
An Approach to Performance Prediction for
Parallel Applications

Engin Ipek1, Bronis R. de Supinski2, Martin Schulz2, Sally A. McKee1

1 Computer Systems Lab
School of Electrical and Computer Engineering

Cornell University
{engin sam}@csl.cornell.edu

2 Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{bronis schulzm}@llnl.gov

Abstract. Accurately modeling and predicting performance for large-
scale applications becomes increasingly difficult as system complexity
scales dramatically. Analytic predictive models are useful, but are dif-
ficult to construct, usually limited in scope, and often fail to capture
subtle interactions between architecture and software. In contrast, we
employ multilayer neural networks trained on input data from execu-
tions on the target platform. This approach is useful for predicting many
aspects of performance, and it captures full system complexity. Our mod-
els are developed automatically from the training input set, avoiding the
difficult and potentially error-prone process required to develop analytic
models. This study focuses on the high-performance, parallel applica-
tion SMG2000, a much studied code whose variations in execution times
are still not well understood. Our model predicts performance on two
large-scale parallel platforms within 5%-7% error across a large, multi-
dimensional parameter space.

1 Introduction

With rising architecture and software complexity, it becomes increasingly diffi-
cult to accurately model and predict performance for large-scale applications.
Analytic models often fail to capture subtle interactions between architecture
and software. Furthermore, they usually must be constructed manually in a long
and often error-prone process. In this paper, we address these problems with the
help of machine learning techniques. We gather performance samples from mul-
tiple executions of an application, and use this data to automatically construct
performance models by training multilayer neural networks. Since we take input
data from executions on the target platform, we capture full system complexity,
without having to manually model architectural details. Our approach is useful
for a wide range of application performance prediction problems. Our techniques
are particularly well suited to mining performance databases or to extend fast,
parameter-specific models.

0

10

20

30

40

50

60

70

80

0 100000 200000 300000

E
xe

cu
tio

n
tim

e
[s

]

Working Set Size (Nx*Ny*Nz)

Fig. 1. Execution times for SMG2000 for varying processor workloads (Nx,Ny,Nz) and
processor topologies (Px,Py,Pz) running on 512 nodes on BlueGene/L

Here we focus on SMG2000, a semicoarsening multigrid solver based on the
hypre library [4]. We develop application-specific performance models for par-
allel architectures, enabling prediction of runtime or other important charac-
teristics across a large input parameter space with high dimension. SMG’s six-
dimensional parameter space describes both shape of the workload per processor
and logical processor topology. These parameters have substantial impact on run-
time, as shown in Figure 1. For a fixed working set size—a fixed subvolume size
per CPU—runtime varies by up to 5×. Although SMG has been studied exten-
sively and an analytic model describing communication requirements exists [1],
the code’s variations in execution time are not well understood (partly due to
SMG’s complex, recursive algorithm). The analytic model is restricted to cu-
bic workloads and only describes communication complexity; it is not designed
to represent architectural details. Extending it for arbitrarily shaped workloads
is possible, but would be extremely complex, and the result would likely be
intractable. Worse, adding architectural features is infeasible. Our automatic,
empirical modeling approach overcomes these limitations without knowledge of
the application or algorithms.

We demonstrate how we use neural networks to construct our models, and we
identify the two major challenges of this approach: avoiding noise in the dataset,
and choosing an appropriate sampling technique for the training phase of the
neural network. The latter is necessary to avoid a bias toward short runtimes,
since those exhibit a higher relative error. To correct this skew, we develop new
functions that scale error by the runtime of the training samples. The resulting
model can predict SMG2000’s performance on two large-scale parallel platforms
within 5%-7% error across a large, multi-dimensional parameter space.

2 Approach

We use machine learning models to predict application performance across a
large, multidimensional parameter space defined by program inputs. We first
collect a sample dataset by choosing a collection of points spread regularly across
the parameter space; we obtain performance results for these on actual hardware.
We reserve a portion of this dataset as a test to report the final performance
of our models, and never train on this data. Next, we randomly separate the
remainder of the data into training and validation sets, where the former is used
to adjust model parameters through a learning algorithm, and the latter is used
to assess the performance of the current model at each step during training.
After training, we query the final model to obtain predictions for points in the
full parameter space, and report the accuracy of our model on points not included
in our training or validation sets.

2.1 Neural Networks

Artificial Neural Networks (ANNs) are a class of machine learning models that
map a set of input parameters to a set of target values. Figure 2 shows an exam-
ple neural network architecture. The network is composed of a set of units that
process the value at their inputs and produce a single scalar value. These values
are then multiplied by a set of weights and communicated to other units within
the network. Each edge in Figure 2 represents a weight, and each node represents
a unit. The set of incoming edges at each unit indicates the set of values com-
municated to it. In this specific network architecture, the input parameters are
placed at the first (lowest) layer, and information flows from bottom to top. The
units that produce the final predictions are output units, and those that receive
input parameters are input units (input units simply pass incoming values to
all of their outgoing edges). In addition, one or more layers of hidden units may
be part of the network architecture. Hidden units process the outputs of other
units, and, in turn pass their own outputs to another set of (hidden or output)
units. The representational power of a neural network (the set of functions it
can represent) can be increased by adding hidden units and layers. Every unit
in a given layer receives values from all units in the layer below it, and hence
this type of ANN architecture is called a multilayer fully connected feedforward
neural network. Figure 2 shows a feedforward neural network with three input
units, one output unit, and a single layer of four hidden units.

At each step during training, a new example is presented at the network’s
input layer. At each layer, every unit forms a weighted sum of the incoming values
and associated weights. This sum is then processed by an activation function
that produces the output of that unit. In this study, we use fully connected
feedforward neural networks with the sigmoid function as the activation function.
Figure 3 shows the operation of the sigmoid activation function on the weighted
sum of inputs (depicted immediately right of the summation in Figure 3) to form
the unit’s result output. After a prediction on the current example, the weights
in the network are updated in proportion to their contribution to the error.

Output

Input 3Input 1 Input 2

Fig. 2. A feedforward neural network with a single hidden layer

net = Sum(wi * xi)
0 <= i <= n 1 + e−net

 1 o = ...

x1

x2

x3

x4

x0 = 1

w3
w2
w1

w4

w0

Fig. 3. A network unit with sigmoid threshold activation function (reproduced from
Mitchell [8])

Other types of predictive models may be applied to performance (see Sec-
tion 4). Here we limit our scope to ANNs for three reasons. First, ANNs permit
target values and inputs/outputs to be discrete, continuous, or a mix, allowing
them to perform well in both regression and classification problems and to learn
from various types of attributes describing performance prediction problems.
Second, ANNs need not know the form of the target function in advance. Third,
ANNs tend to work well with possibly noisy data, making them ideal for training
on performance results collected in the presence of system noise.

2.2 Application to Performance Prediction

Figure 4 shows results of an initial performance prediction study consisting of
13.2K data points. A standard, fully connected feedforward neural network with
16 hidden units is trained on 10K points, and predictions are made on the re-
maining 3.2K. Despite training on a large portion of the parameter space, in
most cases model accuracy is low. Average test error is 13.8% with a standard
deviation of 14.8%—excessively high for performance prediction purposes.

Poor accuracy of standard feedforward neural networks on this dataset re-
sults from two factors. First, system activities sharing resources with application
threads create nondeterministic variations in performance, yielding significant
noise in the dataset. Accuracy on future runs can never exceed this noise level.
This imposes a fundamental limit on model accuracy for future datasets. Second,

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500

N
or

m
al

iz
ed

 R
un

tim
es

Experiment Number

Actual and Predicted Runtimes

Predicted Runtime
Actual Runtime

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500

P
er

ce
nt

ag
e

E
rr

or

Training Set Size

Percentage Error Across Parameter Space

Percentage Error

(a) (b)

Fig. 4. Comparison of (a) predicted vs. actual performance and (b) percentage error

the training algorithm that adjusts network weights is unsuitable for reducing
percentage error. By default, the backpropagation training algorithm tries to
reduce absolute mean-squared-error. During training, examples on which the
model makes higher absolute error are given greater weight, even though this
error may be small in relative terms as a percentage of the target value. Given
two test cases t1 and t2, where runtime of t1 is 100 seconds and of t2 is 1 second,
an error of 0.5 seconds is given equal weight for both, even though the percentage
error varies drastically between the two examples (0.5% vs. 50%).

2.3 Required Network Refinements

Applying ANNs to application performance prediction requires both a mech-
anism for reducing noise during data collection and a technique to train the
networks for percentage error. Reducing the noise level dictates that the differ-
ence between performance results from two different runs with the same input
parameters be kept as small as possible. On certain computing platforms where
operating system activity is minimal (e.g, BlueGene/L), this problem is either
nonexistent or negligible. On other platforms, we find that reserving at least one
processor per node for system processing greatly alleviates noise.

Once noise levels are acceptably diminished, a mechanism for training the
neural network to reduce percentage error is needed. We combine a sampling
technique called stratification, and an ensemble learning mechanism called bag-
ging (bootstrap aggregation). Stratification replicates each point in the dataset
by a factor proportional to the inverse of its target value such that, during train-
ing, the network sees points with small target values many more times than it
sees those with large absolute values. As a result, the training algorithm puts
varying amounts of emphasis on different regions of the search space, making
the right tradeoffs when setting weights to minimize percentage error. We apply
bagging to train an ensemble of models from the dataset, averaging predictions
from the ensemble to reduce model variance.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 R
un

tim
e

Experiment Number

Actual and Predicted Runtime (Low Noise / Stratification)

Predicted Runtime
Actual Runtime

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
e

E
rr

or

Experiment Number

Percentage Error Across Test Set

Percentage Error

(a) (b)

Fig. 5. Comparison of (a) predicted and actual performance and (b) percentage error

BlueGene/L Thunder

Processor IBM BlueGene Intel Itanium 2

Frequency 700MHz 1.4GHz

L1 ICache 32KB 32KB

L1 DCache 32KB 32KB

L2 Cache 2KB (Prefetch Buffer) 256KB

L3 Cache 4MB 4MB

SDRAM 512MB 8GB DDR266

3D Torus + Fat Tree
Network Global Combine/Broadcast Tree Network (Quadrics QsNet)

Processors Used/Node 1/2 3/4

Number of Nodes Used 512 64
Table 1. Platform parameters

3 Experiments

We present results of applying our technique to performance prediction of SMG
on the Thunder and BlueGene/L systems at Lawrence Livermore National Labo-
ratory. Architectural features of these systems on which data is taken are detailed
in Table 1. Table 2 shows program parameters. For the BlueGene/L dataset, we
keep 1K random samples for final testing only (we do not train on these points)
and report the accuracy of our model on this data. Similarly, we separate 1.3K
data points for testing in the Thunder dataset.

Figure 6(a) shows a learning curve that indicates how the accuracy of the
neural network changes as the size of the training set is increased for the Blue-
Gene/L dataset. At a training set size of 250 points, the average error on the
test set is nearly 12.3%, and the standard deviation of error across the test set
is 8.7%. At this point, the training set is too small and contains too little in-
formation to build a highly accurate model. As training set size increases, error

Parameter BlueGene/L Thunder

Nx 10-510 in steps of 20 10-250 in steps of 30
Ny 10-510 in steps of 20 10-250 in steps of 30
Nz 10-510 in steps of 20 10-250 in steps of 30
Px 1,8,64,512 1,3,4,12,16,48,64,192
Py 1,8,64,512 1,3,4,12,16,48,64,192
Pz 1,8,64,512 1,3,4,12,16,48,64,192

Px*Py*Pz 512 192
Nx*Ny*Nz 1000>Nx*Ny*Nz>343000 216000>Nx*Ny*Nz>9261000

Table 2. Application parameters

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 E
rr

or
 a

nd
 S

ta
nd

ar
d

D
ev

ia
tio

n
(%

)

Training Set Size

Learning Curves for BG/L

Average Error
Standard Deviation

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 E
rr

or
 a

nd
 S

ta
nd

ar
d

D
ev

ia
tio

n
(%

)

Training Set Size

Learning Curves for Thunder

Average Error
Standard Deviation

(a) (b)

Fig. 6. Learning curves showing how average error and standard deviation improve
with training set size for (a) BlueGene/L and (b) Thunder

decreases sharply, showing that the model benefits significantly from the addi-
tional information included in the dataset at each point. Eventually, the curves
begin to flatten, as any additional data presented to the network contains only
incremental new information. When 2.25K of the 3.25K total points are used
for training, the error rate of the of the network falls to 6.7%. Similarly, the
standard deviation of the error decreases with increasing training set size.

Thunder’s learning curves (Figure 6(b)) follow the same trends. With 500
data points, the error rate on the test set is 12.28%. The error falls sharply as
more data points are added, reaching 5.4% at a training set size of 3K. Fur-
ther increases in training set size result in diminishing improvements, and at a
training set size of 5K points, the network achieves 4.9% error. Similarly, the
standard deviation ranges from 8.4%-4.4% between 500-5K points.

The results indicate that the accuracy of our approach can be quite high given
enough training points. The size of the parameter space is much, much larger
than the total number of points we have collected. We sparsely step through
the SMG2000 parameters to obtain our dataset. Therefore, our approach is eas-
ily applicable to learning from performance databases that contain results for a

sparse sampling of parameters. In addition,the amount of time required to train
a model ranges between 1-15 minutes on a typical workstation with a 3.0GHz
Pentium 4 processor and 1GB of main memory, making it easy to build parame-
terized performance models much more efficiently than most analytical models.

4 Related Work

Other approaches to performance prediction include analytic models. Space pre-
vents our providing a full treatment of related work, but Karkhanis and Smith [5]
give an excellent review of prior work in architectural performance prediction.

Marin and Mellor-Crummey [7] semi-automatically measure and model pro-
gram characteristics, predicting application behavior based on properties of the
architecture, properties of the binary, and application inputs. Their toolkit pro-
vides a set of predefined functions, and the user may add customized functions
to this library if the set of existing functions is too restrictive. In contrast to
our work, they vary the input size in only one dimension, and they cannot ac-
count for some important architectural parameters, such as cache associativity
in their memory reuse modeling. Our six-dimensional space would make use of
their approach much more difficult, significantly increasing the number of re-
quired samples as well as the search space for the best analytic function (as a
weighted sum of given base functions along each parameter dimension).

Carrington et al. [2] develop a framework for predicting performance of sci-
entific applications, demonstrating its effectiveness on LINPACK and an ocean
modeling application. The approach is built on a convolution method that repre-
sents a computational mapping of an application signature onto a machine pro-
file. Simple benchmark probes create the machine profiles, and a separate tool
generates the application signatures. Extending the convolution method allows
them to go from modeling kernels to whole benchmarks to full-scale HPC appli-
cations [3]. This automated approach relies on the generation of several traces,
delivering predictions with accuracies of between 4.6 and 8.4%, depending on the
sampling rates of those traces. Using full traces obviously gives the best perfor-
mance, but such trace generation can slow application execution by almost three
orders of magnitude. Some applications demonstrate better predictability than
others, and for these trace reduction techniques work well: prediction accuracies
range from 0.1 to 8.7% on different platforms. This work is complementary to
our own, and the two approaches may work well in combination. The analytic
models could provide the bootstrap data, and our models could give them full
application input parameter generality.

Kerbyson et al. [6] present a highly accurate, predictive analytical model
that encompasses the performance and scaling characteristics of SAGE, a mul-
tidimensional hydrodynamics code with adaptive mesh refinement. As with the
model presented here, inputs to their parametric model come from machine per-
formance information, such as latency and bandwidth, along with application
characteristics, such as problem size and decomposition. They validate the pre-
diction accuracy of the model against measurements on two large-scale ASCI

systems. In addition to predicting performance, their model can yield insight
into performance bottlenecks. Their application-centric modeling approach re-
quires static analysis of the code: a detailed model must be developed for each
application of interest.

Karkhanis and Smith [5] construct a first-order model of superscalar mi-
croprocessors. Their approach is intuitive, provides insight, and is reasonably
accurate, finding that their performance estimates are between five and 13% ac-
curate with respect to detailed simulations of the applications they study. The
model’s analytic core incorporates cache and branch predictor statistics gath-
ered from functional-level trace driven simulation. They target uniprocessors,
and while intuitive, the approach is largely ad hoc and currently limited in the
architectural features it models. Their model is more appropriate for studying
proposed architectures, whereas we predict performance on existing platforms.

5 Conclusions and Future Work

We have presented a machine learning approach to application performance
prediction—multilayer neural networks—and have refined and adapted this ap-
proach to yield highly accurate results for SMG2000 on two different high-
performance platforms. Our approach is especially attractive for its ease of use
and its obliviousness to details of application internals. This makes it ideal for
mining performance databases to make performance predictions. While promis-
ing, this approach still presents some challenges in making it generally useful
in the absence of an existing database. The time required to gather each data
point in the training set is larger than we would like, for instance. Reducing the
number of points required in our training datasets is one promising direction of
current research.

6 Acknowledgments

Part of this work was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore National Labora-
tory under contract No. W-7405-Eng-48 (LLNL Document Number UCRL-
CONF-212365) and by by the National Science Foundation under award ST-
HEC 0444413. Any opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation, the Lawrence Livermore National
Laboratory, or the Department of Energy. The authors thank Rich Caruana and
the anonymous referees for their valuable feedback on this work.

References

1. P. Brown, R.D. Falgout, and J.E. Jones. Semicoarsening multigrid on distributed
memory machines. SIAM J. Sci. Computing, 21:1823–1834, 2000.

2. L. Carrington, A. Snavely, X.Gao, and N. Wolter. A performance prediction frame-
work for scientific applications. In International Conference on Computational Sci-
ence Workshop on Performance Modeling and Analysis (PMA03), pages 926–935,
June 2003.

3. L. Carrington, N. Wolter, A. Snavely, and C.B. Lee. Applying an automatic frame-
work to produce accurate blind performance predictions of full-scale hpc applica-
tions. In Department of Defense Users Group Conference, June 2004.

4. R.D. Falgout and U.M. Yang. hypre: a Library of High Performance Preconditioners.
In Proceedings of the International Conference on Computational Science (ICCS),
Part III, LNCS vol. 2331, pages 632–641, April 2002.

5. T.S. Karkhanis and J.E. Smith. A first-order superscalar processor model. In
Proceedings of the 31st Annual International Symposium on Computer Architecture,
pages 338–349, June 2004.

6. D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, A.J. Wasserman, and M. Gittings.
Predictive performance and scalability modeling of a large-scale application. In
Proceedings of IEEE/ACM Supercomputing ’01, November 2001.

7. G. Marin and J. Mellor-Crummey. Cross-architecture performance predictions for
scientific applications using parameterized models. In Proceedings of the Interna-
tional Conference on Measurement and Modeling of Computer Systems (Sigmetrics
’04), pages 2–13, June 2004.

8. T.M. Mitchell. Machine Learning. WCB/McGraw Hill, Boston, MA, 1997.

