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Abstract. Classical morphological image processing, where the same
structuring element is used to process the whole image, has its limi-
tations. Consequently, adaptive mathematical morphology is attracting
more and more attention. So far, however, the use of non-flat adaptive
structuring functions is very limited. This work presents a method for
defining quadratic structuring functions from the well known local struc-
ture tensor, building on previous work for flat adaptive morphology. The
result is a novel approach to adaptive mathematical morphology, suitable
for enhancement and linking of directional features in images. Moreover,
the presented strategy can be quite efficiently implemented and is easy to
use as it relies on just two user-set parameters which are directly related
to image measures.
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1 Introduction

1.1 Background

The aim of this work is to present a method for adaptive non-flat morpho-
logical filtering, suitable for enhancing or linking directional features and pat-
terns. Classical morphological operators are non-adaptive, i.e. the whole image
is probed by the same structuring element without taking variations in structure
into account. This is often not ideal, however. In particular; the resulting mor-
phological operations risk stretching over edges, which may destroy important
structure information. This has led to the development of adaptive mathemati-
cal morphology, where the structuring element (in the adaptive case often called
structuring function) may change for each point in the image. For a review of
the field of adaptive mathematical morphology, the interested reader is referred
to [9] and [14].

Of particular interest to this work are adaptive methods that rely on image
structure, i.e. methods where structuring elements are defined based on edges
and contours rather than restricted by e.g. measures of similarity. These meth-
ods are suitable for prolonging shapes or bridging gaps, thereby emphasizing
directional structures in the processed image. Some methods of this type work



in multiple scales in order to adapt the size of the structuring element to the
local scale of structures in the image [2, 18]. Other methods address structure
by considering local orientation only [17], or by combining local orientation with
other factors such as distances to edges [21] or degree of anisotropy [12]. It should
be noted, however, that one can always find an orientation even though it may
very well be completely irrelevant (i.e. where there is no prevalent orientation).
Imposing an orientation in such cases may introduce bias from the method it-
self. Consider, for instance, the simple case of unintentionally assigning a line of
random orientation as structuring element. Hence the degree of anisotropy is an
important aspect.

The Local Structure Tensor (LST) is a well known method for representing
image structure, containing information about both local orientation and degree
of anisotropy [8]. Some methods for adaptive morphology, such as the line-shaped
or rectangular structuring elements presented by Verdú-Monedero et al. [21] or
the continuous PDE-based morphology presented by Breuß et al. [6], use the
LST components implicitly or explicitly, but without using the anisotropy infor-
mation it contains. Only the Elliptical Adaptive Structuring Elements (EASE)
method [11, 12] takes advantage of this property of the LST.

The methods listed above are all presented for the so called flat case, where
structuring elements are defined by sets of points rather than functions. While
flat morphology may certainly be highly useful it does have limitations, and it is
natural to consider an extension to the non-flat case, where structuring elements
become structuring functions. Non-flat adaptive mathematical morphology is
far from common in literature, but some work have been published. Bouaynaya
and Schonfeld [4, 5] have presented a base for adaptive structuring functions.
The non-flat case has also been considered in non-local morphology by Salem-
bier [16] and Velasco-Forero and Angulo [20]. Angulo and Velasco-Forero [3] have
used structuring functions based on random walks, and Ćurić and Luengo Hen-
driks [10] have presented a method for salience-adaptive morphology based on
paraboloidal structuring functions. Moreover, Quadratic Structuring Functions
(QSFs) have been used by Angulo [1] as a base for flat adaptive morphology by
thresholding them at a given level.

This work builds on the previously presented EASE method [11, 12], present-
ing a strategy for non-flat mathematical morphology where QSFs are set from
the Local Structure Tensor.

1.2 Contribution

It has been shown that Quadratic Structuring Functions (QSFs) play a similar
role to morphology as Gaussian functions do to standard convolution filtering,
i.e. QSFs are to the morphological (max,+) and (min,+) algebras what the
Gaussian function is to the standard (+,×) algebra used in linear filtering [7,
19]. QSFs are thereby or particular interest – and importance – to mathematical
morphology.

As QSFs are paraboloids with elliptical level contours, the previously pre-
sented concept of Elliptical Adaptive Structuring Elements (EASE) [12] can be



quite naturally extended into the non-flat case, following the general theoreti-
cal work presented by Bouaynaya and Schonfeld [4, 5]. This article presents a
method that sets QSFs based on the information contained in the LST, building
on previous work [12] but enabling non-flat structuring functions. The presented
strategy yields a novel straight-forward approach to non-flat structure-based
adaptive morphology based on QSFs, which can be quite efficiently implemented.
Moreover; only two user-set parameters are required, which makes the method
easy to use.

2 Method

2.1 Adaptive Structuring Functions

Let f denote an image with values f(x) ∈ [0, 1] defined for points x ∈ D(f) and,
following the theoretical work by Bouaynaya et al. [4, 5], let

sx(u) = s[x](u− x) ∀u ∈ D(sx) ⊆ D(f) (1)

denote an adaptive structuring function for a point x. Note that both x and u

are given in global coordinates. The notation s[x] denotes that the function s
itself, rather than just its values, varies with x. The corresponding so called
reflected (or transposed) structuring function, used for defining proper morpho-
logical operations, is defined as

s∗
x
(u) = su(x) = s[u](x− u). (2)

The complete set of structuring functions {sx |x ∈ D(f)} is known as a Struc-

turing Element Map (SEM) for the image. This SEM also implicitly contains
the reflected (or transposed) structuring functions.

The morphological erosion and dilation for the adaptive case are then given
by (see Ref. [4]):

εs(f) =
∧

u∈D(sx)
{f(u)− sx(u)} , (3)

δs(f) =
∨

u∈D(s∗
x
) {f(u) + s∗

x
(u)} . (4)

Given that the SEM remains constant over the operations, these definitions
ensure that the erosion and dilation are adjunct – a property often overseen
within adaptive morphology, as noted by Roerdink [15]. The opening and closing
can now be properly defined as

γs(f) = (δs ◦ εs)(f) = δs(εs(f)), (5)

ϕs(f) = (εs ◦ δs)(f) = εs(δs(f)). (6)

In practice the dilation δs(f) can be calculated by the following algorithm, which
goes through all points x and updates the value at point u in δs(f) when f(x)+
sx(u) yields a higher value (similar to previous usage for the flat case, see e.g.
Ref. [13]):

(δs(f))(u)←−
∨

{(δs(f))(u), f(x) + sx(u)} , ∀u ∈ sx, ∀x ∈ D(f). (7)

We now simply need to define our SEM.



2.2 The Local Structure Tensor

As demonstrated in previous work [12], the Local Structure Tensor (LST) can
be used to define elliptical adaptive structuring elements. The LST T(x) can be
constructed from the image gradient by

T(x) =

(

T11 T12

T12 T22

)

(x) = Gσ ∗
(

∇f(x)∇Tf(x)
)

, (8)

where ∇ =
(

∂
∂x1

∂
∂x2

)T

and Gσ is a Gaussian kernel with standard devia-

tion σ [8]. The image gradient can be estimated by applying standard gradient
filters on a slightly smoothed version of the input image. The parameter σ sets
the scale for which the LST should be representative, and can be set implicitly
by defining a radial bandwidth rw for the filter (so that Gσ decreases to half of
its maximum value at distance rw from its center), i.e.

σ =
rw√
2 ln 2

. (9)

The eigenvalues λ1(x) and λ2(x) (λ1(x) ≥ λ2(x)) and corresponding eigen-
vectors e1(x) and e2(x) of T(x) hold information about structures (edges) in the
image. Eigenvalues can be interpreted based on Table 1, while e2(x) represents
the direction of the smallest variation [8].

Table 1: Interpretation of the eigenvalues λ1 and λ2 of the LST T

λ1 ≈ λ2 ≫ 0 No dominant direction

(edge crossing or point)

λ1 ≫ λ2 ≈ 0 Strong dominant direction (edge)

λ1 ≈ λ2 ≈ 0 No dominant direction (no edge)

2.3 Flat Structuring Elements

Previous work [12, 11] has defined flat elliptical adaptive structuring elements.
The axes a(x) and b(x) are set from the eigenvalues of T(x) by the expressions

a(x) =
λ1(x)

λ1(x) + λ2(x)
·M, b(x) =

λ2(x)

λ1(x) + λ2(x)
·M, (10)

where M denotes the maximum allowed semi-major axis. Numerical stability is
addressed by adding a small positive number (i.e. machine epsilon) to the eigen-
values. The orientation θ(x) is retrieved from the corresponding eigenvectors



by

θ(x) =















arctan

(

e2,x2
(x)

e2,x1
(x)

)

, e2,x1
(x) 6= 0,

π/2, e2,x1
(x) = 0,

(11)

where e2,x1
(x) and e2,x2

(x) denote the components of the eigenvector e2(x). The
resulting structuring elements range dynamically from lines of length M where
λ1(x) ≫ λ2(x) ≈ 0, i.e. near strong dominant edges in the data, to disks with
radius M

2 where λ1(x) ≈ λ2(x), i.e. where no single direction represents the local
image structure.

2.4 Quadratic Structuring Functions

The change from flat structuring elements to Quadratic Structuring Functions
(QSFs) is quite straight-forward, yet yields a substantial change: the LST is still
used to calculate a, b, and θ, but the parameters are now used to set QSFs
rather than flat elliptical structuring elements. The result is a method for non-
flat adaptive morphology based on a well known method for estimating structure
in images.

Given a, b, and θ we define the quadratic structuring function (with elliptical
level contours)

sx(u) = −
1

2

(

(

(x1 − u1) cos θ + (x2 − u2) sin θ

a

)2

+

(

(x1 − u1) sin θ − (x2 − u2) cos θ

b

)2
)

(12)

= −1

2
(u− x)TR

(

a−2 0
0 b−2

)

RT (u− x) (13)

= − 1

2M2
(u− x)TR

(

α−2 0
0 β−2

)

RT (u− x) (14)

where

R =

(

cos θ − sin θ
sin θ cos θ

)

, α =
λ1

λ1 + λ2
, β =

λ2

λ1 + λ2
. (15)

For numerical stability, Eqs. (12) or (13) should be used for setting the QSFs.
To avoid division by zero in the case when b = 0, a and b (which are measured in
pixel units) can be increased by 1

2 . If image function values within the range [0, 1]
can be assumed, a non-flat structuring function sx will not cause any change
where sx < −1. The values of the QSFs can therefore be precomputed on a fixed
spatial support D(sx) large enough to ensure sx(u) ≤ −1 ∀u /∈ D(sx).

Equation (14) clearly shows how M becomes a scale factor for the structur-
ing functions. It should be noted that the set {u | sx(u) ≥ − 1

2} yields the flat
elliptical structuring element in the previous section.
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Fig. 1: Detailed examples of structuring functions. (a): An original image with
the contours sx = − 1

2 drawn in red for a subset of the SEM. (b)–(e): The QSFs
for the corresponding points marked in (a).

3 Results

3.1 Structuring Function Shapes

Figure 1 shows a close-up of an input image and a subset of its SEM for M =
rw = 8 (Fig. 1a). The red ellipses in Fig. 1a show the contours of sx = − 1

2 for
the selected subset of points, and are thereby equivalent to the flat ellipses in
Sect. 2.3. Four detailed examples of the resulting QSFs, corresponding to the
points marked with letters are presented in detail in Figs. 1b–1e.

The close connection to the flat elliptical structuring elements is obvious, and
it is clear that the structuring functions follow the image structure well. One
potential issue, which does not show up in this particular subset of structuring
functions but may be easily anticipated, may appear as a result from going from
a continuous definition to a discrete domain of pixels: in the case of a QSF with
a domain in the shape of a line which is not aligned with the axes, the maximum
of the expression may end up in-between pixels. Consider, for instance, a small
shift of the orientation of the structuring function in Fig. 1d. The values in the
outer pixels would soon end up in between the pixel positions, as the structuring
function is very thin. This would make the implemented structuring function
shorter than the theoretical.



3.2 Comparison to Flat EASE

Figure 2 compares the presented QSF method to flat EASE. Looking at the top
and left parts of the result for flat EASE (Fig. 2b), sharp edges are introduced
by the flat structuring elements while the quadratic structuring functions leave
a much more smooth result (Figs. 2c–2f). It should be noted that as the impact
of a QSF decreases with distance to its middle point, the presented method
obviously need a larger value of M than the flat elliptical structuring elements
in order to achieve a similar level of change in the image.

The effect of different scales of the morphological operations are clear: as the
scale for QSFs is increased (Figs. 2c–2f), so are the changes to the original image.
The result for M = 2 is more or less identical to the original image (Fig. 2c),
but as M is increased the result becomes more and more similar to (yet still
more smooth than) the more severe changes resulting from the flat operation
(compare Fig. 2f with Fig. 2b).

3.3 Morphological Operations

Figure 3 shows examples of morphological operations based on the presented
QSFs. The erosion and opening successfully enhances dark lines and edges, while
the dilation and closing do the same for bright directional features. This is most
evident in the hat, hair, and feathers. Also note how the mouth changes in
different ways in the erosion and dilation.

More examples of adaptive openings and closings by the presented method
are presented in Fig. 4. The dark structures around the windows in the image
on the first row (original in the left column) are clearly enhanced by the opening
(middle row), while the closing (right column) instead links the bright spots
along the left edge of the roof into a continuous bright line. In the second row
the opening removes bright features such as the whiskers, while darks regions
such as the mouth are enhanced. The closing instead makes the whiskers show
more clearly.

The third row demonstrates how the opening enhances the dark branches.
Note how the structuring functions change from anisotropic to isotropic as
branches cross, which means that there is no obvious direction to follow. If de-
sired (which may depend on the specific application), this effect could be coun-
tered by changing the size of the structuring functions based on the magnitudes
of the eigenvalues (which will both be high at crossings).

In the fourth row, the linking properties of the presented method are clear:
the opening enhances the dark rail while the closing connects the originally
slightly separated parts of the bright train. Finally, the last row demonstrates
the use of the method in a specific practical case: the opening enhances a crack in
steel, making it easier to find and classify the crack. Note that the parameter rw
sets the scale for the structures to align to, which means that both M and rw
need to be related to the size of the gaps to bridge.
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Fig. 2: Top row: close-up (size 175×145 pixels) of an original image (a) and its
opening by flat EASE with M = rw = 4 (b). Second and third rows: Openings
by the presented QSFs for M = {2, 4, 8, 16}, rw = 4 (c,d,e, and f).
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Fig. 3: An original image (size 512×512 pixels) and examples of the erosion (b),
dilation (c), opening (d), and closing (e) with M = 16, rw = 8.



Fig. 4: Five original images of size 400×400 pixels (left column), and their open-
ings (middle column) and closings (right column) using M=16, rw=8.



4 Conclusion

In this work an approach for interpreting the LST into well defined QSFs in a
straight-forward manner has been investigated. The results show that the pre-
sented method successfully enhances edges and lines, and adapts well to struc-
ture. It builds on the previously presented EASE method, with the important
contribution of allowing non-flat adaptive morphology.

The strategy does not only demonstrate a mathematically solid method for
non-flat morphological filtering, based on well known theory, but presents a
method which can be quite easily implemented with a low number of user-set
parameters (the scale for the LST and the scale for the QSF, and possibly the
level of prefiltering) which are easily related to measures in the image. The
implementation can be done quite efficiently by pre-calculating the weights of
the quadratic structuring functions. There are some issues to consider when going
from continuous theory to discrete practice, however, as discussed in Sect. 3.1.

The presented method demonstrates a solid interpretation of the LST which
yields well defined structuring functions, but there are of course other ways in
which the LST could be converted into QSFs. Future work should investigate
this direction further. In particular, the relation to the covariance matrix (which
under some assumptions is equivalent to the LST) and the Mahalanobis dis-
tance should be pursued. A quantitative comparison to other methods based on
adaptive structuring functions should also be conducted.

Acknowledgment

The author would like to thank Dr. Jesús Angulo for highly appreciated input,
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