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Abstract. —  In radio astronomy, mosaicing is the practice of combining multiple pointings of a telescope to produce 

an image significantly larger than the telescope’s primary beam. We consider an approach to imaging and deconvolving 

interferometric mosaic observations. This approach directly deconvolves a linear mosaic of d irty  images. We consider 

the advantages and lim itations of this technique. Projection issues for mosaicing are also discussed. We present an 

example from a 320-pointing, spectral-line, mosaiced observation of the Small Magellanic Cloud.
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1. Introduction

With a single pointing, an interferometric array is only 
sensitive to a patch of the sky determined by the pri­
mary beam of each antenna. Consequently, to image ob­
jects larger than the primary beam, multiple pointings are 
required. Here we consider interferometric mosaicing, i.e. 
combining interferometric data from different pointings to 
form a single image of part of the sky.

Although mosaicing techniques have proven advanta­
geous in survey observations (e.g. Bremer 1994; Condon 
et al. 1994), here we consider mosaicing to be more than 
a ‘cut and paste’ merging of images from different point­
ings. Mosaicing can recover information inaccessible from 
a single-pointing observation. This is because an interfer­
ometer with projected baseline d does not measure just a 
single spacing in the u —v (Fourier) plane. For antenna size 
D , an interferometer measures an integral of the spacings 
from d - D  to d + D . Whereas the information in this range 
of spacings is generally not accessible in a single pointing, 
it can be recovered in a mosaic experiment (i.e. the effec­
tive u — v coverage can be improved). This was first noted 
by Ekers & Rots (1979), where they suggested a scheme 
of scanning antennas. A much firmer theoretical frame­
work was developed by Cornwell (1988), where he showed 
that scanning was not required provided the pointing sam­
pling grid is sufficiently fine (the fineness required is given 
by a sky-plane Nyquist sampling theorem). Cornwell pre­
sented a practical algorithm for combining data from mul­
tiple pointings, and showed that this approach retrieved 
the same information as the Ekers & Rots technique. The 
extra information retrieved from a mosaic experiment is
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usually most noticeable with extended emission. This is 
because the relative improvement in effective u — v cov­
erage is greatest at the short spacings. Indeed, measuring 
short spacings was the intention of Ekers & Rots.

Because the u —v coverage achieved in an interferomet­
ric observation is often incomplete, a non-linear algorithm 
is needed to produce good deconvolutions; only a non­
linear algorithm can estimate the missing information (e.g. 
Cornwell & Braun 1989). In this case, Cornwell (1988) 
stresses that it is possible to produce superior results by 
combining all the data before or during the deconvolution 
phase, not afterwards. Such approaches are called ‘joint’ 
deconvolution schemes. His approach involved combining 
the data during the deconvolution: an image is formed at 
each pointing, and a maximum entropy method is used 
to find a model of the entire field consistent with these 
data. Cornwell’s scheme also includes single-dish data in 
a natural way.

In this paper we consider an approach to imaging and 
deconvolving observations where the image data are com­
bined before deconvolution. This is a joint deconvolution 
approach where we consider interferometric data only. The 
technique shares a number of commonalities with work by 
Gueth et al. (1995). The advantages and limitations of our 
approach are considered. Finally we give an example, and 
consider scope for further work.

2. A n  imaging and deconvolving approach

Our approach to mosaicing proceeds in three steps, which 
we have implemented as separate imaging, deconvolv­
ing and restoring tasks. First a dirty mosaiced image 
dataset is formed from the visibility data. A dataset
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used to determine the point-spread function (PSF) is also 
produced. Secondly a “deconvolution” task is used to 
deconvolve this mosaiced dirty image to produce a model 
of the sky. Finally we convolve this model with a Gaussian 
beam and add the residuals of the deconvolution process. 
The mosaic schemes described here are implemented in 
the Miriad system (Sault et al. 1995).

2.1. The imaging step

The imaging step is fairly standard. Dirty sub-images from 
the individual pointings are made using a conventional 
grid-and-FFT scheme. The visibility weighting scheme 
and the problem of making the sub-images on the same 
pixel grid is addressed in the following sections. The sub­
images are then mosaiced together using a standard linear 
mosaicing scheme (e.g. see Cornwell et al. 1993). For linear 
mosaicing, a pixel in the output is a weighted sum of the 
corresponding pixels in the input sub-images. The weights 
are determined both to correct for primary beam attenu­
ation and to minimize the noise level in the output. For 
simplicity, we use one-dimensional notation and assume 
that the primary beam for all pointings is the same. In 
this case, the linearly mosaiced image is given by

The sums run over the pointings, p. Here lp is a pointing 
centre, Ip(l ) is a dirty sub-image and A(£) is the primary 
beam response of an antenna. The weighting in the nu­
merator and denominator by the noise variance of a sub­
image, σ2p, causes the noise variance in the resultant mo­
saic to be minimized. We use the theoretical noise variance 
for σ2p, which is computed from on-line measurements of 
the system temperature, as well as other observation pa­
rameters and the weights used for the visibilities in the 
imaging.

The weighting factor, W ( l ), requires further explana­
tion. We introduce this somewhat arbitrary factor to sup­
press excessive noise amplification at the edge of the mo­
saic. We set this weight so that the noise at a pixel in the 
mosaic never exceeds a particular threshold value, which 
is set at the maximum noise variance in the individual 
sub-images. Specifically, for a threshold σ2T,

We find that this weighting has a number of good charac­
teristics. It produces an output mosaic which has a roughly 
constant noise variance (constant within a factor of a few, 
assuming the noise variances in the sub-images are fairly 
uniform). W ( l ) will be unity within the perimeter of the 
outermost pointings (assuming there are no holes in the 
pointing grid), and will taper to zero beyond this. In the 
extreme case of ‘linearly mosaicing’ a single pointing, this

weighting exactly counteracts the primary beam correc­
tion introduced by the other terms, and so the output im­
age is simply the conventional dirty image. Heuristically, 
the weighting produces aesthetically pleasing images, and 
will improve some deconvolution processes (e.g. inverse 
or Wiener filtering as suggested by Cornwell et al. 1993). 
However, as for the primary beam of a single pointing ob­
servation, the attentuation left at the edges may need to 
be considered during the astronomical analysis phase.

2.2. Visibility weighting schemes

In normal interferometric imaging, weights are generally 
applied to the visibility data before the Fourier transform 
step (see e.g. Sramek & Schwab 1989 or Briggs 1995). The 
most commonly used schemes are uniform weights (which 
minimizes the sidelobe level) and natural weights (which 
maximizes the point-source sensitivity).

When mosaicing, maximizing the point-source sensi­
tivity will be achieved by using natural weights for each 
sub-image. However simply using uniform weights for each 
sub-image does not minimize the sidelobe level in the out­
put mosaic: as the linearly mosaiced image is a weighted 
sum of pixels in the sub-images (with the weights vary­
ing across the sub-images), the contribution to the mo­
saic of sidelobes in the sub-images varies with position. 
Also when the field size of the sub-images is large (as is 
suggested by the sensitivity and deconvolution considera­
tions in Sect. 2.4), uniform and natural weighting become 
essentially identical. This is because in determining the 
sampling density function for uniform weights, the u — v 
grid becomes so fine that generally at most one visibility 
lies in each cell. In this case uniform weights (like nat­
ural weights) result in high sidelobe levels. Another way 
of interpreting this is that uniform weighting is attempt­
ing to minimize the sidelobes over too large a field, and so 
produces poor sidelobe suppression overall. Super-uniform 
weights can circumvent this behaviour: these attempt to 
mimimize the sidelobe level in a region smaller than the 
full field being imaged.

Optimal weighting schemes which mimimize the side­
lobe level in the linearly mosaiced image would be possi­
ble using a weighting approach described by Sault (1984). 
However the computational expense in determining these 
weights would not justify their modest advantages. To pro­
duce low sidelobe levels in a mosaiced image, we suggest 
using super-uniform weights in each sub-image.

2.3. Projection considerations

When imaging large sections of the sky, attention must 
be paid to the non-planar nature of the celestial sphere. 
Ideally the resultant mosaic should represent a single pro­
jection operation on this sphere. Our approach is to pro­
duce sub-images that use the same projection, and lie on 
the same pixel grid. We achieve this in two steps. First
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the (u ,v ) coordinates of the visibilities are manipulated 
so that the resultant sub-images have the same projection 
geometry. The form of projection natural to an interferom­
eter is the so-called “sine” projection about some tangent 
point. Second we multiply the visibility data by a phase 
term, corresponding to a shift in the image plane by a 
fraction of a pixel, to make the resultant images lie on the 
same pixel grid. We treat the projection-related manipu­
lations in more detail, considering separately the cases of 
observations where the (u ,v ,w ) coordinates of a visibility 
either do or do not lie entirely within a plane (so-called 
coplanar or non-coplanar observations).

We consider non-coplanar observations first. Non- 
coplanar observations produce images with a smearing or 
“w-axis” distortion (e.g. Cornwell & Perley 1992). This 
distortion is minimized by using the delay-tracking centre 
(which presumably coincides with the pointing centre) as 
the tangent point for imaging. Using this approach in a 
mosaiced observation would result in the different point­
ings using different projection tangent points and so would 
have different projection geometries. There are several ap­
proaches to overcome this. One is to regrid the resultant 
sub-images to a common tangent point. This, however, in­
troduces interpolation errors (Braun 1988a). Also, if the 
correction amounts to anything other than a rotation or 
stretch, then the synthesized beam is no longer constant 
across the sub-image. Another approach is to rotate the 
(u ,v ,w ) coordinates, before imaging, to a common tan­
gent point. This will be adequate provided the w-axis dis­
tortion is not a significant problem over a field the size of 
the entire mosaic. A third approach, which we consider in 
detail in Appendix A, is to apply a linear transformation 
to the (u , v) coordinates. This transformation is chosen to 
minimize the projection mismatch between the individ­
ual fields and to be exact at the pointing centre of each 
field. Because only u and v are transformed, no additional 
w-axis distortion is introduced over that which would be 
present in an image without any transformation. As the 
net result of the transformation is to rotate and stretch the 
resultant image, the convolution relationship between the 
sky and dirty image is not altered (the synthesized beams 
must be computed with the same transformed (u,v) co­
ordinates as the dirty image). As it is simple and com­
putationally cheap, it should be the preferred approach. 
However, this technique, as well as the other two, will be 
inadequate if the w-axis distortion is significant within an 
individual sub-image. In this case, a full “3-dimensional” 
imaging approach will be required (e.g. Cornwell & Perley 
1992).

When the baseline vectors are coplanar, it is possible 
to avoid the above approximations. The most common 
types of telescopes that produce coplanar observations are 
east-west arrays. One way of describing the projection ge­
ometry of such arrays is to consider the tangent point to 
be at the normal to the plane of the baselines (the pole for

east-west arrays). In this case, re is always zero, and a pure 
sine projection, with a fixed tangent point, results -  there 
is no re-axis distortion. Although it is common practise 
to produce images using (u ,v ,w ) coordinates computed 
relative to a point other than the pole, this is unimpor­
tant. This simply introduces a geometric distortion which 
only makes the mapping between sky and pixel coordi­
nate somewhat more elaborate (e.g. Brouw 1974a). The 
important point is to compute (u ,v) coordinates, for all 
pointings, relative to a common reference point in the sky. 
In this case, all sub-images will have the same projection 
geometry. Although it is normal for the (u ,v ,w ) coordi­
nates to be computed relative to the delay-tracking centre 
of each pointing, it is a simple matter to rotate them to a 
common point.

We do not consider as a special case observations where 
the data for a given pointing are coplanar, but where the 
set of all data is not coplanar. Such observations result 
from a physically planar array where the data for each 
pointing are derived from a single snapshot. We treat 
such observations as non-coplanar. However, Condon et 
al. (1994) present an approach which is advantageous for 
such cases.

2.4. Deconvolution

It is sometimes believed that the ‘magic’ of a non-linear 
deconvolution algorithm is in some way responsible for 
recovering the extra information from a mosaicing exper­
iment. This is not the case. For example Ekers & Rots’ 
(1979) technique uses only linear operations. Cornwell et 
al. (1993) show that a linear mosaic of dirty sub-images 
also contain the extra information. In particular, they 
show that the effective u — v coverage of a linear mosaic is 
approximately equivalent to convolving the conventional 
u — v plane sampling pattern with the Fourier transform 
of the square of A (l ). In principle, then, deconvolving a 
linear mosaic of dirty sub-images has the advantages of a 
‘joint’ approach.

As Cornwell et al. (1993) note, a linear mosaic of dirty 
sub-images results in a position-variant PSF. Part of that 
paper considers approximate ways of deconvolving such an 
image (we use ‘deconvolve’ in a broad sense, rather than 
the strict sense where it applies only to inverting position- 
invariant operations). Here we describe an approach which 
avoids approximations, thus enabling good deconvolutions 
of a linear mosaic to be achieved. We do, however, assume 
that the primary beam response is of finite extent. Al­
though this is incorrect, in practice the primary beam is 
only modelled over a finite region (we consider this ap­
proximation later).
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If B p(l ) is the synthesized beam pattern for pointing 
p , the PSF at lo is

An output dataset from our imager (the so-called ‘beam’ 
dataset) consists of the synthesized beams and primary 
beam model for each pointing, plus other book-keeping 
information; this information allows the PSF to be com­
puted at any position. For a primary beam model of fi­
nite extent, this PSF will also be of finite extent and no 
more than twice the extent of the primary beam (the ac­
tual extent will depend on the relative location of lo and 
the pointing centres). Additionally, the PSF is consider­
ably cleaner than synthesized beams from the individual 
pointings. This is both because the distant sidelobes are 
down-weighted by the linear mosaicing process, and be­
cause summing together beam patterns is equivalent to 
filling in the u — v coverage (here we assume a time-shared 
observing strategy). As an example, Fig. 1 gives a syn­
thesized beam of a pointing and a mosaic PSF for the 
observation described in Sect. 3.

A basic operation involved in many deconvolution 
algorithms is to determine residuals by converting a 
prospective model of the sky into a dirty image and then 
subtracting it from the observed dirty image. Despite the 
position-variant PSF of the linear mosaic, this is not ex­
cessively computationally expensive, as the process can 
be decomposed into efficiently implementable operations. 
The steps are as follows: divide the model sky by W (l ) 
and then, for each pointing, multiply by the primary beam 
and then convolve with the appropriate synthesized beam. 
This leaves a full set of dirty sub-images, which are then 
linearly mosaiced together, and subtracted from the ob­
served dirty image.

The convolution operation with the synthesized beam 
is implemented using FFTs. As with all FFT-based convo­
lutions, care must be taken to avoid the side-effects of their 
cyclic (as distinct from linear) nature. This is especially so 
since the sky in a sub-image is full of emission. However, 
as the models of the primary beam response are of finite 
extent, an exact treatment is possible provided the sizes 
of the image being convolved, the sub-image, the synthe­
sized beam and the FFT are decoupled; images can be 
appropriately zero-padded and post-FFT edges discarded 
to achieve this. If Ns is the size of the sub-image and Npb 
is the extent of the primary beam (both in pixels), then a 
synthesized beam of size N s + N pb — 1 and an FFT of at 
least this size is required.

Ideally, the sub-image size should be the full extent of 
the primary beam. Linear mosaicing with a smaller sub­
image will result in some lost of sensitivity and will intro­
duce some extra distortions into the dirty mosaic (the PSF 
will be dirtier, and more strongly position-dependent). 
With an ideal deconvolution algorithm, the latter distor-

RA offset (degrees)

Fig. 1. Point responses from a 320-pointing ATCA mosaic 

observation. Both displays are saturated at the level ±0.1. a) A 

conventional synthesized beam from the centre-most pointing; 

b) The PSF of the mosaic at the same position

tion can be removed. In practice, results are best if the 
PSF is as clean as possible.

Using the above method to go from a model sky to a 
dirty image, a number of deconvolution techniques can be 
readily implemented. We have implemented a maximum 
entropy deconvolver (based on the algorithm of Cornwell 
& Evans 1985, with modifications by Sault 1990), as well 
as the CLEAN algorithm variant of Steer et al. (1984).
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Externally and internally, these algorithms are little differ­

ent to deconvolvers of a single pointing observation. Apart 

from using a different ‘convolution’ module, the only sig­

nificant difference is that the noise variance, σ2(l ) is not 

constant. As the image datasets contain the information 

needed to determine σ2(l ), the maximum entropy algo­

rithm handles this in a natural way in the x2 constraint 

(we give the user the ability to multiply the theoretical 

level by a constant ‘fudge factor’). The CLEAN-like ap­

proach has to be modified slightly: it is no longer correct 

simply to search for the highest residual at each iteration. 

However, it is easy to show that the correct approach is 

to locate the maximum of |Il m(l )/o'(l )|. This is correct in 

a maximum-likelihood sense when the synthesized beams 

are much smaller than the primary beam.

The above maximum entropy approach differs from 

that of Cornwell (1988): he advocates calculating the x 2 

statistic from the residual visibilities (although the AIPS 

implementation of his algorithm calculates x 2 from the 

sub-image residuals). We calculate x 2 from the linear mo­

saic of the residuals. Calculating x 2 from the visibilities 

would be too computationally expensive for our applica­

tions. These approaches are distinct. However as Cornwell 

& Evans (1985) note, how x 2 is estimated is not exces­

sively important. All approaches still possess the advan­

tages of joint deconvolution.

2.5. Practicality

Our approach to mosaicing has been dictated as much by 

practicality as theory. Our astronomical interests involve 

large mosaics of spectral line experiments. We have to be 

concerned with ease of the data reduction process, as well 

as minimizing disk space and CPU requirements.

As seen by a user, the steps involved in this reduc­

tion process appear fairly conventional. The input visi­

bility dataset contains the multiple pointings. From this 

dataset, an image is formed, deconvolved and then re­

stored. The user deals with familiar objects at the different 

steps -  single visibility datasets and images (admittedly 

the beam dataset is not normal). Apart from extra CPU 

and disk requirements, the user is unaffected by the num­

ber of pointings.

In addition to simplifying the user’s lot, building the 

linear mosaicing into the imager is convenient for han­

dling the projection corrections. However, one compelling 

reason for doing it it is the resulting saving in computer re­

sources. Typically, the linear extent of a sub-image is twice 

the primary beam FWHM and the pointing grid spacing 

is half the FWHM. Hence the total number of pixels in 

the sub-images is typically 16 times more than in the final 

mosaic. It is best to do the linear mosaicing as soon as pos­

sible to save computer memory and disk space. This ad­

vantage is not as impressive when the beam dataset is also 

considered: the beam dataset contains the (uncombined) 

synthesized beams for the individual pointings. There is no

saving in storage of the synthesized beams. As the synthe­

sized beams typically have 4 times as many pixels as the 

sub-images then, for continuum experiments, the overall 

fractional saving in disk space is small. However, for spec­

tral line experiments the beam datasets can be made fre­

quency independent. Our software produces image cubes 

where the image cell size is scaled inversely with frequency 

(note that the PSF derived from this dataset is frequency 

dependent, because the pointing grid does not scale with 

frequency). In this way only one set of synthesized beams 

is needed for a spectral mosaic cube. Hence savings in disk 

space of the factor of 16 can be approached when the size 

of the mosaic cube dominates.

2.6. Limitations

There are a number of shortcomings to our approach. We 

consider those limitations which are related to our purely 

image-plane-based deconvolution approach, and those in­

trinsic to joint deconvolution.

For FFT-based imaging algorithms, any deconvolution 

scheme that works purely in the image plane will suf­

fer from the aliasing effects, as aliasing violates the as­

sumed convolution relationship between the sky and dirty 

image. This problem is somewhat more severe for mo­

saicing experiments because there will always be emis­

sion outside each sub-image. In addition to using pro­

late spheroidal gridding functions (Brouw 1974b; Schwab 

1984), we reduce aliasing by discarding the outer portions 

of the FFTed images when forming sub-images and syn­

thesized beams (typically 10% to 50%, in each dimension, 

of the FFTed image is discarded). Even so, aliasing will 

persist at some level. Aliasing errors can be avoided by 

algorithms that determine residuals in the ungridded vis­

ibility plane (and use a direct Fourier transform approach 

to get there).

A practical limitation to an image-plane-based decon­

volution scheme is the large size required for the stored 

synthesized beams. For proper deconvolution, we require 

synthesized beams which are Ns +  Npb — 1 in size. Fur­

thermore, to produce better quality deconvolutions, a pri­

mary beam model of larger extent (i.e. a larger value for 

Npb) is required, and so a larger synthesized beam is also 

required. Again, approaches which determine residuals in 

the ungridded visibility plane do not suffer this limitation. 

Typically these algorithms require, at most, a beam patch, 

not the full synthesized beam. In this way, the beam stor­

age requirement can be reduced and decoupled from the 

extent of the primary beam model (the expense of com­

puting the model visibilities, however, would still increase 

with the extent of the primary beam model).

The joint deconvolution approach, in general, is not 

without its drawbacks. With joint deconvolution, the pri­

mary beam responses (the assumed model of the primary 

beam, the pointing centres, etc) are as much a part of 

the PSF as the synthesized beams. Errors in the primary
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beam responses result in errors in the PSF. This is quite 
unlike deconvolving a single pointing. Braun (1988b) and 
Cornwell et al. (1993) considered the effects of primary 
beam errors. Braun showed that approaches which com­
bine the sub-images after individual deconvolution can 
produce higher dynamic ranges for compact sources. 
Braun (1988a) also showed that a hybrid approach of 
joint and individual deconvolution of the short and long 
spacings, respectively, can produce better dynamic ranges 
while retaining the advantages of joint deconvolution 
(Holdaway 1992 expanded on these hybrid schemes).

In terms of sensitivity to primary beam errors, our ap­
proach does not differ from other joint deconvolution ap­
proaches. However, because the sub-images are combined 
at an early stage, our approach makes post-imaging cor­
rection to the primary beam response difficult or impossi­
ble. If the primary beam response were to be determined 
after imaging (e.g. by some form of pointing or primary 
beam response self-calibration algorithm), then our ap­
proach would be less attractive.

3. A n  example

Here we compare of our method with both the (image- 
plane-based) algorithm of Cornwell (1988) and individual 
deconvolution of sub-images. The images presented here 
have been derived as uniformly as possible. Similarly, the 
different algorithms have been implemented using as much 
common code and techniques as possible. Thus the differ­
ences between images and computational load are a re­
sult of the different algorithms and not implementations. 
In particular, all images have a residual primary beam 
weighting given by Eq. (2) and the results of the deconvo­
lutions have been ‘restored’ (i.e. they have been convolved 
with a Gaussian beam, and the residuals have been folded 
in).

We have applied our imaging and deconvolution algo­
rithms to a large A21-cm survey of the Small Magellanic 
Cloud (SMC) taken with the 375 m configuration of the 
ATCA. This survey consists of a hexagonal grid of 320 
pointings covering an area of 4° x 4°, as shown in Fig. 2. 
The spacing between adjacent pointing centres is 15'. This 
is comfortably less than the sky-plane Nyquist sampling 
interval of X /√ 3D =  19' required for a hexagonal grid 
(D =  22 m for the ATCA antennas). Other observational 
details are described in Staveley-Smith et al. (1995).

The u — v coordinates of the visibility data were 
corrected for geometric effects and Fourier-transformed. 
Point-source responses at the centre of the mosaic (both 
the synthesized beam of the central pointing, and the 
linear mosaic PSF at the same location) are shown in 
Fig. 1. The linear mosaic of the dirty sub-images for one 
velocity plane is shown in Fig. 3a. This plane represents 
the HI emission at heliocentric velocities from 122.4 to 
124.0 km s-1 . The bar region of the SMC is prominent but 
sidelobes in the PSF, mainly because of the first λ (30 m)

RA offset (degrees)

Fig. 2. The locations of ATCA pointings (+ ) in the Small Mag­

ellanic Cloud, superimposed on a grey-scale representation of 

the overall sensitivity function. The pointing grid is hexagonal 

w ith a 15' spacing

grating ring, badly confuse the structure. Higher-order 
grating rings are suppressed by the primary beam of the 
antennas.

For comparison purposes, we have deconvolved and re­
stored the individual sub-images before linearly mosaic­
ing the resultant sub-images together. Here, as with the 
other images of this section, we used a maximum entropy 
deconvolver and 116 restoring beam. The result, Fig. 3b, 
shows that some of the sidelobes have been removed. How­
ever, the overall deconvolution is poor -  the first grating 
ring is not removed, and no large-scale structure is recov­
ered. There are also faint ‘edge effects’ at the boundary 
of each sub-image, because the artificial flat background 
that maximum entropy deconvolvers can produce does not 
taper like the primary beam response.

The result of our approach (deconvolving the linearly 
mosaiced dirty cube) is shown in Fig. 4a. Twenty itera­
tions of a maximum entropy deconvolver were required 
for the algorithm to converge adequately. Much extended 
structure has been recovered, showing the advantages of 
joint deconvolution.

For comparison, we have implemented an image-plane- 
based version of Cornwell’s (1988) algorithm, where the 
mosaicing is performed during the deconvolution (rather 
than before). Again, 20 iterations of a maximum entropy 
algorithm were required to reach a comparable conver­
gence. The result is shown in Fig. 4b. This algorithm
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F ig . 3. Mosaiced H I images of the Small Magellanic Cloud at a heliocentric velocity of 123 km s_1: a) w ith  no deconvolution 

(i.e. a linear mosaic of d irty  images); b) w ith deconvolution of the individual sub-images before mosaicing (i.e. a linear mosaic 

of deconvolved images). The sub-images were deconvolved w ith 20 iterations of a maximum entropy algorithm

F ig . 4. Mosaiced H I images of the Small Magellanic Cloud at a heliocentric velocity of 123 km s a) w ith  deconvolution 

applied a fte r mosaicing (i.e. a deconvolved linear mosaic of d irty  images). This is the method advocated in this paper, b) with 

deconvolution applied during  mosaicing (i.e. a deconvolved non-linear mosaic of d irty  images). This is the approach as advocated 

in Cornwell (1988). In both cases, 20 iterations of the same maximum entropy algorithm were used
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applies a full primary beam correction at the edge of the 
mosaic, which we have removed for the purpose of com­
parison with Fig. 4a.

The deconvolved images in Fig. 4 are qualitatively and 
quantitatively very similar. Both do a good job of decon­
volving isolated HI clumps. For the confused structure in 
the bar region, both algorithms appear to remove the grat­
ing rings, recover extra u — v spacing information, and 
show structure up to the 34' scale of the primary beam. 
Both also exhibit ‘bowls’ around the bar region, resulting 
from missing zero-spacing information in this set of data.

As mentioned in Sect. 2.4, our approach has a signifi­
cant practical advantage in terms of disk space. There is 
no need to make individual image cubes for each field, as 
we produce a linearly mosaiced dirty cube directly from 
the u — v data. For 100 planes of the SMC cube, the 
linearly mosaiced cube is about 140 Mbyte in size, com­
pared with about 1800 Mbyte for the 320 individual im­
age cubes. This ratio is typical for any set of observations 
where the sky plane is sampled at close to the required 
Nyquist interval for antenna pointings, and is considerable 
for large spectral-line projects. For continuum projects, as 
discussed in Sect. 2.4, the overall saving is not as signifi­
cant because both techniques require the storage of syn­
thesized beams for each field (assuming the the usual case 
where these differ significantly from pointing to pointing). 
In this example, the synthesized beams occupy 67 Mbyte.

CPU tests were performed on a single 75 MHz pro­
cessor on a SGI PowerChallenge computer. The most 
significant CPU usage occurs at the deconvolution step, 
where both joint techniques are well matched. Our ap­
proach takes 22.5 min per plane for the SMC (20 iter­
ations) and uses 60 Mbyte of memory, while our imple­
mentation of the Cornwell method takes 21 min per plane 
and uses 105 Mbyte of memory. The Cornwell algorithm is 
marginally faster because of an implementation difference 
in the convolution modules.

4. Conclusions

We have presented an approach to imaging and decon­
volving a mosaic experiment which has proven useful in 
processing a number of observations. The deconvolution 
process is such that the advantages of a ‘joint deconvolu­
tion’ are preserved. If nothing else, the packaging of the 
software has greatly reduced the burden on the user pro­
cessing a mosaic observation. We have processed mosaiced 
experiments varying from a few to more that one thousand 
pointings.

Several avenues of possible further work are appar­
ent. One obvious application is single-pointing, wide-field 
imaging with an array containing several different primary 
beam types (e.g. the Penticton array). Our ‘mosaicing’ 
techniques would handle such an observation in a natural 
fashion.

Our approach to deconvolution may be useful in other 
imaging systems with position-variant PSFs. It may be ap­
plicable if the PSF at a particular location, is, or can be 
approximated by, a weighted sum of some set of position- 
independent PSFs (i.e. as it is in the mosaic case). It would 
be most advantageous if the PSFs were also of finite ex­
tent. Our approach has some conceptual similarities to 
that of Waldram & McGilchrist (1990), where they de­
convolve an image with position-variant PSF (caused by 
bandwidth smearing and the w-axis effect) using a set of 
beams. As a final possible application, combining our ap­
proaches to deconvolution and projection geometry with 
a number of the elements of the polyhedron method of 
Cornwell & Perley (1992) should produce a useful algo­
rithm for eliminating the w-axis distortion problem. As 
the PSFs for this problem often cannot be approximated 
as being of finite extent, a deconvolution algorithm which 
determined residuals in the ungridded visibility domain 
(as the polyhedron method does) would be attractive.
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A . Projection geometry for non-coplanar baselines

To avoid w-axis distortions when mosaicing using an ar­
ray with non-coplanar baselines, it is best to delay-track at 
different positions for different pointing. This normally re­
sults in different projections for different sub-images. Our 
aim is to convert (at least approximately) these differ­
ent projections into a single sine projection by a linear 
transformation of the (u ,v) coordinates before imaging. 
We choose a linear transformation because this preserves 
the convolution relationship between the dirty image, the 
synthesized beam, and the sky. An equivalent way of view­
ing this is as a manipulation of the phase term in the van 
Cittert-Zernike integral.

We consider the problem of converting a single sub­
image to a given projection geometry. Here we revert to 
two- or three-dimensional notation. Note that there are 
two relevant direction cosine coordinate systems in the 
image plane: one relative to the tangent point of the fi­
nal projection (the global tangent point), and the other 
relative to the delay-tracking centre of the sub-image (for 
simplicity we assume that the delay-tracking and point­
ing centres are the same). Let (l', m ' , n ') be the direction
cosines in the sub-image relative to the delay-tracking cen­
tre, and let (£, t o, n) be the direction cosines of the same 
point on the sky, but relative to the global tangent point.
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These are related by a three-dimensional rotation matrix:

we can linearize the above equa­
tion about the delay-tracking centre, (l ', m ') = (0,0), 
which gives (after simplification)

Here (l p, m p) are the direction cosines of the delay­
tracking centre of interest relative to the global tangent 
point, and R2 is upper-left 2 x 2  submatrix of R. The 
intuitively reasonable shift by (l p,m p) represents a shift 
of the final sub-image, and simply means that we do not 
have to rephase the data in any way before imaging. We 
now wish to express these coordinate manipulations in the 
visibility plane. We state the Fourier theorem that for vec­
tors l  and u  and Fourier transform pairs f ( l ) and F (u ), a 
linear transformation, A, of the coordinate vector l  gives 
transform pairs

f (A l ) =  |det(A )|- 1F(A-1Tu).(A _1Tu). (A3)

Thus the coordinate transformation in the image plane 
can be expressed in the visibility plane as

where

a11 = cos(α p — α o ) sin <ς p sin δ o +

cos δ P cos δ 0 (A6)

a21 = -  sin(α p -  α 0) sinδ o (A7)

a12 = sin(α p -  α 0) sinδ p (A8)

a22 =  cos(α p -  α 0) (A9)

n = sin δ o sin δ P +  cos(α p — α o)

cos δp cos δ0. (A10)

Here (u ',v ')  are the visibility coordinates computed rela­
tive to the delay-tracking centre, (α p, δ P) are the right as­
cension and declination of the delay-tracking centre, and 
(α oδ o) are those of the global tangent point. Note that 
the term corresponding to | det(A)|_1 in the above Fourier 
theorem is just the 1/n  factor that normally appears in 
the van Cittert-Zernike equation.

A more intuitive approach to this transformation is 
depicted in Fig. 5. Points A, B , C and T  are points on 
the celestial sphere. T  is also the tangent point of the 
main projection plane -  plane 1. Point A is some arbitrary 
point, and A'  is its sine projection.

Fig. 5. Geometry of various projections involved in a mosaic 

observation w ith non-coplanar baselines

For a sub-image in the mosaic (the region of the sky 
beneath plane 2) we should normally image with a tan­
gent point at the delay-tracking centre -  point B. Without 
the transformation applied to the (u ,v) coordinates, the 
resultant image will be a sine projection onto plane 2. 
The transformation of (u ,v), which amounts to rotation 
and stretching operations in the image plane, is equivalent 
to further projecting from plane 2 to plane 1. Point B  is 
correctly projected to B '. We can see, however, the error 
involved in the technique. Point C, at the edge of the sub­
image, is projected to C ', whereas the sine projection of 
C is C " . This projection error (the distance between C' 
and C ") will be

ε = sin θ 1 (1 -  cosθ 2) (A ll)

Here θ1 is the angle between the delay-tracking centre and 
the global tangent point (the angle between B  and T), 
and θ 2 is the angle between a point in a sub-image and 
its delay-tracking centre (the angle between C and B). 
Note that this error is no worse than the w-axis distortion 
present in a sub-image (see Perley 1989). If the w-axis 
distortion is tolerable in a sub-image, then so should the 
error in the above projection.

The above error will be considerably smaller than the 
w-axis distortion that would result if we imaged using 
(u, v, w ) coordinates rotated to a single tangent point (the 
worst error for this would be quadratic in the size of the 
mosaic, whereas the above technique is quadratic in the 
size of a sub-image).
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