
An Approach to Persistent Programming

M. P. Atkinsonf, P. J. Bailey*, K. J. Chisholmf, P. W. Cockshottf and R. Morrison*
tDepartment of Computer Science, University of Edinburgh, Mayfield Rd., Edinburgh EH9 3 JZ, UK
•Department of Computational Science, University of St. Andrews, North Haugh, St. Andrews KYI 6 8SX, UK

This paper presents the identification of a new programming language concept and reports our initial investigations of
its utility. The concept is to identify persistence as an orthogonal property of data, independent of data type and the
way in which data is manipulated. This is expressed by the principle that all data objects, independent of their data
type, should have the same rights to persistence or transience. We expect to achieve persistent independent
programming, so that the same code is applicable to data of any persistence. We have designed a language PS-algol
by using these ideas and constructed a number of implementations. The experience gained is reported here, as a step in
the task of achieving languages with proper accommodation for persistent programming.

INTRODUCTION

The long term storage of data has been of concern to
programming language designers for some time. Tradi-
tional programming languages provide facilities for the
manipulation of data whose lifetime does not extend
beyond the activation of the program. If data is required
to survive a program activation then some file I/O or
database management system interface is used. Two
views of data evolve from this. Data can either be classed
as short term data and would be manipulated by the
programming language facilities or data would be long
term data in which case it would be manipulated by the
file system or the database management system (DBMS).
The mapping between the two types of data is usually
done in part by the file system or the DBMS and in part
by explicit user translation code which has to be written
and included in each program.

These different views of data are highlighted when the
data structuring facilities of programming languages and
database management systems are compared. Database
systems have developed relational, hierarchical, network
and functional data models1"5 whereas programming
languages may have arrays, records, sets, monitors6 and
abstract data types.7

That there are two different views of data has certain
disadvantages. Firstly in any program there is usually a
considerable amount of code, typically 30% of the total,8

concerned with transferring data to and from files or a
DBMS. Much space and time is taken up by code to
perform translations between the program's form of data
and the form used for the long term storage medium.
This is unsatisfactory because of the time taken in writing
and executing this mapping code and also because the
quality of the application programs may be impaired by
the mapping. Frequently the programmer is distracted
from his task by the difficulties of understanding and
managing the mapping. The translation merely to gain
access to long term data should be differentiated from
translations from a form appropriate to one use of the
data to a form suitable for some other algorithms. Such
translations are justified when the two forms cannot
coexist and there is a substantial use of both forms. The
second major disadvantage is that the data type protection
offered by the programming language on its data is often

lost across the mapping. The structure that might have
been exploited in a program to aid comprehension is
neither apparent nor protected, and is soon lost.

We seek to eliminate the differences between the
DBMS and programming language models of data. This
can be done by separating the issue of what data
structures are best from the issue of identifying and
managing a property of data we call persistence. This is
the period of time for which the data exists and is useable.
A spectrum of persistence exists and is categorized by

1. transient results in expression evaluation
2. local variables in procedure activations
3. own variables, global variables and heap items whose

extent is different from their scope
4. data that exists between executions of a program
5. data that exists between various versions of a program
6. data that outlives the program.

The first three persistence categories are usually
supported by programming languages and the second
three categories by the DBMS, whereas filing systems are
predominantly used for categories 4 and 5. We report
here on the PS-algol system which is a step in the search
for language and database constructs which meet the
needs of persistent data and hence obviate the need for
the programmer to cope with the problems described
above. PS-algol uniformly supports programming for an
increased range of persistence. The system is imple-
mented and is being actively used in a number of projects.
Here we will describe the language design decisions in
implementing persistence, the underlying implementa-
tion problems, the results obtained and some thoughts
for the future.

THE LANGUAGE DESIGN METHOD

As a first attempt at producing a system to support
persistence we hypothesized that it should be possible to
add persistence to an existing language with minimal
change to the language. Thus the programmer would be
faced with the normal task of mastering the programming
language but would have the facility of persistence for
little or no extra effort.

CCC-0010-4620/83/0026-0360 $03.00

3 6 0 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 © Wiley Heyden Ltd, 1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/360/377438 by guest on 21 August 2022

AN APPROACH TO PERSISTENT PROGRAMMING

The language chosen for this was S-algol,9'10 a high
level Algol used for teaching at the University of St
Andrews. This decision was made by the University of
Edinburgh team after some trouble with attempts at
Algol 68n and Pascal,12 and resulted in the two teams
collaborating on the project.

S-algol stands somewhere between Algol W13 and
Algol 68. It was designed using three principles first
outlined by Strachey14 and Landin.'5 These are

1. The principle of correspondence.
2. The principle of abstraction.
3. The principle of data type completeness.

The application of the three principles in designing S-
algol is described elsewhere.'6 The result is an orthogonal
language whose 'power is gained from simplicity and its
simplicity from generality'.17 Here we are interested in
data and the S-algol universe of discourse can be defined
by

1. The scalar data types are integer, real, boolean, string,
picture and file.

2. For any data type T, *Tis the data type of a vector
with elements of type T.

3. The data type pointer comprises a structure with any
number of fields, and any data type in each field.

The world of data objects can be formed by the closure
of rule 1 under the recursive application of rules 2 and 3.

The unusual features of the S-algol universe of discourse
are that it has strings as a simple data type,18 pictures as
compound data objects19 and run time checking of
structure classes. The picture facility allows the user to
produce line drawings in an infinite two dimensional
space. It also offers a picture building facility in which
the relationship between different subpictures is specified
by mathematical transformations. A basic set of picture
manipulating facilities along with a set of physical
drawing attributes for each device is defined. A pointer
may roam freely over the world of structures. That is a
pointer is not bound to a structure class. However, when
a pointer is dereferenced using a structure field name, a
run time check occurs to ensure that the pointer is
pointing at a structure with the appropriate field.

Together with our hypothesis of minimal change to the
programming language we recognize certain principles
for persistent data.

1. Persistence independence: the persistence of a data
object is independent of how the program manipulates
that data object and conversely a fragment of program
is expressed independently of the persistence of data
it manipulates. For example, it should be possible to
call a procedure with its parameters sometimes objects
with long term persistence and at other times only
transient.

2. Persistence data type orthogonality: in line with the
principle of data type completeness all data objects
should be allowed the full range of persistence.

3. The choice of how to provide and identify persistence
at a language level is independent of the choice of
data objects in the language.

A number of methods were investigated to identify
persistence of data. Some involved associating persist-
ence with the variable name or the type in the declaration.
Under the rule of persistence independence these were

disallowed. S-algol itself helped to provide the solution.
Its data structures already have some limited notion of
persistence in that the scope and extent of these objects
need not be the same. Such structures are of course heap
items and their usability depends on the availability of
legal names.

This limited persistence was extended to allow struc-
tures to persist beyond the activation of the program.
Their use is protected by the fact that the structure
accesses are already dynamically checked in S-algol.
Thus we have achieved persistence and retained the
protection mechanism. Of course, in implementing this
we had to devise a method of storing and retrieving
persistent data as well as a description of its type and a
method of checking type equivalence when data is reused
in different programs. This was not a trivial task.

The choice of which data items persist beyond the
lifetime of a program was next. We argued, by preaching
minimum change, that the system should decide auto-
matically. Such decisions are already taken in a number
of languages like S-algol when garbage collection is
involved and we therefore felt that reachability, as in
garbage collection, was a reasonable choice for identify-
ing persistent objects. However a new origin for the
transitive closure of references, under explicit user
control, which differentiates persistent data and transient
data is introduced. Thus when a transaction is committed
we can identify a root object from which we can find all
the persistent data in the program. This data we preserve
for later use.

PS-ALGOL

Given the constraint of minimal change to S-algol the
simplest way to extend the facilities of the language is by
adding standard functions and PS-algol is implemented
as a number of functional extensions to S-algol. In this
way the language itself does not change to accommodate
persistence. Thus, the population of S-algol programmers
could now use PS-algol with very little change to their
programming style. In fact an S-algol program will run
correctly with little diminution of speed in the PS-algol
run time environment.

The functions added to support persistence are:

procedure open • database(string database • name,
password, mode -* pntr)

This procedure attempts to open the database specified
by database • name (which in general is a path down a
tree of directories, terminating in the database's name)
in the mode (read or write) specified by mode, quoting
password to establish this right. If the open fails the result
is a pointer to an error record. If it succeeds the result is
a pointer to a table (see below) which contains a set of
name-value pairs and is the root from which preserved
data is identified by transitive closure of reachability. A
table is chosen so as to permit programs which use one
route to the data to be independent of programs using
other routes. Many databases may be open for reading,
but only one may be open for writing so that the
destination for new persistent data may be deduced. If
this is the first successful open • database then a transaction
is started.

THE COMPUTER JOURNAL, VOL. 26, NO. 4, 1983 3 6 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/360/377438 by guest on 21 August 2022

M. P. ATKINSON, P. J. BAILEY, K. J. CHISHOLM, P. W. COCKSHOTT AND R. MORRISON

procedure commit
This procedure commits the changes made so far to

the databases open for writing. The program may
continue to make further changes. Only changes made
before the last commit will be recorded, so that not
performing a commit is equivalent to aborting the
transaction.

procedure close • database(striag database • name)
This procedure closes the specified database making it

available for other users who wish to write to it (multiple
readers are allowed). It takes effect immediately. An
implicit close database is applied to every database open
at the end of the program. When a database has been
closed references to objects not yet imported may remain
accessible as may any imported data. An error is detected
if the programmer tries to access any data that has not
been imported from the closed database. A program may
reopen a database it has closed but to avoid inconsistency
between data that was held in the program and the
database, it may only do so if there has not been an
intervening write to that database.

These three procedures are those concerned with
managing persistence, but there are also a set of
procedures to manipulate tables, a mechanism for
associative lookup, implemented as B-trees20 or equiva-
lent algorithms. A table is an ordered set of pairs. Each
pair consists of a key and a value. At present the key may
be an integer or string value, and the value is a pointer to
a structure instance or table. The basic library for tables
is:

procedure tabled pntr)
This procedure creates an empty table represented by

an instance of the structure class Table.

procedures • lookup(str\ng key; pntr table -* pntr)
procedure / • lookup(int key; pntr table -» pntr)

These procedures take a given key and considering
only the pairs within the table return the last value stored
by a call of s • enter or / • enter for this key, or nil if there is
no such pair.

procedure s • enter(string key; pntr table, value)
procedure i • enter(int key; pntr table, value)

These procedures store in the given table a pair or if
the supplied value is nil delete the previously stored value
for the given key.

procedure s • scan(pntr table, environment;
(string, pntr, pntr -»• bool) user -* int)

procedure i • scan (pntr table, environment;
(int, pntr, pntr -> bool) user -> int)

These procedures provide iteration over tables. The
function user is applied to every pair with a key of the
appropriate type, in ascending order of integers or lexical
order of strings, until either it yields false or the whole
table has been scanned. The first parameter supplied to
the function user is the key, the second is the correspond-
ing value and the third parameter the value given as
environment. The result of these scan procedures is the
number of times user is applied. An example of their use
is given in Fig. 3.

procedure cardinality(pntr table -»• int)
This procedure returns the current number of entries

in the given table.

The table facilities were envisaged as a way of
packaging index constructions. For example singly and
multiple indexed relations can readily be constructed
using them. They have also proved very popular as a
dynamic data structure constructor. We present as an
example of their use three PS-algol programs to maintain
a simple address list. The program in Fig. 1 adds an new
person, that in Fig. 2 looks up the telephone number of a
person and that in Fig. 3 finds the longest telephone
number.

structure person(string name, phone. no; pntr addr, other)
structure address(int no; string street, town; pntr next. addr)
letdb = open.database^''Address.list", "Morwenna", "write")
if db is error. record then write "Can't open database" else
begin

write ''Name:" ; let this.name = read.a.line
write "Phonenumber:" ; let this.phone — read.a.line
write "Housenumber." ; let this.house = readi
write "Street." ; let this.street = read.a.line
write'Town." ; \etthis.town = read.a.line
let p = person(this. name, this .phone, address (this. house, this. street,

this, town, nil), nil)
let addr. list = .5. lookup("addr. list. by. name", db)
s. enlet(this. name, addr. list, p)
commit

end

Figure 1. A program to add one new person to a database
containing an address list.

structure per jon(string name, phone. no; pntr addr, other)
\etdb = open.database^"Address.list", "Kernow", "read")
if db is error. record do{write "Can't open database"; abort}
let addr. list = i . lookup (' 'addr. list. by. name", db)
write "Name:" ; let this. name = read. a. line
let this .person = s. lookupithis. name, addr. list)
if this .person = nil then write "Person not known" else

write "Phone number is:", this.person(phone.no)

Figure 2. A program to look up the telephone number of one person
from the address list.

structure person(string name, phone. no; pntr addr, other)
\etdb = open.database^"Address.list", "Kernow", "read")
if db is error, record do{ write "Can't open database"; abort}
let addr. list = s. lookup(' 'addr. list. by. name", db)
structure eni;(int max; string longest)
\etel = env(0, "")
procedure phone(string name; pntr val, el—> bool)
begin

let number = val(phone. no)
let len = length(number)
if len > el(max) Ao{el(max): = len; el(Iongest) : = number}
true

end
let count = .s. scan(addr. list, el, phone)
if count = 0 then write "Nobody in the list yet" else
write "Longest telephone number is: ", el(longest)

Figure 3. A program to find the longest telephone number in the
address list. -

Note that in these examples the declared data structures
are different. This identifies which parts of the data each
program may touch, and so behaves like a simple
database view mechanism. Only those quoted will be
matched against the stored set of data descriptions when
they are first used. Paths to other data, e.g. alternative
addresses via next • addr and extra information about

3 6 2 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/360/377438 by guest on 21 August 2022

AN APPROACH TO PERSISTENT PROGRAMMING

people via other have not been used. They are there to
give access to data pertinent to other programs or to
future needs and they do not clutter programs which do
not use them. Similarly the standard table is used to name
access paths and only those used need be considered in a
particular program. Figure 4 shows a program to
introduce a new access path to the address list. With
these disciplines, which we find useful, data design and
programs can grow together. These examples illustrate
the ease with which small programs operating on
persistent data may be composed to provide a complete
system. In this example one would imagine other
programs: to start an address list, to delete it, to remove
entries, amend addresses, print lists etc. We believe this
method of constructing software tools to be an attractive
way of building such systems.

As well as showing these features of persistence the
programs illustrate features of the parent language S-
algol. For example, the type of a name is deduced from
the initializing expression, this leads to conciseness. The
freedom to place declarations where they are needed
means that constant names are common and programs
may be read without searching far for declarations.

during the transaction are transferred back to the disk.
Some anticipation of these transfers may be necessary if
the heap space is insufficient for the whole transaction.

The algorithms and data structures used to implement
this data movement are described elsewhere.22'23 Since
the database may be shared by many programs, the
binding of the names of persistent data must be dynamic
and symbolic. In PS-algol this binding is performed
automatically when the object is accessed for the first
time. There is no overhead in accessing local objects.

Type checking is also performed by the system.
Remember that a pointer may roam over the domain of
structure classes. Thus, when a pointer is dereferenced to
yield a value the system must check that the pointer
points to a structure with the correct field name. The field
name and the structure incarnation must carry around
type information to enable this checking to be performed.

To extend this type checking to persistent structures it
is sufficient to ensure that the type information migrates
with the structure itself. This is accomplished by making
the type information an implicit field of the structure
thus guaranteeing that the type information will persist.

structure person(string name, phone. no; pntr addr, other)
letdb = open.database^''Address.list", "Morwenna", "write")
if db is error. record do{write "Can't open database"; abort}
let addr.list = s. lookup("addr.list.by.name", db)
let phone. number. table = table ! create anew empty table
procedure put.it. in .phone, number. table(string name; pntr val, env—> bool)

{s. enter (val(phone • no), phone. number. table, val); true}
let count = s. scan(addr. list, nil, put. it. in .phone. number. table)
s. enter(' 'addr. list. by .phone. number", db, phone. number. table)

Figure 4. A program to construct a new index onto the address list,
by phone number.

THE PERSISTENT OBJECT MANAGEMENT
SYSTEM

The persistent object management system is concerned
with the movement of data between main store and
backing store. This is controlled by the run time support
system where transactions are implemented by Challis'
algorithm.21 The movement of data is achieved as
follows.

(a) Movement of data on to the heap

Data may be created on the heap during a transaction or
it may migrate there as a copy of some persistent data
object. The second mechanism is invoked when a pointer
being dereferenced is a persistent identifier (PID). The
presistent object manager is called to locate the object
and place it on the heap, possibly carrying out minor
translations. The initial pointer which is a PID is that
yielded by open • database and subsequent pointers will
be found in the fields of structures reached from that
reference.

(b) Movement from the heap

When a transaction is committed, all the data on the
heap that is reachable from the persistent objects used

DESIGN ISSUES IN PERSISTENT OBJECT
MANAGEMENT

There are a number of tradeoffs to consider when
designing the persistent object manager used to imple-
ment the data migration. Some of these are illustrated
here. We may choose between making all references
suitable as disc references (as in Smalltalk24), translating
every time or we may (and usually do) economize by
storing a mapping and translating less often. Then a
choice exists as to when to build up the map. Do we make
an entry when a reference is first introduced or when it is
first dereferenced? Similarly do we make all references
go via this map? There are problems of how to store the
map so that it grows on demand rather than causing a
high initial overhead. We require access to the map to be
fast in both directions. These decisions interact with
store management. We wish to avoid putting data on
disc if we can determine it is not reachable. We may use
these transfer mechanisms to avoid space exhaustion
after garbage collection. When virtual memory25 is
available it interacts with these algorithms and may be
exploited if the operating system permits. On the other
hand we would like a run time system which is portable.

The design of the address structure for the persistent
data allows interaction between addressability and the
cost of disc garbage collection. This influences attempts
to make the address structure extensible, to make it space
efficient and to make it address sufficient data. Placement
strategies, data compression techniques and variations
on the method of implementing transactions again
interact and have significant effect on performance. The
choice of a particular implementation is therefore a
choice of a particular point in an extensive and many
dimensional space. Our present choice described below
is empirical and pragmatic rather than being based on
systematic evaluation of this space or the optimization of
some abstract model.

Thus venturing into this approach to providing
presistence has provoked many research issues concern-

THE COMPUTER JOURNAL, VOL. 26, NO. 4, 1983 363

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/360/377438 by guest on 21 August 2022

M. P. ATKINSON, P. J. BAILEY, K. J. CHISHOLM, P. W. COCKSHOTT AND R. MORRISON

ing implementation which we have only just begun to
explore and which will be the topics of other papers, the
first of which is in preparation.26

AN IMPLEMENTATION OF PERSISTENCE

Our earliest implementation of persistence used a linear
table of PIDS and local addresses, with entries for every
pointer in imported objects (objects that had been
brought in from the database). Hashing was used to
accelerate lookups of a PID (needed when a object is
being imported to translate pointers to objects already
imported). In the next implementation the position in
this table was referred to as the local object number
LON, and all references in all objects were represented
by their LON. This cost an indirection in every reference
(using an addressing mode on the VAX 11) but meant
that the local address to PID translation, needed on
transferring data to the database (export) was merely
indexing the table. Hash coding accelerated PID to LON
translation and Bloom filters27 were used to reduce the
cost of discovering that a PID had not yet been
encountered. The main disadvantage of this was that an
entry in the PIDLAM was needed for every active object,
so this table grew large. That implementation achieved
good performance by using the virtual memory mecha-
nisms of VAX, implementing Challis' algorithm as page
tables stored at the start of the file and arranging that
altered pages were paged to a new site.

Our present implementation, POMS (persistent object
management system), is designed to overcome many of
the deficiencies of the earlier systems, it is described in
detail elsewhere.28 Briefly, the design depends on
adaptive structures for all the addressing mechanisms, to
avoid the problems of a high fixed overhead, or a small
limit to the maximum volume of data that can be
accommodated. The PIDLAM is now two hashing
structures which grow as necessary, one from PIDs to
local addresses, the other from local addresses to PIDs,
for only the pointers which have been both imported and
dereferenced. Translation is done when a reference is
first used to minimize the size of these tables.

To avoid a large number of transfers on startup,
the logical to physical disc address mapping is itself
mapped, using its own mapping and a bootstrap. So this
map may grow as the database grows and is loaded
incrementally. To avoid dependence on particular oper-
ating system features and the problem found when
implementing transactions that file operations and
database operations can get out of step, we include our
own directory mechanism for databases. Depending on
this strategy and writing most of the code for POMS in
PS-algol itself, we believe we have achieved reasonable
portability.

The objects are clustered by type in the database pages,
so that the type description information may be factored
out. The order of transfers during import is not under
POMs control since it depends on the order in which the
program accesses structures. During the routines for
commit, when data is exported, the total set of data
which cannot become reachable from the root is identified
from local information and discarded. The imported

objects that have been changed and the newly created
objects reachable from them, then have to be exported.
This list of exports is sorted to minimize transfers and
head movement, before write-back. The combination of
these tactics, which we continue to refine, gives reasona-
ble performance. Better performance may be achievable
by exploiting segmentation hardware within the operat-
ing system.

EXPERIENCE USING PS-ALGOL

At first sight the set of facilities provided by PS-algol
may look fairly primitive. Notice however that the
programmer never explicitly organizes data movement
but that it occurs automatically when data is used. Notice
also that the language type rules are strictly enforced and
that the programmer uses a method already familiar to
him to preserve data. That is by the usual naming
convention where the preservation of data is a conse-
quence of arranging that there is a way of using the data.
Thus we have achieved persistence by minimal change
allowing the programmer to use all his familiar techniques
of problem solving.

The effect on programs written in PS-algol has been
quite dramatic. We have some early results of tests
comparing programs written in PS-algol with programs
written in Pascal with explicit database calls. These
programs implemented a DAPLEX5 look-alike, a rela-
tional algebra and various CAD and demonstration
programs. We have found that there is a reduction by a
factor of about three in the length of the source code.
These are of course early results and will need further
confirmation. However it is the sort of result we expected.

We have also found that the coding time for these
programs is reduced by at least the same factor. We
suspect that the maintenance of the programs will be
easier. We avoid the layering costs associated with calls
to successive levels of a DBMS as data is brought into
the normal program from the heap. Consequently we
have observed a reduction in CPU requirements for
equivalent programs even though we are still interpreting.
Whether there is an overall increase in speed depends on
the data structures and the algorithms over them and we
hope to investigate performance further.

EVALUATION OF PERSISTENCE AS AN
ABSTRACTION

The abstraction of persistence has been so successful that
we would recommend that other language designers
consider it for the languages they design. It identifies
significant aspects of common programming tasks,
consequently reducing the effort required by the program-
mer to accomplish those tasks. It abstracts away much
detail commonly visible to the programmer so that
programs produced using it are simpler to understand
and to transport. It is feasible to implement.

Persistence has also appeared as an orthogonal

3 6 4 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/360/377438 by guest on 21 August 2022

AN APPROACH TO PERSISTENT PROGRAMMING

property of data in the work of Albano et al.29 In an
attempt to accommodate longer term persistence they
make contexts proper objects which can be manipulated,
as we suggest for an identified subset of contexts in our
language proposals NEPAL.30 In another group of
languages PASCAL/R,31 RIGEL32 and PLAIN33 the
designers have chosen not to adopt the principle of data
type completeness, and have only allowed instances of
type relation to have longer term persistence. It is
interesting to note that in PASCAL/R the construct
DATABASE has a form like a PASCAL record, and if
its fields were allowed to take any of the PASCAL data
types then that language would be consistent in allowing
data structures of any type to have any persistence.
ADAPLEX34 is constructed by merging a given database
model, DAPLEX5 and an existing language ADA,35

with the inevitable consequence of restrictions on which
data types can have which persistence. When casting
program examples to assess languages36 we have found
it particularly irksome if data types which can persist
cannot also have temporary instances. We conclude,
therefore, that the consistency of our form of persistence
is of advantage to the programmer.

CONCLUSIONS

The abstraction achieved by treating persistence as an
orthogonal property of data has been shown to have
many interesting properties. It is clear that it favourably
affects program length, program development time and
program maintainability. Demonstration implementa-
tions of a particular flavour of this idea have shown it to
be practicable for reasonable amounts of data. This
particular flavour does not have concurrency other than
at database level. This may be a limitation which
prevents its application to simple transactions on large
database systems, but this leaves the very substantial
number of programs which run against conventional files
which implement complex interactions as in CAD, or
use personal databases as uses of this language.

Acknowledgements
The work at Edinburgh was supported in part by U.K. SERC grant
GRA 86541. It is now supported at Edinburgh by U.K. SERC grants
GRC 21977 and GRC 21960 and at St Andrews by U.K. SERC grant
GRC 15907. The work is also supported at both Universities by grants
from ICL.

REFERENCES

1. F. H. Lochovsky and D. C. Tsichritizis, Data Models. Prentice
Hall, London (1982).

2. E. F. Codd, A relational model for large shared databases. Comm.
ACM1Z (6), 377-387 (1970).

3. F. H. Lochovsky and D. C. Tsichritizis, Hierarchical database
management systems. ACM Computing Surveys 8 (1) , 105-
123(1978).

4. R. C. Taylor and R. L. Frank, CODASYL database management
systems. ACM Computing Surveys8 (1), 67-103 (1976).

5. D. W. Shipman, The functional data model and the data
language DAPLEX. ACM TODS6 (1), 140-173 (1981).

6. C. A. R. Hoare, Monitors: an operating system structuring
concept. Comm. ACM 17 (10), 549-557 (1974).

7. B. H. Liskov et al. Abstraction mechanisms in CLU. Comm.
ACM20 (8), 564-576 (1977).

8. IBM report on the contents of a sample of programs surveyed.
San Jose, California (1978).

9. R. Morrison, S-algol Language Reference Manual. University
of St Andrews CS/79/1 (1979).

10. A. J. Cole and R. Morrison, An Introduction to Programming
with S-algol. Cambridge University Press (1982).

11. A. van Wijngaarden et al. Report on the algorithmic language
Algol 68. Numerische Mathematik 14, 79-218(1969).

12. N. Wirth, The programming language Pascal. Acta Informatica
1,35-63(1971).

13. N. Wirth and C. A. R. Hoare, A contribution to the development
of algol. Comm. ACM 9 (6), 413-431 (1966).

14. C. Strachey, Fundamental Concepts in Programming Lan-
guages. Oxford University Press (1967).

15. P. J. Landin, The next 700 programming languages. Comm.
ACM9 (3), 157-164 (1966).

16. R. Morrison, Towards simpler programming languages: S-algol.
IUCC Bulletin 4 (3), (October 1982).

17. A. van Wijngaarden, Generalised algol. Annual Review of
automatic programming Z, 17-26 (1963).

18. R. Morrison, The string as a simple data type. ACM Sigplan
Notices 17 (3) (1982).

19. R. Morrison, Low cost computer graphics for micro computers.
Software—Practice and Experience 12, 767-776 (1982).

20. B. Bayer and A. McCreight, Organisation and maintenance of
large ordered indexes. Acta Informatica "\, 173-189 (1972).

21. M. P. Challis, Data Consistency and integrity in a multi-user
environment. In Databases: Improving Usability and Respon-
siveness. Academic Press, 245-270 (1978).

22. M. P. Atkinson, K. J. Chisholm and W. P. Cockshott, CMS—A
chunk management system. Software—Practice and Experi-
ence 13, 273-285 (1983).

23. M. P. Atkinson, K. J. Chisholm, W. P. Cockshott and R. M.
Marshall, Algorithms for a persistent heap. Software—Practice
and Experience 13,259-271 (1983).

24. T. Kaehler, Virtual memory for an object-orientated language.
Byte. 378-387 (1982).

25. I. L. Traiger, Virtual memory management for database systems.
ACMSogops 16 (4), 26-48 (1982).

26. M. P. Atkinson, K. J. Chisholm and W. P. Cockshott, An
exploration of various strategies for implementing persistence
as an orthogonal property of data. In preparation.

27. B.H. Bloom, Space/time tradeoffs in hash coding with allowable
errors. Comm. ACM 13 (7), 422-426 (1970).

28. M. P. Atkinson, P. J. Bailey, K. J . Chisholm, W. P. Cockshott
and R. Morrison, The persistent object management system. To
be published in Software—Practice and Experience (1983).

29. A. Albano, L. Cardelli and R. Orsini, Galileo: a strongly typed
interactive conceptual language, to be published.

30. M. P. Atkinson, K. J. Chisholm and W. P. Cockshott, NEPAL—
The New Edinburgh Persistent Algorithmic Language. DATA-
BASE Infotech State of the Art Report 9 (8), 299-318
(1982).

31. J. W. Schmidt, Some high level language constructs for data of
type relation. ACM TODS 2 (3), 247-261 (1981).

32. L. A. Rowe, Reference manual for the programming language
RIGEL. Department of Computer Science, University of Califor-
nia, Berkeley.

33. A. I. Wasserman, D. D. Sheretz, M. L. Kersten and R. D. van de
Reit, Revised report on the programming language PLAIN.
ACM Sigplan Notices 16 (5), (1981).

34. J. M. Smith, S. Fox and T. Landers, Reference Manual for
ADAPLEX. Computer Corporation of America, Cambridge,
Massachusetts (1981).

35. Ichbiah et al. Rationale of the design of the programming
language Ada. ACM Sigplan Notices 14 (6), (1979).

36. M. P. Atkinson and P. Buneman, Survey paper on persistent
languages. In preparation.

Received March 1983

THE COMPUTER JOURNAL, VOL. 26, NO. 4, 1983 365

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/360/377438 by guest on 21 August 2022

