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Abstract— This paper provides an approach to analyze and
design decentralized observer-based controllers for large-scale
linear plants subject to network communication constraints
and varying sampling intervals. Due to communication con-
straints, it is impossible to transmit all input and output data
simultaneously over the communication network that connects
sensors, actuators and controllers. A protocol orchestrates what
data is sent over the network at each transmission instant.
To handle these communication constraints, it is fruitful to
adopt a switched observer structure that switches based on
the transmitted information. By taking a discrete-time switched
linear system perspective, we are able to derive a general model
that captures all these aspects and provides insight into how
they influence each other. Focusing on the class of so-called
‘periodic protocols’ (of which the well-known Round Robin
protocol is a special case), we provide a method to assess robust
stability using a polytopic overapproximation and LMI-based
stability conditions. Although the design problem is in general
non-convex, we provide a procedure to find stabilizing control
laws by simplifying the control problem. The design of the
controller exploits the periodicity of protocols and ignores the
global coupling between subsystems of the plant and variation
of the sampling intervals. To assess the robust stability of the
resulting closed-loop system including the ignored effects, an a
posteriori analysis is conducted based on the derived LMIs.

I. INTRODUCTION

Recently, there has been an enormous interest in control of

large-scale systems that are physically distributed over a wide

area. Examples of such distributed systems are electrical

power distribution networks, water transportation networks,

industrial factories and energy collection networks (such

as wind farms). This work considers stability analysis and

controller design for this class of systems. This problem

setting has a number of features that seriously challenge the

controller design.

Firstly, the controller is decentralized in the sense that it

consists of a number of local controllers that do not share

information. Although a centralized controller could alter-

natively be considered, the achievable bandwidth associated

with using a centralized control structure would be limited

by long delays induced by the communication between the

centralized controller and distant sensors and actuators over

a (e.g. wireless) communication network [1].

Secondly, when considering control of a large-scale sys-

tem, it would be unreasonable to assume that all states are
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measured. Therefore an output-based controller is needed.

In particular, we consider an observer-based control setup.

Note that an observer-based controller offers the advantage

of reducing the number of sensors, which alleviates the

demands on the network design. However, it has been proven

that, in general, it is hard to obtain decentralized observers

providing state estimate converging to the ‘true’ states [11].

Finally, the observer-based controller needs to have certain

robustness properties when using a communication network.

Indeed, the advantages of using a wired/wireless network

are inexpensive and easily modifiable communication links.

However, the drawback is that the control system is suscep-

tible to undesirable (possibly destabilizing) side-effects see

e.g. [6], [15]. There are roughly five recognized Networked

Control System (NCS) side-effects: time-varying delays,

packet dropouts, varying sampling intervals, quantization and

communication constraints (the latter meaning that not all

information can be sent over the network at once). For

modeling simplicity, we only consider varying sampling

times and communication constraints in this work.

Resuming, we note that although this decentralized

observer-based control structure is reasonable to use, its

design is extremely complex due to the fact that we si-

multaneously face the issues of (i) a decentralized control

structure (ii) limited measurement information and (iii) com-

munication side-effects. The contribution of this paper is

threefold: a model describing the controller decentralization

and the communication side-effects is derived for analysis, a

way to assess robust stability of the closed loop in the face

of communication imperfections is given and an approach

towards the design of observer-based controllers is provided.

The outline of this paper is as follows: In Section II the

general problem description and the closed-loop model will

be constructed. Construction of the model covers the plant

decomposition needed to establish a decentralized controller

structure, the network constraints and the descriptions of the

observer-based decentralized control design. We will then

propose LMI-based stability conditions in Section III. In

Section IV we present a constructive design procedure for

these decentralized observer-based controllers for the case of

periodic communication protocols. Finally an example will

be presented in Section V and some suggestions for future

work will be discussed in Section VI.

A. Nomenclature

The following notational conventions will be used.

diag(A1, . . . , AN ) denotes a block-diagonal matrix with the

matrices A1, . . . , AN on the diagonal and A⊤ ∈ R
m×n
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denotes the transpose of the matrix A ∈ R
n×m. For a vector

x ∈ R
n, we denote ‖x‖ :=

√
x⊤x its Euclidean norm.

We denote by ‖A‖ :=
√

λmax(A⊤A) the spectral norm

of a matrix A, which is the square-root of the maximum

eigenvalue of the matrix A⊤A. For brevity, we sometimes

write symmetric matrices of the form
[

A B

B⊤ C

]

as
[

A B
⋆ C

]

.

II. THE MODEL & PROBLEM DEFINITION

We consider a continuous-time linear plant:
{

ẋ(t) = Ax(t) +Bû(t)
y(t) = Cx(t)

(1)

with state x ∈ R
n, control input û ∈ R

m and measured out-

put y ∈ R
p. The goal of the paper is to present an approach

for the analysis and design of a stabilizing controller that has

the following features:

• discrete-time;

• decentralized;

• output-based;

• robust with respect to uncertain time-varying sampling

intervals hk ∈ [h, h̄] for all k ∈ N;

• communication constrained: not all outputs and inputs

can be communicated simultaneously and a protocol

schedules which information is sent at a transmission

instant

The decentralized controllers C(i), i = 1, ..., N , communi-

cate with the sensors and actuators of the plant via a shared

network. The general setup is depicted in Fig. 1.
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Fig. 1. Decentralized Networked Control System.

In this paper, the plant will be divided into subsystems,

each of which, are controlled by a discrete-time observer-

based controller whose subsystem model is based on a

nominal sampling interval. In Section II-A, we determine

a nominal sampling interval with a corresponding plant

discretization and present a decomposition of the plant. In

Section II-B a description of the network imperfections is

provided. In Section II-C a switching observer-based control

structure will be presented and, finally, in Section II-D a

closed-loop model suitable for stability analysis is derived.

A. Plant Decomposition

Since we are aiming to design N model-based discrete-

time linear observer-based controllers, the continuous-time

plant needs to be divided into N discrete-time subsystems

to use as sub-models. First, we will discretize the continuous-

time plant, after which, the states of the continuous-time

plant will be partitioned, leading to N disjoint discrete-time

systems.

1) Plant Discretization: It is well known that a linear

continuous-time system (1) with a zero-order-hold assump-

tion on the inputs û(t) can be exactly discretized to

P :=

{

xk+1 = A⋆xk +B⋆ûk

yk = Cxk
, k ∈ N≥0, (2)

where h⋆ is a suitably chosen nominal constant sampling

interval, A⋆ := eAh⋆ and B⋆ :=
∫ h⋆

0
eAsdsB. In (2), xk =

x(tk), yk = y(tk), with tk the sampling instants, and ûk

is the discrete-time control action available at the plant at

t = tk, i.e. û(t) = ûk for all t ∈ [tk, tk+1), k ∈ N.

2) Plant Decomposition: The system P in (2) will be

decomposed into N interconnected subsystems. Choosing

the decomposition is a challenging task, as there are many

aspects to be taken into account, i.e. sensor/actuator physical

location, subsystem interaction, computational effort of the

control law, input/output relations, etc. For decentralized de-

sign, reducing the interactions between subsystems is highly

desired since smaller interaction will generally increase the

likelihood of the decentralized controllers being successful.

Considering that the goal of the decomposition is keeping the

interaction between the subsystems small (while maintaining

a minimal number of subsystems), we propose to use the ǫ-

decomposition technique [11].

The ǫ-decomposition is an algorithm for finding a per-

mutation matrix P such that each element of all subsystem

coupling matrices between subsystems, has magnitude no

greater than ǫ ≥ 0. This algorithm offers the advantage of

only searching for permutations of a system, which preserves

any physical meaning of the original state vector. By using

this algorithm we can find a P that expresses the entire plant

as a collection of interconnected (coupled) subsystems

P(i) :=



















z
(i)
k+1 = Āiz

(i)
k + B̄iû

(i)
k

+
∑N

j=1
j 6=i

(

Āi,jz
(j)
k + B̄i,j û

(j)
k

)

y
(i)
k = C̄iz

(i)
k +

∑N
j=1
j 6=i

C̄i,jz
(j)
k

,

(3)

for i = 1, ..., N , where z = P−1x is the state vec-

tor of the permuted system Ā = P−1A⋆P, B̄ =

P−1B⋆, C̄ = CP , u
(i)
k ∈ R

mi , and y
(i)
k ∈ R

pi . With-

out loss of generality, we only consider disjoint decom-

positions, that is, z = (z(1)⊤, z(2)⊤, ..., z(N)⊤)⊤, u =
(u(1)⊤, u(2)⊤, ..., u(N)⊤)⊤, y = (y(1)⊤, y(2)⊤, ..., y(N)⊤)⊤.

As such, every state, output and input are attributed to

only one subsystem and the subsystem interaction ma-

tricies are denoted Āi,j , B̄i,j , C̄i,j , j 6= i. Throughout

this paper we use the decomposition Ā = Ad +Ac, where

Ad := diag(Ā1, Ā2, ..., ĀN ). The B̄, C̄ matrices can be ex-

pressed similarly. With this notation, we can equivalently

express (3) as

P =

{

zk+1 = Adzk +Bdûk + (Aczk +Bcûk)
yk = Cdzk + Cczk

.

The control structure for a chosen decomposition is de-

picted in Fig. 2, where the ith controller is controlling only

the ith subsystem.
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Fig. 2. Decentralized NCS After Decomposition

B. Network Description

Communication between sensors, actuators and controllers

will take place via a shared network, see Fig. 2. Here, we

will consider two network effects: namely, varying sampling

intervals and communication constraints, where the latter

imposes the need for a scheduling protocol to determine what

input and output data is transmitted at each sampling time.

In Section II-A, we assumed a constant sampling interval

h⋆ to arrive at subsystem models used by the controller.

However, due to the nature of the network, the actual

sampling times tk, k ∈ N, are not necessarily equidistant in

time. Assuming that the sampling intervals hk = tk+1 − tk
are contained in [h, h̄] for some 0 ≤ h ≤ h̄, i.e. hk ∈ [h, h̄]
for all k ∈ N, the exact discrete-time equivalent of (1), after

the permutation, is

Phk
:=

{

zk+1 = Āhk
zk + B̄hk

ûk

yk = C̄zk,
(4)

where Āhk
:= P−1eAhkP , B̄hk

:= P−1
∫ hk

0
eAsdsB and

C̄ := CP . It is important to note that the observer-based

controllers will use subsystem models that are based on the

constant sampling interval h⋆, so variation in the sampling

interval prevent the state estimation error from converging to

zero.

Since the plant and controller are communicating through

a network with communication constraints, the actual input

of the plant ûk ∈ R
m is not equal to the controller output uk

and the actual input of the controller ŷk ∈ R
p is not equal to

the plant output yk ∈ R
p. Instead, ûk and ŷk are networked

versions of uk and yk, respectively.

To explain the effect of communication constraints and

thus the difference between ŷk and yk and ûk and uk one

has to realize that the plant has nu sensors and ny actuators.

These sensors and actuators are grouped into nT ≤ nu +ny

nodes. At each sampling time tk, one node obtains access

to the network and transmits its corresponding u and/or y

values. Only the transmitted values will be updated, while all

other values remain unchanged. This means the constrained

data exchange can be expressed as
{

ûk = Γu
σk
uk + (I − Γu

σk
)ûk−1

ŷk = Γy
σk
yk + (I − Γy

σk
)ŷk−1,

(5)

where Γu
l ∈ R

m×m and Γy
l ∈ R

p×p, for l = 1, ..., nT ,

are diagonal matrices where the jth diagonal value is 1 if

the jth input or output, respectively, belongs to node l and

zero elsewhere. Without loss of generality, we will assume

the matrices Γu
l and Γy

l can be divided in Γu
i,l and Γy

i,l, for

i ∈ {1, ..., N} such that Γu
l := diag(Γu

1,l,Γ
u
2,l, ...,Γ

u
N,l)

and Γy
l := diag(Γy

1,l,Γ
y
2,l, ...,ΓN,l), where Γu

i,l ∈ R
mi×mi

and Γy
i,l ∈ R

pi×pi are matrices corresponding to inputs and

outputs, respectively, of the ith subsystem.

The value of σk ∈ {1, 2, ..., nT } indicates which node

is given access to the network. The switching functions

determining σk are known as protocols. In this paper we

focus on the general class of periodic protocols [4], which are

characterized by σk+Ñ = σk for some period Ñ ≥ nT , Ñ ∈
N. The well-known Round Robin protocol [12] belongs to

this class of periodic protocols.

Finally, we introduce the network-induced errors

{

euk := ûk−1 − uk

e
y
k := ŷk−1 − yk,

(6)

where euk and e
y
k will be referred to as the (network-induced)

input error and output error, respectively.

C. Decentralized Networked Observer-Based Controllers

In this paper we will use decentralized observer-based con-

trollers in the sense that for each subsystem of the plant we

have one observer-based controller and the controllers do not

exchange information. Therefore, the individual observers

have no information about externally coupled states. As a

consequence, it is desired to ensure that coupling between

subsystems is minimal since ignored coupled dynamics will

act as an unknown disturbance input to the decoupled ob-

servers. Furthermore, the model-based controllers will adopt

switching gains to deal with the communication constraints

effectively. The ith networked observer-based controller is

given by

C(i)
σk

:=











z̃
(i)
k+1 = Āiz̃

(i)
k + B̄iû

(i)
k

+Li,σk
Γy
i,σk

(ŷ
(i)
k − C̄iz̃

(i)
k )

u
(i)
k = −Ki,σk

z̃
(i)
k ,

(7)

where z̃
(i)
k+1 represents the state estimate of the ith observer

at time k + 1 for the plant state z
(i)
k+1 and the output

injection matrices Li,σk
, i ∈ {1, .., N}, σk ∈ {1, ..., nT }

will be designed to stabilize the dynamics of the state

estimation error ηk := z̃k−zk. We adopt a switched-observer

structure (notice the σk-dependence in (7)) to deal with the

presence of communication constraints. Switched observers

have received much attention in the past decade [2], [13],

[14]. Γy
i,σk

in (7) is used so that the standard output injection

is only applied to the newly received measurements. If no

measurements are received (Γy
i,σk

= 0 for some σk) then (7)

reduces to a standard model-based prediction step.

Similar to the plant, the dynamics of all the controllers

(7) can be described by a single discrete-time system, which

will consist of block diagonal matrices due to the decoupled

nature of the controllers

Cσk
=







z̃k+1 = Adz̃k +Bdûk

+Lσk
Γy
σk
(ŷk − Cdz̃k)

uk = −Kσk
z̃k,

(8)

where Lσk
= diag(L1,σk

, L2,σk
, ..., LN,σk

) and Kσk
=

diag(K1,σk
, ,K2,σk

, ...,KN,σk
).
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D. Closed-Loop Model

To derive an expression for the closed loop, we will adopt

the state vector x̄k = [η⊤k z⊤k eu ⊤
k e

y ⊤
k ]⊤. Combining

(4), (5), (6), and (8) the entire closed-loop system can be

represented by the following switched uncertain discrete-time

system

x̄k+1 = Ãc,hk,σk
x̄k, (9)

where Ãc,hk,σk
is given by (10) with

∆Ac,hk
:= Āhk

−Ad = (Āhk
− Ā) +Ac

∆Bc,hk
:= B̄hk

−Bd = (B̄hk
− B̄) +Bc.

The ∆Ac,hk
term consists of two terms being (Āhk

− Ā),
which is caused by a ‘clock skew’ (hk−h⋆) effect, added to

Ac, which is caused by the subsystem coupling. The same

applies to ∆Bc,hk
. The ‘clock skew’ effect is an arbitrarily

time-varying term (due to time-varying sampling intervals)

while the ‘neglected coupling’ effect is a deterministic dis-

turbance, which is the result of both the nominal sampling

time and the chosen decomposition.

III. STABILITY ANALYSIS

In this section, we analyze whether the system (9), (10),

with given Kσk
and Lσk

, is stable for some given bounds

on the sampling interval, i.e. hk ∈ [h, h] for all k ∈ N.

The stability analysis is based on the ideas in [3], in which

stability of networked control systems is discussed. As in

[3], the uncertain parameter hk, k ∈ N appears nonlinearly in

(10) through Āhk
and B̄hk

. To make the system amenable for

analysis, a procedure is proposed to overapproximate system

(9), (10) by a polytopic system with norm-bounded additive

uncertainty, i.e.,

x̄k+1 =

M
∑

j=1

αl
k (Fσk,j +Gj∆kHσk

) x̄k, (11)

where Fl,j ∈ R
n×n, Gj ∈ R

n×q , Hl ∈ R
q×n, for l ∈

{1, . . . , nT } and j ∈ {1, . . . ,M}, with M the number of ver-

tices of the polytope. The vector αk = [α1
k . . . αM

k ]⊤ ∈ A,

k ∈ N, is time-varying with

A =
{

α ∈ R
M
∣

∣

∑M

j=1 α
j = 1 and αj ≥ 0

for j ∈ {1, . . . ,M}
}

and ∆k ∈ ∆, where ∆ is a norm-bounded set of matrices in

R
q×q that describes the additive uncertainty. Equation (11)

is an overapproximation of (9) in the sense that for all l ∈
{1, . . . , nT }, it holds that

{

Ãc,h,l | h ∈ [h, h]
}

⊆
{

∑M

j=1 α
j (Fl,j +Gj∆Hl) |α ∈ A,∆ ∈ ∆

}

. (12)

We now provide a gridding-based procedure to overap-

proximate system (9), such that (12) holds, after which we

can provide conditions for stability.

Procedure 1

• Select M distinct sampling intervals h̃1, . . . , h̃M as grid

points, such that h =: h̃1 ≤ h̃2 < . . . < h̃M−1 ≤
h̃M := h.

• Define

Fl,j := Ãc,h̃j ,l
.

Decompose the matrix A, as given in (1), into its real

Jordan form [7], i.e. A := TΛT−1, where T is an

invertible matrix and

Λ = diag(Λ1, . . . ,ΛL)

with Λi ∈ R
ni×ni , i ∈ {1, . . . , L}, the i-th real Jordan

block of A.

• Compute for each line segment Sm = [h̃m, h̃m+1], m ∈
{1, . . . ,M − 1}, and for each real Jordan block Λi,

i ∈ {1, . . . , L}, the worst case approximation error, i.e.

δ̃Ai,m =

sup
α̃1 + α̃2 = 1,
α̃1, α̃2 ≥ 0

∥

∥

∥
eΛi(α̃

1h̃m+α̃2h̃m+1) −
2

∑

j=1

α̃jeΛih̃m+j−1

∥

∥

∥
,

(13a)

δ̃Ei,m = sup
α̃1 + α̃2 = 1,
α̃1, α̃2 ≥ 0

∥

∥

∥

2
∑

j=1

α̃j

∫ α̃1h̃m+α̃2h̃m+1

h̃m+j−1

eΛisds
∥

∥

∥
.

(13b)

For a detailed explanation of the origin of the approxi-

mation error bounds, see [3].

• Map the obtained bounds (13) at each line segment

Sm, m ∈ {1, . . . ,M − 1}, for each Jordan block

Λi, i ∈ {1, . . . , L}, to their corresponding vertices

j ∈ {1, . . . ,M}, according to

δAj,i =

{

δ̃Aj,i i ∈ {1, N},
max{δ̃Aj,i−1, δ̃

A
j,i} i ∈ {2, . . . , N − 1},

δEj,i =

{

δ̃Ej,i i ∈ {1, N},
max{δ̃Ej,i−1, δ̃

E
j,i} i ∈ {2, . . . , N − 1}.

Ãc,hk,σk
=









Ad − Lσk
Γy
σk
Cd +∆Bc,hk

Kσk
Lσk

Γy
σk
Cc −∆Ac,hk

+∆Bc,hk
Kσk

−∆Bc,hk
(I − Γu

σk
) 0

−B̄hk
Kσk

Āhk
− B̄hk

Kσk
B̄hk

(I − Γu
σk
) 0

Kσk
(Ad − Lσk

Γy
σk
Cd −BdKσk

− I) Kσk
(Ad + Lσk

Γy
σk
Cc −BdKσk

− I) (Kσk
Bd + I)(I − Γu

σk
) 0

C̄B̄hk
Kσk

C̄(I − Āhk
+ B̄hk

Kσk
) −C̄B̄hk

(I − Γu
σk
) I − Γy

σk









(10)
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• Finally, with B and C given in (1), define

Hσ :=

[

T−1 0 0 0
T−1BKl T−1BKl 0 T−1B(I − Γu

l )

]

and

Gj :=









T T

T T

−CT −CT

0 0









· Uj

in which

Uj = diag(δA1,jI1, . . . , δ
A
L,jIL, δ

E
1,jI1, . . . , δ

E
L,jIL)

with Ii is the identity matrix with size of the i-th

real Jordan Block. The additive uncertainty set ∆ ⊆
R

2nx×2nx is now given by

∆ =
{

diag(∆1, . . . ,∆2L) | ∆i+jL ∈ R
ni×ni ,

‖∆i+jL‖ ≤ 1, i ∈ {1, . . . , L}, j ∈ {1, 2}
}

.

Theorem 1 Consider system (9), (10), where hk ∈
[h, h], k ∈ N. If system (11) is obtained by following

Procedure 1, (11) is an overapproximation of (9) in the sense

that (12) holds.

Proof: The proof can be obtained along the lines of

the proof of Theorem 1 of [3] and is omitted for the sake of

brevity.

Using this overapproximation, stability of system (9), (10)

can be analyzed using the following theorem from [3], in

which

R := {diag(r1I1, . . . , rLIL, rL+1I1, . . . , r2LIL)

∈ R
2nx×2nx | ri > 0}

with Ii the identity matrix of size ni, complying with the

i-th real Jordan Block.

Theorem 2 Consider the closed-loop NCS (9), (10), dic-

tated by a periodic protocol with period Ñ , and an over-

approximation constructed using Procedure 1. Assume that

there exist positive definite matrices Pℓ, ℓ ∈ {1, . . . , Ñ}, and

matrices Rℓ,σj
∈ R, ℓ ∈ {1, . . . , Ñ} and j ∈ {1, . . . ,M},

satisfying the LMIs
[

F⊤

σℓ,j
Pℓ+1Fσℓ,j − Pℓ +H⊤

σℓ
Rℓ,σj

Hσℓ
F⊤

σℓ,j
Pℓ+1Gj

G⊤

j Pℓ+1Fσℓ,j G⊤

j Pℓ+1Gj −Rℓ,σj

]

≺ 0,

(15)

where PÑ+1 := P1, for all ℓ ∈ {1, . . . , Ñ} and j ∈
{1, . . . ,M}. Then, the system (11) is GAS and consequently,

the system (9), (10) is globally asymptotically stable (GAS).

Proof: The proof is given in [3].

Remark 1 Using a reasoning similar as in [10], it can

be shown that GAS of the discrete-time model also implies

stability of the sampled-data NCS including intersample

behavior.

Remark 2 NCS with other protocols (e.g. TOD) can be

analyzed in a similar manner using the ideas in [3].

IV. DESIGN FOR PERIODIC PROTOCOLS

In the previous sections, we derived a model describing

an LTI plant interconnected with a decentralized switched

observer-based controller by a communication network and

presented a procedure to assess stability of the model for

given Kl and Ll, l ∈ {1, 2, ..., nT }. In this section, we will

present a procedure for obtaining the controller and observer

gains Kl and Ll, respectively, in (8) for periodic protocols.

As the decentralized and networked constrained control

problem is known to be non-convex and hard to solve

in general, for the design of Kl and Ll we ignore two

aspects of the problem; namely the clock skew effects

and the coupling terms between the subsystems. Due to

the available robust stability test (see Section III), we can

verify stability including these ignored effects a posteriori.

In other words, first we design a switched observer-based

controller for the system with constant sampling interval

h⋆ and without subsystem coupling and, second, perform

a robust stability analysis including varying sampling-time

effects and subsystem coupling terms using Theorem 2. In

case the a posteriori test fails, a modification is made to the

design problem and solved again.

Alternatively, the robust stability analysis can be split into

two steps. The first step is to include only the coupling

terms and assess stability. Since the resulting is a periodic

switched linear system, stability can be assessed using a

standard eigenvalue test [8]. This will provide the designer

Ãσk
=









Ad − Lσk
Γy
σk
Cd 0 0 0

−BdKσk
Ad −BdKσk

Bd(I − Γu
σk
) 0

Kσk
(Ad − Lσk

Γy
σk
Cd −BdKσk

− I) Kσk
(Ad −BdKσk

− I) (Kσk
Bd + I)(I − Γu

σk
) 0

CdBdKσk
Cd(I −Ad +BdKσk

) −CdBd(I − Γu
σk
) I − Γy

σk









(16a)

Ãσk
=





Ad − Lσk
Γy
σk
Cd 0 0

−BdKσk
Ad −BdKσk

0
CdBdKσk

Cd(I −Ad +BdKσk
) I − Γy

σk



 (16b)
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with a check whether to re-design. Depending on the design

freedom available, a re-design may consist of choosing a

coarser subsystem decomposition or modifying the periodic

protocol. If the coupled system is stable, then we are

guaranteed to have some margin of robustness against time-

varying sampling intervals, i.e. the NCS will be stable for

hk ∈ [h, h̄], k ∈ (N) for some h < h⋆ < h̄. Therefore

the second step is to add the clock skew terms and use the

stability analysis of Section III to determine the values of h

and h̄ that guarantee stability and verify if the range [h, h̄]
is sufficiently large.

Returning to the design, if we ignore clock skew effects

and subsystem coupling terms, the system (9) changes into

x̄k+1 = Ãσk
x̄k (18)

with Ãσk
as in (16a). This simplifies the design problem to

stabilizing a cascade of three smaller systems (recognize the

block triangular structure in Ãσk
in (16a)). We can further

reduce design complexity by assuming that the controller can

access all actuators at every transmission time (Γu
σk

= I).

This assumption yields the system (18) with Ãσk
as in (16b).

In the following, we will first design for the case when

Γu
σk

= I and then briefly provide insight into the design

for general Γu
σk

matrices.

For the special case, Γu
σk

= I (actuators always accessi-

ble), one can modify the model (18) with (16a) by removing

the third column and row (as euk = 0, k ∈ N) and design

for the model (18) with Ãσk
given by (16b). This case is

certainly of practical interest since it is a common industrial

configuration to hardwire actuators directly to a controller

while measurement data is received through (wireless) sensor

networks. The following theorem formalizes the LMI-based

design of a switched observer-based controller under periodic

protocols with Γu
σk

= I for all k.

Theorem 3 Consider the system (18) with Ãσk
as in (16b).

Moreover, consider the protocol to be periodic, such that

σk+Ñ = σk holds for all k ∈ N with Ñ ≥ nT and

{ σk | 1 ≤ k ≤ Ñ } = {1, 2, ..., nT }, i.e. all nodes

are addressed in one period of the protocol. Suppose that,

for each ith subsystem, i = 1, ..., N , the following conditions

are satisfied:

1) There exist matrices Pi,l = P⊤
i,l ≻ 0 ∈ R

ni×ni and

Si,l ∈ R
ni×pi for l = 1, 2, ..., nT , such that for all

ℓ = 1, 2, ..., Ñ
[

Pi,σ(ℓ−1)
Ā⊤

i Pi,σℓ
− C̄⊤

i (Γy
i,σℓ

)⊤S⊤
i,σℓ

⋆ Pi,σℓ

]

≻ 0;

(19)

2) There exist matrices Qi = Q⊤
i ≻ 0 ∈ R

ni×ni and

Zi ∈ R
mi×ni such that

[

Qi QiA
⊤
i − Z⊤

i B̄⊤
i

⋆ Qi

]

≻ 0. (20)

Then the controller gains Kl = K =
diag(Z1Q

−1
1 , ..., ZNQ−1

N ) and observer gains

Ll = diag(L1,l, ..., LN,l) with Li,l = P−1
i,l Si,l will

render the system x̄k+1 = Ãσk
x̄k, with Ãσk

as in (16b)

GAS.

Note that Theorem 3 provided convex LMI conditions

(19), (20) to design switched observer-based controllers for

the special case that all actuators can be updated at each sam-

pling interval. The conditions in Theorem 3 are independent

LMIs to solve for Kl and Ll, l ∈ {1, 2, ..., nT } separately,

such that the independent periodic systems corresponding to

the diagonal blocks of (16b) are stable. In the general case,

i.e. (18) with Ãσk
given by (16a), the convexity of the design

problem is lost. Indeed, Kσk
appears in a quadratic form in

the second diagonal block of (16a). However, considering a

time-dependent quadratic Lyapunov function candidate and

using currently available software, PENBMI [9], it is possible

to solve for Kl directly (using the second diagonal block of

(16a)) as a polynomial matrix inequality [5].

V. EXAMPLE

In this section, we will illustrate the design procedure

by using a numerical example. Let us consider the unstable

continuous-time plant given by (1) with

[

A B

C

]

=













0.6 −4.2 0.1 2.1 0.7 1.9 −0.02
0.1 −2.1 0.01 0 0 1 −0.01
0 0 −3.2 0.2 0 0 0.8
0 −0.03 5.3 −0.2 0 0 −0.4
1 4 0 0.05

0.2 1 0 0
0 0 2 0













, (21)

where the decomposition into two subsystems (N = 2) is

shown using dashed lines and the nominal sampling interval

is chosen as h⋆ = 1 second. The periodic protocol, with

Ñ = 3, is given by σ1 = 1, σ2 = 2, σ3 = 3 and

Γy
1 = Γy

2 = Γy
3 = Γu

l =
[

1 0 0
0 1 0
0 0 0

]

,

[

0 0 0
0 1 0
0 0 1

]

,

[

1 0 0
0 0 0
0 0 0

]

,

[

1 0 0
0 1 0
0 0 1

]

(22)

for all l ∈ {1, 2, 3}. This specific protocol indicates that the

controllers have access to the actuators at each transmission

time, but the sensor data available to the controller is

constrained. Solving the LMI’s (19), the following innovation

(output injection) matrices were found

L1 = L2 = L3 =




6.24 −24.89 0
−0.73 3.46 0

0 0 0
0 0 0



,





0.32 2.65 0
0.16 0.15 0

0 0 0.28
0 0 3.27



,





0.57 0.44 0
0.04 0.02 0

0 0 0
0 0 0



. (23)

Solving the LMIs (20), the following state feedback matrix

were found

Kl = K =

[

1.94 −1.40 0 0
−0.56 −0.86 0 0

0 0 1.36 0.81

]

(24)

for all l ∈ {1, 2, 3}. The matrices shown in (23) and (24)

will stabilize the decoupled version of (21) (the off-diagonal

blocks of Ā, B̄, C̄ equal to zero) under the protocol given

in (22) and for the nominal sampling interval h⋆. Including

the off-diagonal blocks into the closed-loop model shows
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a degradation in performance but preservation of stability.

Finally, using Procedure 1 and Theorem 2 with sampling

intervals h̃l = {0.9, 0.96, 1, 1.04, 1.1} as grid points, it was

determined that this control system can withstand all possible

sampling interval variations in the interval hk ∈ [0.9, 1.1] for

all k.

Fig. 3 illustrates this design procedure by plotting the

closed-loop state evolution for x̄0 = [1, ..., 1]⊤ after each

step of the procedure.

−10

0

10

Decoupled Closed−Loop Response

−100

0

100

Globally Coupled Closed−Loop Response

0 10 20 30 40 50 60 70 80
−100

0

100
Complete Closed−Loop System Response (variance = 0.1)

time (sec)

Fig. 3. Design Example: Closed-loop state evolution to non-zero initial
conditions for the system without coupling and nominal sampling interval
h⋆ = 1 after (top) implementing Theorem 3, (middle) including global
subsystem coupling and (bottom) simulating uniformly distributed random
sampling intervals hk ∈ [0.9, 1.1].

This example shows that the derived theory can be used

to design stabilizing output-based decentralized controllers

in the presence of communication constraints and network

imperfections.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a model for analyzing

decentralized observer-based controllers in the presence

of network-induced communication constraints and time-

varying sampling intervals. We provided LMI-based stability

conditions for verifying stability of the closed-loop NCS.

A procedure was presented to design the decentralized

observer-based controllers which guarantee stability in the

face of communication constraints on the measurement data,

but for constant sampling intervals and a decoupled plant.

In the case all control inputs are transmitted at each sam-

pling instant, LMI-based design conditions were obtained,

otherwise PMI conditions can be solved. Robust stability

of the designed controller was verified a posteriori by first

assessing stability when including coupling in the plant and

then testing for the range of time-varying sampling intervals

that the closed loop can withstand.

The derived results show the overall structure and com-

plexity of observer-based control design over shared net-

works. This confirms earlier observations that indicated the

complexity of decentralized control design (even without

the presence of communication constraints and variations of

sampling intervals and availability of full state information).

Interestingly, by ignoring varying sampling intervals and

global coupling terms, the closed-loop system matrix reveals

a lower block triangular structure that can be exploited

to obtain simpler LMI conditions for controller/observer

synthesis and smaller polynomial matrix inequalities to per-

form the overall design. In the particular (but industrially

relevant) case that all control inputs are communicated at

each sampling interval, the design reduces to an LMI.

The presented results can serve as a platform for future

developments towards more efficient design conditions for

the general case under periodic and other protocols. Another

topic for future work is to extend the design to include

a distributed control structure, where the controllers can

communicate their state information over the network.
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