
An Approach to Building High-Quality Tag Hierarchies 

from Crowdsourced Taxonomic Tag Pairs 

Fahad Almoqhim, David E. Millard, Nigel Shadbolt 

Electronics and Computer Science, University of Southampton, Southampton, United Kingdom 

{fibm1e09,dem,nrs}@ecs.soton.ac.uk 

Abstract. Building taxonomies for web content is costly. An alternative is to al-

low users to create folksonomies, collective social classifications. However, 

folksonomies lack structure and their use for searching and browsing is limited. 

Current approaches for acquiring latent hierarchical structures from folk-

sonomies have had limited success.  We explore whether asking users for tag 

pairs, rather than individual tags, can increase the quality of derived tag hierar-

chies. We measure the usability cost, and in particular cognitive effort required 

to create tag pairs rather than individual tags. Our results show that when ap-

plied to tag pairs a hierarchy creation algorithm (Heymann-Benz) has superior 

performance than when applied to individual tags, and with little impact on us-

ability. However, the resulting hierarchies lack richness, and could be seen as 

less expressive than those derived from individual tags. This indicates that ex-

pressivity, not usability, is the limiting factor for collective tagging approaches 

aimed at crowdsourcing taxonomies. 
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mation Processing, Social Metadata, Tag similarities. 

1 Introduction 

One of the essential principles behind the success of Web 2.0 applications is to har-

ness the power of Collective Intelligence (CI) [1]. Collaborative tagging is one of the 

most successful examples of the power of CI for constructing and organizing 

knowledge in the Web. Tagging is a process that allows individuals to freely assign 

tags to a web object or resource, whereas folksonomy (a set of user, tag, resource 

triples) is the result of that process [2]. 

In recent years, folksonomies have emerged as an alternative to traditional classifi-

cations of organizing information [3]. However, they share the inconsistent structure 

problem that is inherited from uncontrolled vocabularies, which causes many prob-

lems like ambiguity, homonymy (same spelling but different meanings), and synony-

my (terms have the same meaning) [4,5]. As a result, many researchers have focused 

on resolving this problem by proposing approaches for acquiring latent hierarchical 

structures from folksonomies and building tag hierarchies [6,7,8]. Building tag hierar-



chies from folksonomies can be useful in different tasks, like improving content re-

trieval [9], building lightweight ontologies [10] and enriching knowledge bases [11]. 

However, current approaches to automatic tag hierarchy construction come with 

limitations [12,13], such as suffering from the “generality-popularity” problem or the 

limited coverage of the existing knowledge resources. In this research, rather than 

propose a new algorithm for analyzing folksonomies we seek to explore whether a 

slight change in the tagging process itself could improve the resulting tag hierarchies. 

The new tagging approach takes the form of an “is-a” relationship, where users 

should type two related tags; i.e. Tag1 is a tag for the resource and Tag2 is a generali-

zation of Tag1.  The research hypothesis of this paper is that this simple relationship 

(Tag1 is-a Tag2) can be gained with low user interaction cost and provides higher 

quality tag hierarchies, compared to ones constructed from flat tags.  

2 Related Work 

Recently there have been several promising approaches proposed for building tag 

hierarchies from folksonomies. These approaches can be seen in two directions: First, 

knowledge resources based approaches, which aim to discover the meaning of tags 

and their relationships by using some knowledge resources, like WordNet and online 

ontologies. However, such resources are limited and they can only handle standard 

terms [12]. Second, clustering techniques based approaches. First pair-wise tag 

similarities are computed and then divided into groups based on these similarities. 

After that, pair-wise group similarities are computed and then merged as one until all 

tags are in the same group. For example, Heymann and Garcia-Molinay [6] propose 

an extensible algorithm that automatically builds tag hierarchies from folksonomies, 

extracted from Delicious and CiteULike. Their claim is that the tag with the highest 

centrality is the most general tag thus it should be merged with the hierarchy before 

others. Benz et al. [8] improved Heymann's algorithm by applying tag co-occurrence 

as the similarity measure and the degree centrality as the generality measure. 

C. Schmitz et al [14] adopted the theory of association rule mining to analyze and 

structure folksonomies from Delicious. P. Schmitz [15] adapted the work of [16] to 

propose a subsumption-based model for constructing tag hierarchical relations from 

Flickr. Plangprasopchok et al. [7] adapted affinity propagation introduced by Frey & 

Dueck [17] to construct deeper and denser tag hierarchies from folksonomies. Yet 

Strohmaier et al. [3] showed that generality-based approaches of tag hierarchy, with 

degree centrality as generality measure and co-occurrence as similarity measure, e.g. 

[8] show a superior performance compared to probabilistic models, e.g. [7]. 

Although several approaches based on clustering techniques have been tried to 

structure folksonomies, they come with limitations [12,13]. These include the suffer-

ing from the “generality-popularity” problem. For example, Plangprasopchok and 

Lerman [18] found, on Flickr, that the number of photos tagged with “car” are ten 

times as many as that tagged with “automobile”. By applying clustering techniques, 

“car” is likely to have higher centrality, and thus it will be more general than “auto-



mobile”. Therefore, while tag statistics are an important source for constructing tag 

hierarchies, they are not enough evidence to discover concept hierarchies. 

The experiment in this paper aims to explore whether a key reason for these limita-

tions is that the current tagging approach, flat tags, does not provide a source of 

enough semantic evidence for building high-quality tag hierarchies. Rather we pro-

pose a slight change to the current tagging approach to benefit more from the power 

of CI by moving from collective folksonomies to collective taxonomic tag pairs.  

3 Tag Hierarchies Leaning from Taxonomic Tag Pairs 

In the proposed ‘tag pairs’ approach (Fig. 1), the user is required to tag the resource in 

the form of an “is-a” relationship, where Tag1 (the left box) is a tag for the resource 

and Tag2 (the right box) is a generalization of Tag1. For example, “Tower of Lon-

don” is a “tower”, or “tower” is a “building”. The users can tag as much as they want 

for each resource in this way. Although this tag pairs approach shares some of the 

issues of single tags, such as spelling errors, it also provides additional semantics 

between tags. The algorithm we have adopted in our work (Table 1) is an extension 

of Benz’s algorithm [8], which itself is an extension of Heymann's algorithm [6]. 

Table 1. Pseudo-code for the proposed algorithm 

Input: user-generated terms (tag pairs) , Output: tag hierarchy 

1. Filter the tag pairs {tag1, tag2} by an occurrence threshold occ. 

2. Order the tag pairs in descending order by generality (measured by degree 

centrality in the tag2– tag2 co-occurrence network). 

3. Starting from the most general tag2, as the root node, and append tag1 as a 

less general term underneath tag2. 

4. add all tags tag2i  subsequently to an evolving tree structure: 

(a) Calculate the similarities (using the co-occurrence weights as similarity meas-

ure) between the current tag tag2i and each tag currently present in the hierar-

chy and add the current tag tag2i as a child to its most similar tag tag_sim. 

(b) If tag2i is very general (determined by a generality threshold min_gen) or no 

sufficiently similar tag exists (determined by a similarity threshold min_sim), 

append tag2i underneath the root node of the hierarchy. 

(c) Append tag1i as a less general term underneath tag tag2i. 

5. Apply a post-processing to the resulting hierarchy by re-inserting orphaned 

tags underneath the root node in order to create a balanced representation. 

The re-insertion is done based on step 4. 

 

The algorithm is affected by various parameters, including: occurrence threshold occ 

(the number of tag occurrences); similarity threshold min_sim (the number of tag co-

occurrences with another tag); and generality threshold min_gen (the number of tag 

co-occurrences with other tags). Empirical experiments were performed to optimize 

these parameters. By incorporating tag pairs this variation of Benz’s algorithm reduc-



es the reliance on co-occurrence to create relationships, as nearly a half of the result-

ing tag hierarchy is created directly by users. 

4 Empirical Study 

Since we are proposing a new tagging approach, our experiment must look at two 

distinct aspects. Firstly its usability, in terms of efficiency, effectiveness and satisfac-

tion, and secondly its performance in building high-quality tag hierarchies, in terms of 

semantics and structure. The technique will be successful if it increases the quality of 

tag hierarchy structure and semantics without significant impacting the ease of use. 

To test the proposed tagging approach and collect data for executing the empirical 

study, we created the TagTree System. It is a web-based prototype which allows par-

ticipants to tag some online resources by using the two tagging approaches (tag pairs 

and flat tags). The TagTree System consists of four main components: 

 User Interface: The user interface describes to users how to use the tag pairs ap-

proach, with an example, and requires them to tag five resources with the tag pairs 

approach and another five with the flat tags approach (Fig. 1). To give a fair bal-

ance between the two tagging approaches, each of them is used first by half of the 

participants before they swap to the second approach. 

 Tag Content Recording: This component records the tag content, including: user 

ID (user session), tags and time spent for each tagging action by the user.  

 Tags Normalising: Before hierarchy construction, tags are passed to the normali-

sation process for clearing, e.g.: Letters Lower-case and Non-English Deleting. 

 Tag Hierarchy Constructing: This component uses the proposed algorithm to 

construct tag hierarchies from the tags. 

 

Fig. 1. The tag pairs (left) and the flat tags (right) tagging approaches 

The Top 10 London Attractions1, elected by visitlondon.com, were selected to be 

the resources used in the TagTree system for their popularity. The link of the TagTree 

system was sent to many people to take part in the study through email and social 

networks. After performing the normalization process, the dataset contains: 215 users, 

333 tag pairs and 550 individual tags. 

                                                           
1  http://www.visitlondon.com/things-to-do/sightseeing/tourist-attraction/top-ten-attractions 



4.1 Evaluation Methodology 

Evaluating taxonomy construction is a major challenge since there is not an approved 

evaluation dataset [3], nor an agreed methodology in the literature [19]. However, this 

subsection proposes a broad evaluation process to evaluate two things: 1) The quality 

of tag hierarchies constructed from our tag pairs approach, compared to tag hierar-

chies constructed from flat tags (Evaluation metrics: 1, 3 and 4). 2) The usability of 

the tag pairs approach compared to the flat tags approach, in terms of efficiency, ef-

fectiveness and satisfaction (Evaluation metric: 2). The proposed evaluation process 

consists of four evaluation metrics as follows: 

Evaluation metric 1: Evaluation by Human Assessment (subjective). We chose a sim-

ple but effective approach, used by [3], for evaluating the consistency of our tag hier-

archy relations. Each direct taxonomic pair (t1, t2) from the tag hierarchy is extracted 

and manually judged as a relation of either: “same as”, “kind of/part of”, “somehow 

related”, “not related”, or “unclear”. The idea behind this approach is that a better tag 

hierarchy will have a higher percentage of pairs being judged as “kind of” or “part 

of”, and a lower percentage of pairs being judged as “not related” or “unclear”. 

Evaluation metric 2: Usability Evaluation (subjective). We conducted an online sur-

vey based on the System Usability Scale (SUS) [20], a Likert scale questionnaire of 

10 items that is a standardized tool and has been used and verified in many domains 

[21]. The survey yields a single score, from 0 to 100. Bangor et al. found that a prod-

uct with SUS scores below 50 will mostly have usability difficulties, whereas scores 

between 70-89, though promising, do not assure high acceptance of usability [22]. 

Evaluation metric 3: Evaluation against Reference Taxonomy (objective). Two re-

searchers, in the field of Semantic Web and Knowledge Engineering, were asked to 

create appropriate reference taxonomy of the experiment domain (Fig. 2). To perform 

the comparison between a produced taxonomy (PT) and reference taxonomy (RT), 

Dellschaft and Staab propose two measures: taxonomic precision (tp) and taxonomic 

recall (tr) for comparing concept hierarchies [23]. The main idea is to compare the 

positions of two common concepts (c) in both hierarchies (local measure), and then to 

compare the two whole hierarchies (global measure). The local measure of taxonomic 

precision (tp) and taxonomic recall (tr) are defined, respectively, as follows: 

𝑡𝑝(𝑐, 𝑃𝑇, 𝑅𝑇) =  
|ce(c,PT) ∩ce(c,RT)|

|ce(c,PT)|
   (1)      𝑡𝑟(𝑐, 𝑃𝑇, 𝑅𝑇) =  

|ce(c,PT) ∩ce(c,RT)|

|ce(c,RT)|
   (2) 

Where (ce) is characteristic excerpts that contain the ancestors (super-concepts) and 

descendants (sub-concepts) of the concept which are present in both hierarchies. The 

global measure of taxonomic precision (TP) is defined, as follows: 

𝑇𝑃(𝑃𝑇, 𝑅𝑇) =  
1

|Cp ∩Cr|
 ∑ 𝑡𝑝(𝑐, 𝑃𝑇, 𝑅𝑇)𝑐 ∈𝐶𝑝 ∩ 𝐶𝑟                        (3) 



Where Cp is the concepts set in the produced taxonomy, and Cr is the concepts set of 

the reference taxonomy. To give an overall overview, taxonomic F-measure (TF) is 

computed as the harmonic mean of taxonomic precision and recall as follows: 

𝑇𝐹(𝑅𝑇, 𝑃𝑇) =  
2.TP(RT,PT).TR(RT,PT)

TP(RT,PT)+TR(RT,PT)
                                   (4) 

Evaluation metric 4: Structural Evaluation (objective). It considers that a better tag 

hierarchy is a bushier and deeper hierarchy. To perform this evaluation, Plangprasop-

chok et al. [7] introduce a simple measure known as Area Under Tree (AUT). To 

compute AUT for a hierarchy, the distribution of nodes numbers in each level is com-

puted first, and then the area under the distribution is calculated.  

5 Results and Analysis 

Two data sets were extracted from the TagTree system. The first one was collected by 

the tag pairs approach, while the second one was collected by the flat tags approach. 

In the experiment, three tag hierarchies (Fig. 2) are produced as follows: 1) H1: By 

using the tag pairs algorithm and the tag pairs dataset. 2) H2: By using the Benz’s 

algorithm and the flat tags dataset. 3) H3: By using the Benz’s algorithm and using 

the tag pairs dataset in which {tag1 is-a tag2} is considered as flat tags, i.e. ignoring 

the “is-a” relations. 

 

Fig. 2. The tag hierarchies used and produced in the experiment 



5.1 Results of Semantic Evaluation 

Fig. 3 shows the results of the semantic evaluation against the reference taxonomy, in 

terms of taxonomic precision (TP), taxonomic recall (TR) and taxonomic F-measure 

(TF). More similarity between a tag hierarchy and the reference taxonomy indicates 

that tag hierarchy has a higher quality. 

The first observation that can be drawn from these empirical results is that there is 

a significant difference between H1 and H2. Our proposed extended algorithm yields 

tag taxonomies from our proposed tagging approach that is more similar to the refer-

ence taxonomy with taxonomic F-measure (TF) equal to 70.16%. Another important 

observation is that the quality of H3 is much better than the quality of H2, although 

both have been constructed by the same process (Benz’s algorithm). However, H3 is 

built from tags originally collected from the tag pairs approach. This confirms our 

expectation and validates our research hypothesis that to make a small change to the 

current tagging approach can make a big change to the quality of the knowledge 

structure that can be built. 

 

 

 

 

 

 Fig. 5. shows there is a large difference between the percentages of pairs being 

judged as “is-a” in H1 and others. Also, all the pairs in H1 are related. On the other 

hand, H2 is the worst since it has the lowest portion of “is-a” relation and the highest 

portion of “not related” relation between pairs. Furthermore, similar to the observa-

tion in Fig. 3, the quality of H3 is much better than the quality of H2. 

5.2 Results of Structural Evaluation 

Fig. 6 shows the results of AUT on the three produced tag hierarchies. H2 yields 

the highest AUT result, which indicates H2 is bushier and deeper than the others, 

whereas H1 yields the lowest AUT result. However, according to the previous results, 

H2 has a very small degree (TF=8.83%) of similarity to the reference taxonomy and 

also a big amount (53.62%) of “not related” tags pairs. This indicates that H2 has 

many noisy tags, while the proposed tagging approach and algorithm succeed in 

avoiding them. Ideally, it is a better to have an approach that generates both high 

quality and expressive tag hierarchies. While our approach succeeded in tackling the 

lack of consistent structure in folksonomies, it generated a less expressive hierarchy.  
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Fig. 4. Results of semantic evaluation 

by human assessment 

Fig. 3. Results of semantic evaluation 

against reference taxonomy 



 

Fig. 6. Results of structural evaluation (AUT) 

5.3 Results of Usability Evaluation 

The results of this evaluation indicate that the average of SUS for the flat tags ap-

proach is 71.3%, with a standard deviation of 19.57, whereas the new approach ob-

tains 54.6%, with a standard deviation of 16.22. First of all, this results show that the 

new approach is marginal acceptable since its average SUS score is over 50%. SUS 

scores are affected by the user experience by 15-16% between users who have “nev-

er” and “extensive” experience of the approach [24]. Consequently, the incipient SUS 

score of the tag pairs approach my get better over the time. 

To measure the efficiency of the tag pairs approach compared to the flat tags ap-

proach, the time spent for each tagging action by users is recorded. The tagging action 

(ta) for the tag pairs approach means a pair of tags typed by the user, whereas for the 

flat tags approach means one tag or more typed by the user. The average time spent 

for using the tag pairs approach is 44.88 sec/ta, and 22.44 sec/tag. In contrast, the 

average time spent for using the flat tags approach is 71.90 sec/ta, and 36.37 sec/tag. 

This is a surprising result, as we expected the additional cognitive load of creating a 

tag pair to increase time taken, whereas our results show that users created a tag pair 

(containing two tags) in only slightly more time than it takes to generate a single tag.  

6 Discussion and Conclusion 

Current approaches to automatic tag hierarchy construction are limited, such as suf-

fering from the “generality-popularity” problem or the limited coverage of the exist-

ing knowledge resources. Therefore, we proposed a slight change to the current tag-

ging approach to cope with the lack of a consistent structure in folksonomies, and 

raise their semantic quality, whilst keeping the interaction cost of the process down. 

Our aim was to see if collecting tag pairs resulted in better quality hierarchy structure 

and semantics while minimizing the cost to usability.  

The evaluation results of the produced tag hierarchies have shown that on the one 

hand the proposed tagging approach and algorithm have a superior performance in 

building high quality tag hierarchies when compared to ones built from the flat tags 

approach, but on the other hand they are not as rich, and therefore could be seen as 

less expressive. This problem might be caused by one or both of the following two 

reasons: First, the small size of the tagging resources and dataset in our experiment 

(we might expect to see a power law [25] in tag occurrence, and therefore the more 
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tags gathered the longer the tail of rare tags), and second, the inability of the tag pairs 

approach to capture the intermediate concepts between the high levels and leaves of 

the hierarchy. To solve the first problem, there is a need to run the experiment with a 

system that can motivate a larger number of participants for a longer time. And to 

solve the second problem, the approach itself need to be improved, e.g. adding other 

relations between tag pairs or asking users some specific questions to encourage them 

to provide intermediate concepts. However, this has the risk of making the approach 

complicated and losing the simplicity and flexibility features of folksonomies. 

In terms of usability, the results have shown that the tag pairs approach is marginal 

acceptable. Users were even able to complete the task by using the tag pairs approach 

in quicker way compared to the flat tags approach. Although the tag pairs approach 

succeeded in avoiding noisy tags, it seemed to restrict users in their choice of tags, 

leading them to particular key taxonomic relations (this may a reason behind the sur-

prisingly low average time taken to create tag pairs). This meant that the tags pro-

duced by the tag pairs approach had lower quantity and diversity than with flat tags.  

Our results therefore indicate that expressivity, not usability, is the limiting factor 

for collective tagging approaches aimed at crowdsourcing taxonomies. 
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