
On the Requirements of High-Integrity Code Generation∗

Michael W. Whalen Mats P.E. Heimdahl
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

{whalen, heimdahl}@cs.umn.edu

Abstract

Although formal requirements specifications can pro-
vide a complete and consistent description of a safety-
critical software system, designing and developing produc-
tion quality code from high-level specifications can be a
time-consuming and error-prone process. Automated trans-
lation, or code generation, of the specification to produc-
tion code can alleviate many of the problems associated
with design and implementation. However, current ap-
proaches have been unsuitable for safety-critical environ-
ments because they employ complex and/or ad-hoc methods
for translation.

In this paper, we discuss the issues involved in automatic
code generation for high-assurance systems and define a set
of requirements that code generators for this domain must
satisfy. These requirements cover the formality of the trans-
lation, the quality of the code generator, and the properties
of the generated code.

1 Introduction

Software plays an increasingly important role in safety-
critical systems as computers take over crucial functionality.
A system is safety-critical if the incorrect operation of the
software could lead to loss of life, substantial material or
environmental damage, or large monetary losses.

One of the main sources of flaws in safety-critical sys-
tems is inadequate software system specifications. Specifi-
cations written entirely in natural language (e.g., English)
can be inadequate because natural language is inherently
ambiguous and difficult to analyze. Formal specification
languages are designed to precisely and concisely state the
requirements for a software system. When used in tandem
with explanatory text, formal specification languages can be

∗This work has been partially supported by NSF grants CCR-9624324
and CCR-9615088, and University of Minnesota Grant in Aid of Research.

used to create complete and unambiguous specifications for
a software system. Nevertheless, even if a formal require-
ments effort produces a correct specification, designing and
developing production quality code from the specification
can be a time-consuming and error-prone process.

Automatically generating the production code from a
specification alleviates many of the problems in system de-
velopment. If done correctly, automated translation guaran-
tees that the behavior of the production code is correct with
respect to the formal specification; the specification as well
as the program can be viewed as mathematical objects so
such a translation is clearly feasible. There are commercial
systems that are based on this idea and translate a formal or
semi-formal specification to executable code, for instance,
Statemate from I-Logix [6], the Rose tools from Rational
Corporation, and SCADE from Verilog [4].

There are, however, several reasons to distrust any code
generated from a formal or semi-formal specification: (1)
the specification language and/or target language may lack
formal semantics, (2) the translation may not be formally
defined, and (3) the translation tool may be incorrectly im-
plemented. Consequently, the full benefits of code genera-
tion are not realized in safety-critical systems. However, we
believe that appropriately adopted, code generation can and
should be used to satisfy customer quality, regulatory, legal,
and ethical requirements imposed on safety-critical applica-
tions. To achieve an acceptable level of confidence that the
generated code is correct, a wide range of mechanisms must
be used in concert.

In this paper we explore the requirements of code gen-
eration for safety-critical systems in detail. Section 2 pro-
vides an overview of code generation from formal specifi-
cations. Section 3 describes the level of formality neces-
sary to reason about the translation process. Section 4 de-
scribes requirements for developing the implementation of
the translation. Section 5 describes readability and trace-
ability constraints on the generated code. In Section 6, we
describe an ongoing project to create an environment satis-
fying our stringent requirements. Finally, we briefly survey



several code generators for different classes of formal lan-
guages and discuss their applicability for code generation
for safety critical systems.

2 Code Generation Overview

The goal of a high-assurance development effort is to
produce a well-understood, well-documented software sys-
tem that works correctly in its target environment with min-
imal cost and effort. Provably-correct code generation al-
lows a development team to greatly reduce the time spent
in the design and implementation stages of the develop-
ment process, and eliminates all errors potentially intro-
duced throughout these stages. It also facilitates a devel-
opment process where any changes to the system are made
directly to the specification, not the implementation code,
so that the specification and the implementation are always
kept consistent. Thus, the goal of code generation from
high-level formal requirements models is to increase pro-
ductivity and quality by directly deriving production code
from the formal model.

To take full advantage of code generation from formal
specifications it is imperative that the formal specification
is correct. If the specification cannot be guaranteed to be
correct, the generated code must undergo the same exten-
sive V&V required for manually created code; the only sav-
ing would be the elimination of the actual coding stage. On
the other hand, if we can validate and verify the specifi-
cation itself, we may be able to greatly reduce the V&V
resources that need to be expended on the generated code;
this is where the significant cost savings can be realized.
Thus, any correctness preserving code generation is pre-
conditioned on a correct specification.

Unfortunately, having a fully formal and correct require-
ments model does not guarantee the success of a develop-
ment approach based on automated code generation; the
translation and translation tool must also be correct. In addi-
tion, the translation must beacceptableto the customer, reg-
ulatory agencies, and any legal interests. Regulatory stan-
dards related to safety critical software development have
traditionally taken a cautious (if not skeptical) view of code
generation and their concerns must be satisfied before this
approach will achieve widespread use.

To provide the level of confidence in the code generation
approach needed for its use on safety-critical software in a
regulated and litigious society, we must take every precau-
tion possible to demonstrate that the code generation works
correctly. We can achieve acceptable confidence if the code
generation approach satisfies the following requirements:

• The source and target languages are formally defined.

• The translation between the source and target is for-
mally proven to be meaning-preserving.

• Formal arguments are provided to validate the transla-
tor software and/or the generated code.

• The translator software is rigorously tested and treated
as high-assurance software.

• The generated code is well-structured, well-
documented, and easily traceable to the original
specification.

The next three sections discuss these requirements in
more detail.

3 Formal Basis

Any high-assurance technique must be grounded in
mathematics. If we cannot formally state what specifica-
tions and programs mean, then there is no hope of show-
ing that a specification and a program are equivalent. How-
ever, if a mathematical description of the source and target
language is provided, then we can specify the code gen-
eration process as a transformation function, and we can
reason about whether the transformation function creates a
program with the same meaning as the specification.

The first step is to define the precise meaning of the
source and target languages.

Requirement 1
The source and target languages must have formally well-
defined syntax and semantics.

All of the high-level specification languages in which we
are interested have a formal semantics. Examples include
Z [14], SCR [8], and RSML [10]. Target languages present
more of a problem. Since most functional and logic lan-
guages use recursion and dynamic memory allocation, they
are not suitable for safety-critical applications and must be
excluded from consideration. In the remaining category,
imperative languages, it is difficult to find a language with
a manageable semantics. The denotational semantics for
SPARK-Ada (a subset of Ada used for safety-critical ap-
plications) requires over 500 pages of Z [11]. A similar
effort to formalize Modula-2 also required several hundred
pages [15]. The likelihood that such voluminous language
semantics definitions are correct is small.

The reason that these languages require such enormous
specifications is that the languages were defined without
thought of full formalization. Thus, to provide rigorous ar-
guments for the correctness of a translation, it is not feasible
to use any of the existing general purpose programming lan-
guages as a target language. Instead, one must target a much
smaller language by removing complicating features such
as sequencers (i.e., statements that cause unusual transfer of
control, for instance, goto, break, and continue), and point-
ers, that do not belong in safety-critical applications. Such

2



a simplified language can be powerful enough to implement
useful high-assurance systems, yet simple enough to have a
fully formalized semantics.

Specification
Abstract Syntax

Tree (AST)

Specification
Meaning

AST in Target
Language

Program Meaning

compiled into

semantics of
specification

language

semantics of
implementation

language

equivalence
proof

Legend:

Formal Definition

Code Generator Output

Proof

Figure 1. Formal code generation process

Once we have source and target languages with formal
semantics, it is possible to create a translation between
them. The translation process, as described in Figure 1, de-
scribes a provably equivalent representation of the specifi-
cation in the target language.

Requirement 2
The translation between a specification expressed in a
source language and a program expressed in a target lan-
guage must be formal and proven to maintain the meaning
of the specification.

What it means for a translation tomaintain the meaning
of a specification depends on the formalism used to describe
the specification, and in the type of program to be trans-
lated. For example, a specification language for embedded
systems describes the behavior in terms of a transforma-
tion function from an initial state and input variable values
to a new state and output variable values. In this case, the
translation is meaning-preserving if, for any state and input
set valid for the specification, the specification and the pro-
gram generate the same output values and state information.
Note that a program can be meaning-preserving to a speci-
fication and still have “extra” state information that is used
for scratch space, loop counters, etc.

Because even relatively simple languages can have large
semantic descriptions, the proofs that the translation be-
tween the source and target languages maintains the mean-
ing of the specification become quite large. To simplify the
proofs, it is necessary to break them apart into much smaller

subproofs. If both the source and target language are spec-
ified using denotational semantics (or some variant), it is
possible to use structural induction to break the proofs into
much more manageable pieces [15] (Figure 1).

To summarize, a code generation approach for high-
assurance systems requires fully formal semantics for both
the source and target languages. In addition, the transla-
tion between a specification expressed in the source lan-
guage and the implementation captured in the target lan-
guage must be fully formal and proven to preserve the
meaning of the specification.

4 Implementating the Translation

A formal translation mathematically describes how to
correctly convert a specification to a target program, but
it does not provide us with a useful software artifact. An
implementationmust be created that correctly performs the
translation. In the implementation stage, it is not currently
possible to use a completely formal approach; it would re-
quire a formally verified language, compiler, operating sys-
tem, and hardware platform. Therefore, we attempt to use
rigorous arguments about the translator and/or the generated
code in tandem with testing and validation techniques used
in safety-critical software.

Specification

Imperative
Language
Program

Machine Code

Code Generation

Compilation

1

Observable
Behavior

Execution

2

3

Figure 2. Formal code generation process

The goal is to create an approach that automatically gen-
erates machine code based on a formal specification through
a process as shown in Figure 2. In this report we are con-
centrating on the requirements of step 1 of the process, but
the compiler (step 2) and the hardware (step 3) must also

3



work correctly for the full approach to be valid; similar cor-
rectness requirements should also be placed on these steps.

Requirement 3
Rigorous arguments must be provided to validate the trans-
lator and/or the generated code.

There are two techniques to validate code generated by
a translator. The first approach is to validate the transla-
tor itself. Ideally, the verified design of the code genera-
tor would be implemented using a validated compiler in a
provably-correct language that provides a high level of ab-
straction. To the best of our knowledge, there are no lan-
guages that match these criteria. The next-best choice is
to use well-known and well-understood features in a high-
level language with a rigorously validated compiler. Lan-
guages such as Ada and Prolog can be used for this pur-
pose. Since current state of the art is unable to extend formal
proofs to this endeavor, it is imperative that the implemen-
tation is as simple as possible, and is transparently based on
the formal translation discussed in the previous section. The
simpler and clearer the mapping between the formal seman-
tics and the implementation of the translator, the easier it is
to make correctness arguments regarding the translator.

An alternate approach is to create aproof checkerthat
will validate a given translation from specification to code.
The generated code is annotated with correctness obliga-
tions which can be verified against the original specifica-
tion by another tool. The proof checker tool takes the orig-
inal specification and the annotated code and determines
whether the program correctly implements the specifica-
tion. In this case, the proof checker, not the translator itself
becomes the tool that must be rigorously validated. This
approach is most useful when the compiler is very compli-
cated or performs extensive optimizations on the generated
code.

Requirement 4
The implementation of the translator must be rigorously
tested and treated as high-assurance software.

Because the implementation cannot be entirely formally
verified, we must expend any reasonable software develop-
ment efforts to further increase our confidence in the cor-
rectness of the translation. In general, the translator im-
plementation or proof checker should be regarded a high-
assurance project itself and must, therefore, follow any de-
velopment and testing standards defined for high-assurance
software, for example, DO-178B [13] or MOD-0055 [12].

Thus, every possible effort should be expended on the
assurance of the generated code. This involves attempting
to keep the tool implementations as simple and clean as pos-
sible, applying any feasible formal proof techniques, using
a rigorous development effort, and extensively testing the
final product.

5 Target Code Attributes

Although the formal arguments generated above provide
a high level of assurance that the software will operate as
intended, they are not infallible. Considering the complex-
ity of formal semantics and the volume of proof required to
verify the translation and, to a greater extent, the translator,
it is possible that errors have been introduced and some of
the proofs are wrong.

To provide additional confidence that the generated code
is correct, the structure of the code must allow independent
means of verification, such as manual inspections and test-
ing. Also, some regulatory agencies are reluctant to accept
formal proofs as correctness arguments, so an independent
verification of the generated code is required for regulatory
approval. Therefore, the code output from the code gener-
ator must be in a form that adheres to good software en-
gineering practice and follows the standard styles for the
target language. This output should include comments de-
scribing the generated functions as well as traceability in-
formation to the original specification [17].

Requirement 5
The generated code must be well structured, well docu-
mented, and easily traceable to the original specification.

The first reason that the output must be readable and
traceable is for manual inspections. Manual inspections of
the code is an effective means of verification and may be
used for additional assurance or be required for certifica-
tion. If the code is not clear and easily traceable to the re-
quirements model, inspections are not possible.

Traceable output is also necessary for effective system
testing. If an error is discovered in testing, we must be
able to trace the error back to the specification to determine
where the error was introduced. It is also possible that de-
spite our best efforts, the error was introduced by a fault
in the code generator or by the compiler that translates the
generated code to assembly language. Thus, in order to cor-
rect errors in the specification and to ensure that the code
generator and compiler create correct code from the speci-
fication, we must be able to understand and trace between
the generated code and the requirements.

A special testing issue involves verifying timing con-
straints. Most specification languages view the software as
responding infinitely fast to external events. The specifica-
tion may include timing constraints, but the code generation
approach can rarely (if ever) guarantee that these constraints
will be met but the generated program. Even if the run-time
of the generated code can be bounded, it is difficult to verify
the end-to-end timing constraints of the system because the
generated code usually must interact with externally-written
code, such as a real-time operating system (RTOS) or hard-
ware drivers. If this is the case, the performance of the code

4



must be validated after it is generated. If the generated code
is readable and traceable, it is possible to instrument the
code where appropriate to validate the timing behavior of
the system.

By providing readable and traceable code, several forms
of validation are facilitated: manual inspections, automated
analysis of the generated code, and testing. In order to de-
rive the highest level of assurance for a safety-critical sys-
tem, all of these approaches are necessary, so that a defect
in an automated tool or an oversight by an inspector does
not prevent finding an error in the system.

6 The Nimbus Approach

As discussed earlier, the utility of code generation is
predicated on having a correct specification. TheNIMBUS

environment is designed to facilitate all stages of the soft-
ware development process, including specification creation,
analysis, and execution of formal specifications written in
the Requirements State Machine Language (RSML) [10].
We are attempting to use the guidelines described above to
create a code generator to theNIMBUS environment,

North_Lights South_Lights North_Gate South_Gate

Intersection

On

Off

On

Off

Up

Down

Up

Down

Train-In-Crossing

No_Train

Train_Crossing

Entering-Crossing

In-Crossing

Leaving-Crossing

Figure 3. State Machine for Train Crossing

To describe an overview of the code generation process
from RSML specifications, we provide a perfunctory, sim-
plified overview of the RSML language. Readers interested
in a more complete description of the language are referred
to [7]. RSML is based on hierarchical finite state machines
and is in many ways similar to David Harel’s Statecharts [5].
An example of an RSML specification is shown in Figure 3.
The state of an RSML machine (itsMachineState) is de-
scribed by:

• The histories of all variables defined in the specifica-
tion.

• The set of states from the machine that are currently
occupied, called theconfiguration.

The behavior of an RSML machine is defined by events and
transitions. An RSML specification has a set of predefined
events, similar to a finite state automaton. Each transition is
triggered by one event. However, a transition may also have
a guarding condition, which describes an additional predi-
cate that must be satisfied for the transition to be taken. If
a transition is taken, it may change the configuration of the
machine, assign values to variables, and cause new events
to be generated.

Formally, the behavior of an RSML machine is a relation
from MachineStateto MachineState. The relation is created
by composing the transition functions within the specifica-
tion. Each transition can be thought of as a partial function
that is defined if its guarding condition is satisfied. These
transitions are grouped by their trigger event, then com-
posed in serial (f ◦g) and in union (f ∪g) to create a relation
that describes the behavior of the machine under a particu-
lar event. Next, the behavior of the machine under a set of
events is the serial composition of its behaviors under each
event. The complete behavior of a machine in response to a
message is described by thenext state relation F. If we can
show that the behavior of the machine under each event is
a total function, then we can show that the behavior of the
machine as a whole is a total function [7].

Our approach uses denotational semantics to describe the
source and target languages, and structural induction to cre-
ate the proof of equivalence between the two languages. To
show that two specifications are equivalent, we first show
that the most basic constructs (constants and variables) are
equivalent, then we inductively prove that higher level con-
structs are equivalent. By using structural induction, we can
break the very large proof of specification equivalence into
much smaller proofs for each language construct.

Most of the constructs defined in an RSML specification,
such as types, variables, and user-defined functions, can be
given a standard imperative denotational meaning. Transi-
tions in RSML are defined as partial denotational functions,
so they can be composed as described earlier. These transi-
tions create the semantics of the RSML next-state function.

Since the denotational meanings of “real” imperative
languages like Ada and C are incredibly verbose, we de-
cided to create denotational semantics for a very simple im-
perative language specifically designed for use in proofs for
code generation. The language, SIMPL (forSafety-critical
IMPerative Language), contains constructs for variables,
constants, functions, procedures, basic and composite (ar-
ray and record) types. However, it does not support flow of
control statements such as breaks, gotos, continues, or early

5



returns from functions, nor does it support pointers. Since
SIMPL corresponds to a strict subset of several languages, it
is a straightforward process to translate the SIMPL code to
a commercial imperative language. Using the SIMPL lan-
guage also allows a large degree of flexibility for targeting
different imperative languages with the code generator.

The basic constructs in RSML such as variables, types,
and user-defined functions have a denotational meaning, so
it is possible to directly perform equivalence proofs between
these entities in the RSML specification and their equiva-
lents in SIMPL. Much of the mapping between the RSML
specification and SIMPL is trivial; variables, types, and ex-
pressions have a one-to-one correspondence in RSML and
SIMPL, and have the same denotation as well. Translating
the transitions and the next-state function is more involved,
but the compositional nature of the proofs makes each proof
relatively straightforward.

The proofs for a given RSML language construct all fol-
low a variant of Figure 4, which is derived from Stepney’s
research in provably correct compilers research [15]. Given
an initial state for the SIMPL program, we translate it to the
equivalent RSML state. Then we generate the meaning of
the construct both in RSML and in the generated SIMPL
code. If the denotation generated is the same for both paths,
then the RSML construct and its implementation are proved
equivalent.

code generator
before

SIMPL before

initial
hypothesis

construct template

construct meaning
of template

SIMPL after

code generator
afterwards

RSML before
construct meaning

RSML after

proof
obligation

Figure 4. Overview of proof process

Translating the denotational and operational meaning of
an RSML specification must be as transparent and straight-
forward as possible. We plan on using Prolog with exten-
sions for Definite Clause Translation Grammars (DCTGs)
to implement the code generator; Prolog provides direct
support for parsing specifications, it maps very closely to
the formal semantics of the translator, and supports the list
and set types required. Furthermore, it has been used suc-
cessfully for implementing high-integrity compilers [15].

We have also designed the translation to produce human

readable output. The most important goal was for the gen-
erated code to resemble and to be easily traceable to the
original specification. The areas that we have focused our
attention are:

Traceability: Each transition in an RSML specification is
implemented as a function in the SIMPL program, of
the following form:

if (predicate) then
exit source state
enter destination state
modify variables if necessary
add any events generated by

this transition to event queue
end if

Since this notation matches very closely to the input
from the RSML file, it is straightforward to examine
and trace the generated code.

Readability: If variables that are not present in the RSML
file are added to the SIMPL file, they are always well
commented and appropriately named.

Extensive Commenting: Every function is described in
terms of its type (transition or composition), its loca-
tion in the RSML machine, and its behavior. To sup-
port commenting, we add a dummy statement type to
SIMPL for comments.

Performance: Although correctness and traceability were
our primary design criteria for code generation, perfor-
mance is also a concern. With a preliminary version
of the code generator in a case study [9], performance
was approximately an order of magnitude slower and
approximately the same size as hand-coded C. We are
researching techniques for improving the performance
while satisfying the requirements described in this pa-
per.

With our approach, we have attempted to satisfy the re-
quirements that we have described in this paper. By spec-
ifying the denotational semantics of RSML and SIMPL,
we satisfy requirement 1. By specifying a formal trans-
lation process between RSML and SIMPL, we satisfy re-
quirement 2. By creating an implementation in Prolog that
closely matches the formal translation, we satisfy require-
ment 3. We plan to provide a comprehensive set of specifi-
cations to test the implementation to satisfy requirement 4.
By adhering to specific goals for the output, we satisfy re-
quirement 5.

6



7 Related Work

Our guidelines are based on the work of several existing
compilers and code generators for various formal specifica-
tion languages.

7.1 High Integrity Compilers

High integrity compilers are concerned with creating a
provably correct mapping between an imperative language
and an assembly language for safety critical systems. Many
of the requirements for provably correct code generation
are originally from research in developing a high-integrity
compiler [16, 15]. These systems are verified either by
denotational proofs (as outlined in this paper) or through
transformational approaches. High integrity compilers have
been successfully used on several projects, including nu-
clear power.

This is a complementary area of research to high in-
tegrity code generators. With a high integrity compiler, it
is possible to validate the entire compilation process from
a high-level specification to machine code. Unfortunately,
this field is still in its early stages, and research groups are
in the process of scaling up their languages to a point where
they would be suitable for large-scale projects.

7.2 Executable specification languages

An executable specification language is a formally well
defined, very high-level programming language. Languages
such as PAISLey [18] and ASLAN [1] are intended to
replace requirements specifications, design specifications,
and, in some instances, implementation code. Thus, most
executable specification languages are intended to play
many roles in the software development process. Exe-
cutable specification languages have achieved some success
and have been applied to industrial size projects. Many lan-
guages have elaborate tool-sets and support refinement of a
high level specification into more detailed design descrip-
tions or implementation code.

Nevertheless, current executable specifications lan-
guages have several drawbacks. Most importantly, the syn-
tax and semantics are, in our opinion, close to traditional
programming languages. Therefore, they do not provide the
level of abstraction and readability required of a notation if
it is going to be usable as a requirements specification lan-
guage. Furthermore, no currently available language pro-
vides support for high level specification of the interfaces
governing the interaction between embedded software and
the environment. Code generation is not directly supported
in PAISLey or ASLAN.

Notable exceptions to the languages discussed above are
a collection of state-based notations. Languages such as

Statecharts [5], SCR (Software Cost Reduction) [8], and
RSML [10], are very-high level and provide excellent sup-
port for inspections since they are relatively easy to use and
understand.

We have already described the RSML code generation
capabilities; Statecharts also supports a code generation fa-
cility; however, Statecharts does not have a fully formal se-
mantics, so no formal correctness arguments can be pre-
sented for the generated code. SCR currently does not in-
clude a code generation tool as part of its environment.

7.3 Synchronous programming languages

Synchronous programming languages such as Esterel [2]
and Lustre [3] are programming languages with extensions
to support abstract parallelism and control structures based
on events. These extensions are useful for developing em-
bedded software, especially when a program is supposed
to react to several external events in parallel. Esterel uses
explicit, program- or environment-generated events to se-
quence computations, while Lustre is based on control the-
ory and uses a dataflow model and implicit events based
on clockswhich denote time in the external world. Syn-
chronous languages have a formal model, and provide some
mechanisms for formal verification. For example, in Lus-
tre, an entity cannot be data-dependent on itself. These
languages have been successfully used in large industrial
projects, including Airbus flight software. As synchronous
languages can be transformed into finite state automata,
very efficient code can be generated from the models.

Synchronous programming languages are not, however,
designed to be used as specification languages. They are,
instead, an improvement on standard imperative languages
for implementation of reactive systems. They suffer from
the same problems as executable languages when used for
specification. Also, although it is possible to create a very
efficient automaton for the generated code, the generated
automatons bear little resemblance to the original specifi-
cation, so it is difficult to read the generated code, trace it
back to the original specification, and independently verify
that the translation was done correctly.

8 Summary and Conclusion

Code generation holds the promise of eliminating much
of the time and effort required to implement safety-critical
systems, while at the same time eliminating errors intro-
duced in this stage of development. However, without strin-
gent guidelines on the translation, the implementation of
the translator, and the structure of the output, this promise
will not be realized because the generated code cannot be
trusted.

7



In this paper, we have provided a minimum set of re-
quirements for creating a code generator that is fit to pro-
duce code for a safety-critical system. These requirements
are culled from our own work, previous work in provably-
correct compilers, and from informal code-generation ap-
proaches. They are designed to satisfy ethical, legal, and
regulatory concerns with using code generation. First, the
source and target languages must be formal. Second, a for-
mal meaning-preserving translation must be described be-
tween the two languages. Third, the implementation of the
translator must be verified to confirm it implements the for-
mal transformation. Fourth, the translator must be treated
as high-assurance software and tested accordingly. Finally,
the output from the compiler must be readable and easily
traceable back to the original specification.

In order to validate these guidelines as sufficient, we are
building a code generator suitable for safety-critical systems
for the specification language RSML. The target language,
SIMPL, was designed as a strict subset of many imperative
languages used for development of safety-critical systems.
By using SIMPL, we can simplify the equivalence proofs
for the formal translation and also target multiple imple-
mentation languages in a separate, very small, and easy to
implement translator.

References

[1] B. Auernheimer and R. A. Kemmerer. RT-ASLAN: A spec-
ification language for real-time systems.IEEE Transactions
on Software Engineering, 12(9), September 1986.

[2] Gérard Berry and Georges Gonthier. The Esterel syn-
chronous programming language: Design, semantics, imple-
mentation. Science of Computer Programming, 19(2):87–
152, 1992.

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language lustre.Pro-
ceedings of the IEEE, 79(9):1305–1320, September 1991.

[4] N. Halbwachs, P. Raymond, and C. Ratel. Generating effi-
cient code from data-flow programs. InThird International
Symposium on Programming Language Implementation and
Logic Programming, Passau (Germany), August 1991.

[5] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274,
June 1987.

[6] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot. State-
mate: A working environment for the development of com-
plex reactive systems.IEEE Transactions on Software Engi-
neering, 16(4):403–414, April 1990.

[7] Mats P. E. Heimdahl and Nancy G. Leveson. Complete-
ness and consistency in hierarchical state-base requirements.
IEEE Transactions on Software Engineering, 22(6):363–
377, June 1996.

[8] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Auto-
mated consistency checking of requirements specifications.

ACM Transactions on Software Engineering and Methodol-
ogy, 5(3):231–261, July 1996.

[9] D.J. Keenan and M.P.E. Heimdahl. Code generation from hi-
erarchicl state machines. InProceedings of the International
Symposium on Requirements Engineering, 1997.

[10] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D.
Reese. Requirements Specification for Process-Control
Systems. IEEE Transactions on Software Engineering,
20(9):684–706, September 1994.

[11] Program Validation Ltd.Formal Semantics of SPARK. Pro-
gram Validation Ltd., 1998.

[12] British Ministry of Defence.Requirements for Safety Related
Software in Defence Equipment
Part 1: Requirements. British Ministry of Defence, 1991.

[13] RTCA. Software Considerations In Airborne Systems and
Equipment Certification. RTCA, 1992.

[14] J.M. Spivey.The Z Notation: A Reference Manual. Prentice-
Hall, 1992.

[15] Susan Stepney.High Integrity Compilation. Prentice Hall,
1993.

[16] Susan Stepney. Incremental development of a high integrity
compiler: Experience from an industrial development. In
Proceedings of the IEEE High Assurance Systems Engineer-
ing Workshop, 1998.

[17] Steve Vestal. Assuring the correctness of automatically gen-
erated software. InAIAA/IEEE Digital Avionics Systems
Conference, volume 13, pages 111–118, 1994.

[18] P. Zave. An insider’s evaluation of PAISLey.IEEE Transac-
tions on Software Engineering, 17(3), March 1991.

8


