
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
An Approach to Mixed-Initiative Management
 of Heterogeneous Software Agent Teams

Mark H. Burstein, Alice M. Mulvehill, Stephen Deutsch
 (burstein@bbn.com, amm@bbn.com, sdeutsch@bbn.com)

BBN Technologies (a unit of GTE Internetworking)
10 Moulton St., Cambridge, MA 02138
Abstract
The rapid growth in research and development of agent-
based software systems has led to concerns about how
human users will control the activities of teams of agents
that must actively collaborate. We believe that practical
multi-agent systems developed will often be comprised of
small teams of heterogeneous agents, under direct
supervision by users acting as “team leaders”. We are
now developing an environment for investigating
approaches to controlling small to medium-sized groups
of agents as coordinated teams. This environment will be
used to explore mixed-initiative approaches to planning
for the activities of agent teams, and managing them
during execution. Our approach arises out of a long-
standing interest in mixed-initiative planning systems
[5]. In this paper, we discuss our approach to mixed-
initiative agent team management, some representational
issues involved in identifying compatible agent team
members and the capabilities needed to monitor team
execution.

1. Introduction

We are now in an era of fast-paced growth in the
development of agent-based systems technologies. As we
seek to make effective use of heterogeneous agents in
tasks requiring some degree of inter-agent coordination,
we must develop strategies and mechanisms for tasking
and managing them during execution. Unfortunately, the
functionalities, capabilities, and limitations of agents are
evolving rapidly, and many of the distributed software
components that are likely to need in real-world systems
are not agents at all by most current definitions. To
develop a realistic strategy for user-controlled planning
and management of multi-agent systems, we must expect
that a range of “agent” and “less than agent” software
components will be involved, and begin to characterize
their functional capabilities, domain knowledge,
information requirements, and decision authority, in
order to properly task them.

The objective is the design and development of mixed-
initiative tools that support humans in planning, tasking
and managing software agent teams. Our approach is to
0-7695-0001-3/99 $1
simultaneously build mixed-initiative user support agents
and an environment in which we can experimentally
explore approaches to user interaction with these team
building and managing agents. Our initial domain is
military logistics planning and scheduling.

1.1. Approach

To effectively support the mixed-initiative management
of agent teams in this kind of planning task, we must
address support for such critical areas as:
(1) HCI techniques for interactively defining tasks and

specifying roles and communications between agents,
(2) Mixed-initiative support agents to help users identify

appropriate agents for tasks, and ascertain that agents
the can communicate compatibly, satisfy timing
dependencies, and provide structural support for
execution status monitoring,

(3) Support for the collection, summarization and
visualization of agent task status, to convey to users
the impact of problems on major team objectives,

(4) Support for dynamic retasking to surmount
execution-time problems, changing conditions and
objectives.

Our approach to team formation and task management
is organized around mixed-initiative tools for plan
construction, visualization and maintenance of plans and
associated agent taskings. As we are working primarily in
a domain where the products are themselves plans, it is
appropriate to provide a common ontology and gestural
vocabulary for specification of major domain objectives
and the tasks to be done by agents supporting those plans.
Our aim is to facilitate user interaction by direct
manipulation [21] of domain-specific visualizations of
task representations, and avoid (for pragmatic reasons)
issues of natural language-based interaction. We do,
however anticipate that multi-modal dialog management
will be critical for handling issues such as maintaining the
locus of joint planning activity, delegating and retracting
change authority, and maintaining dialog context (as
when switching from planning to execution management
or evaluation).
0.00 (c) 1999 IEEE 1

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
The mixed-initiative aspects of the system we are
constructing will arise from the behavior of several
classes of user support agents. Planning support agents
will “watch” the manipulations of users developing plans
(primarily graphically) and suggest appropriate ways to
refine the specified tasks, identify appropriate functional
agents to fill team roles addressing the specified tasks,
and identify functional and communication gaps that
remain given the choices made for those assignments.
These activities will result in short dialogs with users,
providing suggestions and warnings, but leaving users
with the final change authority.

This interactive process between users (the team
leaders) and agents will also identify task information
requirements, establishing the need for information
seeking and reformulation agents to gather the
information needed and provide it where and how it is
required. Finally, the process must introduce as team
members monitoring agents to assist in the collection
and tracking of team performance and status, and report
to users on issues and progress as needed.

We are taking a decidedly experimental approach to
developing mixed-initiative controls for agent teams. Our
initial suite of planning tools will be integrated into a
prototype testbed with an agent simulation environment
that enables us to explore mixed-initiative techniques for
tasking agents without necessarily having a full
complement of real agents. The testbed will enable us to
experiment with different approaches to user interaction
for managing teams and explore some general agent
coordination issues, such as the identification of effective
organizational control strategies for different classes of
tasks.

We are fortunate to have available a simulation tool
for agents with explicit goal and process representations
called OMAR (Operator Modeling Architecture) [7, 9]
that is well suited for modeling current and future classes
of software agents and as a platform for these
experiments. OMAR has been successfully used to model
human performance in a variety of complex activities
(cockpit modeling, underwater vehicle control, etc.).
OMAR also directly supports the control of live, remote
agents, so that we can extend our experiments to look at
control of true heterogeneous software agents as well as
simulating them.

1.2. An Example

As a hypothetical example, consider the logistics
domain objective to move a quantity of food and other
humanitarian supplies to an area hit by an earthquake or
other disaster. A planning support agent assisting a
military logistics user to plan this deployment might
initially suggest tasking information agents to check the
0-7695-0001-3/99 $1
weather and airport conditions near the affected area, and
propose or initiate other requests to find the closest
supplies and aircraft to move those supplies. While those
information requests were processed, agent taskings could
be developed that would apply the results of those
information queries to the generation of airlift flight plans.
The resulting agent tasking plan might include
communications with a variety of domain agent
“specialists”, such as flight route planners, aircraft cargo
packing specialists, etc.

Now suppose the local weather agent could not supply
requested information because one of its sources was
unavailable due to communications disruptions. At the
expected completion time of the weather information task
(or before, if a status monitor anticipated the problem), a
monitoring agent would bring this problem to the
attention of the team leader. This alert would be
accompanied by a warning that the tasks depending on
this information (here, the flight route planner) still lacked
needed inputs (e.g., wind speed and direction). The team
leader and support agents would then be responsible for
tasking another agent to supply the missing information,
perhaps by delegating it through a remote information
mediator to a standard seasonal wind model. The planning
support agent would then need to determine whether the
information retrieved from that model required
reformulation before passing it to the route planner, and ,
if necessary, direct a translation agent to translate and
send the result to the route planner.

1.3. Monitoring Task Planning and Execution

Key points illustrated by this example are that task
planning and execution are almost always interleaved, and
that anticipation of future tasks (delegated or not) drives
the near-term tasking of agents. Because task generation
and delegation are interleaved, we need to consider them
as part of the same mixed-initiative planning process, and
expect dialog with the user to bounce between these two
levels of decision making. In essence, agent task
delegation should be viewed essentially as part of the same
interactive process as the domain-specific activities of the
system.

Many people (e.g., Donald Norman [17]) have pointed
out that human users of distributed systems of agents are
unlikely to develop trust in their agent-based systems’
capabilities until they can be employed, much like human
subordinates, in a way that they can be carefully monitored
and managed. Only when the agents can respond
effectively to tasks, collaborate with other agents in the
process, and appropriately handle a variety of failure
conditions will people give them much autonomy.
Ultimately this might imply a level of learning and
adaptivity we don’t see in most current-day agents, but in
0.00 (c) 1999 IEEE 2

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
the near term, it means that users must be able to develop
appropriate expectations of agent capabilities, and be able
to monitor agents that are tasked to see that they fulfill
those expectations. For effective monitoring, users will
need on-demand visibility into the activities of all tasked
agents, be able to track and visualize their progress and
receive feedback on problems and their implications so
that they can be addressed as they occur. Given the
amount of information likely to be involved in each
agent’s actions, effective summarization and
visualization of agent activities will be critical.

2. Mixed Human/Agent Organizations

Existing architectures for agent-based software systems
can be grouped into two classes:

• Loosely coupled systems of agents (homogeneous
systems) where each agent typically plays a similar
role. Agents may compete for resources or tasks using
an economic model or other simple control structure.

• Tightly coupled systems of agents depending on
cooperative behavior among heterogeneous classes of
agents. These systems require adaptive agents or well
defined communications and interaction patterns.

In fact, most large organizations have mixtures of
these two kinds of structure, depending on the tasks to be
performed from a functional perspective. At higher levels
of the organization, team-like organizations may
predominate, with subordinate organizations or agents
broken out by functional areas, or by geographical
considerations. We see software agents for large
organizations being organized similarly, so that they fit
into the structures of the human organizations. In many
ways, software agents will “sit beside” human agents in
these organizational structures, and need to be tasked and
managed similarly. Figure 1 shows our concept of how
agent teams might be organized to fit into human
organizations.

In the figure, human team leaders are supported by
“personal assistant” agents to help with agent planning
and monitoring for the team. To create a team to address
some problem, a team leader first specifies high level
task objectives, and begins to refine these down to the
level of tasks that specific agents from the available pool
can address. As plans for an objective are developed, and
early information needs are identified, the team leader or
an assistant may begin tasking local or remote agents to
collect that information while planning for the rest of the
team’s activities continues. Remote agents and other
teams may be tasked through mediators (e.g., for
database queries), or by direct messages (e.g., to other
human team leaders).
0-7695-0001-3/99 $1
Team Leader 1

Sub-team Leader
Team Agent Agent Agent

Monitor Agent Planning Agent

Translator Agent

Warning!

Team 1:

Team 2

Info Agent

?

?

X=Z

Remote Network Space

Figure 1: Agent Teams in a distributed
organization.

2.1. What is an agent team?

An interesting question is what makes a set of software
agents and other components into a team? Teams of
people have been distinguished from groups [18] based on
characteristics such as the presence of highly
differentiated roles, interdependence among members, and
the performance of tasks that require coordination among
multiple individuals. Groups, in contrast, have
homogeneous and interchangeable (non-specialized)
members; the members often work independently
(coordination is not required), and they perform tasks that
could have been done, although perhaps not as well, by
one person. Examples of groups falling under this
definition include juries, panels of judges, and the ad hoc
problem-solving groups in social psychology experiments
on group decision making. Salas [20] similarly define a
team as composed of multiple individuals, engaged in
dynamic, interdependent interaction, pursuing a common
goal or objective. Each team member has specific tasks or
functions, and the tasks of different agents requires the
dynamic interchange of information, coordination, and
adjustment to task demands.

By these definitions, it seems clear that some types of
multi-person or multi-agent tasks are best suited to teams,
while others are best performed by groups, and still others
require a hybrid of the two. We intend to explore tasks for
sets of agents where each of these organizational forms is
appropriate. Our main emphasis is on of heterogeneous
agents with task differentiated roles, and well defined
coordination requirements arising from the task plans.
0.00 (c) 1999 IEEE 3

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Malone [14, 15] proposed that (human) organizational
structures were driven by the kinds of coordination
required, and that these in turn were driven by
constraints based on shared resources, information and
materials flow paths, etc. What he didn’t discuss was the
capabilities and limitations of the agents in a team or
organization as a factor. These are critical factors in
designing software agent organizations, as in real human
ones. Organizational roles on a team are often based in
part on the capabilities of the agents available to fill roles
in a plan. In human organizations, this is often done
adaptively; that is, the roles are adapted over time to
match the capabilities of the team members. In software
agent organizations, where this kind of adaptation is
difficult, it must be considered as a key part of the
planning process for team design.

3. Lessons from Prior Work

3.1. The Common Prototyping Environment

In a previous project, we developed the Common
Prototyping Environment (CPE) for the ARPA/Rome
Laboratory Planning Initiative (ARPI), a government-
sponsored research initiative in planning and scheduling
technologies [6]. This environment was used to tie
together AI-based planning, scheduling and simulation
systems to address logistics planning and scheduling
problems. The CPE Testbed was designed to run
experiments consisting of multiple trials that tested the
speed and effectiveness of new technologies, both singly
and in combinations. Trials consisted of running
problems with different ‘modules’ specified in advance
and playing particular roles. Modules for each role were
selected based on their service class, where each service
class defined the set of messages that all members of that
class could handle. Each module, when was “pre-wired”
with meters so that information could be collected about
execution and communication behavior and timing.

Twelve different AI-based planning system modules,
from ten research groups, interacted via the CPE's
distributed communications layer called KNET, an early
variant of KQML implemented using CRONUS, a
predecessor of CORBA. Each module was classified by
service class, (i.e., as a planner, temporal reasoner,
scheduler, knowledge server, etc.) and communications
protocols for interactions between classes of modules
were established by negotiations among the
implementers. Figure 2 shows the patterns of
communications established between the service classes
for those twelve modules. The content of all
communications were represented using KRSL, an AI
frame language built on ISI’s LOOM but adding a
number of planning ontology primitives. Each individual
0-7695-0001-3/99 $1
module was responsible for translating message content
into and out of KRSL for the classes of messages it could
handle.

Oracle
Knowledge

Server

SOCAP

PLAN

Generation
FMERG

Force

Expansion

PFE, KTS

Plan

Analysis

CPE User

Interface

and Metering

Module

Temporal

Reasoner

TMM, Tachyon

Force

Selector

CAFS

IDI

Msgs

LOOM KBsLIM/IDI

KRSL Interpreter

?
?

?!

KNET Msg + Response

KRSL Query & Response

?

Non-KNET Msgs

KRSL Assert + Acknwldge

!!

!
!

?

KEY:

Figure 2: Communications patterns in the CPE

Although this was essentially a first attempt to get AI-
based planning systems built independently to interact in a
distributed environment, it is somewhat inappropriate to
call their CPE incarnations “agents” for several reasons.
• Although many of the modules embodied explicit

domain knowledge, none maintained a persistent,
evolving, internal knowledge base of ground-level
assertions, except the CPE Knowledge Servers, which
maintained all plan-related information in internal
LOOM KBs, or RDBMS.

• None of the modules supported inter-agent dialog (as
distinguished from acontextual message-response
communications),

• The modules did not actively monitor their
environment, but rather waited passively for input
messages.

In the CPE, most modules acted strictly as servers; not
initiating messages to other agents, and responding
synchronously to each message after some amount of
processing. Each module that did initiate messages to
other modules (primarily the planner, SOCAP) did so
deterministically, sending messages to other agents at
specific points in their algorithms (e.g., to test the
consistency of a temporal constraint network after refining
a plan one full level), rather than as the result of a context
dependent reasoning process.

In terms of agent attributes like those defined by
Etzioni and Weld [8], these modules were not agents
because they were not reactive (sense their environment),
autonomous (goal directed, self-starting), collaborative
(engage in dialog), adaptive (persisting, evolving internal
state), or mobile.
0.00 (c) 1999 IEEE 4

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
On the other hand, the overall system certainly had a
number of attributes that could also appear in agent-
based systems. Each module had functional capabilities
whose complex external information requirements were
carefully represented in a shared domain ontology so that
a consistent communications language representation
could be used. Collectively, the modules solved large-
scale planning problems by a combination of a number of
specialized automated reasoning techniques. Certainly,
many systems which employ a set of distributed software
components using automated reasoning techniques and
communicating symbolically have been called agent-
based systems.

Whether or not we call the CPE an agent-based
system, we feel that some practical lessons were learned
from this experience that do apply to collaborative
software agent team development. First, developing a
single, consistent ontology (including a large number of
domain terms) for communications among a large group
of agents is extremely difficult, and probably unnecessary
in practice. Functionally specialized agents will generally
require only the capability to communicate with a
restricted range of other agent types. Thus, agents who
can interpret a set of partially overlapping ontologies for
the purposes of communicating with agents of different
types are more likely to be able to work and adapt in an
open, dynamic agent environment. A key challenge for
planning such coordination is characterizing the
capabilities of individual agents not only by their
individual functional capabilities, but also by the classes
of other agents they can interact with.

Second, to be robust, agent-based systems must be
able to handle both productive and unproductive
responses from other agents. The CPE was very brittle in
this sense. Failures to produce answers, or time-outs for
communications reasons would essentially bring the
system to a halt.

Third, although perhaps effective for knowledge
consistency maintenance, holding all shared state in
information server agents (e.g., a knowledge server) and
using essentially “stateless” functional agents may be
both too slow (when the functional agents require large
amounts of contextual information to function, and the
cost of remote communication is high) and incompatible
with any kind of collaboration beyond the client-server
model. Agents collaborating by engaging in a dialog
about a task must be able to build up a shared contextual
model of the problem being addressed, and ‘know’ their
relative roles in solving it. At least for the duration of a
joint objective, agents may also need to monitor
information streams and filter and store internally
information that is relevant to their specific task. They
may need to continually communicate with their
collaborators to maintain a shared problem focus, share
0-7695-0001-3/99 $
new assumptions and put aside old ones. Ultimately each
agent might need a capability to shift among multiple
reasoning contexts (as when searching different parts of a
planning space) with different, overlapping but potentially
inconsistent information states, and maintain multiple
conversational threads related to those different
contexts[5].

3.2. Interactions between Two Planning Tools

These last points are echoed in another recent
experience linking two knowledge based planning systems
together - Prodigy-Analogy [22], a generative and case-
based planner and ForMAT [16], an interactive case-based
force deployment planning tool. In mixed-initiative
planning, automated and human planners interact to
jointly construct a plan that satisfies the goals in a specific
mission statement. It is well known that human planners
rely strongly on past planning experience to generate new
plans. In simple terms, ForMAT lets users browse or query
a case-base of deployment plans (essentially lists of items
to move, where and when), and ‘cut and paste’ together
new ones to address a new objective. ForMAT and
Prodigy/Analogy were linked to form a mixed-initiative
system where Prodigy acts as a planning support agent,
providing advice on this process. [23].

Events
(ForMAT
user input)

Messages to
Prodigy

Prodigy
Responses

Intel, Objectives,
Resources given

New Objective,
Assumptions,
Resources

Information
stored.

User selects to
deploy F16
squadron

New Subgoal:
DEPLOY F16

Subgoal
incorporated.
Suggests
INCLUDE F16
support unit.

User copies fighter
support unit into
plan

New Subgoal:
DEPLOY F16
Support Units

Subgoal
precondition
check fails.
Suggests
REJECT task.

New Intel arrives New Info. Replan. Propose
revised forces

Table 1: Interaction between planning agents

In the combined system, neither ForMAT nor
Prodigy/Analogy possesses full knowledge of the other
system’s state, but messages between the two maintain a
shared partial state. A set of pre-established message
patterns is used to keep the other current, and suggest
actions (e.g., to modify the plan). Table 1 describes some
10.00 (c) 1999 IEEE 5

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
of these messages and their effects. In this figure,
ForMAT interacts with the user. Some user events, such
as the user specifying new goals (objectives) are relayed
to Prodigy/Analogy, which responds by suggesting
possible actions. For example, the goal to deploy an F-16
aircraft produces a suggestion to bring along a support
unit. The selection of a support unit that is not available
produces a suggestion to reject that part of the plan.
When new information arrives that changes planning
assumptions, this information, when relayed to Prodigy,
causes it to replan using the previous plan as a guide.

This style of interaction among agents and users is
what we are seeking to extend and generalize in our
current effort. The interactions between ForMAT and
Prodigy/Analogy are a step in the direction of multi-
agent mixed-initiative planning, where an interface agent
(in this case, ForMAT) plays the role of user-directed
plan editor, supported by an agent doing automated
planning support (Prodigy/Analogy). Our new system,
TEMPLATES (Team Execution Manager and Planner
for Agents by Task Editing System), will carry this
further, by providing a suite of plan editing and
visualization tools that supports both domain planning
and explicit tasking of other agents to support that
planning.

Taken together, the examples of the CPE and
ForMAT/Prodigy raise some of the issues that we face in
coordinating intelligent agents. The Common
Prototyping Environment allowed users to select which
“agents” would participate in the current assigned task,
and monitor the results. It also taught us how difficult it
is to populate such an environment with distributed
agents or modules that can communicate effectively
about complex representations like plans in order to solve
problems. Each pair of planning modules that was
capable of interacting needed to communicate in a shared
representation language, different than their internal one,
and needed to access contextual information and
intermediate planning products. Each agent sending a
message needed to know what kinds of information the
receiver needed to be able to respond successfully, and
the appropriate syntax to communicate that information.

Although ForMAT and Prodigy do maintain state and
communicate in an ongoing fashion, many of the same
issues were considerations in designing their interactions.
None of these systems have general-purpose reasoning
capabilities (planning systems may plan, but they don’t
do much general inference), and each has limited
abilities to represent and reason with information. As a
result, their information exchanges with other agents are
restricted largely to the intersection of their (explicit or
implicit) internal ontologies. Going outside that
intersection leads to misinterpretation.
0-7695-0001-3/99 $1
We believe that these issues will not go away as we
move to more dynamic agent team collaborations. We will
need to make some strong assumptions about the nature of
inter-agent communications for any group of agents that
actively collaborates; assumptions that are based on the
ontologies handled by each agent, and their inferential
capabilities. As most agents will not be able to reason
about and compare their own ontologies or domain
concepts to those of other agents they will be interacting
with, the job of circumscribing a shared subset of the
ontologies of two agents for the purposes of defining their
inter-agent communications must be done in advance. We
see this as the role of an administrator defining a pool of
agents from which task-specific teams can be drawn.
Walker and Woolridge [24] termed this off-line design of
agent conversation policies.

By assuming a mixture of approaches including shared
representation languages for clusters of agents designed to
work together frequently, and translators, perhaps residing
in mediation agents, for communications between agents
that work together less frequently (or normally work in
different agent pools), we believe that we can minimize
the explicit coordination of communications protocols
during dynamic team planning. This is necessary if users
are to manage teams from a strictly domain-oriented
standpoint, without needing to understand the low-level
communications language issues as well.

Unfortunately, during collaborative agent team task
execution, users may well have to deal with inter-agent
communications problems. For example, the dynamic
introduction of information mediation agents implies
potential new sources of communications failure, delay
and miscommunication. If the team management
environment is to help users to understand and deal with
communications breakdowns, good monitoring and
communications tracing must be combined with effective
visualizations so that users can trace causes of failure, and
correct the problems or suggest alternative taskings.

Since the execution of tasks is extended in time, and
deadlines for major objectives can span both agents and
tasks, monitors must be able to manage time allotments
for tasks performed by individual agents. All agents
should be capable of responding to periodic requests for
information on their processing status and expected
completion time. Agents must also be able to report
problems and failures gracefully, and give reasons if
possible. Agents reporting problems should at least
distinguish between communications failures, information
interpretation problems, lack of information, inability to
complete a task, and partial solutions.

To enable agents to routinely report on their status
during execution, each agent should have procedures for
calculating and reporting on the expected time to complete
the tasks it knows how to perform. If the tasks performed
0.00 (c) 1999 IEEE 6

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
by an agent are broken down into a sequence of subtasks,
status reports may indicate progress through these
phases.

3.3. Discussion

The current generation of software are predominantly
either (1) designed to interact directly with human users
and produce results that are only interpretable by humans
(e.g., information gathering web-crawlers that return
uninterpreted information) or (2) essentially distributed
object systems with agent communication wrappers that
precisely define their protocols for use in an agent
environment. Many of the idealized attributes found in
anthropomorphic characterizations of software agents;
things like autonomy, goal directedness, ability to
communicate (and interpret communications), exhibit
initiative, reason, plan, adapt and learn, are ascribable at
best only in very limited forms to most current-day
agents. The next generation of software agents must
extend the capabilities of both of these classes of agents
to include more robust, extended communications with,
at least, known classes of other software agents, if they
are to be capable of acting as members of agent teams
organized dynamically.

As we have tried to argue, successful planning for the
activities of teams of agents requires good
characterizations of all available agent capabilities in
both functional and potentially domain-specific terms.
The challenge is to enable users to make effective use of
the capabilities that are provided by the available agents,
and to help manage the execution process of those agents
so that the user’s objectives are achieved.

For our work, we are assuming that agent team
planning takes place with pre-specified agents having
appropriate kinds of capabilities for inclusion on teams
within the domain of concern. Each agent will have
known capabilities to interact with other specified agents
in the same pool. By focusing on the task of planning the
composition and tasking of teams of agents chosen from
such collection of agents, we can address issues involved
in agent team configuration and management.

4. Detailing the Capabilities of Team Players

For coordination management of teams,
representations of agent capabilities and limitations must
be made explicit. They should be user interpretable, so
that both human users and their personal
planning/management support agents can reason
interactively about agent capabilities to handle specific
domain tasks. As tasks are identified and delegated,
capabilities models are used to anticipate performance,
0-7695-0001-3/99 $
and to reason about failures of individuals and the team as
a whole.

Each class of agents in an “agent pool” will be
characterized by a functional profile consisting of
information about the capabilities of the agent, its pre-
existing internal knowledge and communications abilities.
For planning purposes, most of the profile can be
organized around characterizations of the tasks the agent
can perform, and the goals that it may pursue. Profiles
must include information about the other agent classes it
can communicate with, the tasks it can request of those
other agents, and the circumstances (which of its own
tasks) might require those interactions. This information
is needed to properly plan tasks for agents or assign them
to team roles, and to identify when tasked agents may
optionally need to request information from remote agents,
perhaps through mediators.

For each class of agents supporting a task, there needs
to be a task description that includes that task’s
information requirements and products. This must be
accompanied by information about the representation
language(s) used to communicate with the agent, and the
domain ontology used by the agent to reason about the
task. Agent task characterizations should, where possible,
include decompositions into subtasks with explicit
temporal/functional dependencies, and explicitly include
expected patterns of communication with other agents.
Characterizations of expected communications should
delineate informational requests, task delegations to other
agents, and responses to status requests from task
monitoring agents.

While we speak of communications in terms of simple,
single messages and responses, most inter-agent
communications will, in fact be extended sequences of
messages requiring some reasoning by the agent before
each response. When we represent that an agent may
initiate a communication using some performative, we are
implying that the recipient agents might respond multiple
times, up to and including starting an extended
negotiation. Even the simplest kinds of exchanges will
generally involve message sequences. A request to do a
task might be accepted or rejected, and if accepted might
be followed by multiple status messages, additional
information requests, delegations of subtasks to other
agents, and finally a message that the task has been
completed or failed. Similarly, a request for information
might be accepted as a task or not, with the final result
being an inform or dont-know (fail), again with the
possibility of intermediate status reports, and requests to
other agents. Part of our effort will be the development of
procedural task models of the various stages of
communication and internal processing that each agent
goes through in extended communications with other
10.00 (c) 1999 IEEE 7

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
agents to perform various tasks. These are precisely the
kinds of models that OMAR can directly simulate.

Table 1 sketches a partial taxonomy of simple
performatives and their potential responses based on the
type of message content (tasks vs. informational). It
shows some basic dialog patterns that will appear
repeatedly in more domain specific task and
communications models.
Performative Response to Info Response to Task
request
(Task or Info)

accept | reject |
inform | status

accept | reject |
counterpropose |
recommend | status

perform (a
command)

same as above, but
no reject ...

inform accept | reject
assume accept | reject
suggest
(plan elt or
modification)

accept | reject
(if authorized)
concur | disagree

Table 2: Responses to performatives

5. Managing Dynamic Agent Teams

Effective utilization of agent teams requires planning,
not just to decide which agent should do which task, but
to lay out the tasks necessary to achieve the domain-
specific objectives effectively, and in a timely fashion.

In reality, this planning is interleaved with execution
in an ongoing process. Tasks may not be able to be
assigned until preliminary information gathering has
occurred, and that information may have to be
reformulated to be used by the agents requiring it. Thus,
agent tasking plans must be living documents, changing
from moment to moment as tasks are accomplished or
the situation changes.

In large planning organizations, such as the military
logistics and transportation commands, large numbers of
people manage to continuously plan with information
available to them through, at best, shared databases, and
often with just telephonic or email communications.
Problems are often due to the effort required to find and
coordinate key pieces of information in the multiple
incompatible databases and the great volume of textual
messages that must be handled. Different “cells” in the
organization do not always see the impact of the
information they possess on other aspects of the
organization. For this to change so that fewer
breakdowns in communication and coordination occur,
software agents must become part of the organization
[19].

As with the people in the organization, there may be
pre-defined roles for software agents, and default
communications channels to gather and disseminate
0-7695-0001-3/99 $1
information to others in the organization. Groups of
functionally similar agents may manage different pieces of
domain information (in military planning organizations,
responsibilities divide along the lines of the kinds of
resources of to be managed, by classes of tasks, such as air
cargo transport vs. air refueling).

In this context, where agents have organizational roles,
and well represented capabilities, we believe that mixed-
initiative task planning may be accomplished using a
combination of interactive hierarchical task network
(HTN) and case-based planning [10, 13, 22] techniques.
Constraint-based scheduling techniques may be used to
maintain dynamic task plans that manage the available
agent resources, and generate expectations for
intermediate task completion.

Team planning support agents helping a team manager
to in an ongoing planning and execution environment
must help coordinate the team’s efforts during execution.
If the human manager is continuously elaborating and
revising the team’s objectives, the planning support agent
must be able to identify when tasks or agents are no longer
appropriate and must be replaced, or new taskings are
required. Examples of this kind of dynamic tasking
include the generation of information seeking/gathering
tasks that can be anticipated while team task planning is
still ongoing, the selection of alternative agents to perform
tasks when the agent originally tasked is busy or cannot
support the task for other reasons, and the generation of
new tasks when an agent can only provide partial results.
Although some of these issues have been addressed
specifically for information agent task planning by the
SIMS project at ISI [3, 12], much remains to be done.

6. Simulating Agent Team Behavior

Our exploration of approaches to mixed-initiative team
management requires the existence of a variety of kinds of
agents, with some capabilities (such as status reporting,
knowledge reformulation) that don’t generally exist yet.
To explore effective styles of interaction between humans
and the planning and execution management support
agents that we are building, we are developing an
environment where we can simulate a variety of software
agents executing the multi-agent task plans our users
create, so that we can evaluate interaction effects. We see
this as a way to explore effective approaches to human
team leaders collaborating with and directing agent teams.

The OMAR (Operator Model ARchitecture) agent
simulation environment [7, 9] is well suited to supporting
our proposed efforts. Developed at BBN over the last ten
years, OMAR is an on-going research program developing
simulation tools and a support environment for studying
and evaluating human performance models,
workplace/workflow models and operating procedures for
0.00 (c) 1999 IEEE 8

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
new equipment being considered for use in complex
operating environments. The current implementation of
OMAR’s simulation environment traces its roots to
ACTORS [4, 11], an early MIT research effort in
building a distributed computing environment. A
predecessor of OMAR was developed for the original
Semi-Autonomous Forces component of SIMNET [1, 2],
and was used to simulate the coordinated actions of
teams of agents (tanks and their commanders) on a
simulated battlefield.

The current OMAR environment provides an
extensive set of tools to support the development and
debugging of TEMPLATES agents and agent
organizations, as well as data analysis display tools for
the evaluation of TEMPLATES simulation runs.
Distributed OMAR, the version of OMAR currently
under active development, operates with simulated (and
real) agents at multiple sites in a distributed-object
computing environment.

The human capabilities and attributes that we emulate
in OMAR human performance models are very much
like those that we would like to have in software agents.
OMAR agents are capable of goal-directed proactive
behaviors, defined by subtask networks. At the same
time, they can respond appropriately to sequences of
events evolving in complex situations. OMAR agents
communicate with other agents and the human operators
of the system. Agent goals and procedures are defined to
anticipate failures and include alternate paths to success.

OMAR agents anticipate and respond to events and
communications using signals. Signals are predicate
assertions that activate the triggers in agents waiting on
signals with a particular pattern. An agent’s sensitivity to
a given signal is established by the agent’s procedures
reaching a point where it waits for that pattern of signal.

OMAR agents typically pursue several active goals
concurrently. Some of an agent’s goals can be
independent of one another, while others may have
explicit dependencies. Plans may be required to execute
sequentially or they may be allowed to execute in
parallel. Complex execution dependencies are defined
using signals. In the OMAR modeling environment, the
simulator emulates parallel procedure execution. In real
world applications, the OMAR simulator executive
manages OMAR agents and real remote agents pursuing
multiple goals in parallel, dynamically computes task
priorities, and mediate conflicts between contending
tasks.

7. Agent Team Evaluation

The evaluation of alternative software agent
organizations and of mechanisms for software agent
command and control by human users is an important
0-7695-0001-3/99 $1
thrust of our work. The TEMPLATES environment is
being designed such that we can experiment with the
kinds of capabilities that we think users will require to
control their software agents, while enabling us to perform
experiments on the effectiveness of alternative software
agent organizations in various task contexts and given
different levels of agent capability. These experiments will
address such questions as “What are effective agent team
organizations for different classes of activity?” “What
kinds of agent monitoring are most effective?” “What
kinds of agent and management capabilities are needed to
support retasking?” We plan to do a series of experiments
aimed at uncovering such things as the benefits and
problems of different styles of communications between
agents (e.g. directed, mediated communications vs. shared
ontology/knowledge sources), hierarchical or matrix
organizations of agent teams, larger scale market-driven
agent organizations, and the utility of “multi-talented”
agents vs. many single-function agents.

8. Summary

Our work is directed at developing an effective near-
term relationship with agents, by prototyping a human
user-centric view of how agents will be used. We
anticipate that, for some years, software agents will most
often act as parts of carefully composed teams of software
(and human) agents where humans act as the primary
team leaders or managers, directing the team’s behavior
and managing the team’s activities during execution,
especially when problems occur.

We are developing the TEMPLATES system to support
people in the role of agent team manager, as they are
tasking and monitoring agents. The TEMPLATES’ plan
editing environment will provide a set of plan editing tools
that can be composed or combined with domain-specific
interfaces to provide human users with mechanisms to
describe a kind of “strategy to task” decomposition of their
objectives in domain-oriented terms.

TEMPLATES’ planning support agents will
continually assist human managers in refining objectives
into tasks, finding appropriate agents for tasks, and
ensuring that support is in place for agents to
communicate with each other and the user. They will task
information gathering and information reformulation
agents as needed to provide tasked agents with the data
that they need in the proper form. They will also ensure
that team plans include monitoring agents to keep track of
the progress of agents in their assigned tasks, and report
back when issues and problems arise.

By building TEMPLATES on the OMAR simulation
environment, we can experiment with and evaluate
alternative models of interactive team management and
explore appropriate team organizations for different tasks.
0.00 (c) 1999 IEEE 9

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
We believe that the TEMPLATES will help human
users acclimate to the usage of agent-based systems
through tools that it will provide human team leaders for
understanding, tasking, and controlling pools of agents.
For the military user, the TEMPLATES style of interface
should prove valuable in supporting a variety of problem
solving areas in intelligence, logistics and command and
control situations, as well as for training.

9. References

[1] Abrett, G and Burstein, M. and Deutsch, S., “An
Environment for Building Goal-directed, Knowledge-
based Simulations”, BBN Technical Report 7062, 1989.

[2] Abrett, G., “Planning by Autonomous Agents with Many
Concurrent Goals in an Elaborate Simulated World”’
Proceedings of the IEEE Conference on Planning in High
Autonomy Systems, Cocoa Beach, FL, 1991.

[3] Arens, Yigal, Chee, Chin Y., Hsu, Chun-Nan and
Knoblock, Craig A., “Retrieving and integrating data from
multiple information sources”, International Journal on
Intelligent and Cooperateie Information Systems, 2(2):127-
158, 1993.

[4] Agha, G. A.,. Actors: A model of concurrent computation
in distributed systems. MIT Press, Cambridge, MA, 1986.

[5] Burstein, M. and McDermott, D., “Issues in the
Development of Human-Computer Mixed-Initiative
Planning”,. In B. Gorayska and J.L. Mey (eds.), Cognitive
Technology, Elsevier, 1996, pp. 285-303.

[6] Burstein, M. Schantz R., Bienkowski, M.A., desJardins,
M.E., and Smith, S., "The Common Prototyping
Environment: A Framework for Software Technology
Integration, Evaluation, and Transition," Advanced
Planning Technology, A.Tate (ed.), The AAAI Press,
Menlo Park, CA, May 1996, ISBN 0-929280-98-9. (Also
in IEEE Expert, February, 1995.)

[7] Deutsch, S. E., & Adams, M. J., The operator-model
architecture and its psychological framework. 6th IFAC
Symposium on Man-Machine Systems. MIT, Cambridge,
MA, 1993.

[8] Etzioni, O. & Weld, D. S., Intelligent Agents on the
Internet: Fact, Fiction, and Forecast. IEEE Expert 10(4):
44-49, 1995.

[9] Freeman, B. (1997). OMAR User/Programmer Manual,
Version 2.0. BBN Report No. 8181. Cambridge, MA:
BBN Corporation.

[10] Hammond, K., ”Chef. A Model of case-based-planning”,
In The Proceedings of the Fifth National Conference on
Artificial Intelligence, AAAI Press, August 1986.

[11] Hewitt, C. & Inman, J., “DAI betwixt and between: From
‘intelligent agents’ to open systems science”, IEEE
0-7695-0001-3/99 $1
Transactions on Systems, Man, and Cybernetics, 21, 1409-
1419, 1991.

[12] Knoblock, C.A. and Ambite, J. L, Agents for information
gathering. In (Bradshaw, Ed.) Software Agents. MIT Press,
Cambridge MA, 1991.

[13] Leake, David B., Case-Based Reasoning: Experiences,
Lessons and Future Directions, MIT Press, Cambridge MA,
1996.

[14] Malone, T.W. “Modeling Coordination in Organizations
and Markets”, Management Science, 33(10), 1986.

[15] Malone, T.W., and Crowston, K., “Toward an
interdisciplinary theory of coordination”, Center for
Coordination Science Technical Report No. 120, MIT,
Cambridge, MA, 1991.

[16] Mulvehill, Alice M., “Reusing Force Deployment Plans”,
AAAI Fall Symposium on Adaptation of Knowledge for
Reuse, MIT, Cambridge Mass, November 10 - 12, 1995.

[17] Norman, Donald. A., “How people might interact with
agents”, In Bradshaw (Ed.), Software Agents. MIT Press,
Cambridge MA, 1997.

[18] Orasanu J. & Salas, E., “Team decision making in complex
environments”,. In Klein, G. A., Orasanu, J., Calderwood,
R. and Zsambok, C. E. (Eds.) Decision Making in Action:
Models and Methods. Ablex, Norwood, NJ: 1993.

[19] Pan, J. Y. C. & Tenenbaum, J. M., “An intelligent agent
framework for enterprise integration”, IEEE Transactions
on Systems, Man, and Cybernetics, 21, 1391-1408, 1991.

[20] Salas, E., Dickinson, T. L., Converse, S. A., &
Tannenbaum, S. I., “Toward an understanding of team
performance and training”, In Swezey, R. W. and Salas, E.
(Eds.) Teams: Their Training and Performance. Norwood,
NJ: Ablex Publishing Corporation, 1992.

[21] Shneiderman, B., “Direct manipulation vs. agents: Paths to
predictable, controllable, comprehensible interfaces”, In
Bradshaw (Ed.), Software Agents. MIT Press, Cambridge
MA, 1997.

[22] Veloso, M., Learning by Analogical Reasoning and General
Problem Solving. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, August 1992.
Technical Report CMU-CS-92-174.

[23] Veloso, Manuela M., Mulvehill, Alice M. and Cox,
Michael “Rationale-Supported Mixed-Initiative Case-Based
Planning”, Proceedings of AAAI , 1997 .

[24] Walker A. and Wooldridge, M., “Understanding the
emergence of conventions in Multi-agent systems”, In V.
Lesser (Ed.) Proceedings of the First International
Conference on Multi-Agent Systems, AAAI, Menlo Park,
CA, 1995.

[25] Wooldridge, M. & Jennings, N. Agent theories,
architectures, and languages: A survey. In M. Wooldridge &
N. Jennings (Eds.), Intelligent agents, Springer-Verlag,
Berlin, 1995.
0.00 (c) 1999 IEEE 10

