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Abstract Laser drilling is a thermal process with relatively

low energy efficiency since the material removal mecha-

nism is mostly based either on melting or on vaporization.

Aiming at the investigation of the laser drilling efficiency, a

theoretical both analytical and numerical study of evapora-

tion pulsed laser drilling is presented. The analysis is based

on a linear approximation of the temperature profile and

separates the process into three phases, those of the heating,

the melting and the vaporization. Based on these models,

the energy efficiency and its dependence on the process

parameters have been investigated and selection of rele-

vant process variable guidelines, towards improving energy

efficiency, are given. Moreover, the physical mechanisms

responsible for most of the energy losses are analysed and

classified according to their importance.

Keywords Laser beam machining · Drilling · Process

modelling · Energy efficiency · Sustainable manufacturing

1 Introduction

Industry is increasingly concerned about energy consump-

tion due to the environmental burden and the increasing

cost. The International Energy Agency statistics [1] con-

firm that industry accounts for a very significant percentage

of energy consumption (28 % in EU-27) and thus, it is

responsible for the relevant emission of greenhouse gases.

However, as it is indicated [2], a 20–40 % of the energy
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consumed in the industry is wasted. An action plan for the

reduction of energy consumption [3] requires the study of

manufacturing processes’ energy efficiency, especially for

high-energy-consuming processes. Under this prism, manu-

facturing processes have to be assessed/optimized in terms

of their energy efficiency [4, 5].

Laser drilling [6, 7] is a rather accurate, non-conventional

process with a variety of applications. The major advantage

of laser drilling, in comparison with the conventional meth-

ods, is the small size and aspect ratio (up to 1:20) of the

hole that can be created. Either continuous or pulsed laser

sources can be used in such applications. The pulsed laser

sources present some advantages, such as less plasma gen-

eration [7]. The major physical phenomenon resulting in the

creation of the hole is the conversion of light power into

heat. The current study focuses on the case of high intensity

values, resulting in the evaporation of bulk material during

percussion drilling, also referred to as pulsed laser drilling

[6].

Percussion drilling delivers successive laser pulses to the

same spot. A major drawback of percussion drilling is the

formation of a recast layer. Additional energy is being used

in order to evaporate the re-solidified material contributing

to the low energy efficiency of the process.

Several models of the laser drilling process have been

reported in the literature. In order to capture the physi-

cal phenomena, it is required that the temperature field [8]

induced inside the workpiece by the laser source be mod-

elled. Several attempts are reported in the literature, either

analytical [9–11] or numerical methods [8–16], with the rel-

evant advantages and disadvantages. A three-dimensional

analytical model for laser grooving is presented in [17],

while a one-dimensional analytical model for drilling is pre-

sented in [18–20]. In [18], the authors focus on the shape

formation of the hole, while in [19], it is assumed that

mailto:xrisol@lms.mech.upatras.gr
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drilling occurs due to material evaporation neglecting the

intermediate liquid state. In [20], they assume that the hole

is formed from the ejection of melted material utilizing an

assisting gas jet.

In order for the energy efficiency of a manufacturing

process to be increased, a definition of the term “energy effi-

ciency” is required [21, 22]. The majority of the energy effi-

ciency studies focus on factory level [23–29]. Most of these

studies make general assumptions of each machines average

energy consumption. The energy consumption of processes

is rarely known due to the insufficient existing infrastructure

and the missing measuring devices [30]. Thus, the outcome

of these models is very difficult to be transformed into a

strategy towards increasing energy efficiency. At process

level, few studies exist for conventional manufacturing pro-

cesses, such as an empirical approach for grinding process

in [31] or the energy efficiency investigation of turning in

[32].

The laser processes are generally characterized by energy

efficiency lower than that of conventional processes; how-

ever, as indicated in [33, 34], they pose a different ecological

advantage due to the limited use of consumables. Other

studies [35, 36] conclude that the energy efficiency of

such processes can be significantly improved as a result of

their extremely short pulse duration; the heat diffusion is

confined, and the heat-affected zone (HAZ) is rather lim-

ited. This localized heating, in each laser pulse, results in

more precise machining results compared with the ones

obtained from longer laser pulses. Furthermore, different

studies investigate the dependence of energy efficiency on

the laser beams geometrical characteristics, such as the spot

geometry [37].

The current study presents an analytical and numerical

approach of evaporation laser drilling, towards the theo-

retical specification of the process parameters that maxi-

mize energy efficiency. The phenomenon is described as a

function of the processing time. The analytical approach,

based on some simplifying approximations, provides sim-

ple expressions that describe the process and its energy

efficiency. The numerical approach is mainly used for jus-

tifying that the approximations introduced in the analytical

model do not have a significant effect on the accuracy of the

results.

The analysis of the process is separated in three phases,

those of the heating, the melting and the vaporization. Dur-

ing the heating phase, a laser pulse hits the surface of the

workpiece, thus increasing the surface temperature until it

reaches the melting temperature. The melting phase begins

as soon as the melting temperature has been reached. Dur-

ing the melting phase, more and more material is melted,

until the surface temperature has reached the evaporation

point. Finally, during the vaporization phase some material

is evaporated and thus, removed from the workpiece.

2 The laser power density

2.1 Time profile of the laser beam intensity

It is assumed that the laser turns on instantly at the beginning

of every pulse and turns off instantly at the end of every

pulse as expressed in Eq. (2.1).

I (t) = I0

∞
∑

n=0

�
(

(t − nτ)
(

nτ + tp − t
))

, (2.1)

where � (t) is Heavisides step function, tp is the pulse dura-

tion and τ is the pulsing period. I0 is the laser beam intensity

when the laser is on, or

I0 =
P

πr0
2

τ

tp
, (2.2)

where P is the mean laser beam power and r0 is the beam

radius at the surface, where laser intensity is considered.

The time profile of the laser beam intensity is shown in

Fig. 1.

A useful definition is also the absorbed power density,

which equals

Ia = (1 − R) I0 = (1 − R)
P

πr0
2

τ

tp
, (2.3)

where R is the workpiece material reflectivity at the laser

wavelength.

2.2 Laser defocusing

When drilling starts, the surface that the laser beam hits

is moving with time. Thus, defocusing of the laser beam

becomes an issue. The radius of the laser beam obeys a

hyperboloid hourglass distribution [7] given by

rb (z) = r0

√

1 +
(

M2
λ(z − δf )

πr0
2

)2

, (2.4)

where r0 is the beam radius at the focal plane, M is the

beam quality parameter, λ is the laser wavelength and δf is

Fig. 1 The time profile of the laser beam intensity
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the z coordinate of the focal plane. Thus, the absorbed laser

intensity when the erosion front is at depth z is given by

I0a(z) = (1 − R)
P

πr0
2

τ

tp

1

1 +
(

M2 λ(z−δf )

πr0
2

)2
. (2.5)

To sum up, the absorbed power density as a function of

time and depth is given by

Ia (z, t) = I0a (z)

∞
∑

n=0

�
(

(t − nτ)
(

nτ + tp − t
))

, (2.6)

where I0a (z) is given by (2.5).

3 A model for pulsed laser drilling

3.1 The problem

During the laser drilling process, the depth of the region

of the workpiece that has been affected by the heat flow,

at any given time, is very small. The reason is the laser

beams high intensity that causes the rapid evaporation of

the greatest part of this region. Thus, the diffusion of heat

in directions perpendicular to the laser beam axis is limited

and can be neglected. This assumption allows the process to

be considered taking place in one dimension.

3.1.1 Heating phase

The one-dimensional heating equation is

∂2T (z, t)

∂z2
=

1

a

∂T (z, t)

∂t
, (3.1)

where a is the thermal diffusivity of the material. Thermal

diffusivity is a function of temperature; however, in this

modelling approach, it will be considered being constant,

for the simplicity of the model.

At the beginning of every pulse, there is a short phase

when the surface temperature has not reached the melting

point, meaning that no phase transition is taking place. For

the study of this phase, the appropriate initial condition for

Eq. (3.1) is

T (z, 0) = T0 (z) , (3.2)

where T0 (z) is the temperature field after the cooling period

following the previous pulse. Typical values of process

parameters used for laser drilling allow for a large cooling

time comparable with the pulse duration. This means that

the profile of the temperature after a cooling period will be

flat in comparison with the temperature profile during the

time period the pulse is on. Thus, it can be considered that

the temperature field T0 (z) is constant. This approximation

has to be neglected in case that the pulse duration is a con-

siderable percentage of the pulsing period or if continuous

laser drilling is considered.

There are two basic mechanisms of heat transfer inwards

and outwards the workpiece, conduction and convection.

As this study focuses on the processing of metals, convec-

tion is a negligible factor. However, if laser treatment of

other materials is considered, convection should probably

be taken into account. Thus, the boundary conditions for the

heat equation are purely defined by the heat flux of the laser

pulses

∂T (z, t)

∂z

∣

∣

∣

∣

z=z0

= −
1

k
Ia (z0, t) , (3.3)

where k is the thermal conductivity of the material and z0

is the depth of the workpiece surface when the considered

pulse begins, which may be different from zero if it is not

the first pulse. Thermal conductivity may vary with tem-

perature; however, since the acquired solution should be as

simple as possible, it will be considered being constant.

3.1.2 Melting phase

When the surface temperature reaches the melting tem-

perature, the two phases of the material, solid and liquid

coexist and interchange heat. Then, in both regions, the heat

equation is satisfied

∂2Tl(z, t)

∂z2
=

1

al

∂Tl(z, t)

∂t
, (3.4)

∂2Ts(z, t)

∂z2
=

1

as

∂Ts(z, t)

∂t
, (3.5)

where the index l stands for liquid and the index s stands

for solid. The two regions are separated by a planar surface

at z = Zm (t). The temperature on this surface equals the

melting temperature Tm

Tl(Zm(t), t) = Ts(Zm(t), t) = Tm. (3.6)

The velocity of the moving boundary between the two

regions is set by the latent heat of fusion Lf . The relevant

boundary condition is the so-called Stefan condition, which

is the energy conservation at the phase-separating surface.

− kl
∂Tl(z, t)

∂z

∣

∣

∣

∣

z=Zm(t)−
+ ks

∂Ts(z, t)

∂z

∣

∣

∣

∣

z=Zm(t)+

= Lf ρ
dZm(t)

dt
. (3.7)

Finally, the boundary condition is again given by

Eq. (3.3) and the initial condition for the melting phase is

provided by the outcome of the previous heating phase.
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3.1.3 Vaporization phase

The vaporization phase begins when the surface temperature

reaches the vaporization point. In the following approach,

all materials that turn to a gaseous state is considered to

be instantaneously escaping. Then, in the liquid and solid

regions, the heat equation has to be satisfied as described by

Eqs. (3.4) and (3.5).

The solid and liquid regions are separated by a planar sur-

face at z = Zm (t), while the liquid and gaseous regions are

separated by another planar surface z = Zv (t). The tem-

perature at these surfaces equals the melting temperature Tm

and the vaporization temperature Tv respectively, resulting

in condition (3.6) and

Tl(Zv(t), t) = Tv. (3.8)

Similarly to the melting phase, the velocity of the moving

boundaries among the three regions is set by the latent heat

of fusion Lf and the latent heat of vaporization Lv . The

relevant boundary conditions are Eq. (3.7) and

Ia (Zv(t), t) + kl
∂Tl(z, t)

∂z

∣

∣

∣

∣

z=Zv(t)+
= Lvρ

dZv(t)

dt
(3.9)

Finally, the initial condition for the vaporization phase is

provided by the outcome of the previous melting phase.

3.1.4 Cooling phase

When the pulse ends, a cooling phase follows, until the next

pulse begins. The treatment of the cooling phase is identical

to that of the heating and melting phases, in the sense that

at the beginning of the cooling phase, the liquid and solid

phases coexist and interchange energy. The melting phase

will cease to exist very fast and cooling will continue in the

presence of merely the solid phase. The only difference in

the treatment is that the surface separating the liquid and the

gaseous states stops moving and the boundary condition at

this surface becomes:

∂T (z, t)

∂z

∣

∣

∣

∣

z=Zv

= 0, (3.10)

since there is no influx of energy during the cooling period.

The appropriate initial condition is given by the outcome of

the previous vaporization phase.

3.2 The numerical model

The finite differences method has been used to model laser

drilling numerically. A restriction imposed by this approach

is that the spatial dimension of the problem cannot be con-

sidered infinite. For the analytical approach, it is easier to

consider the spatial dimension as infinite. However, if the

length of the spatial dimension in the numerical approach

is larger than the depth of the region affected by the laser,

any reflection phenomena will be limited and therefore the

difference between the two approaches may not be large.

In this study, the discrete depths are considered uniformly

spaced in the interval 0 ≤ z ≤ D, where D is the depth

of the workpiece. There are nodes at z = 0 and z = D,

thus zi = (i − 1) 	z, where i takes values from 1 to Nz

and 	z = D/ (Nz − 1). Similarly, the discrete times are

also considered uniformly spaced, thus tj = (j − 1) 	t ,

where j takes values from 1 to Nt and 	t = tmax/ (Nt − 1).

The temperature field is a finite set of the elements Tij =
T

(

zi , tj
)

.

A discrete version of the heat equation can be expressed

and solved time slice by time slice. However, such an

approach has the disadvantage that phase transitions have

to be dealt manually, as described by Eqs. (3.7) and (3.9).

Additionally, the heat equation has to be solved separately

in the region of each phase.

There is an alternative way of bypassing this obstacle

in a numerical method. The second spatial derivative that

appears in the heat equation has the meaning of the infinites-

imal difference of the incoming and outgoing heat currents,

in an infinitesimal region. Hence, the second spatial deriva-

tive (multiplied with the thermal conductivity to recover the

heat current) is the amount of heat rate that settles in this

infinitesimal element. This is proportional (with constant of

proportionality equal to the density times the specific heat)

to the temperature rate of change at this infinitesimal ele-

ment, resulting in the heat equation. The non-smoothness

of the temperature field at a phase-separating surface is due

to the fact that during a phase transition, the incoming heat

does not correspond to an increase of temperature because

of the existence of the latent heat. This phenomenon can be

dealt more easily with the introduction of a new field corre-

sponding to the energy density. Then, the second derivative

of the temperature will result in a rate of change for the

energy density and then the energy density will be con-

nected to the local temperature by taking into account not

only the specific heat but also the latent heat of fusion and

evaporation. In other words, the heat equation, including

phase transitions, can be expressed as

Ui,j+1 − Ui,j

	t
= k

Ti+1,j − 2Ti,j + Ti−1,j

	z2
, (3.11)

Tij = T
(

Uij

)

, (3.12)

where energy density and temperature are connected

through

T (U) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

U
ρc

, U < ρcTm,

Tm, ρcTm < U < Um,
U−ρLf

ρc
, Um < U < ρ

(

cTv + Lf

)

,

Tv, ρ
(

cTv + Lf

)

< U < Uv,

(3.13)
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where Um and Uv are the required energy densities for

melting and vaporization respectively. They equal

Um = ρ
(

cTm + Lf

)

, (3.14)

Uv = ρ
(

cTv + Lf + Lv

)

. (3.15)

The relation between energy density and temperature is

indicated in Fig. 2.

It is clear from Eqs. (3.11) and (3.12) that since the Ui1

and Ti1 are given in the form of the initial conditions

Ti1 = T0, (3.16)

Ui1 = ρcT0 ≡ U0, (3.17)

the problem can be integrated time slice by time slice.

Equation (3.11) allows the calculation of the energy den-

sity values in the next step, which can be translated into the

temperatures in the next step using Eq. (3.12) and so on.

The last detail deals with the fact that the definition of

the second spatial derivative is problematic at i = 1 and

i = Nz or alternatively the way the boundary conditions are

implemented need to be determined. A relevant concern is

the fact that when evaporation starts, the boundary of the

region studied is moving since material is removed. Thus, at

each time slice, the position of the left boundary has to be

specified. Evaporation is occurring when energy density is

exceeding the critical value Uv, given by Eq. (3.15). Thus,

at each time slice, the boundary has to be specified as the

minimum i for which the energy density is smaller than the

critical value

bj = min
{

i|Uij < Uv

}

. (3.18)

Finally, the boundary condition, described by Eq. (3.3)

and a similar one for the opposite boundary describing

vanishing heat flow can be expressed as

Ubj ,j+1 − Ubj ,j

	t
=k

Tbj +1,j −Tbj ,j

	z2
+

Ia

(

zbj , tj
)

	z
, (3.19)

UNz,j+1 − UNz,j

	t
= −k

TNz,j − TNz−1,j

	z2
, (3.20)

where Ia

(

zbj , tj
)

is given by Eq. (2.6). The problem is com-

pletely described by Eqs. (3.11), (3.12), (3.18), (3.19) and

Fig. 2 Relation between energy density and temperature

(3.20), which can be integrated time slice by time slice, pro-

viding the temperature field as a function of depth and time.

This method can serve as a standalone numerical model for

evaporation laser drilling. In this study, it also serves as a

benchmark for the validity of the approximations used for

the development of the analytical model in Section 3.3.

3.3 The analytical model

The phase transitions that occur during the specific process

make the mathematical nature of the problem nonlinear. The

solutions of the heat equation are characterized by an expo-

nential decay towards a temperature field with no curvature;

if there is no curvature of the temperature field, then it is

also time independent. The approach followed was based on

the assumption that the absorbed power density was so high

that it locally “stretched” the temperature field sufficiently

enough to assume it had a linear profile with depth. Once,

such an assumption is made, the partial differential equation

is transformable into an ordinary one for the parameters of

the linear “ansatz” plugged into the equations.

3.3.1 Heating phase

According to the above-mentioned, in the current approx-

imation, the temperature field during the heating phase is

considered being equal to

T (z) =
{

As (t) z + Bs (t) , z < Zmax(t),

T0, z > Zmax(t),
(3.21)

This assumption can be visualized as the red curve in Fig. 3.

Continuity demands that

As (t) Zmax + Bs (t) = T0. (3.22)

It is assumed that the inclination of the aforementioned

linear function in the heated zone z < Zmax (t) is set by the

heat flow boundary condition (3.3). Thus,

−kAs (t) = Ia. (3.23)

Zv ZmZmaxZm Zmax Zmax

z
T0

Tm

Tv

T

heating phase ansatz

melting phase ansatz

evaporation phase ansatz

Fig. 3 The approximation of the temperature field during the heating,

melting and vaporization phase
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Finally, there is the constraint of the overall energy con-

servation. The energy that has been transferred into the

material has resulted in a temperature increase. This energy

is simply cρ times the surface under the red curve in Fig. 3,

where c is the specific heat. Thus, the energy conservation

per area can be written as

Iat =
1

2
cρZmax(t) (Bs (t) − T0) . (3.24)

Equations (3.22), (3.23) and (3.24) are sufficient for

determining the time evolution of the three unknown func-

tions of the problem, namely Zmax (t), As (t) and Bs (t).

3.3.2 Melting phase

During the melting phase, like during the heating phase, it

is assumed that the temperature field is a linear function

of depth. However, it may be a different linear function

in the liquid region from that in the solid region. So, the

temperature field is given by

T (z) =

⎧

⎨

⎩

Al (t) z + Bl (t) , z < Zm (t) ,

As (t) z + Bs (t) , Zm (t) < z < Zmax (t) ,

T0, z > Zmax (t) .

(3.25)

This assumption can be visualized as the green curve in

Fig. 3.

This “ansatz” contains six unknown functions of time.

However, the temperature field has to be continuous in

space. The temperature has to be equal to the melting tem-

perature at the phase-separating surface z = Zm (t) and the

environment temperature at z = Zmax (t). These demands

result in the following constraints

Bl (t) = Tm − Al (t) Zm (t) , (3.26)

Bs (t) = Tm − As (t) Zm (t) , (3.27)

As (t) = −
Tm − T0

Zmax (t) − Zm (t)
. (3.28)

After the continuity constraints, the problem has three

unknown parameters that depend on time, the temperature

inclination in the liquid region Al(t), the depth of the phase-

separating surface z = Zm (t) and the maximum depth that

has been affected by the heat flow z = Zmax (t). So, three

equations are needed in order to specify the above param-

eters. The first of those is the same as the one used in the

heating phase. The inclination of the aforementioned linear

function in the liquid region, which is directly hit by the

laser beam, is set by the heat flow boundary condition,

−kAl (t) = Ia. (3.29)

The second equation is the Stefan condition (3.7), which

in the linear “ansatz” is expressed as

−kAl (t) + kAs (t) = Lf ρ
dZm (t)

dt
. (3.30)

Finally, the third relation is simply the overall energy

conservation. The energy that has been transferred into the

material has been spent in two ways. The first way is the

phase change latent heat, which is Lf ρ multiplied by the

volume that has changed phase. The second one is the

energy corresponding to the temperature change, which is

cρ multiplied by the surface under the green curve of Fig. 3.

Thus, energy conservation (per area) can be written as

Iat = ρLf Zm (t) +
1

2
cρZm (t) (Bl (t) − T0)

+
1

2
cρZmax (t) (Tm − T0) . (3.31)

Out of the three equations describing the problem, only

the second one is a differential equation. Thus, Eqs. (3.29)

and (3.31) can be solved algebraically for Zmax (t) and

Bl (t) and the latter can be substituted in Eq. (3.30) to get an

easily solvable first-order differential equation for Zm (t).

Then, the other two parameters of the solution can be spec-

ified by Zm (t) with the use of Eqs. (3.29) and (3.31). The

aforementioned differential equation can be written as

Lf ρ
dZm (t)

dt
= Ia − k

Tm − T0

Zmax (t) − Zm (t)
. (3.32)

where

Zmax (t) =
1

Tm − T0

{

2

cρ

[

Iat − ρLf Zm (t)
]

− Zm (t)

[

Ia

k
Zm (t) + Tm − T0

]}

. (3.33)

The appropriate initial condition for this differential equa-

tion is a vanishing Zm at the time melting starts.

3.3.3 Vaporization phase

In the vaporization phase, similarly to the previous two

phases, it is assumed that the temperature field is a linear

function of depth; however, it may be a different linear func-

tion in the liquid region from that in the solid region. The

temperature field is given by

T (z) =

⎧

⎨

⎩

Al (t) z + Bl (t) , Zv (t) < z < Zm (t) ,

As (t) z + Bs (t) , Zm (t) < z < Zmax (t) ,

T0, z > Zmax (t) .

(3.34)

This assumption is depicted as the blue curve in Fig. 3.

This “ansatz” contains seven unknown functions of time.

The temperature field has to be continuous in space. The

temperature equals the vaporization point at z = Zv (t), the
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melting point at the phase-separating surface z = Zm (t)

and the environment temperature at z = Zmax (t). These

demands result in the following constraints

Bl (t) = Tv − Al (t) Zv (t) , (3.35)

Bs (t) = Tm − As (t) Zm (t) , (3.36)

Al (t) = −
Tv − Tm

Zm (t) − Zv (t)
, (3.37)

As (t) = −
Tm − T0

Zmax (t) − Zm (t)
. (3.38)

After the continuity constraints, the problem has three

unknown parameters that depend on time, the depth of the

vapour-liquid separating surface z = Zv (t), the depth of

the liquid-solid separating surface z = Zm (t) and the max-

imum depth that has been affected by the heat flow z =
Zmax (t). Three equations are required to specify the above

parameters. Two of these are the Stefan conditions at the

two phase-separating surfaces namely Eq. (3.30) and

Ia + kAl (t) = Lvρ
dZv (t)

dt
. (3.39)

The third relation is simply the overall energy conserva-

tion. The energy that has been transferred into the material

has been spent in three ways. The first is the vaporization

latent heat, which equals Lvρ times the volume that has

been vaporized. The second is the melting latent heat, which

is Lf ρ times the volume that has been melted. Finally,

the third is the energy corresponding to the temperature

change. This is simply cρ times the surface under the blue

curve in Fig. 3, where c is the specific heat. Thus, energy

conservation (per area) can be written as

Iat = ρLvZv (t) + ρLf Zm (t) +
1

2
cρZv (t) (Tv − Tm)

+
1

2
cρZm (t) (Tv − T0) +

1

2
cρZmax (t) (Tm − T0).

(3.40)

Out of the three equations regarding the problem, only

two are differential equations. Therefore, Eq. (3.40) can be

solved algebraically for Zmax (t) and the latter can be sub-

stituted into Eqs. (3.30) and (3.39) to get an easily solvable

first-order system of two differential equations for Zm (t)

and Zv (t)

Lvρ
dZv(t)

dt
= Ia − k Tv−Tm

Zm(t)−Zv(t)
, (3.41)

Lf ρ
dZm(t)

dt
= k Tv−Tm

Zm(t)−Zv(t)
− k

Tm−T0
Zmax(t)−Zm(t)

, (3.42)

where

Zmax (t) =
1

Tm − T0

{

2

cρ

[

Iat − ρLvZv (t) − ρLf Zm (t)
]

−Zv (t) (Tv − Tm) − Zm (t) (Tv − T0)

}

.

(3.43)

The appropriate initial conditions for this system of dif-

ferential equations are a vanishing Zv at the time that

evaporation starts and the outcome of the melting phases

Eq. (3.32) for Zm.

3.3.4 Cooling phase

As described in Section 3.1.4, at the beginning of the cool-

ing phase, the solid and liquid phases coexist. Soon enough,

the liquid phase transmits adequate amount of heat to the

solid phase and ceases to exist. Then, heat diffusion con-

tinues in the solid phase, homogenizing the temperature

distribution into the workpiece, resulting in the cooling of

the surface.

As the numerical model indicates, the coexistence of the

two phases lasts for a very short period of time thus, it is

negligible. It is desirable to find an appropriate form for

the temperature field during the cooling phase in order to

study the cooling of the surface, using the same method

as the one applied to the heating, melting and evaporation

phases. Since only the solid state is involved, a natural guess

would be the “ansatz” is used for the study of the heating

phase. However, the boundary condition is now different,

not allowing the use of a linear profile for the temperature

field.

The physics of the problem and the numerical model

solution indicate that a good candidate for the temperature

field profile is a Gaussian profile of the form

T (z, t) = C (t) e−
(t)z2

+ T0. (3.44)

Energy conservation relates the two unknown functions

of time C (t) and 
(t). The integral of the temperature field

in the whole z semi-axis times the density times the specific

heat should equal the amount of energy left into the work-

piece after the removal of the evaporated material and the

end of the evaporation phase. The latter equals

Ecool = Lf ρ (Zm − Zv) +
cρ

2
Zv (Tv − 3Tm + 2T0)

+
cρ

2
Zm (Tv − T0) +

cρ

2
Zmax (Tm − T0) , (3.45)

where Zv, Zm and Zmax are calculated at the time instance

the pulse ends. So, conservation of energy results in the

following relation between C (t) and 
(t)

cρ

2
C (t)

√

π


 (t)
= Ecool. (3.46)

Substituting the temperature profile in the heat equation and

using Eq. (3.46) to eliminate C (t) results in the following

equation

−4
(t)2 + 8
(t)3z2 =
1

a

(


′ (t) − 2
(t) 
′ (t) z2
)

,

(3.47)
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which stands if


′ (t) = −4a
(t)2. (3.48)

The solution to the latter is simply


(t) =
1

4a (t − t0)
, (3.49)

where t0 is the integral constant to be specified by condition

(3.46) and the demand that C (0) = Tv − T0.

3.4 The first pulse solution

The first step towards the solution of the model developed

is the acquisition of the solution for the first pulsing period.

In this case, the initial condition is the temperature field

being equal to the environment temperature. The results for

the first pulse will be the basis for the description of the

advancement of drilling during many pulses in Section 3.5.

In the following graphs, the solutions of the analytical

and numerical models are presented and a comparison is

made between the two. For these graphs, the material of the

workpiece is assumed to be described by the thermal prop-

erties given in Table 1. These numbers correspond to the

properties of mild steels [38]. For the laser source, the vari-

ables given in Table 2 are used. These correspond to values

characterizing CO2 laser sources.

3.4.1 Heating phase

The solution of the analytical model for the heating phase is

obtained by solving Eqs. (3.22), (3.23) and (3.24) to find

Bs(t) = T0 + Ia

√

2t

kcρ
, (3.50)

Zmax(t) =

√

2kt

cρ
. (3.51)

Table 1 The material thermal properties used for the graphs exposing

the outcome of the model

T0 300 K

Tm 1,808 K

Tv 2,860 K

k 35 W/mK

a 8 × 10−6m2/s

R 0.93

ρ 7,775 kg/m3

Lf 275 kJ/kg

Lv 6,090 kJ/kg

Table 2 The laser variables used for the graphs exposing the outcome

of the model

r0 0.16 mm

δf 0

M 1.66

λ 10.6 μm

P 600 W

tp 10 μs

τ 2 ms

Thus, using the fact that diffusivity, conductivity, specific

heat and density are connected as a = k/cρ, the solution for

the heating phase (3.21) can be written as

T (z, t) =

{

T0 + Ia
1
k

(√
2at − z

)

, z <
√

2at,

T0, z >
√

2at.
(3.52)

A correct prediction of the approximation used is the fact

that surface temperature increases with time like
√

t [39].

The time that the surface temperature reaches the melting

point equals

tm =
1

2a

[

k (Tm − T0)

Ia

]2

. (3.53)

In Fig. 4, the temperature field during the heating phase

of the first pulse is shown. In the displayed diagram, time

stops when the melting point is reached. For Fig. 4, the

material variables and the laser variables given in Tables 1

and 2 were used. It is noticeable that the time necessary

to reach the melting point is very short, for the parameters

used; it equals tm = 0.016 μs.

3.4.2 Melting Phase

In order to acquire the analytical model solution for the

melting phase, Eq. (3.32) has to be integrated, so that the

depth of the phase-separating surface as a function of time

is specified. Once this is done, the full temperature field

solution can be found using Eqs. (3.29) and (3.31). With the

variables of Tables 1 and 2, the solution for the tempera-

ture field has been calculated and is shown in Fig. 5. It can

Fig. 4 The temperature field solution for the heating phase
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Fig. 5 The temperature field during the heating and melting phases

be observed that the analytical model is in good agreement

with the numerical model.

The temperature gradient in the liquid phase remains

constant because of the boundary condition. For the same

reason, the temperature gradient in the solid phase also

remains constant before the melting starts. However, as the

melting starts, a maximum deviation of the latter from the

value given by the boundary conditions is acquired very

fast, and then it slowly converges towards this value. This

effect is also visible in Fig. 6, which shows the depth of

the phase-separating surface and the depth of the heated

zone as functions of time. As Eq. (3.7) describes, the differ-

ence between the two inclinations is proportional to the rate

that the boundary between the liquid and the solid regions

moves. In conclusion, this velocity acquires a maximum

value very fast once the melting starts and then it slows down.

When melting starts, there appears an extra obstacle in

the heat conduction, the latent heat of fusion, resulting in

an initially vanishing velocity of the phase-separating sur-

face. Once the obstacle is surpassed, and there is a pool of

liquid material on top of the solid phase, the advancement

of the front of the phase transition increases, acquiring a

maximum rate and then it slows down as it moves away

from the heat source. This slowing down occurs because the

phase-separating surface is getting further away from the

workpiece surface, thus making heat transfer more and more

difficult, as more time is required for the heat to travel this

distance and additionally, because there is more material

0.01 0.02 0.03 0.04 0.05
t sec

0.2

0.4

0.6

0.8

z m

Analytical
Numerical
Zmax

Zm

Fig. 6 The depth of the phase-separating surface and the heated zone

as a function of time

that absorbs some amount of this heat in the intermediate

region.

3.4.3 Vaporization phase

In order for the solution of the temperature field, during

the vaporization phase to be acquired, the differential sys-

tem, Eqs. (3.41) and (3.42) has to be solved. In Figs. 7, 8, 9

and 10, the solution of these equations is presented, for the

parameters given in Tables 1 and 2. The analytical model is

in good agreement with the numerical model.

Fig. 7 The temperature field during the beginning of the vaporization

phase

0 5 10 15 20 25

T0

Tm

Tv

T K

Fig. 8 The temperature field for the whole pulse duration

Fig. 9 The temperature field during heating, melting and the begin-

ning of vaporization phases; the solid lines correspond to the two

phase-separating surfaces and the boundary of the heated zone; the

dashed lines separate the heating, melting and evaporation phases
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Fig. 10 The temperature field for the whole pulse duration; the solid

lines correspond to the two phase-separating surfaces and the boundary

of the heated zone
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Fig. 11 The depth of the phase-separating surfaces and the heated

zone as a function of time for heating, melting and the beginning of

the vaporization phase
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Fig. 12 The depth of the phase-separating surfaces and the heated

zone as a function of time for the whole pulse duration

Unlike the melting phase, the temperature gradient in

the liquid phase does not remain constant. This is clearly

visible in Fig. 7. This is happening due to the latent heat

of evaporation. Alike the melting phase, in the beginning

of the vaporization phase, the velocity of the gas-liquid

phase-separating surface is low; since at the time evapora-

tion starts, an extra obstacle in heat conduction that of the

latent heat of evaporation appears. This is clearly visible in

Figs. 11 and 12, where the depth of the phase-separating

surfaces and the heated zone as function of time are plotted.

Most importantly, after some time, the phase-separating

surfaces acquire a constant velocity, the same for all of them

20 25 30 35 40 45 50

T0

Tm

Tv

T K
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Analytical
Numerical
t 1.0msec
t 0.2msec
t 40 sec
t 20 sec
t 12 sec
t 10 sec

Fig. 13 The temperature field during the cooling phase

as seen in Figs. 8, 10 and 12. This stands for the majority of

the pulse duration.

3.4.4 Cooling phase

The analytical solution for the cooling phase has already

been provided in Section 3.3.4. The results of the analytical

and numerical models for the parameters given in Tables 1

and 2 are shown in Fig. 13. The surface temperature is

shown in Fig. 14. The numerical and analytical models are

in good agreement, especially for time scales larger than

that of the pulse duration. Since the typical process vari-

ables used in laser drilling allow for a cooling period much

larger than the pulse duration, the analytical model pre-

sented here is a good approximation for the time evolution

of the temperature field during the cooling period.

As it can be seen in Fig. 14, the temperature reaches that

of the environment very fast. This, combined with the fact

that the heating phase does not actually last long, as shown

in Section 3.4.1, results in the remaining heat from one pulse

being insignificant for the next one. Thus, it is a reasonable

approximation to consider that the initial condition for any

pulse is the temperature field being equal to the environment

temperature.

3.5 Time evolution of drilling

In previous sections, the time evolution of the erosion front

as a function of time has been modelled. An approxima-

tion of the differential equation solutions is going to be

0 200 400 600 800 1000
t sec0

500

1000

1500

2000

2500

T K

Analytical

Numerical

Fig. 14 The surface temperature during the cooling phase
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investigated into the following sections. Figure 12 suggests

that both phase-separating surfaces and the depth of the

heated zone can be very well approximated by three parallel

straight lines,

Zv (t) = vt − zv, (3.54)

Zm (t) = vt + zm, (3.55)

Zmax (t) = vt + zmax. (3.56)

Substituting the three expressions above into Eqs. (3.40),

(3.41) and (3.42), the following result for the velocity of the

erosion front is yielded

v =
Ia

ρ
(

Lv + Lf + c (Tv − T0)
) =

Ia

Uv − U0

, (3.57)

which is expected from energy conservation arguments, and

also

zv =
k

2Ia

[

(Tv − Tm)2

Tv − T0

ρLf

Uv − U0 − ρLv

+ Tv − T0

]

,

(3.58)

zm =
k

2Ia

[

(Tv − Tm)
Uv − Um + ρLv

Uv − U0 − ρLv

−
(Tm − T0)

2

Tv − T0

]

,

(3.59)

zmax =
k

Ia

Tm − T0

Tv − T0

(Uv − U0)

c
+ zm. (3.60)

Figure 15 depicts a comparison of the full solutions of

the differential system, Eqs. (3.40), (3.41) and (3.42) with

the approximations Eqs. (3.54), (3.55) and (3.56). It is visi-

ble that since evaporation starts at a very early stage of the

pulse, the approximations are adequately accurate.

The linear approximation for the advancement of the

erosion front during one pulse is a good approximation

when the pulse duration is sufficient. However, as drilling

advances, the laser defocusing will reduce the incident

power density, resulting in lower drilling speed, meaning

that evaporation does not really start early and the linear
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t sec
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z m

vt zmax

vt zm

vt zv
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Fig. 15 The depth of the phase-separating surface and the heated zone

as function of time and the approximations

approximation may not be sufficient. Thus, the linear

approximation requires to be improved as it concerns the

temporally advanced stages of laser drilling. The aforemen-

tioned will be analytically developed so as for the used

function to reach the asymptotic linear form, for times larger

than, zv/v for the evaporation front and be simultaneously

enforced to vanish at the time that evaporation starts. Such

an appropriate form is

Zv (t) =
v (t − tv)

1 + zv−vtv
v(t−tv)

, (3.61)

where tv and the time instant evaporation starts and v and zv

are given by Eqs. (3.57) and (3.58). The evaporation starting

time tv can be approximated, assuming that the inclination

in both solid and liquid regions is specified by the boundary

conditions during the melting phase. In this case, it is given

by

tv =
1

2a

[

k (Tv − T0)

Ia

]2

+
ρLf k (Tv − Tm)

Ia
2

. (3.62)

In Fig. 16, it can be seen that the approximation (3.61)

is much better than the linear one described by Eq. (3.54),

especially for short times.

Since the evaporated depth is well approximated by

Eq. (3.61), the advancement of drilling with time can be

studied with the help of this equation. A key point of the pro-

cess is the fact that the absorbed laser intensity is decreasing

as drilling advances due to laser defocusing as described by

Eq. (2.5). The constants v and zv depend on the absorbed

intensity, as indicated in Eqs. (3.57) and (3.58). Thus, the

drilling rate will decrease to reach asymptotically zero at a

finite depth.

In the following approximation, the depth that is drilled

in one pulse equals to:

	z1−pulse = Zv

(

tp
)

=
v (t − tv)

1 + zv−vtv
v(t−tv)

, (3.63)

where v and zv are considered to depend on the drilled depth

as explained above and Zv (t) is given by Eq. (3.61). Since
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Fig. 16 The approximation for the drilling front
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there is no more drilling during the cooling phase, this is

the advancement of drilling occurring in the entire pulsing

period τ . Thus, the drilling process can be described by the

differential equation

dz

dt
=

Zv

(

tp
)

τ
. (3.64)

The solution of the differential equation above, for the

parameters given in Tables 1 and 2, is presented in Fig. 17.

The drilling rate decreases as drilling advances, going

asymptotically to zero at a finite depth. As long as drilling

has not advanced too much, so that the linear approxima-

tion of Fig. 15 is accurate, it can be said that the drilling rate

is proportional to the absorbed intensity, thus formula (2.5)

also describes the decrease of the drilling rate with depth.

3.5.1 Maximum drill depth

As indicated in Fig. 17, the drilling depth reaches an asymp-

totic value. This value could be calculated with Eq. (3.62) as

being the depth for which the time for the starting of evap-

oration equals the pulse duration. The minimum absorbed

energy density resulting in evaporation is

Ia,min =

√

1

tp

{

1

2a
[k (Tv − T0)]

2 + ρLf k (Tv − Tm)

}

.

(3.65)

Then the maximum drill depth is reached when the absorbed

laser power density has reached the critical value due to

beam defocusing, given by Eq. (3.65)

dmax = δf +
πr0

2

M2λ

√

Ia (0)

Ia,min

− 1. (3.66)

Equation (3.66) implies that higher laser power corre-

sponds to larger maximum depth. Moreover, the maximum

drill depth increases as the ratio of the pulse duration to the

pulsing frequency decreases.
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Fig. 17 The advancement of drilling with time

4 Discussion on energy efficiency

An appropriate definition for the energy efficiency of a pro-

cess is the ratio of an appropriate “result” and the energy

required in order for this result to be attained [5]. The

“result” can be selected as a quantity with energy units,

typically the theoretical minimum energy required for the

same “result” [40–43], and then, the energy efficiency is

defined as being dimensionless. This kind of definition,

although it can be implemented for a specific single pro-

cess, it is difficult to be generalized for the entire class of

processes that can provide the same “result”, given that the

theoretical minimum energy for the required “result” may

be different for each kind of process. Thus, such a defini-

tion may not be appropriate for an energy efficiency that has

to be used as a comparative measure among different pro-

cesses. On the contrary, if the “result” is quantified by some

geometric characteristic, these disadvantages do not appear,

and additionally, an easy connection between the geome-

try described in a CAD file and the prediction of energy

consumption can be provided by an IT system. For these

reasons, the energy efficiency definition used in this study

is given by the following relation [5]:

Eef =
Vremoved

E
, (4.1)

where Vremoved is the removed volume and E is the energy

required to remove this volume. In the following approach,

the removed volume can be predicted as a function of the

processing time, using the results of Section 3. The required

energy can be simply calculated as

E = P t, (4.2)

where P is the laser beam power and t is the processing

time.

4.1 Dependence of energy efficiency on process parameters

Since the speed of the erosion front is decelerating as shown

in Fig. 17, the material removal rate also decreases. On

the other hand, the energy consumption rate is constant;

thus, the energy efficiency decreases as the process time

increases. However, the most energy efficient selection of

parameters for the opening of a hole with a specific depth

has still to be determined. The previous argument suggests

that the most energy efficient selection of parameters is the

one that minimizes the process time too. In the following,

three parameters will be considered, namely laser power,

pulsing frequency and duty percentage; the latter being the

ratio between the pulse duration and the pulsing period.

The dependence of energy efficiency on the aforemen-

tioned process parameters is shown in Figs. 18, 19 and 20

for desired hole depth equal to 1, 2 and 4 mm.
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Fig. 18 The dependence of energy efficiency on laser power

The parameters used for these graphs are given in

Table 3, with the exception of the corresponding horizontal

axis variable for each graph.

The trend of the plotted curves can be explained as fol-

lows: the increase in laser power as well as the decrease

in duty results in higher laser beam intensity, thus in faster

drilling and less time for heat lost due to conduction. The

laser beam intensity does not depend on the pulsing fre-

quency; however, reduction in the pulsing frequency simply

results in less pulses being required for the process. In

Section 3, it was shown that a specific part of each pulse,

that depended on the laser beam intensity was lost due to

conduction as described by Eq. (3.45). Consequently, lower

pulsing frequency results in fewer losses and higher energy

efficiency.

The selection of the process variables leading to higher

energy efficiency is made clear in Figs. 18, 19 and 20. The

most efficient laser power and duty selection correspond to

higher laser intensities. It is well known [44, 45] that inten-

sities higher than 108 W/cm2 result in multiphotonic and

thermionic emission processes, both responsible for the pri-

mary electron generation from the irradiated metal target

(plasma formation). When plasma is generated, the energy

provided by the source is not consumed for processing pur-

poses, but for plasma conservation. As a result, the energy

efficiency of the process will decrease. Consequently, it is
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Fig. 19 The dependence of energy efficiency on pulsing frequency
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Fig. 20 The dependence of energy efficiency on duty

expected that the energy efficiency will reach a maximum

value, as the laser intensity increases up to the point of

decrease. The use of lower pulsing frequencies can prevent

the generation of plasma [46].

Since lower pulsing frequencies prevent plasma forma-

tion and correspond to higher energy efficiencies, aiming at

the increase of the latter, regarding the pulsed laser drilling

process, it is the lowest available pulsing frequency of a

machine that has to be applied. Then, the highest possible

power and lowest possible duty that do not lead to plasma

formation should be used. Plasma generation has not been

considered in the current modelling approach; however, the

process variables used for Figs. 18, 19 and 20 correspond

to laser beam intensities smaller or marginally equal to the

limit of 108 W/cm2, implying that there is negligible plasma

formation.

As indicated in Figs. 18, 19 and 20, the energy efficiency

takes a wide range of values, depending on the selection

of process variables. Thus, proper adjustment of the latter

can provide a significant improvement on energy efficiency,

resulting in the corresponding gains in energy cost. As

shown in Fig. 18, the energy efficiency for the drilling of

a 4mm hole is doubled, when the laser power is being

increased from 1.5 to 4 kW.

4.2 Physical analysis of energy efficiency

If an imaginary perfect machine is considered, driving all

its energy flow towards heating only the material to be

removed, from room temperature to evaporation tempera-

ture and then providing the latent heat in order for this

Table 3 The laser variables used for the energy efficiency graphs

P 2 kW

f 1 kHz

d 10 %
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material to be evaporated and disposed, its energy efficiency

would be

Eefideal =
1

ρ
[

c (Tv − T0) +
(

Lf + Lv

)] =
1

Uv − U0

.

(4.3)

For the parameters used in this study, this corresponds

to ideal energy efficiency about equal to Eefideal =
16 mm3/kJ. In Figs. 18, 19 and 20, it is shown that the best

selection of process variables corresponds to energy effi-

ciency equal to about Eefbest = 1.1 mm3/kJ. Thus, the best

achieved energy efficiency is about 6.5 % of the theoretical

ideal.

Reflectivity is responsible for the loss of a percentage of

the in-falling energy equal to

Qr = R. (4.4)

The rest of the losses are due to heat being diffused into

the material and to the laser defocusing. Other factors may

certainly intervene. However, these are the most important

ones and those considered in the present study. The percent-

age of losses because of laser defocusing can be estimated

as the complementary of the ratio of the volume of the cylin-

der with radius equal to the minimum beam radius, over the

volume of the hourglass-shaped solid that is described by

Eq. (2.4). This factor equals

Qdf =
M4λ2z2

3
(

πr0
2
)2 + M4λ2z2

. (4.5)

The percentage of losses due to conduction is indi-

rectly calculated in Section 3 since the energy efficiency

calculated based of the results of this section is equal to

Eef = (1 − Qr) (1 − Qdf) (1 − Qc) Eefideal. (4.6)

In Fig. 21, it is shown how energy efficiency is deter-

mined by these factors, as drilling advances. The parameters

for this graph are the ones given in Table 3. It is evi-

dent that the most important factor determining the laser

drilling energy efficiency, at process level, is the materials

reflectivity.
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Fig. 21 A physical analysis of the energy efficiency

5 Conclusions

In the current study, an analytical and numerical approach

of evaporation laser drilling, towards the theoretical specifi-

cation of the process parameters that maximize energy effi-

ciency, has been developed. The process has been described

as a function of the processing time, a critical factor, for the

retrieval of a prediction of energy consumption. Based on

these models, the energy efficiency and its dependence on

the process parameters have been investigated. The investi-

gation has revealed that the material removal rate decreased

as the drilling/processing time increased, reaching a zero

value at a given depth. The maximum drill depth was laser

parameter dependent, increasing with the increase in laser

power and/or duty. Furthermore, the energy efficiency of

the pulsed laser drilling process was also found dependent

on the laser source parameters, indicating an increase with

the increase of the laser power and maintaining this trend

with the decrease of the pulsing frequency and duty. It can

be stated that there is enough evidence to prove that the

energy losses during the laser drilling process, determining

the energy efficiency, are occurring mainly due the mate-

rial reflectivity, laser beam defocusing and heat conduction,

with the most detrimental being reflectivity.

A future study will focus on the adaptation of the analyti-

cal model developed with experimental data. Improvements

on the model are possibly necessary in order to include other

factors, such as plasma formation, variations of reflectivity

due to the formed geometry or heat losses due to convection.

Another improvement of the analytical model that can be

developed is the substitution of the last linear sector of the

solution “ansatz” with an exponential one as it is suggested

by the results of the numerical model. The introduced model

can also be used for the study of the drilled hole’s shape and

for providing guidelines as to the way that effects such as

barreling can be prevented.
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