op
Q

−−−−→• P (M)op is a Galois connection and ∇̈ = Q ◦R.

(2) Let P (M)
L∗−→ Pes(M) and Pes(M)

L∗

−→ P (M) be defined by:

L∗(M′) = {n ∈M : n ◦ f = g ◦m for some m ∈ M′ and some X -morphisms f and g

with (g, n) ∈ E}

L∗(N ) = N .

Then, P (M)
L

−−−−→• Pes(M) is a Galois connection and ∆̇ = K ◦ L.

DEFINITION 2.8

If A is a class of X -objects, we say that an X -monomorphism m is A-regular if it is the

equalizer of some pair of morphisms with codomain in A.

In the case that M contains all regular monomorphisms, an important special class of

idempotent closure operators can be defined as follows. Given any class A of X -objects and

M
m
−→ X in M, the A-closure of m is given by the intersection of all A-regular subobjects n of

X that satisfy m ≤ n. This generalizes the Salbany construction of closure operators induced by

classes of topological spaces, cf. [S], and may also be viewed as a relativization of Isbell’s notion

of dominion (cf. [I]). Following other authors, we will call such a closure operator the regular (or

Salbany) closure operator induced by A. The fact that in the presence of squares equalizers can be
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expressed as pullbacks of suitable diagonal morphisms allows us to build a symmetric counterpart

of the Salbany operator. Both constructions fit nicely in our diagram of Galois connections given

at the beginning of this section.

From now on we assume that our category X has squares and that M contains all regular

monomorphisms.

DEFINITION 2.9

We call a monomorphism m essentially a diagonal for an object X , if m is an equalizer of

the two projections for some product (X ×X, π1, π2) of X with itself.

The corresponding relation between objects in X and monomorphism in M immediately

induces a Galois connection as follows:

PROPOSITION 2.10

Let P (ObX )
H∗−→ P (M) and P (M)

H∗

−→ P (ObX ) be defined by:

H∗(A) = {m ∈M : m is essentially a diagonal for some X ∈ A}

H∗(N ) = {X ∈ ObX : every essential diagonal m for X belongs to N}.

Then, P (ObX )
H

−−−−→• P (M) is a Galois connection that is a coreflection, i.e., H∗ ◦H∗ =

idObX .

PROPOSITION 2.11

For any class A of X -objects, (R∗ ◦Q∗ ◦Hop∗)(A) is precisely the Salbany closure operator

induced by A.

Proof:

Let A ∈ P (ObX )op. First notice that since for every X ∈ A, the diagonal morphism δX is

A-regular and pullbacks of A-regular morphisms are A-regular, we obtain that (Q∗ ◦Hop∗)(A) is

a class of A-regular morphisms. On the other hand, if M
m
−→ X is A-regular, i.e., m = eq(f, g),

where f, g are two morphisms with codomain Y ∈ A, then m is isomorphic to the pullback of

δY along the morphism X
<f,g>
−→ Y × Y . Therefore (Q∗ ◦ Hop∗)(A) consists of all A-regular

morphisms. Consequently, (R∗ ◦Q∗ ◦Hop∗)(A) is the Salbany closure induced by A.

The next proposition follows from the general theory of Galois connections (cf. [EKMS]).

PROPOSITION 2.12

(1) Let iCL(X ,M)
S∗−→ P (ObX )op and P (ObX )op S∗

−→ iCL(X ,M) be defined by:

S∗(C) = {X ∈ ObX : δX is C-closed}
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S∗(A) = sup{C ∈ iCL(X ,M) : S∗(C) ⊇ A}.

Then, iCL(X ,M)
S

−−−−→• P (M)op is a Galois connection.

(2) Let P (ObX )
T∗−→ wCL(X ,M) and wCL(X ,M)

T∗

−→ P (ObX ) be defined by:

T ∗(C) = {X ∈ ObX : δX is C-dense}

T∗(A) = inf{C ∈ wCL(X ,M) : T ∗(C) ⊇ A}.

Then, P (ObX )
T

−−−−→• wCL(X ,M) is a Galois connection.

THEOREM 2.13

(1) S ≃ Hop ◦ ∇̈ = Hop ◦Q ◦R

(2) T ≃ ∆̇ ◦H = K ◦ L ◦H .

Proof:

(1) To see that S ≃ Hop ◦ ∇̈ it is enough to observe that S∗ = Hop
∗ ◦ ∇̈∗ and consequently by

the essential uniqueness of the adjoint we obtain that S∗ ≃ ∇̈∗ ◦Hop∗. The equality follows

from Proposition 2.7(1).

(2) Similarly, it is enough to recall Proposition 2.7(2) and to observe that T ∗ = H∗ ◦ ∆̇∗ and

consequently by the essential uniqueness of the coadjoint we obtain that T∗ ≃ ∆̇∗ ◦H∗.

COROLLARY 2.14

For any class A of X -objects, S∗(A) is precisely the Salbany closure operator induced by A.

The following two commutative diagrams of Galois connections help to visualize the previous

results.

P (ObX )
T

−−−→• wCL(X ,M)

H





y

•
∆̇ր•

x





•
K

P (M) −−−→•
L

Pes(M)

iCL(X ,M)
S

−−−→• P (ObX )op

R





y

•
∇̈ց•

x





•
Hop

Ppb(M)op −−−→•
Q

P (M)op

These diagrams show that the Galois connection T may well be viewed as a “symmetric

counterpart” of the Galois connection S induced by the Salbany construction. Notice that S

actually can be defined without reference to squares (cf. [CS, Theorem 2.5 and Corollary 2.10]).

For T , however, this does not seem to be possible.
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3 APPLICATIONS IN CONCRETE CATEGORIES

In this section X always denotes a category with squares that satisfies all the hypotheses of

Sections 1 and 2.

We start with a simple example that nicely supports our view of S and T as symmetric

counterparts of each other.

EXAMPLE 3.1

Let X = (X,≤) be a partially ordered set (considered as a category) with the property

that for every x ∈ X the lower segment ↓x is a complete lattice. For M we take MorX , so E

consists of all supremum sinks. Clearly, (X,≤) has squares, namely x ∼= x ∧ x for every x ∈ X ;

consequently all diagonal morphisms are isomorphisms. For every subset A ⊆ X , the closure

operator S∗(A) turns out to be indiscrete (i.e., the largest closure operator). To see this notice

that if x ≤ y, there is at most one subobject of y that is the pullback of some diagonal and

dominates x, and when there is one it is y itself. Thus the formation of the intersection of all

these subobjects always yields y. On the other hand, the closure operator T∗(A) turns out to

be discrete (i.e., the smallest closure operator). To see this notice that if x ≤ y, there is exactly

one factorization x ≤ z ≤ y such that x ≤ z is induced by a diagonal via an E-sink, and this

is x ≤ x ≤ y. Hence the formation of the supremum of all the corresponding subobjects z ≤ y

always yields the original x ≤ y.

Next we consider two special relations on the class of objects of X .

DEFINITION 3.2

Let C ⊆ ObX ×ObX be the relation defined by (A, B) ∈ C iff every morphism from A to B

is a constant morphism (cf. [HS, 8.2–8.8]), and let K ⊆ ObX ×ObX be the relation induced by

the Galois connection Hop ◦ ν ◦H , i.e., (A, B) ∈ K iff all essential diagonals m of A and n of B

satisfy m ⊥ n (cf. point (5) at the beginning of Section 2).

PROPOSITION 3.3

(1) K ⊆ C.

(2) C ⊆ K iff X satisfies the following property (P): for every commutative diagram

A
f
−→ B

δA





y





y

δB

A×A −→
g

B ×B

(∗)

with (A, B) ∈ C and δA and δB essential diagonals for A and B, the two projections πi from

B ×B to B satisfy π1 ◦ g = π2 ◦ g.
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Proof:

(1) Consider (A, B) ∈ K and a morphism A
f
−→ B. For any choice of essential diagonals

A
δA−→ A×A and B

δB−→ B ×B the following diagram commutes

A
f
−→ B

δA





y





y

δB

A×A −→
f×f

B ×B

Orthogonality yields a morphism d such that d ◦ δA = f and δB ◦ d = f × f . For any two

morphisms X
r
−→ A and X

s
−→ A we have

< f ◦ r, f ◦ s >= (f × f) ◦ < r, s >= δB ◦ d ◦ < r, s >

where X
<r,s>
−→ A × A and X

<f◦r,f◦s>
−→ B × B are induced by the universal property of the

respective products. Therefore f ◦ r = d◦ < r, s >= f ◦ s, i.e., f is a constant morphism.

(2) For (A, B) ∈ C consider a commutative diagram (*) with δA and δB essential diagonals. By

hypothesis f is constant.

Suppose that C ⊆ K. Since δA ⊥ δB there exists a unique morphism d such that d ◦ δA = f

and δB ◦ d = g. Now π1 ◦ g = π1 ◦ δB ◦ d = d = π2 ◦ δB ◦ d = π2 ◦ g. Hence X satisfies (P).

Conversely, suppose that X satisfies the property (P). Thus π1 ◦ g = π2 ◦ g. Since δB is an

equalizer of π1 and π2, there exists a unique d with δB ◦d = g. Since δB is a monomorphism,

it also follows that d ◦ δA = f , which establishes δA ⊥ δB. Thus (A, B) ∈ K.

PROPOSITION 3.4

(1) In the categories Grp of groups and Ab of abelian groups the relations K and C coincide.

(2) In the category Top of topological spaces the relations K and C coincide.

Proof:

By part (1) of Proposition 3.3 we need only show that for these categories C ⊆ K; and so by

part (2) it suffices to show that they satisfy property (P). Suppose every morphism from A to

B is constant, and consider arbitrary morphisms A
f
−→ B and A × A

g
−→ B × B for which the

diagram (*) commutes.

(1) Let i1 and i2 denote the two injections of A into A × A and let π1 and π2 be the two

projections of B ×B into B. By hypothesis, π1 ◦ g ◦ i1 and π2 ◦ g ◦ i1 are both constant and

therefore so is g ◦ i1. Similarly we obtain that g ◦ i2 is also constant. Since g ◦ i1 and g ◦ i2

both equal the constant e-valued homomorphism from A to B×B, it follows that g itself is

the constant e-valued homomorphism from A×A to B ×B. In particular, π1 ◦ g = π2 ◦ g.

(2) Clearly, both π1 ◦ g and π2 ◦ g are constant on the subspace A× {a} for each a ∈ A. Since

each of these subspaces intersects the diagonal, on which g is constant by hypothesis, it
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follows immediately that π1 ◦ g and π2 ◦ g agree on the union of A× {a} with the diagonal

of A, and consequently agree on all of A×A.

Notice that the relations K and C coincide in any construct X that has the property that

for each X -object A there is an epi-sink (Ai
ei−→ A × A)I with the property that for each i ∈ I

both Ai = A and the images of A under ei and δA have a nonempty intersection. In Proposition

3.4(1) the two injections i1 and i2 from A into A ×A constitute such an epi-sink. In 3.4(2) the

sink is comprised of “horizontal sections” of the space A×A.

Next we illustrate the situation in the two cases in which X is the category Ab of abelian

groups or the category Grp of all groups. In these categories we assume that M is the class of

all injective homomorphisms and consequently E consists of all epi-sinks. We use the notation

X ≤ Y to mean that X is isomorphic to a subgroup of Y and we use X/M for the quotient group

of X mod M .

EXAMPLE 3.5

Let X be the category Ab, and let Sing denote the class of all singleton groups. By

Proposition 3.4 (Sing, ObAb) is a pair of corresponding fixed points of the Galois connection

Hop◦ν◦H . Since every monomorphism in Ab is regular, it is immediate to see that S∗(ObAb) =

T∗(Sing) is the discrete (i.e., smallest) closure operator. Furthermore, (ObAb,Sing) is also a

pair of corresponding fixed points. S∗(Sing) is the indiscrete (i.e., largest) closure operator. To

see that T∗(ObAb) is also the indiscrete operator requires more effort. We would like to show

that the class (L∗ ◦H∗)(ObAb) consists of all monomorphisms. First notice that the inclusion

{0}
0Y−→ Y belongs to (L∗ ◦H∗)(ObAb) for every abelian group Y . This is true since {0}

0Y−→ Y

is the direct image of the diagonal δY along the epimorphism Y × Y
π1−π2−→ Y . Now notice that

for every monomorphism M
n
−→ Y we have that idY ◦ 0Y = n ◦ 0N , where {0}

0N−→ N is the

inclusion. Therefore, E-sink stability implies that n belongs to (L∗ ◦H∗)(ObAb).

EXAMPLE 3.6

Let F denote the class of all torsion-free abelian groups. It is well known that the regular

closure operator S∗(F) induced by F in Ab, is weakly hereditary and idempotent and has the

morphisms in (Q∗ ◦Hop∗)(F) corresponding to closed subgroups. Clearly, (∆̈∗ ◦ ∇̇∗)(S∗(F)) ≃

S∗(F) and such a closure operator has as dense subgroups all subgroups M
m
−→ X such that

X/M ∈ T , where T is the class of all torsion abelian groups. Clearly from Proposition 3.4 we

have that T = (H∗ ◦∆∗ ◦ ∇∗ ◦Hop∗)(F) = (H∗ ◦ ν∗ ◦Hop∗)(F) and F = (Hop
∗ ◦ ν∗ ◦H∗)(T ).

EXAMPLE 3.7

Let R denote the class of reduced abelian groups; i.e., those abelian groups which have no
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nontrivial divisible subgroup. It is well known that the regular closure operator S∗(R) in Ab is

weakly hereditary and idempotent and has the morphisms in (Q∗ ◦Hop∗)(R) corresponding to

closed subgroups. Clearly, (∆̈∗ ◦ ∇̇∗)(S∗(R)) ≃ S∗(R) and such a closure operator has as dense

subgroups all subgroups M
m
−→ X such that X/M ∈ D, where D is the class of all divisible

abelian groups. Again from Proposition 3.4 we have that D = (H∗ ◦ ∆∗ ◦ ∇∗ ◦ Hop∗)(R) =

(H∗ ◦ ν∗ ◦Hop∗)(R) and R = (Hop
∗ ◦ ν∗ ◦H∗)(D).

EXAMPLE 3.8

Let X be the category Grp and let B be the class of all abelian groups. The S∗(B)-closure of

a subgroup M
m
−→ X is given by the intersection of all normal subgroups N of X such that X/M

is abelian. Since the normal subgroup relation is not transitive, S∗(B) is not weakly hereditary.

From Proposition 3.4 we have that A = (H∗ ◦ ν∗ ◦Hop∗)(B) consists of all perfect groups, i.e.,

all groups X such that X = X ′, where X ′ denotes the subgroup generated by the commutators.

Moreover, (Hop
∗ ◦ ν∗ ◦H∗)(A) is the class of all groups which do not have any non-trivial perfect

subgroup (cf. [CH]).

For the last three examples we consider the special case where X is the category Top of

topological spaces (and continuous functions), M is the class of all embeddings and E consists

of all epi-sinks.

EXAMPLE 3.9

Let A = Top0 be the class of all T0 spaces and let B = Ind be the class of all indiscrete

spaces. Then (B,A) is a pair of corresponding fixed points of the connectedness-disconnectedness

Galois connection induced by C in Top (cf. [AW]). It is well known that the regular closure

operator S∗(Top0) is the b-closure. We recall that if M is a subset of a topological space X ,

a point x belongs to the b-closure of M if for every neighborhood U of x, U ∩M ∩ Cl(x) 6= ∅,

where Cl(x) denotes the topological closure of the subset {x} (cf. [B], [NW]). Since the b-closure

is weakly hereditary and idempotent, we have that (∆̈∗ ◦ ∇̇∗ ◦ S∗)(Top0) ≃ S∗(Top0). From

Proposition 3.4 we have that Ind = (H∗ ◦∆∗ ◦ ∇∗ ◦ Hop∗)(Top0) = (H∗ ◦ ν∗ ◦Hop∗)(Top0)

and (Hop
∗ ◦ ν∗ ◦H∗)(Ind) = Top0.

EXAMPLE 3.10

Let A = Top1 be the class of all T1 topological spaces. It is well known that S∗(Top1)

is weakly hereditary and idempotent (cf. [Cl]), therefore (∆̈∗ ◦ ∇̇∗ ◦ S∗)(Top1) ≃ S∗(Top1).

Consequently, (H∗ ◦ ν∗ ◦Hop∗)(Top1) consists of all topological spaces whose diagonal mapping

is S∗(Top1)-dense. From Proposition 3.4 we have that (H∗ ◦ ν∗ ◦Hop∗)(Top1) equals the class

Aconn of all absolutely connected topological spaces. We recall that a topological space X is
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called absolutely connected if it cannot be decomposed into a disjoint family L of non-empty

closed subsets such that |L| > 1 (cf. [P]). Since Aconn and Top1 are corresponding fixed points

of the connectedness-disconnectedness Galois connection induced by C in Top, we also have that

Top1 = (Hop
∗ ◦ ν∗ ◦H∗)(Aconn).

EXAMPLE 3.11

Let A = Dis be the class of all discrete topological spaces. From Proposition 3.4 we have

that (H∗ ◦ν∗◦Hop∗)(Dis) equals the class Conn of all connected topological spaces. Again from

Proposition 3.4 we have that (Hop
∗ ◦ν∗ ◦H∗)(Conn) is the class Tdisc of all totally disconnected

topological spaces (cf. [AW]).

Further examples that illustrate the relationship between closure operators and their classes

of “closed” and “dense” subobjects can be found in [CKS].
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