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Digital radiography is a popular diagnostic imaging method. Denoising and enhancement have an important potential in obtain-
ing as much easily interpretable diagnostic information as possible with reasonable absorbed doses of ionising radiation. Due to
the increasing usage of high resolution and high precision images with a limited number of human experts, the computational
efficiency of the denoising and enhancement becomes important. In this paper, a local adaptive image enhancement and simul-
taneous denoising algorithm for fulfilling the requirements of digital X-ray image enhancement is introduced. The algorithm is
based on modification of the wavelet transform coefficients by a pointwise nonlinear transformation and reconstructing the en-
hanced image from the modified wavelet transform coefficients. The implementation of algorithm in software is simple, quick,
and universal.
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1. INTRODUCTION

Typically, digital X-ray images are corrupted by additive
noise relatively higher with respect to conventional X-ray
films. Higher SNR is possible at cost of higher absorbed doses
of ionising radiation. Furthermore, image enhancement al-
gorithms generally amplify the noise [1, 2, 3, 4]. Therefore,
higher denoising performance is important in obtaining im-
ages with high visual quality using relatively lower doses of
ionising radiation. The most important part of the corrupt-
ing noise is the Gaussian noise whose variance may vary with
the signal level (due to sensor nonlinearity) and spatially de-
pending on the instrumentation [2]. The visibility of some
structures in medical X-ray images, especially the details that
may be conveying diagnostic information, may have a vital
role in providing sufficient visual information for the clin-
ician. The visibility of relatively smaller and nonsignificant

details may be extremely important, especially in early diag-
nosis of cancer. Another important aspect here is the com-
putational efficiency. The algorithm should be executed in a
reasonable time since the number of human experts is lim-
ited and the workloads of radiological units are increasing es-
pecially due to the screening policies. The accuracy and res-
olution of X-ray images are also increasing, thus requiring
more computations to be performed.

Among different adaptive image enhancement methods,
adaptive unsharp masking, adaptive neighbourhood filter-
ing and enhancement, adaptive contrast enhancement, and
various adaptive filtering approaches by directional wavelet
transform (WT) [5, 6, 7, 8] can be mentioned. However,
most of these methods involve a priori information about
the image [3, 5]. Some images, in particular, thorax images,
include information on many different tissues with different
X-ray transmittance, and even normal variations in the data
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may affect the performance and reliability of the algorithm.
In this paper, we propose an enhancement algorithm which
does not require any a priori anatomical information.

We introduce the problem in Section 2, the image en-
hancement algorithm in Section 3, simulation results in
Section 4, and, finally, we conclude in Section 5.

2. DESCRIPTION OF THE PROBLEM

After discussing the potential effects of image denoising and
enhancement for the digital radiographic images, we can
proceed by discussing the specific needs of enhancing the di-
agnostic X-ray images. There are three important issues to be
considered.

(1) X-ray images (especially thorax images) include dif-
ferent regions containing details. Both sharp and soft
transitions between the regions and details may exist
in all visual spans. When all details are enhanced to
the same extent, the relatively significant details cover
most of the visual span and prevent the visibility of
relatively less significant details. This is illustrated in
Figure 1.

(2) Since X-ray images are used for diagnostic purpose,
the image enhancement must not cause misleading in-
formation, making a structure looking more or less
significant than it is must be avoided.

(3) Data loss is not desirable in diagnostic images. There-
fore, the noise attenuation procedure must not remove
any visual information.

Another problem with X-ray (especially thorax) images
is the risk of incorporating a priori information about the
visual structures of the image for enhancement and denois-
ing purpose. Unlike the common images, X-ray images are
rendered volume data and the transitions between the same
structures may be smooth or sharp depending on the angle.
The images generally belong to known anatomic regions but
the visual features corresponding to anatomical structures
are not unique every time. The varying transitions for the
same object are illustrated in Figure 2 [4].

The WT is a transform decomposing an image into ap-
proximations and details at different resolution levels [8, 9,
10]. Since we can express the original image as a combina-
tion of its approximations and different levels of details, we
can build a simultaneous denoising and enhancement algo-
rithm in WT domain according to the requirements listed
above in this section.

3. ALGORITHM

3.1. Wavelet transform

The WT of a signal f (x) at a scale s and shift t is defined as

Ws,t f (x)=
〈
f (x) ·Ψs,t(x)

〉= 1√
s

∫∞
−∞

f (t)Ψ
(
x − t

s

)
dx, (1)
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Figure 1: (a) An original thorax image whose histogram was ad-
justed using commercial software. “D” is a portion of soft tissue
region and “B” is a bone region. (b) The region “D” of Figure 1a af-
ter edge enhancement applied within the region. (c) The region “B”
of Figure 1a after histogram equalisation applied within the region.
(d) The sharpened version of the original image. As we can see from
the image, the most significant details in the original image, which
are already visible, are enhanced. However, nonsignificant details,
like those present in the region “B”, such as the bottom parts of the
image and so forth, are not visible anymore. This is mainly due to
the limits of the visual span. Whatever we do to the image, we can
always represent the brightest pixel with the maximum and dark-
est pixel with the minimum brightness of the screen. Furthermore,
this sharpened image may even cause misleading distortions since
some vessels look more significant than the bones due to the high-
frequency content of the relatively thin structures (this distortion is
very clear especially around the 4th rib from the bottom). One al-
ternative to improve the visibility will be to apply stronger enhance-
ment to the relatively nonsignificant details, and relatively weaker
enhancement for already visible details is an alternative for improv-
ing the visual information and solving the first problem. This brings
the necessity of adaptive enhancement.

where Ψ(x) is the mother wavelet and Ψs,t(x) is the scaled
(stretched) and shifted version of the mother wavelet [9, 10,
11].

When the shift t is sampled at integers and the scale s is
sampled at integer powers of two, the shifted Ψ(x − t) and
scaled Ψ(x/s) versions of a main wavelet function Ψ(x) form
a basis. The basis functions are denoted by Ψs,t(x) [12].
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Figure 2: An illustration of the varying transitions in the X-ray im-
ages.

Let

C( j, k) = 〈 f (t) ·Ψ j,k(t)
〉 = ∑

n∈Z
x(n)gi,k(n) (2)

be the discrete wavelet transform (DWT) coefficients of sig-
nal f (t) and let Ψ j,k(t) be an orthogonal wavelet function.
Reconstruction of the signal from its WT coefficients at dif-
ferent scales gives the detailsD (high-frequency information)
and approximations A (low-frequency information) of the
signal at level j defined as

Dj(t) =
∑
k∈Z

C( j, k)Ψ j,k(t),

f (t) =
∑
k∈Z

Dj,

AJ =
∑
j>J

Dj ,

AJ−1 = AJ +DJ .

(3)

Iterated two-channel filter banks can be used to perform the
wavelet decomposition (see Figure 3, where LPF andHPF are
analysis lowpass and highpass filters, resp.).

The downsampled outputs of the highpass filter are de-
tail coefficients, and the downsampled outputs of the lowpass
filter are approximation coefficients. The detail and approx-
imation coefficients provide an exact representation of the
signal, thus no information is lost during downsampling.
Decomposing the approximation coefficients perform a fur-
ther level of the detail and approximation coefficients [10, 11,
13].

The reconstruction process is done by inverse iterative
two-channel filter bank, consisting of upsampling from each
channel, performing a synthesis lowpass and highpass filter-
ing, and summing up the results from both channels [11]
(see Figure 4 with α = 1 and g(x) = x, for one stage of re-
construction).

Nonlinear modification of wavelet detail coefficients is
an efficient way to perform an adaptive image enhancement.
Furthermore, eliminating the detail coefficients whose mag-
nitude lies under a threshold is an efficient denoising tech-
nique, called wavelet shrinkage [14].

3.2. Description of the algorithm for simultaneous
X-ray image denoising and enhancement

The algorithm is partially graphically illustrated in Figure 4.
First, the wavelet decomposition is performed. Then, the
transform coefficients are modified by a special pointwise
function followed by the inverse WT.

The modification of WT coefficients and computation of
the enhanced and denoised images from the modified trans-
form coefficients can be described in the following steps.1

(1) The detail coefficients with absolute values under the
threshold t are attenuated by an exponentially increasing
point transformation normalized between 0 and t. The coef-
ficients with absolute values higher than t are not modified,
that is,

xN (i, j) =



DN (i, j), if

∣∣DN (i, j)
∣∣ ≥ t,

t sgnDN (i, j)
eDN (i, j)/k − 1
et/k − 1

, otherwise,

(4)

where sgn(·) is the sign function. This operation is used for
noise attenuation instead of hard or soft thresholding used
in wavelet shrinkage [7, 8]. The reason for this is following.
The hard thresholding may introduce some artefacts while
soft thresholding causes attenuation of relatively nonsignifi-
cant details conflicting with the enhancement requirements.
The coefficients corresponding to low SNR are attenuated in-
stead of totally removing them. The operation in (4) is in-
vertible, no information is lost, and the original image can be
recovered. This is important especially for diagnostic images.
Here, t and k are user specified tuneable adjustment param-
eters. The “optimum” threshold t for identically distributed

white Gaussian noise is given by σ
√
2 logm, where σ is the

noise standard deviation and m is the number of transform
coefficients [14]. However, for diagnostic images, assistance
of a human expert is needed.

(2) After noise attenuation, the coefficients are modified
by a point transformation b(i) = f (a(i)) (where a(i) and b(i)
are arbitrary variables), such that details with lower magni-
tude are enhanced more than the details having higher mag-
nitude, but do not exceed them. In this way, the following
two properties are satisfied:

(i) if |a(i)| > |a( j)|, then |b(i)| > |b( j)|,
that is, if a local detail is more significant than another local
detail at the same resolution in the original image, it is also
more significant in the enhanced image;2

1Since the operations in steps (1), (2), and (3) are only pointwise modi-
fications, the first three steps can be performed by a single pointwise modi-
fication, shown as g(·) in Figure 4.

2Clinicians observe the following problem with an image enhancement.
It is known that malignant tumors increase blood flow to themselves. In en-
hanced image, some of the vessels may look more significant than they really
are which may lead to a wrong conclusion. We presume that preserving the
order of the contrasts of structures at each resolution, which can be approx-
imated with wavelet detail coefficients, will help to handle this problem.
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Figure 3: The illustration of wavelet decomposition by filter banks.
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Figure 4: The graphical illustration of the algorithm.

(ii) if |a(i)|>|a( j)|, then |∂a/∂b|a=a(i)<|∂a/∂b|a=a( j),
which provides a stronger enhancement for relatively less sig-
nificant details.

We have used a root operation

y(i, j) = sgn
(
x(i, j)

)∣∣x(i, j)∣∣γ, 0 < γ < 1, (5)

as a typical example satisfying the desired properties. Here,
x(i, j) is the output of step (1) (detail coefficients after noise
attenuation step), γ is a tuneable parameter of the algorithm
controlling the enhancement level. Small γ provides higher
enhancement and the enhanced image converges to the orig-
inal image when γ approaches 1.

(3) The enhanced detail coefficients are prevented to at-
tenuate more than the approximations, that is,

y′(i, j) = sgn
(
y(i, j)

)
max

(∣∣y(i, j)∣∣, α∣∣x(i, j)∣∣), (6)

where y(i, j) is the output of step (2) and x(i, j) is the output
of step (1) (before the enhancement is applied) and α is the
coefficient multiplied by the approximation coefficients.

(4) The approximation coefficients are attenuated ac-
cording to

A′(i, j) = αA(i, j), 0 < α < 1, (7)

in order to decrease the contribution of low frequencies.
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Here, we took α as another tuneable parameter, specified by
a user.

(5) Each lower level of approximation coefficients is com-
puted by using the modified detail and approximation coef-
ficients of the previous level of reconstruction. Since this low
frequency attenuation is applied at each step,Nth level of ap-
proximations are attenuated by αN .

(6) The reconstruction continues until the final enhanced
image is computed.

Due to downsampling, a WT is not translation invariant
and the algorithms based on nonlinear modification of the
WT coefficients introduce some artefacts. In [15], translation
invariant denoising scheme is presented, where the wavelet
denoising is performed for all possible translations of the sig-
nal and the results are averaged (cycle-spinning). As an alter-
native, a partial cycle spinning can be performed by arbitrar-
ily selected (not necessarily all) shifts of the signal.

3.3. Computational complexity analysis

The filter bank implementation of the wavelet decomposi-
tion is a computationally efficient way to obtain the mul-
tiresolution representation of the image. The modification
function is a combination of pointwise modifications with
the maximum complexity of finding from a lookup table.

The computation consists of wavelet decomposition,
pointwise nonlinear modification, and reconstruction. The
decomposition involves horizontal and vertical filtering with
downsampling by two. Both of these tasks take O(l f · M)
operations, where l f is the length of the filter and M is
the amount of pixels in the image. The complexity of the
nonlinear modification is also directly proportional to the
amount of pixels in the image. The reconstruction’s compu-
tational complexity is equal to the decomposition’s complex-
ity [16, 17, 18].

Thus, the combined complexity is O(l f ·M). The depth
of the decomposition does not affect it because the decom-
position of levelN will take a quarter of the complexity of the
decomposition of level N − 1.

The algorithm was implemented using a typical PC
workstation and the C-programming language. The en-
hancement of one translation for 2000 × 2000, 16 bit X-ray
images took less than 10 seconds to run using a 500-MHz
Pentium III computer. When the enhancement is run on
a modern 1.7-GHz Pentium IV computer, the time needed
for it decreases to less than 3 seconds. The use of dual-
processor workstation reduced the enhancement time by ap-
proximately 40%. Because the algorithm is implemented on
a general-purpose workstation, the performance can be ex-
pected to increase in time with no additional efforts [16, 17,
18]. The implemented algorithm is very convenient in use
due to its fast execution. The commercial software used pre-
viously for this application required execution time of 60 sec-
onds.

4. RESULTS

For testing purpose 2000 × 2000, 12-bit X-ray images were
used, namely, 15 frontal, four sagittal thorax images, and

Figure 5: The enhanced version (histogram was adjusted by using
a commercial software) of the original image in Figure 1. This im-
age was obtained by 8-level wavelet decomposition using a symlet
8-filter bank. The parameters are γ = 0.92, t = 2σ̂ , k = 0.1, and
α = 0.92, where σ̂ is the estimate of the noise standard deviation
computed by

√
2 times the median of the coarsest level of detail co-

efficients (D1). 8 arbitrarily selected shift variants of the enhanced
image were averaged for additional suppression of artefacts.

one-hand and one-ankle images.3 In our study, evaluation
was a part of progress of the research. Test images, denoised
and enhanced by various known algorithms (such as unsharp
masking [19], highpass filtering [19], histogram modifica-
tion [19], root filtering [19], classical wavelet shrinkage [9],
etc.) were sent to experts from the radiology departments
of various hospitals including Helsinki and Tampere Uni-
versity hospitals for their evaluation. They have listed the
problems related with these algorithms. Opinions of radi-
ologists were acquired (by support of a provider of X-ray
imaging systems) at various steps of the algorithm devel-
opment and the final algorithm was obtained by confirma-
tion of solution of the reported problems. It should be noted
that the algorithm introduced in this work was the only
one among various alternatives which was approved by the
experts. Two main advantages of the images enhanced us-
ing new algorithm are the following. First, both bone de-
tails (like spine in the thorax images) and soft tissue de-
tails (like the vessels in the thorax images) become visible
within the same image. Second, artefacts and deviations dis-
cussed in footnote 2 were not noticeable. The enhanced ver-
sion of the original image in Figure 1 is shown in Figure 5
and the same image with relatively higher rates of enhance-
ment is shown in Figure 6. The algorithm is universal; it
does not need any a priori information on the anatomical
features.

When the enhancement is performed by a linear filter
(like in Figures 1, 2, 3, 4), 2-dimensional convolution is ap-
plied requiring O(s f · s f · M), where s f is the length of
the sharpening filter. Furthermore, if the same frequency

3Courtesy of Imix Ltd., Tampere, Finland.
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Figure 6: The enhanced version (histogram was adjusted by using a
commercial software) of the original image in Figure 1 with sharper
enhancement parameters with respect to the image in Figure 5. This
image is obtained by the same decomposition scheme as in Figure 5.
The parameters are γ = 0.85, t = 2, k = 0.1, and α = 0.85. 8
arbitrarily selected shift variants of the enhanced image were av-
eraged to suppress artefacts. Such kind of sharply enhanced images
are generally not preferred for clinical use. However, even in sharply
enhanced images the problems shown in Figure 1 are not observed.

resolution is performed by a sharpening filter, its length s f
needs to be 2N · l f since the equivalent support of a wavelet
filter is doubled in each step of decomposition, due to down-
sampling.

5. CONCLUSIONS

This work aims to improve the visually recognizable infor-
mation in the diagnostic X-ray images. Algorithm increases
the visibility of relatively nonsignificant details without dis-
torting the image and within a reasonable execution time.
This is particularly important when the screening is con-
sidered. Because the structures due to cancer are progress-
ing in time, recognition of corresponding structures as early
as possible has a direct relation with the survival chance of
the patient. Improved representation of the diagnostic X-
ray images will help a human expert to perform an early
diagnosis.
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