AN APPROACH TO DESIGNING
*
FAULT-TOLERANT COMPUTING SYSTEMS

Richard D. Schlichting
Fred B.. Schneider

TR 81-479
November 1981

Department of Computer Science
Cornell University
Ithaca, New York 14853

*
This work is supported, in part, by NSF Grant MCS-81-03605

Fail-Stop Processors:

*
An Approach to Designing Fault-Tolerant Computing Systems

Richard D. Schlichting
Fred B. Schneider

Department of Computer Science
Cornell University
Ithaca, New York 14853

November 19, 1981
Revisions: July 30, 1982

ABSTRACT

A methodology that facilitates the design of fault-tolerant computing sys-
tems is presented. It is based on the notion of a fail-stop processor.
Such a processor automatically halts in response to any internal failure and
does so before the effects of that failure become visible. The problem of
implementing processors that, with high probability, behave like fail-stop
processors is addressed. Axiomatic program verification techmiques are
described for use in developing provably correct programs for fail-stop pro-
cessors. The design of a process control system illustrates the use of our

methodology.

*This work is supported in part by NSF Grant MCS-81-03605.
+Department of Computer Science, University of Arizoma, Tucson, Arizona 85721.

l. Introduction

Programming a computer system that is subject to failures is a difficult task.
A malfunctioning processor might perform arbitrary and spontaneous- state transforma-
tions instead of the transformations specified by the programs it executes. Thus,
even a correct program cannot be counted on to implement a desired imput-output
relation when executed on a malfunctioning processor. On the other hand, it is

impossible to build a computer system that always operates correctly in spite of

failures in its components by using (only) a finite amount of hatdwarel. Thus, the
goal of implementing completely fault-tolerant computing systems is unattainable.
Fortunately, most applications do not require complete fault-tolerance. kather, it
is sufficient that the system work correctly provided no more than some predefined
number of failures occur within some time interval, or provided certain types of

failures do not occur. This more modest goal ig attainable.

In this paper we present an approach‘ to designing fault-tolerant computing sys-
tems based on the notion of a fail-stop processor, a processor with well-defined
failure-mode operating characteristics. Briefly, our approach is as follows.
First, software is designed that rums on a computing system composed of ome or more
fail-stop processors; the number of processors required is dictated by response-time
constraints that must be satisfied by the system. Then, a computing system is

designed that implements the requisite fail-stop processors.

We proceed as follows. Section 2 describes the characteristics of a fail-stop
processor and how such processors can be approximated using present-day hardware.
Section 3 discusses extemsions to axiomatic verification techniques to facilitate

development of provably correct programs for fail-stop processors. Satisfying

ls_ed quis custodiet ipsog Custodes? (Who shall guard the guards themselves?)
(Juvenal 130].

response time constraints in the presence of failures is the subject of section 4.
Section 5 discusses the application of our approach to a nom-trivial problem, the
design of a fault-tolerant process-control system. Section 6 contrasts our work
with other approaches to designing fault-tolerant systems and section 7 contains

some conclusions.

2. Eail-Stop Processors

2.1. Definpition

A processor is characterized by the instruction set it supports. Eéch instruc-
tion causes a well-defined transformation on the internal state of the processor
and/or the connected storage and peripheral devices. Thus, the effects of executing
each instruction can be described by a precise semantic definition, be it a temporal
axiomatization of the imnstruction set [Pnueli 79] or a "Principles of Operation”
manual. A failure occurs when the behavior of the processor is not consistent with

this semantic definition.

A f£a3il-stop processor is distinguished by its extremely simple failure-mode
operating characteristics. First, the internal state of a fail-stop processor and
some predefined portion of the connected storage are assumed to be yolatile. The
contents of volatile storage are irretrievably lost whenever a failure occurs. The
remaining storage is defined ta be gtable; it is unaffected by any kind of failure.
Secondly, in contrast to a real processor, a fail-stop processor never performs an
erroneous state transformation due to a failure. Instead, the processor simply

halts. Thus, the only visible effects of a failure in a fail-stop processor are:

FS1: It stops executing.

FS2: The internal state and contents of the volatile storage connected
to it are lost.

2.2. Implementation

While the notion of a fail-stop processor is a useful abstraction, it is impos-
sible to implement using a finite amount of hardware. With omly a finite amount of
hardware, a finite number of failures could disable all the error detection mechan-
isms and thus allow arbitrary behavior. However, it is possible to comstruct com-
puting systems that, with high probability, approximate the behavior of a fail-stop

processor.

One approach is to construct a system that behaves as specified, unless too
many failures occur within some specified time interval, after which no assumptioms
about its behavior can be made. A k-fail-stop processor is a computing system that
behaves like a fail-stop processor unless k+l or more failures occur in its com-

ponents.

A k-fail-stop processor can be implemented by exploiting any solution to the
Byzantine Generals [Laﬁport et al 80] (or Interactive Comsistency [Pease et al 79])
problem. Such a protocol allows a‘collection of processors to agree on a value sent

by a potentially faulty transmitter ("Commanding General™), so that:
(1) each non-faulty processor agrees on the value sent by the transmitter, and

(2) if the transmitter in non-faulty, each non-faulty processor receives the value

sent by the transmitter.

A number of real processors and volatile memory units are interconmected by a
communications network fo form a single k-fail-stop processor and its attendant
stable storage. Each memory unit Mi is read by all processors but writtem to by
only one, Pi' Failures are detected by having each processor run the same program
and comparing results. Thus, a copy of each variable is stored in each memory unit.

During execution, whenever the value of a variable from stable storage is required,

the value of that variable is read from each memory unit and a solution to the
Byzantine Gemerals Problem is employed to distribute the vector of values read to
every processor. If all of the values are not identical then a failure has occurred
and it is signaled. (Non-faulty processors will halt when the failure is sig-
nalled.) A total of 2k + 1 processors are required in order for up to k failures to

be tolerated without compromising (1) and (2) above [Lamport et al 801].

Since processors execute asynchronously, execution of the replicated programs
must be synchronmized to compare results. This can be accomplished, assuming proces-
sor clocks run at roughly the same rate, by associating a logical clock [Lamport 78]
with each program. This logical clock is incremented whenever a variable that is
suppose to be stored in the stable storage of the k~fail-stop processor is read or
written. To synchronize, a processor constructs a vector of the values of each of
these clocks, again using a solution to the Byzantine Genmerals problem, and busy-
waits until all components in the vector have the same value or a "time-out™ period

has elapsed. In the latter case, a failure has occurred and it is signaleds

When a collection of k-fail-stop processors are interconnected, it must be pos-
sible for ome to detect that another has stopped and then to read the contents of
that k-fail-stop processor's stable storage. This is accomplished as follows. Each
k~fail-stop processor is connected to a communications network that allows it to
read the contents of the memory units that make up the other k-fail-stop processors.
A special location, failedi. in each memory unit Mi is reserved to record whether
processor Pi thinks the fail-stop processor it is a part of has halted due to é
failure. A k-fail-stop processor fsp determines that another, fsp', has halted by
computing the vector of values failedi for each memory unit in fsp' using a solution
to the Byzantine Gemerals Problem. If any of the components has value true then

fsp' is deemed halted. Should fsp require the values of the variables in the stable

storage of fsp' they can be reconstructed as follows. Each processor in fsp reads a
different one of the memory units that make up fsp'. Then, using a solution to the
Byzantine General Problem.these values are exchanged. The majority value is taken
to be the value of the variable. Since at most k of the values read from fsp' are
wrong, at least 2k+l different memory units are required to implement stable

storage.

While the feasibility of implementing fail-stop processors is established by
this argument, the practicality is not. However, recent work in the implementation
of highly reliable processors, gives reason to believe that it is indeed practical
to implement fail-stop processor approximations. Both FIMP [Hopkins et gl 78] and
SIFT [Wensley et al 78] could be configured to behave like a collection of fail-stop
processor approximations; both employ replicated processor and memory units. Redun-
dancy can also be introduced at lower-levels in a variety of ways [Avizienis 76]
[Siewiorek & Swarz 82]. The level at which redundancy is applied is an important

igssue and is treated in [Barlow & Proschamn 75].
3. PErogramming a Fail-Stop Processor

d.l. Recovery Protocols

A program executing on a fail-stop processor is halted when a failure occurs.
Execution may then be resfarted on a correctly functioning fail-stop processor.
(This may be the original processor if the cause of the failure has been repaired,
or it may be another fail-stop processor.) When a program is restarted, the inter-
nal processor state and the contents of volatile storage are unavailable. Thus,
some routine is needed that can complete the state transformation that was in pro-

gress at the time of the failure and restore storage to a well-defined state. Such

a routine is called a regcovery protocol.

Clearly, a recovery protocol (i) must execute correctly when started in any
intermediate state that could be visible after a failure and (ii) can only use
information that is in stable storage. In additiom, because the code for a recovery

protocol must be available after a failure, it must be kept in stable storage.

We associate a recovery protocol R with a sequence of statements A called the
action statement to form a fault-folerant action FTA as follows:
FTA: actiom
A
recovery
y R
end
Execution of FTA consists of establishing R as the recovery protocol to be in effect
when A is executed and then executing A. The recovery protocol in effect when FTA
is started is reestablished at its termination. If execution of FTA is interrupted
by a failure, upon restart execution continues with the recovery protocol in effect.
Subsequent failures cause execution of FTA to be halted and execution of the
recovery protocol in effect to begin anew when the program is restarted. Execution
of FTA terminates when execution of either A or R is performed in its entirety

without interruption.

The following syntactic abbreviation will be used to demote that an action
statement A serves as its own recovery protocol:
<action-name>: actiom, recovery

A
end

Such a fault-tolerant action is called a restartable a._c_:i_qnz.

2As we shall see, any fault-tolerant action can be converted to such a restart-
able action simply by omitting the action statement.

-6-

A program running on a fail-stop processor must at all times have a recovery
protocol in effect. This will be the case if the program itself is a single fault-
tolerant action. Alternmatively, a program can be structured as a sequence of
fault-tolerant actions, assuming that establishment of a recovery protocol cam be
done in such a way that at all times either the old recovery protocdl or the new ome

is in effect. Such an assumption seems quite reasomnable.

1.2. Axioms for Fault-Tolerant Actions

Following the Floyd-Hoare axiomatic approach [Hoare 69], an assertion is a
Boolean-valued expression involving program and logical variables. The syntactic
object:

{P} s {qQ}
where P and Q are assertions and S is a programming language statement, is called a
Ltriple. The triple {P} S {Q} is a theorem if there exists a proof of it in a speci-
fied formal deductive system, usually called a programming logic. A programming
logic consists of a set of axioms and rules of inference that relate assertions,
programming language statements, and triples. Of particular interest are those log-
ics that are sound with respect to executioﬁ of programming language statements on
the program state -- i.e., deductive systems that are consistent with the operation

of a "real™ machine. Then, the notation {P} S {Q} is usually taken to mean:

If execution of S begins in a state in which P is true, and terminates, then
Q will be true in the resulting state.

Numerous programming languages have been defined using such logics; a PASCAL-like
language [Hoare & Wirth 73] extended with guarded commands [Dijkstra 76] is used in

this paper.

It is often more convenient to write a proof outlipe than a formal proof. A

proof gutlipe is a sequence of programming language statements interleaved with

-7-

assertions. Each statement S in a proof outline is preceded directly by one asser-
tion, called its precondition and denoted pre(8), and is directly followed by an
assertion, called its postcondition and demoted post(8). A proof outline is an

abbreviation for a proof if:

POl: for every statement S, the triple {pre(S)} S {post(S)} is a theorem in
the programming logic, and

PO2: whenever {P} and {Q} are adjacent in the proof outline, Q is provable
from P.

Let FTA be a fault-tolerant action formed from action statement A and recovery
protocol R. We wish to develop an inference rule that will allow derivation of
{P} FTA {Q}

as a theorem, while preserving the soundness of our programming logic with respect

to execution on a fail-stop processor.
First, assume
Fl: {P'} A {Q'} and {P"} R {Q"}

have been proved. Then, for execution of A to establish Q, we must have
F2: P=P' and Q' =Q.

Similarly, for the recovery protocol R to establish Q, the following (at least) must

hold:
F3: Q"=Q.

Recall that R is invoked only following a failure. By definition, the contents

of volatile storage are undefined at that time. Therefore, any program variables

needed for execution of R must be in stable storage3. Thus, we require

3If P" is stronger than wp(R,Q") then variables may appear in P" that need not be

-8~

F4: All program variables named in P™ must be in stable storage.

We must also ensure that whenever the recovery protocol receives control.
stable storage is in a state that satisfies P", This will be facilitated by com-
structing a replete proof outline, a proof outline that contains assertions describ-
ing those states that could be visible after a failure. Then, we will require that

the precondition of the recovery protocol be satisfied in those states.

A replete proof outlipe is a proof outline in which certain assertioms have

been deleted so that:

RPOl: No assertion appears between adjacent fault-tolerant actioms.
RP02: Every triple {P} S {Q} in the replete proof outline satisfies either
(a) S is a sequence of fault-tolerant actions, or

(b) {P v Q} is invariant over execution of S.

RPOl and RP02(a) follow because the program state that exists between the execution
of two fault-tolerant actions FIAI and FIAZ is never visible to the recovery proto-
col for the enclosing fault-tolerant action -- either the recovery protocol for FTA1
or the recovery protocol for F'IA2 will receive control. RPO2(b) follows because if
P v Q remains true while S is being executed, them either P or Q will be true of the
state visible to the recovery protocol should a failure occur and both {P} and {Q}

already appear as assertions in the replete proof outline.

For example, if

{P} FTA, {P,} FTA {Pz} ... FTA {Pn}

1 1 2

is a proof outline, then

{P} FtAl; FTAZ; .o FTAn {Pn}

stored in stable storage. Thus, in the interest of minimizing the amount of stable
storage used, the proofs should be in terms of the weakest assertions possible.

-9-

is a replete proof outline. If assignment of an integer value to a variable is per-
formed by executing a single, indivisible, (store) instruction -- as it is on most
machines -- then

{x=3} x:=6 {x=6}

is also a replete proof outline. This is because either the precondition or the
postcondition of "x:= 6" is true of every state that occurs during execution of the
assignment. Even if assignment is not implemented by execution of a single instruc-
tion

{val=3} x:= val {x=3 A val =3}
is a replete proof outline, because the assertion {val=3} is not destroyed by

assignment to x; it is true before, during and after execution of "x:= val".

Therefore, in addition to Fl1 - F4, correct operation of a recovery protocol

requires:

F5: Given a fault-tolerant action with action statement A and recovery protocol
R satisfying Fl, let 31 855 ceep @ be the assertions that appear
in a replete proof outline of {P'} A {Q'}, and T1s Tye eees T be the
assertions that appear in a replete proof outline of {P"} R {Q"}. Then:
(i) (VY i: l<isnm: a; =P")
(ii) (VY i: 1<ism: r; =P

Lastly, it must be guaranteed that failures at processors other than the one
executing FTA do not interfere with (i.e., invalidate) assertioms in the proof out-

line of FTA. Suppose an assertion in FTA names variables stored in the volatile

storage of another processor.4 Then should that processor fail, such an assertion

4'l‘his is often necessary when the actions of comcurrently executing processes are
synchronized. For example, if it is necessary to assert that a collection of
processes are all executing in the same "phase™ at the same time, then each would
include assertions about the state of the others. See [Schlichting & Schmeider 82]
for an example of such reasoning.

-10-

would no longer be true simnce the contents of volatilé storage would have been lost.

Hence, we require that:

F6: Variables stored in volatile storage may not be named in assertions
appearing in programs executing on other processors.

Given a fault-tolerant action, a restartable action that implements the same
state transformation can always be constructed from the recovery protocol alome.
(The praof of this follows from F3 and F5.) Thus, in theory, the action statement
is unnecessary. In practice, the additional flexibility that results from having an
action statement different from the recovery protocol is quite helpful. Presumably,
failures are infrequent enough so that a recovery protocol can do a comsiderable
amount of extra work in order to minimize the amount of (expensive) stable storage

used. Use of such algorithms for normal processing would be unacceptable.

d.3. Eault-Tolerant Programs -- A Simple Example

In addition to allowing axiomatic verification of programs writtem in terms of
fault-tolerant actions, F1 - F6 permit a programmer to develop a fault-tolerant pro-
gram and its proof hand-in-hand, with the proof leading the way, as advocated in
[Dijkstra 76] [Gries 81]. F4 allows identification of variables that must be stored
in stable storage to be done in a mechanical way from the proof; comstruction of a
replete proof outline provides a mechanical way to determine the intermediate states
that could be visible following a failure. To illustrate the use of rules F1 - F6
as an aid in developing a recovery protocol, we consider the following (artificial)

problem. (A more substantial example is treated im section 5.)

Periodically, variables x and y are updated based on their previous values.
Thus, given a function G, desired is a routine called update that runs om a
fail-stop processor and satisfies the following specification:

{P: x=X A y=Y} update {Q: x=G(X) A y=6G(Y)}.

-ll-

Logical variables X and Y represent the initial values of x and y, respectively.

If the possibility of failure is ignored, the following program will suffice:

sl: {P: x=X A y=Y}
Sla: x:= G(x); {Pla: x=G(X) A y=Y}
Slb: y:= G(y); {Plb: x=G(X) A y=G(Y)}
{Q: x=6G(X) A y=06(Y)}
Note that this is a replete proof outline, provided assigmment is implemented as an

atomic operation: {P Vv Pla} is invariant over execution of Sla and {Pla Vv Plb} is

invariant over execution of Slb.

1

Things become more complicated whem the possibility of failure is considered.
In particular, Sl could not be the action statement of a restartable action because
F5 is violated (assuming G is not the identity function): both Pla = P and Plb = P
are false. In order to construct a restartable action; we must find a way to make
progress -- compute G(X) and G(Y) -- but without destroying the initial values of x
and y until both values have been updated. One way to do this is to modify Sl so
that the new values are computed and stored in some temporary variables, giving the
' following restartable action:
Ul: aectiom, recovery
{P: x=X A y=Y}
Ula: =xmew:= G(x); {x=X A xnew=G(X) A y=Y}
Ulb: ymew:= G(y); {x=X A xnew=G(X) A y=Y A ynew=G(Y)}
end
{Q'": x=X A xnew=G(X) A y=Y A ynew=G(Y)}
Note that in order to satisfy F4, x and y must be stored in stable storage but vari-

ables used in computing G need not be. Having established Q', it is a simple matter

to establish Q:

-12-

S$2: {Q': =zxnew=G(X) A ynew=G(Y)}
S2a: x:= xnew; {x=xmew=G(X) A ynew=G(Y)}
S2b: y:= ynew; {x=xnew=G(X) A y=ynew=G(Y)}
{Q: x=6(X) A y=6(1)}

This is a replete proof outline, and provided xnew and ynew are stored in stable
storage, F1 - F6 are satisfied. So
U2: actiom, recovery
{Q': xnew=G(X) A ynew=G(Y)}
U2a: x:= xnew; {x = xnew=G(X) A ynew=G(Y)}
U2b: y:= ynew; {x=xnew=G(X) A y=ynew=6G(Y)}
end
{Q: x=6(X) A y=6(Y)}

is a restartable action. Thus, the desired program is:

Ul; 02

4. Termination and Response Iime

Most statements in our programming notation are guaranteed to terminate, once
started. However, loops (do) and fault-tolerant actions are not. Techniques based
on the use of variant functions or well-founded sets can be used for proving that a
loop will terminate [Dijkstra 76]. Unfortunately, without knowledge about the fre-
quency of failures and statement execution times, termination of a program written
in terms of fault-tolerant actions cannot be proved. This is because if failures
occur with sufficiently high frequency then there is no guarantee that the component
fault-tolerant actions will terminate; neither the action statement nor the recovery
protocol of a fault-tolerant action can be'guaranteed to run uninterrupted, and so

the recovery protocol could continually restart.

Moreover, such livepness properties [Lamport & Owicki 80] cannot even be

expressed a Hoare-style programming logic, like the one above. Thus, we must resort

-13~

to informal means to argue that a program will terminate in a timely manner.
Presumably, at some point in the future it will be possible to formalize such argu-
ments. [Harter & Bernstein 8l1] describe extensions to temporal logic [Lamport &
Owicki 80] that allow construction of a proof that a program will meet some specific
response-time goals. That work would have to be extended to deal with stochasti-

cally defined events for use in this context.

For a given execution of a program S on a fault-free processor, let t(s) be the
maximum length of time that elapses once execution of statement s is begun until

execution of the next fault-tolerant action in S is started. Define

Tmax = max t(s).
s €S

For an execution of S to terminate at all, it is sufficient that there be (enough)
intervals of length %max during which there are no failures. Then, no fault-

tolerant action will be forever restarted due to the (high) frequency of failures.

O0f course, this gives no bound on how much time will elapse before S completes.
Rather, we have argued that S is guaranteed to tefminate if the elapsed time between
successive failures is long enough, often enough. This should not be surprising.
However, it does provide some insight into how to structure a program in terms of
fault-tolerant actions if frequent failures are expected: one should endeavor to
minimize Tmax‘ This can be achieved by making entry into a fault-tolerant action a
frequent event -- either by nesting fault-tolerant actions, or composing them in

sequence.

Given a collection of fail-stop processors, it is possible to configure a sys-
tem that not only implements a given relation between input and output, but performs
this state transformation in a timely manner despite the occurrence of failures.

After the failure of a fail-stop processor fsp, a reconfiguration rule is used to

_14-

assign programs that were running on fsp to working fail-stop processors. The
recovery protocol in effect at the time of the failure facilitates restart of the
program. Thus, processor failures are transparent except for possibly increased

execution times.

As a result of a failure, execution delays from the following sources are

incurred:

(1) Some time tietect will elapse after the fail-stop processor halts until that

fact is detected and reconfiguration is begun.

(2) Reconfiguration causes execution delays, as well. First, tecon is required tc
determine an appropriate assignment of programs to the remaining fail-stop pro-
cessors. Then, tmove might be required to move the program code and contents

of its stable storage.

(3) 1In the worst case, the effects of the last T, seconds worth of execution before

A
the failure will be lost.
(4) An additional execution delay Tp wight be incurred because a recovery protocol

is likely to take longer to execute than an action statement.
Both TA and TR are defined for the specific execution that was interrupted.

This suggests the following strategy for comstructing fault-tolerant sfstems
that will continue to behave correctly in spite of up to k failures, for k>0. A
program is developed that (i) implements the desired state transformations whenm run
on fail-stop processors, (ii) satisfies its real-time response conmstraints provided
no failures occur, and (iii) in which no process must respond to an event in less

than TF seconds, where:

T. = k (t

+ +
F detect'+trecon tmove TA) * TR

-15-

Suppose R fail-stop processors are required to ensure (i) - (iii) hold. Then, a
computing system with R+k fail-stop processors will be able to tolerate up to k
fail-stop processor failures and meet its response-time goals. The obvious reconfi-

guration rule must be used.

Note that if stable storage that can be shared by k fail-stop processors is

available, then tm can be made 0. Also, by precomputing various configurations,

ove

tecon ©3° be made negligible. This, however, requires a sufficient amount of

stable storage to store all possible configurations. Lastly, T, can be made 0 by

R
using only restartable actions; however, this uniformly degrades execution speed,

even if no failures occur,

3. Eault-Tolerant Process-Control Software

We now turn to a more substantial illustration of the application of our metho-
dology: development of a fault-tolerant process control program. First, a correct
program for a fault-free computing system is developed. The program is then
extended to rum correctly on a syste& of fail-stop processors. While a fair amount
of detail is presented, these details are necessary to derive and establish the

correctness of the program.

Given are sensors to determine the state of the enviromment and actuators to
exert control over the environment. Correct operation of a process-control system

requires that:

PC: The values written to the actuators are related to the values read from
the sensors according to a given application-specific function.

It is likely that correct operation also involves a liveness property, like Msensors
are read and actuators are updated often enocugh™. We will make no attempt to argue

that our program satisfies such real-time response codstraints, although informal

-16-

arguments like those developed in section 4 could be used if timing data were avail-

able. -

3.l. Assuming No Failures

Our process-control system will be structured as a collectiom of cyclic
processes that execute concurrently. Each process P; is responsible for controlling
some set of actuators act.. To do so, it reads from some sensors and maintains
statei -- a vector of gtate variables that reflects the sensor values P; has read
and the actions it has taken. Interprocess communication is accomplished by the
disciplined use of shared variables; a process can read and write its state vari-
ables, but can only read state variables maintained by other processes. For the
moment, we will ignore the problems th#t arise from concurrent access to state vari-

ables.

Each process will comsist of a single loop. During execution of its loop body,
process p.: (1) reads from some semnsors, (2) computes new values for the actuators
it controls and state variables it maintains, (3) writes the relevant values to act;
and (4) updates state.. Presumably, we are given application dependent routines
that can be used to compute the values to be written to the actuators and the values

to be stored in the state variables.

Without loss of generality, assume that each state variable and sensor is read

at most once in any execution of those routiness. Then, let var([i,t] denote the
value of var read by P; during the tth execution of its loop body, semsors[i,t]

denote the values read by P; from sensors during the tth execution of its loop body,

5Code that satisfies this restriction can be written by using local variables to
store state variables and sensor values: each state variable and sensor value is
stored in a local variable when it is first read; subsequent references are then
made to the local variable.

-17-

. . t .
and acti[t] denote the values written to acti by P; during the t B execution of the

loop body.

Behavior satisfying PC is characterized by the following, for each process Py»
Pgs eees P_o

First, the values in state:.L must correctly encode past actions performed by P;-
That encoding will be denoted here by the function E. Therefore, at the beginning

of the t+15% execution of the loop body at pi:6

Istate(i,t): t=0 ecor statei==E(sensors[i.t].statel[i.t].... staten[i.t]).

Secondly, the values written to actuators by p; must be computed according to
the application-specific function, here called A, based on the sensor values read
and the past actions of processes. Therefore, after P; updates act:i for the tth

time,
Ilact(i,t): t=0 eor acti[t] =A(E(sensors[i.t].statelfi.t].... staten[i.t])).

must be true.

Let Ti be an auxiliary variable defined so that at any time Ti-l executions of
the loop body have completed. Thus, T, is initialized to 1 and (implicitly and
automatically) incremented immediately after the loop body is executed. Then, the

correctness criterion PC is satisfied if:
I(i): Istate(i.Ti-l) A Iact(i.Ti-l)

is true at the beginning of each execution of the loop body, for each process P;-

6We use the notation "A cor B" to mean "if A them true else B".

-18-

In order to comnstruct the loop, variable newstate is introduced. This is
necessary so that values used to update statei and the actuators are consistent with

each other. Thus,
Vnewstate(i,t): newstate==E(sensors[i.t].Statelfi.t] .oe staten[i.t]).

The loop at process Py which has as I(i) as its loop imnvariant, is:

p;: Process
do true > {I(i)}
calc: newstate:= E(sensors.statei. cees staten):

{Vnewstate(i.Ti) A Istate(i.Ti-l) A Iact(i.Ti-l)}

]
up_act: act,:= A(newstate);

{Vnewstate(i.Ti) A Istate(i.Ti-l) A Iact(i.Ti)}
up_st: statei:= newstate;
{Vnewstate(i.Ti) A Istate(i, T;) A Iact(i.Ti)}
od
ead

However, because processes execute asynchronously, access to state variables
must be synchronized. Otherwise, a process might read state variables while they
are in the midst of being updated, which could cause the process to perform the
wrong actions. To avoid this problem, the state variables maintained by each pro-
cess p; are assumed to be characterized by CCi. called the gongistency constraint
for statei. CCi is kept true of state, except while P; is updating those variables
-- i.e. performing up_st above. We assume that the code to compute the application
dependent functions A and E works correctly as long as values that satisfy the con-
sistency constraints are read. To ensure that only values satisfying the con-
sistency constraints are read, read/write locks [Gray 78] can be used to implement
reader-writer exclusion on the state variables maintained by each process. A pro-

cess trying to read variables in state, must first acquire a read lock for state..

-19_

Such a lock will not be granted if a write lock is already held for those state
variables, hence that process will be delayed if statei is being updated. A process
about to update state . will be delayed if other processes are reading those values.
Such lock operations are not explicitly included in our programs to simplify the
exposition; they are part of the routine to compute E in "cale"™ and ™up_st™, the

routine to update the state variables.

Similarly, we assume that the code to compute A and E requires that semnsor
values used be consistent. The natural laws that govern our physical world ensure
that at any time t the values of the sensors are comsistent. Thus, if a process
reads all the sensors simultaneously, consistent values would be obtained. Such a
simultaneous read operation is not implementable, however. .We therefore assume that
sensors change values slowly enough and that processes execute quickly enough so
that a consistent set of values is obtained by reading each of the sensors in

sequence ‘at normal execution speed.

i.2. Allowing Failures
We shall deal with failures by attempting to mask their effects. Thus, we

shall endeavor to preserve:

PC': At no time do state variables or actuators have values they could not
have had if the failure had not occurred.

Recall that I(i) characterizes values of the state variables and actuators that
satisfy PC. Consequently, if it is possible to modify the loop body so that I(i) is
true of every state that could be visible after a failure then PC' will be satis-
fied, as well. Our task, therefore, is to modify the loop body so that it consti-

tutes a restartable action.

-20-

I(i) is true except between the time execution of statement up_act begins and
when statement up_st completes. Thus, we must either mask intermediate states dur-
ing execution of up_st and up_act, or devise a way to execute up_st and up_act
together as an atomic action. This latter option is precluded by most hardware.
Thus, to implement the former, we construct a single fault-toleramt actiom that

updates the actuators and state variables based on the value of newstate:

{Vnewstate(i.Ti)}
upall
{Vnewstate(i.Ti) A Istate(i.Ti) A Iact(i.Ti)}

As long as newstate is saved in stable storage, the following replete proof outline

satisfies F1 ~ F6 and accomplishes the desired transformation.

upall: actiom, recovery
{Vnevstate(i.Ti)}
up.act: act,:= A(newstate)
{Vnewstate(i.Ti) A Iact(i.Ti)}
up_st: statei:= newstate;
{Vnewstate(i,T;) A Istate(i, T;) A Tact(i, T;)}

end

A replete proof outline for the code executed at P; is:

-21-

P;: Process
action,recovery
do true -+ {I(i)}
calc: newstate:= E(sensors,statei. ...staten);
{Vnewstate(i.'ri) A Istate(i.'fi-l) A Iact(i.Ti-l)}
upall: aectiom, recovery
up_act: act,:= A(newstate);
up_st: statei:= newstate;
end
od

end

Notice that following a failure, a process might attempt to acquire a given
read/write lock that had already been granted to it. For example, if a failure
occurred while up_st were being executed, the recovery protocol would attempt to
acquire the write lock onmn state., which might already be owned by P Clearly,
repeated requests by a given process for the same lock, without intervening release
operations, should not delay the invoker. Implementation of read/write locks with
this property (binary semaphores do not suffice) is possible and is described in

[Schlichting 82].

6. Discussion

6.1L. Related Work

Few general techniques have been developed to aid in the design of programs
that must cope with operational failures in hardware or support software. One para-
digm, based on the use of state machines, was pioneered by Lamport [Lamport 81]
[Schneider 82]. A program is viewed as a state machine that receives input, gen-
erates actions (output) and has an internal state. A reliable system is constructed

by replicating these state machines and running them in parallel. By using a

-22-

solution to the Byzantine Generals Problem, each machine is guaranteed to receive
the same input, despite failures. A second gemeral paradigm, which appears to be

promising, is based on the use of nested atomic transactions [Lampson 81].

A variety of protocols for specialized problems have also been developed.
Included are: protocols for recovery in data base systems [Gray 78], implementation
of highly reliable file systems [Lampson & Sturgis 78] and the wuse of

checkpoint/restart facilities in operating systems [Denning 76].

Despite the apparent similarity between the recovery block comstruct developed
at the University of Newcastle-upon-Tyne [Randell et al 78] and our fault-tolerant
actions, the two comstructs are inteﬁzed for very different purposes. A recovery
Rlock consists of a primary block. an acceptance Lest, and one orsmore aglternate
blocks. Upon entry to a recovery block, the priﬁ#ry block is executed. After its
completion, the acceptance test is executed to determine if the primary block has
performed acceptably. If the test is passed, the recovery block‘terminates. Other-
wise, an alternate block -- generélly a different implementation of the same algo-
rithm -~ is attempted and the acceptance test is repeated. Execution of each alter-
nate block is attempted in sequence until ome produces a state in which the accep-

tance test succeeds. Execution of an alternate block is always begun in the

recovery block's initial state.

Recovery blocks are used to mask design errors; fault-tolerant actions are used
in constructing programs that must cope with gperatiopal failures in the underlying
hardware and software. As such, use of recovery blocks to cope with operational
failures can only lead to difficulties, For example, a recovery block has only a
finite number of alternate blocks associated with it, and therefore a large number
of failures in the underlying system can cause the available alternatives to be

exhausted. Secondly, the initial states of variables modified by a recovery block

-23-

must be available when execution of an alternate block is begun. Thus, the model
does not admit the possibility of using volatile storage for program variables,

since those values cannot be recovered after a failure.

6.2. Whence Fail-Stop Processors

The definition of the fail-stop processor as our underlying computational
model, followed from our use of a partial correctness programming logic. In a
fail-stop processor all failures are detected and no incorrect state transformations
result from failures. Thus, if execution of a statement terminates, by definition
the transformation specified by that statement has occurred -- the effect of execu-
tion is comnsistent with the programming logic. On the other hand, failure, by
definition, prevents statements from terminating. Thus, the partial correctness (as
opposed to total correctness) nature of the programming logic subsumes the conse-

quences of failures.

6.3. Application of the Methodology

We have successfully employed the methodology described in this paper both to
verify existing fault-tolerant protocols and to devise new omes. In [Schlichting
82], the two-phase commit protocol as described in [Gray 78] is verified. The
process-control example described im section 5 of this paper was developed as part
of a project to apply this methodology to design a distributed computing system for
navigation in an airplane. The details of that work are discussed in [Schneider &

Schlichting 811].

It is natural to ask whether Fl1 ~ F6, the components of our proof rule for
fault-tolerant actions, are too restrictive. In that case there would exist fault-
tolerant actions that would behave correctly, but for which no proof would be possi-

ble. While we have not proved the relative completeness of our new rule, the

_24-

success we have had with its application and the way in which it was derived, sug-
gest Fl - F6 are not too restrictive to allow proof of any M"correct™ fault-tolerant

action.

L. Conclusions

We have described a methodology for comstructing fault-tolerant systems. It is
based on the notion of a fail-stop processor -- a processor with simple and well
defined failure-mode operating characteristics, Fail-stop processors are a very

appealing abstract machime to program and can be approximated by real hardware.

We have also shown how axiomatic program verification techniques can be
extended for proving the correctness of programs written for fail-stop processors.
This allows a programmer to argue convincingly abdut the correctness of a program ex
post facto. More importamtly, it allows a programmer to develop a fault-tolerant
program and its proof hand-in-hand, with the latter leading the way, as advocated in
(Dijkstra 76] [Gries 81]. Computing the (weakest) precondition of a recovery proto-
col is a simple and mechanical way to detérmine what program variables must.be
stored in stable storage; constructing a replete proof outline similarly defines
what intermediate states could be visible following a failure and thus what states

can be seen by a recovery protocol.

Acknowledgements

This work has benefitted from discussions with G. Andrews, R.W. Conway, R. Con-
stable, E.W. Dijkstra, L. Lamport, G. Levin, R. Reitman, D. Wall and S. Worona. The
process-control application was first suggested by J. Kemp, W. Comfort and M.
Kushner of IBM (FSD/Owego). D. Gries made very helpful comments on an earlier draft
of this paper. We would also like to thank the referees for a very careful reading
of this paper.

- -25-

References

[Avizienis 76]

Avizienis, A. Fault-Tolerant Systems. IEEE Transactions on Computers Vol. C-
25, No. 12 (December 1976), 1304-1312.

[(Barlow & Proschan 75]

Barlow, R.W., F. Proschan. Mathematical Theory of Reliability. Wiley, New
York. 1965.

(Denning 76]

Denning, P. Fault Tolerant Operating Systems. Computing Surveys 8, &
(December 1976), 359-389.

[Dijkstra 76]
Dijkstra, E.W. A Discipline of Programming. Prentice Hall, 1976.

[Gray 78]

Gray, J. Notes on Data Base Operating Systems. Qperating Systems An Advanced
Course, Lecture Notes in Computer Science, Volume 60, Springer-Verlag, 1978.

[Gries 81]
Gries, D. 1The Science of Programming. Springer-Verlag, New York, 1981.

(Harter & Bernstein 81]
Harter, P., A. Bernstein. Proving Real Time Properties of Programs with Tem-
poral Logic. Proceedings of SOSP-8, Asilomar, Cailfornia (Dec 1981).

[Hoare 69]
Hoare, C.A.R. An Axiomatic Basis for Computer Programming. CACM 12, 10
(October 1969), 576-580.

[Hoare & Wirth 73]
Hoare, C.A.R., N. Wirth. An Axiomatic Definition of the Programming Language

PASCAL. Acta Informatica 2 (1973), 335-355.

[Hopkins et al 78]
Hopkins, A.L., T.B. Smith, J.H. Lala. FTMP -- A Highly Reliable Fault-Tolerant
Multiprocessor for Aircraft. Proc. of the IEEE, Vol. 66, No. 10 (October
1978), 1221-1239.

[Juvenal 130]
Juvenal (Decimus Junius Juvenalis, c.50 -c.130)., Satires VI, line 347.

[Lamport 78]
Lamport, L. Time, Clock and the Ordering of Events in a Distributed System.
CACM 21, 7 (July 1978), 558-365. '

[(Lamport et al. 801
Lamport, L., R. Shostak, M. Pease. The Byzantine Generals Problem. Techmnical
Report 54, SRI International, March 1980.

[(Lamport 81]
Lamport, L. Using Time Instead of Timeout for Fault-Tolerant Distributed Sys-
tems. Technical Report 59, SRI Internmational, June 1981.

[(Lamport & Owicki 80]
Lamport, L., S. Owicki. Proving the Liveness Properties of Concurrent Pro-
grams. Technical Report 57, SRI Intermatiomal, October 1980.

-26-

[(Lampson & Sturgis 78]
Lampson, B., H. Sturgis. Crash Recovery in a Distributed Data Storage System.
Submitted to CACM.

(Lampson 81] ,
Lampson, B. Atomic Transactions. Distributed Systems -- Architecture and
Implementation, Lecture Notes in Computer Science Vol. 105, Springer-Verlag,
1981.

[Pease et al 79]
Pease, M., R. Shostack, L. Lamport. Reaching Agreement in the Presence of
Faults. LJACM 27, 2 (April 1979).

(Pnueli 79]
Pnueli, A. The Temporal Semantics of Concurrent Programs. Semantics of Con-
surrent Computatiom, Lecture Notes in Computer Science Volume 70, Springer Ver-
lag, 1979.

[Randell et al. 78]
Randell, B., P.A. Lee, P.C. Treleaven. Reliability Issues in Computing System

Design, Computing Surveys 10, 2 (June 1978), 123-165.

[Schlichting 82]
Schlichting, R.D. Axiomatic Yerification to Enhance Software Reliability.
Ph.D. Thesis, Dept. of Computer Science, Cornell Univeristy, Jan. 1982.
[Schneider 82]

Schneider, F.B. Synchronization in Distributed Programs. TOPLAS 4 2 (April
1982), 125-148.

[(schneider & Schlichting 81] .
Schneider, F.B., R.D. Schlichting. Towards Fault-Tolerant Process Control

Software. Proc. Eleventh Annual International Symposium om Fault-Tolerant Com-
puting, IEEE Computer Society, Portland, Maine, (June 1981) 48-55.

[Schlichting & Schneider 82]
Schlichting, R.D, F.B. Schneider. Using Message-Passing for Distributed Pro-
gramming: Proof Rules and Disciplines. Technical Report TR 82-491, Department
of Computer Science, Cormell Univeristy, Ithaca, New York, May 1982.

[Siewiorek & Swarz 82]
Siewiorek, D., R.S. Swarz. Ihe Iheory and Practice of Reliable System Design.
Digital Press, Bedford, Mass. 1982.

(Wensley et al 78]
Wensley, J., et al. SIFT: Design and Analysis of a Fault-Tolerant Computer
for Aircraft Control. Proc. of the IEEE, Vol. 66, No. 10 (October 1978) 1240-
1255.

-27-

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif

