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Abstract

The goal of relative survival methodology is to compare the survival

experience of a cohort with that of the background population. Most often

an additive excess hazard model is employed, which assumes that each per-

son’s hazard is a sum of two components - the population hazard obtained

from life tables and an excess hazard attributable to the specific condi-

tion. Usually covariate effects on the excess hazard are assumed to have a

proportional hazards structure with parametrically modelled baseline. In

this paper we introduce a new fitting procedure using the EM algorithm,

treating the cause of death as missing data. The method requires no as-

sumptions about the baseline excess hazard thus reducing the risk of bias

through misspecification. It accommodates the possibility of knowledge of

cause of death for some patients, and as a side effect the method yields an

estimate of the ratio between the excess and population hazard for each

subject. More importantly, it estimates the baseline excess hazard flexibly

with no additional degrees of freedom spent. Finally it is a generalization of

the Cox model, meaning that all the wealth of options in existing software

for the Cox model can be used in relative survival.

The method is applied to a data set on survival after myocardial infarc-

tion, where it shows how a particular form of the hazard function could be

missed using the existing methods.

Keywords: Relative survival; EM algorithm; additive model

1 Introduction

The goal of relative survival methodology is to compare the survival experience of

a cohort with that of the background population. The observed cohort is defined

by a certain condition, such as poverty, wealth, heart attack, diabetes, high blood
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pressure etc, and the interest of the study lies in identifying the possible increase

(or decrease) of the cohort mortality compared to the population. When an

increase in mortality is expected, for example in cancer patients, an additive

relative survival model is often used to model the effect of the covariates on the

survival. The focus of this paper is on improving parameter estimation for this

model.

Letting SO(t) and SP (t) denote the observed and population survival functions

respectively, the cumulative relative survival function is defined by Ederer et al.

(1961) as

r(t) = SO(t)/SP (t).

If r(t) is a decreasing function we can write

SO(t) = SP (t) ∗ r(t) = exp[−

∫ t

0

λP (u)du] exp[

∫ t

0

λE(u)du],

where λP is the population hazard and λE is the excess hazard experienced by

the cohort. This implies an additive hazard relationship, λO(t) = λP (t) + λE(t).

The effect of a p−dimensional vector of covariates Z on relative survival can be

incorporated via a regression model (Hakulinen and Tenkanen, 1987; Dickman

et al., 2004)

λO(t, Z) = λP (t) + λ0(t)e
βZ , (1)

where λ0(t) denotes the baseline excess hazard, which is, for estimation purposes,

usually taken to be piecewise constant over a partition of the follow-up interval

[0, τ ]. Hence we can write

λO(t) = λP (t) + exp[
∑

k

τkIk(t)] exp[βZ], (2)

where Ik(t) is an indicator function for the k-th time interval. The population

3



hazard λ(t) is in practice a piecewise constant function as well, usually available

in yearly intervals.

Although multiplicative models have also been suggested for relative survival (An-

dersen et al., 1985), the additive model (2) has had considerable attention and

success (Hakulinen and Tenkanen, 1987; Dickman et al., 2004; Estève et al., 1990)

and in the relative survival literature it seems to be almost exclusively the first-

choice model. However, there is some variety in the choice of estimation proce-

dures and a number have been proposed, some based on generalized linear models

(Hakulinen and Tenkanen, 1987; Dickman et al., 2004) and extensions (Cheuvart

and Ryan, 1991), and others on full maximum likelihood estimation (Estève et al.,

1990).

In practice, however, the step function assumption for the baseline excess hazard

is unrealistic and estimates can only be interpreted as averages over the specified

intervals. While analysts often concentrate on coefficients in the model (relative

hazards), the knowledge of the baseline excess hazard function behaviour in the

additive model is crucial for understanding the whole picture and plays an im-

portant role in the interpretation of the model results and prognostics. Also,

the baseline excess hazard is estimated simultaneously with the coefficients of the

model and misspecification can lead to biased estimation of these coefficients. Di-

agnostics might reveal misspecification of the model, but it is invariably impossible

to say where the misspecification comes from. We describe this in more detail in

Stare et al. (2005b). It is therefore essential to have a flexible method to estimate

the baseline excess hazard. Most of the work in this area (Giorgi et al., 2003;

Lambert et al., 2005) has focussed on fully parametric approaches, an exception

being Sasieni (1996).

In this paper, we propose a new approach to fitting the model (1) that makes no

assumptions about the form of the baseline excess hazard and is based on an EM
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algorithm with the cause of death treated as missing data. We introduce the idea

and investigate basic properties in Section 2. Standard error estimation is de-

scribed in Section 3. In Section 4 we describe how residuals and model extensions

that have been developed for other fitting methods can be used with our method.

We also provide some further extensions specific to the EM approach. Section

5 describes the properties of the EM approach estimates. Section 6 applies the

EM-based fitting approach to a data set on survival after myocardial infarction.

Some closing remarks in Section 7 complete the paper.

2 EM algorithm

We define the study cohort by the presence a particular condition C and assume

interest is in mortality attributable to this condition, whether direct or indirect.

We assume model (1) holds. Our proposal is simply stated and easily imple-

mented: we treat cause of death as a potentially missing variable and adopt EM

estimation.

Let δi be a death (1) or censoring (0) indicator for patient i and let δEi be the

indicator of a death attributable to condition C. Analogously, δPi is an other-

cause death indicator. In some cases δEi and δPi will be explicitly interpreted,

for example when we are interested in death from, say, myocardial infarction, but

we lack information on primary cause of death. So δEi would indicate myocardial

infarction and δPi would indicate any other cause. In other situations these terms

may be less tangible. For instance, suppose we are interested in excess bladder

cancer mortality of dyestuff workers, due to prolonged exposure to particular

chemicals. A case of bladder cancer may be caused by the exposure (δEi = 1) or

may have arisen anyway (δPi = 1). We have no way, and no need in this work, to

identify these at the individual level.
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We therefore assume that in δi = δPi + δEi, we always observe δi, but may not

know δPi and δEi. As usual we assume cause C contributes a sufficiently small

proportion of all population deaths for all-cause mortality tables to be effectively

the same as other-cause mortality if C is removed.

If the cause of death were known for all patients we might consider a cause-specific

Cox model treating δEi as the death/censoring indicator. The standard partial

likelihood obtained by profiling out the baseline hazard (Andersen et al., 1993,

p.482) would be

L(β|X) =
n

∏

i=1







exp(βZi)
∑

j∈Ri

exp(βZj)







δEi

, (3)

where n is the total number of patients, Ri the risk set at the time of the ith

patient event, and X = {Z, T, δE} the set containing all the data. The baseline

hazard could be estimated nonparametrically by the Breslow estimator as usual.

The idea of our approach is to base an EM algorithm on the partial likelihood (3)

even though we have not assumed proportional hazards but rather the propor-

tional excess hazards model (1). In the Supplementary Material

(http://www.biostatistics.oxfordjournals.org) we show the method is valid since

the full data likelihood for our model profiled over nonparametric maximum like-

lihood estimates of the baseline excess λ0(t) provides the same score equations as

those obtained from (3). Thus, given δEi (i = 1, 2, . . . , n) we can estimate first β

and then λ0(t) very easily.

On the other hand, if we knew the baseline excess hazard λ0(t) and the coefficients

β, the conditional probability of patient i dying due to condition C, given observed

exit time ti and death indicator δi, is shown in the Supplementary Material to be
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P (δEi = 1|δi, ti) = δi

λEi(ti)

λPi(ti) + λEi(ti)

= δi

λ0(ti) exp(βZi)

λPi(ti) + λ0(ti) exp(βZi)
. (4)

Hence iterating the partial likelihood maximization and updating the value of δEi

forms the EM algorithm. More specifically, the algorithm consists of the following

steps (Dempster et al., 1977):

1. Specify initial values of unknown parameters θ : θ(0) = (β(0), λ
(0)
0 ).

2. E-step: Obtain the log-likelihood for the working Cox model as

log L (θ|X) =
n

∑

i=1

(βZi − log
∑

j∈Ri

eβZj)δEi,

and its expected value with respect to (4) as

Q(θ, θ(0)) = E

{

n
∑

i=1

(

βZi − log
∑

j∈Ri

eβZj

)

δEi|δi, ti

}

(5)

=
n

∑

i=1

(

βZi − log
∑

j∈Ri

eβZj

)

E(δEi|δi, ti)

=
n

∑

i=1

(

βZi − log
∑

j∈Ri

eβZj

)(

λ
(0)
0 (ti)e

β(0)Zi

λPi(ti) + λ
(0)
0 (ti)eβ(0)Zi

)

δi.

3. M-step: Maximize the Q function with respect to β to get new values of
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parameters β(1). Estimate λ
(1)
0 using the Breslow estimator

λ
(1)
0 (ti) =

E(δEi)
∑

j∈Ri
exp(β(1)Zj)

=
λ

(0)
0 (ti)e

β(0)Zi

λPi(ti) + λ
(0)
0 (ti)eβ(0)Zi

{

∑

j∈Ri

exp(β(1)Zj)

}−1

(6)

4. Back to step 2.

With respect to practical implementation of the algorithm, note the following:

• For each individual, only one number must be obtained from the population

tables, i.e. the population hazard at the time of their death. No population

data are used for censored patients.

• The Q function (5) is the log-likelihood of a weighted Cox model, enabling

us to use any existing software that can deal with weighted Cox models.

• The extension to time-varying covariates can be handled in the usual way

with the Cox model and Breslow estimator.

• Ties can also be handled in the usual way.

A different estimating method pursuing the same goal of estimating the coefficients

in the additive relative survival model without specifying the form of the baseline

excess hazard was introduced by Sasieni (1996).

To compare methods we will turn briefly to counting process notation, letting

Ni(t) be the observed number of events to time t for subject i. Then the score

equation arising from (5) can be written

U(β) =
∑

i

∫ τ

0

(

Zi −

∑

j Yj(u)Zje
βZj

∑

j Yj(u)eβZj

)

wi(u, β(0))dNi(u),
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where τ is the maximum follow-up time, Yj(.) is an at-risk indicator, and

wi(u, β) =
λ0(u)eβZi

λPi(u) + λ0(u)eβZi
.

Sasieni’s method by contrast is based on the discounted counting process

Ñi(t) = Ni(t) −

∫ t

0

Yi(u)λPi(u)du

and involves the score

US(β) =
∑

i

∫ τ

0

(

Zi −

∑

j wj(u, β)Yj(u)Zje
βZj

∑

j wj(u, β)Yj(u)eβZj

)

wi(u, β)dÑi(u).

This requires dÑi(u) at all times, not just event times. The integration is feasible

when λPi(u) is piecewise constant, as it always is in practice, but nonetheless im-

plementation is much easier under our approach, which can use standard software.

A problem common to all additive regression models occurs when there is little or

no genuine excess hazard due to condition C over parts of the time scale. Since the

estimates of λ0(t) are forced to be non-negative there can be finite-sample positive

bias in λ̂0(t) for at least some t, leading to overestimation of the cumulative base-

line excess hazard. Some local smoothing of the baseline excess hazard function in

the E-step of the algorithm is therefore needed. The details about the procedure

used can be found in the supplementary material. An R function for fitting the

additive model with the EM algorithm is available from CRAN (R Development

Core Team, 2005) as a part of the relsurv package (Pohar and Stare, 2006).

The Sasieni method encounters similar problems. It also needs several reiterations

and some baseline hazard smoothing to achieve the same goal.

In terms of practical use, an important advantage of our method is that it iterates
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between two very standard routines: the Cox model fitting and a ratio calculation.

Either part of the iteration is easy to implement using standard methods and

therefore any extensions, such as for example splines or frailties, can be directly

used. This does not apply to the Sasieni method, which perhaps explains why it

seems to have been little used in practical relative survival applications.

3 Standard error estimation

Standard errors are estimated via the Fisher information matrix, which can be

expressed as the complete information minus the missing information (see Sup-

plementary Material). To evaluate the complete information we use the Hessian

matrix obtained by fitting the Cox model at the final M step. To estimate the

missing information contribution, Im say, we use methods described by Louis

(1982) to get

Im = Var

{

∂ log L(θ|Y, δE)

∂θ

}

= V ar

{

n
∑

i=1

(

Zi −

∑

j∈Ri
Zje

βZj

∑

j∈Ri
eβZj

)

δEi

}

=
n

∑

i=1

(

Zi −

∑

j∈Ri
Zje

βZj

∑

j∈Ri
eβZj

)⊗2

V ar(δEi). (7)

We thus estimate the observed information as

ÎO =
n

∑

i=1

λ̂Ei

λ̂Oi







∑

j∈Ri
ZiZ

′

ie
β̂Zi

∑

j∈Ri
eβ̂Zj

−

(

∑

j∈Ri
Zie

β̂Zi

∑

j∈Ri
eβ̂Zj

)⊗2






−

n
∑

i=1

(

Zi −

∑

j∈Ri
Zie

β̂Zi

∑

j∈Ri
eβ̂Zj

)⊗2

λ̂Ei

λ̂Oi

(

1 −
λ̂Ei

λ̂Oi

)

. (8)
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4 Residuals and extensions

The most important advantage of our approach is the fact that the EM fitting

method is based on the Cox model and therefore any further extensions used

in the Cox model framework (splines, frailties, etc) for classical survival can be

straightforwardly incorporated into the study of relative survival. This makes the

method very flexible.

Similarly, goodness of fit of the model (1) with a non-parametric λ0 can be ad-

dressed in the same way as in the case (2), described in Stare et al. (2005b). We

define the partial residuals as

Ui(β) := Zi(ti) −

∑

j∈Ri

Zj(ti)
{

λPj(ti) + λ0(ti)e
βZj

}

∑

j∈Ri

{λPj(ti) + λ0(ti)eβZj}
. (9)

Assuming that the integral of the baseline excess hazard function is bounded on

the time interval of interest, proofs follow in the same way as for the stepwise

case. We can therefore use the residuals Ui for a graphical examination of the

proportional excess hazards assumption as well as for formal testing with Brow-

nian bridge statistics. An example of goodness of fit checking is presented in

Section 6.

An extension that is unique to the EM fitting method is to include the possibility

of cause of death being reliably known for some but not all patients (Cheuvart and

Ryan, 1991). As long as the availability of cause-of-death information is missing at

random and ignorable for likelihood purposes, this additional piece of information

can be straightforwardly incorporated. All that needs to be done is to fix the

values of δEi in the E step of the algorithm for the individuals whose cause of

death is known. This partial information will lead to more precise estimation. An

11



example is given in Section B of the Supplementary Material.

Estimates of E(δEi|δi, ti) are sometimes useful, i.e. the post-hoc probabilities that

death is attributable to condition C. These could of course be calculated after fit-

ting with any method, but they are automatically generated by the EM procedure

and hence immediately available. The sum of these values is the expected number

of deaths due to the condition, which can give us an idea of the importance of

using relative survival methods in our analysis. An example is given in Section 6.

5 Properties of the EM based approach

We performed a simulation study in order to evaluate the properties of the EM

approach and compare it with the standard fully parametric approaches (for de-

tails see Supplementary Material). The simulations were designed so that the

parametric model assumptions hold.

The estimated coefficients using either the EM approach or the parametric model

are close and in both cases some bias is present when the percentage of condition-

attributable deaths is low. The EM approach also seems to provide good variance

estimates (8), on the one hand these are close to the actual observed variance of

the coefficient, on the other hand the variance of the semi-parametric model is not

much larger than that of the parametric one, even though the parametric model

has an advantage of additional fulfilled assumptions.

The simulations also illustrate two properties of both both the semi-parametric

and the parametric additive model. Firstly, the additive model may not be the

best choice in situations with less than 30% deaths due to the excess risk, this

coincides well with the recommendations of Sasieni (1996). Instead, one should
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rather turn to using the multiplicative model (Andersen et al., 1985) or the trans-

formation approach (Stare et al., 2005a).

Secondly, the variance of the estimates strongly depends on the proportion of

deaths due to the excess risk. If the survival of the observed cohort is very similar

to the survival of the population, the variance of the estimated coefficients for

excess hazard can become very large, regardless of the fitting procedure.

6 An application to long-term survival after my-

ocardial infarction

We have applied our method to data from a study of survival of patients after acute

myocardial infarction. The study included all patients who were admitted to and

later discharged from the Centre for Cardiovascular Diseases in Ljubljana, with the

diagnosis of acute myocardial infarction, between May 1st 1982 and January 1st

1987. The aim of the study was to investigate the impact of different risk factors

on mortality for patients who survive a myocardial infarction. A patient was

considered a survivor of the infarction if she/he was discharged from the hospital,

and survival times were measured from this point. Data on 1040 patients were

collected, the follow-up was up to 14 years, during which time 53% of the subjects

died. This is an appropriate scenario for relative survival methodology since, on

the one hand, a substantial number of deaths would be expected even in a healthy

population given the long follow-up, and on the other hand, Figure 1 implies that

the excess risk is substantial.

Estimates of the regression coefficients for the variables age, sex and year of di-

agnosis are presented in Table 1. The table includes estimates using the EM

procedure with nonparametric baseline and the maximum likelihood estimates
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Figure 1: The relative survival curve r(t) for the myocardial infarction data.

method variable coeff se z
EM sex 0.6900 0.1730 3.997

age 0.0307 0.0078 3.948
year −0.0005 0.0002 −3.043

step sex 0.6885 0.1857 3.708
age 0.0299 0.0083 3.616
year −0.0006 0.0002 −3.071

splines sex 0.6914 0.1855 3.728
age 0.0295 0.0083 3.558
year −0.0006 0.0002 −3.082

Table 1: Results of the EM fitting method and two parametric options - piecewise
constant (step) function and splines for the baseline excess hazard

14



0 2 4 6 8 10 12 14

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0

Time (years)

B
a

s
e

lin
e

 e
x
c
e

s
s
 h

a
z
a

rd

EM
step
splines

Figure 2: Comparison of the baseline excess hazard estimated under three different
models. The baseline hazard estimated by the EM method was further smoothed
to enable a better comparison.

using either splines or a piecewise constant baseline. In the case of splines we

use a quadratic B-spline function with two interior knots as proposed in Giorgi

et al. (2003) with the defaults as programmed in the RSURV function (Giorgi et al.,

2005) (two knots set at the respective quantiles of event times). In the case of

the piecewise constant baseline four intervals were chosen, with boundaries at

the quartiles of the overall survival function. All three methods lead to similar

estimated values.

Figure 2 shows the baseline hazard estimated by the three methods. Here, the

two parametric models are used only for comparison and therefore we have not at-

tempted to improve the original model setting (interval and knot position), which

might lead to estimates closer to those given by the EM method. Without knowl-

edge of the EM results of course we may have no reason to doubt the estimates

obtained by the other methods.

The baseline excess hazard estimate obtained by the EM algorithm is of course
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very ragged as the smoothing introduced was only intended to make the cumula-

tive baseline excess hazard monotonically increasing. For an easier comparison,

we further smoothed the estimate (using the R loess routine) to obtain the curve

shown in Figure 2. The curve clearly shows that the baseline excess hazard starts

low, increases to its highest point in the next few months, then steeply decreases

for about a year and evens out thereafter. While the estimated coefficients with

the three fitting options are very similar, the results differ materially with respect

to the goodness-of-fit of the model. Test statistics based on cumulative sums

of Schoenfeld-type residuals were given by Stare et al. (2005b). These behave in

large samples like functions of Brownian bridges. One option is based on the max-

imum of a weighted bridge, with more weight at the beginning of the follow-up

interval where risk sets are large. We used this for the myocardial infarction data

and found differences between the approaches with respect to the effect of age.

While the proportionality assumption seems to be violated when using splines

(p=0.016), no problems are evident by the EM method (p=0.719). The reason

for this disagreement lies in the fact that the baseline excess hazard is needed for

the residual calculations (9) and the spline method gives much higher values for

this over the important early months.

To explore this behaviour, we performed a simulation study based on the my-

ocardial infarction data set. Death times were simulated using the estimates of

the coefficients and the baseline excess hazard provided by the EM-based model

(Table 1), with censoring mimicking that in the original data. The model was

fitted using both the EM and spline approaches for each simulated data set. Fig-

ure 3 shows the two empirical cumulative distribution functions (cdf’s) of the

goodness-of-fit test statistics for age and gives for reference the appropriate theo-

retical asymptotic value for a correctly specified model. In the EM case there is

no misspecification and the empirical cdf is very close to the theoretical one, so

the test statistic will yield reliable results. On the other hand, in the spline case,
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Figure 3: Empirical cumulative distribution functions for the goodness of fit test
statistics compared to the theoretical cdf.

the parametric baseline excess hazard assumptions do not hold exactly and the

test statistic too often leads to rejection of the null hypothesis, even though the

hazard for age is proportional. Misspecification of the baseline can evidently lead

to erroneous conclusions with respect to the proportionality effects of covariates.

As mentioned in Section 4, the EM method automatically generates estimated

probabilities of dying due to the disease for each individual. By summing them up,

we see that for this application the expected number of deaths due to the infarction

is 256.9, some 47% of the deaths recorded in this study. Figure 4 presents the

individual probabilities of dying due to the infarction plotted against follow-up

time. As the average age at diagnosis is relatively low, at 63, the population

hazard starts low and most deaths at the beginning of the follow-up period can be

attributed to the infarction. As time progresses the population hazard increases

rapidly, with the excess hazard simultaneously decreasing. The chance of disease-

specific death therefore decreases over time, as can be seen in Figure 4.
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Figure 4: Individual probabilities of dying due to the infarction plotted against the
follow-up time, with smooth trend.

7 Discussion

The main purpose of the newly introduced method is to fit the additive relative

survival model with a non-parametric baseline excess hazard function. In practice,

in cancer studies as in many other diseases it is reasonable to expect the excess

hazard to be decreasing, at least during the first year after the diagnosis, and

the assumption of a constant hazard will usually be invalid. While we can try

making a better piece-wise constant approximation by forming more intervals,

we quickly run into estimation problems. The more flexible methods often work

well but can sometimes fail to capture subtle but important changes in baseline

shape. In particular there are no methods for checking the assumptions about the

baseline excess hazard, and therefore no way to detect problems with the spline

model if they arise. Coefficient estimates can be, and goodness of fit statistics

are, affected by misspecification of baseline hazards, and therefore misleading

conclusions as to covariate effects may be obtained. When the assumptions about

the baseline excess hazard hold, the performance of both parametric and non-
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parametric approaches will be very similar, but when the assumptions are violated,

the EM approach is more reliable. Therefore, if the results of the EM approach

and a parametric model match, then either model could be used. However, if the

results differ, we suggest the more flexible EM approach is preferable.

Apart from its performance and simplicity, an attraction of the proposed method

lies in providing information about the form of baseline excess hazard as well as in

automatically yielding the individual post-hoc disease related death probabilities,

given death with unknown cause. In this way, the method helps in understanding

the results of fitting an additive relative survival model.

Last but not least, the fitting method is nothing but an iteration between Cox

model fitting and a simple ratio calculation. This means that the additive model

can be seen as a generalization of the Cox model and the wealth of extensions

available for the Cox model can be straightforwardly incorporated into relative

survival.

Further work should include a study of the asymptotic properties of the newly

proposed method as the usual properties of the EM algorithm can be affected by

the smoothing in the E-step.
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Estève, J., Benhamou, E., Croasdale, M., and Raymond, M. (1990). Relative
survival and the estimation of net survival: elements for further discussion.
Statistics in Medicine, 9:529–538.

Giorgi, R., Abrahamowicz, M., Quantin, C., Bolard, P., Estève, J., Gouvernet,
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