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Abstract

The problem of sensitivity analysis for the sequential probability ratio test under func-
tional distortions of the observation probability distribution is considered. For the situa-
tion where distorted densities of the log likelihood ratio statistic belong to ε-neighborhoods
of hypothetical centers in the L1-metric the least favorable distributions that maximize the
conditional error probabilities are constructed. The instability coefficient is obtained to
enable robustness evaluation for the sequential probability ratio test and its modification –
trimmed sequential probability ratio test.
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1. Introduction

The sequential approach to hypothesis testing (Wald 1947) is applied in various practical
problems of statistical data analysis (Mukhopadhyay and de Silva 2009). If hypothetical
suppositions are fulfilled, sequential tests require less observations at average in comparison
with classical analogues based on the fixed number of observations, to provide the fixed small
levels of error probabilities. However, in practice there are distortions in statistical data,
i.e. the factual probability distribution of observations deviate from the hypothetical model
(Kharin and Voloshko 2011). Therefore it is important to characterize the influence of the
distortions on the error probabilities.

Similar problems of robustness analysis were investigated in Kharin (2002), Kharin and Kishy-
lau (2005), Kharin (2013a) for discrete data under “contamination” (Huber and Ronchetti
2009). The problems of robustness analysis and of robust decision rules construction for
case of composite hypotheses are investigated in Kharin (2008), Kharin (2011a) using the
methodology of the asymptotic expansion construction for the characteristics w.r.t. the small
parameter of distortion developed in Kharin and Shlyk (2009), Kharin (2005).

In Chernov and Kharin (2013) error probabilities of the sequential probability ratio test
(SPRT) under functional distortions described by neighborhoods in the L2-metric were stud-
ied.
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In this paper we consider the case of continuos probability distribution of observations and
analyze the influence of the distortions in the L1-metric on the error probabilities of the SPRT.
For a given maximal possible distance between the factual and the hypothetical probability
distributions of the log likelihood ratio statistic the least favorable distributions (LFD) that
maximize the conditional error probability of the SPRT are constructed. This maximal value
of the error probability is required for the quantitative robustness analysis of sequential tests.

2. Mathematical Model

Consider the mathematical model from Kharin and Chernov (2011). Let x1, x2, . . . ∈ R be
independent and identically distributed random observations on a probability space (Ω,F ,P).
Let f(x, θ) be the probability density function (p.d.f.) of xi, i ∈ N = {1, 2, . . .}, with a
parameter θ ∈ Θ = {θ0, θ1}; F (x, θ) be the cumulative distribution function that corresponds
to f(x, θ).

There are two simple hypotheses concerning the unknown value of the parameter θ:

H0 : θ = θ0, H1 : θ = θ1. (1)

Denote the accumulated log likelihood ratio test statistic:

Λn = Λn(x1, . . . , xn) =
n∑
k=1

λk, (2)

where
λk = λ(xk) = ln

f(xk, θ1)
f(xk, θ0)

(3)

is the logarithm of the likelihood ratio statistic calculated for the observation xk, k ∈ N.

To test hypotheses (1) by observations x1, x2, . . . the SPRT (Wald 1947) can be used:

N = min{n ∈ N : Λn 6∈ (C−, C+)}, (4)

d =
{

0, ΛN ≤ C− ,
1, ΛN ≥ C+ , (5)

where N is the random stopping time; at this time point the decision d is made according
to (5). In (4) the parameters C−, C+ ∈ R are the test thresholds defined according to Wald
(1947):

C− = ln
β0

1− α0
, C+ = ln

1− β0

α0
, (6)

where α0, β0 ∈ (0, 1
2) are given maximal admissible values of probabilities of type I (to accept

H1 provided H0 is true) and II (acceptance of H0 provided the true hypothesis is H1) errors
respectively.

Let α(f) and β(f) be the error probabilities of the test (4), (5) for the case where observations
x1, x2, . . . have the probability density function f(·).
It is known that α0 and β0 are only approximate values of the factual error probabilities α(f)
and β(f) of types I and II for the SPRT (4) – (6) (see Wald 1947) and can deviate from α(f)
and β(f) significantly (Kharin 2013a).

Without loss of generality, suppose that the hypothesis H0 is true, so the value of the type
I error probability α is considered. To make formulation shorter, introduce the simplified
notation:

F (x) = F (x, θ0), f(x) = f(x, θ0), Fλ(x) = PH0{λ1 ≤ x},

where PH0{·} means the probability under the hypothesis H0. Let the probability density
function pλ(x) corresponds to the cumulative distribution function Fλ(x).
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3. Inequalities for Error Probabilities of the SPRT

Let x(ω) and y(ω) be random variables on some probability space (Ω,F ,P) with some prob-
ability density functions a(x) and b(y) respectively; let also 1A(·) be the indicator function of
the set A.

Lemma 1 If the inequality λ(x(ω)) ≥ λ(y(ω)) is satisfied for every ω ∈ Ω, then the inequality

α(a) ≥ α(b)

takes place.

Proof. It follows from the Lemma condition that

Λn(a) =
n∑
k=1

λ(xk) ≥
n∑
k=1

λ(yk) = Λn(b). (7)

From (5) we have
α(a) = PH0{ΛN (a) ≥ C+},

where N is the random stopping time. Because of (7) we get the relation between the random
events:

{ΛN (a) ≥ C+} ⊇ {ΛN (b) ≥ C+},

therefore, α(a) ≥ α(b).

Lemma 2 If the inequality λ(x) ≥ λ(y) is satisfied for

x ∈Ma>b = {z : a(z) > b(z)}, y ∈Mb≥a = R \Ma>b,

then the inequality α(a) ≥ α(b) holds.

Proof. From the norm conditions for a(·), b(·) we have:∫
Ma>b

a(x)dx+
∫
Mb≥a

a(x)dx ≡ 1 ≡
∫
Mb≥a

b(x)dx+
∫
Ma>b

b(x)dx.

Using these equations denote

p =
∫
Ma>b

(a(x)− b(x))dx =
∫
Mb≥a

(b(x)− a(x))dx ∈ [0, 1].

Note that if p = 0, then a(·) and b(·) coincide, if p = 1, they are orthogonal in the sense that
a(x)b(x) = 0, ∀x.

Let η = η(ω) be the Bernoulli random variable with the parameter value p:

P{η = 1} = p, P{η = 0} = 1− p;

ξ = ξ(ω), ξ+ = ξ+(ω) and ξ− = ξ−(ω) be random variables with the p.d.f.s

pξ(x) =
min{a(x), b(x)}

1− p
,

pξ+(x) =
1Ma>b

(x)(a(x)− b(x))
p

, (8)

pξ−(x) =
1Mb≥a(x)(b(x)− a(x))

p
,

respectively, and η, ξ, ξ+, ξ− be independent.
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The norm condition is satisfied for the functions determined by (8):

∫ +∞

−∞
pξ(x)dx =

1
1− p

(∫
Ma>b

b(x)dx+
∫
Mb≥a

a(x)dx

)
=

1
1− p

(
1−

∫
Mb≥a

b(x)dx+
∫
Mb≥a

a(x)dx

)
=

1
1− p

(
1−

∫
Mb≥a

(b(x)− a(x)) dx

)
=

1
1− p

(1− p) ≡ 1;

∫ +∞

−∞
pξ+(x)dx =

1
p

∫
Ma>b

(a(x)− b(x)) dx ≡ 1;

∫ +∞

−∞
pξ−(x)dx =

1
p

∫
Mb≥a

(b(x)− a(x)) dx ≡ 1.

The p.d.f.s pξ+(·) and pξ−(·) are orthogonal, and ξ−(ω) ≥ ξ+(ω), ω ∈ Ω.

Construct random variables ξa = ξa(ω), ξb = ξb(ω) on (Ω,F ,P):

ξa(ω) = (1− η(ω))ξ(ω) + η(ω)ξ+(ω), ξb(ω) = (1− η(ω))ξ(ω) + η(ω)ξ−(ω). (9)

The p.d.f.s of random variables (9) can be found by (8):

pξa(x) = p · pξ+(x) + (1− p) · pξ(x) =

1− p
1− p

·min{a(x), b(x)}+
p

p
· 1Ma>b

(x) · (a(x)− b(x)) ={
b(x) + a(x)− b(x), if a(x) > b(x),
a(x) + 0, if a(x) ≤ b(x),

≡ a(x). (10)

Analogously we get
pξb(x) = p · pξ−(x) + (1− p) · pξ(x) ≡ b(x). (11)

From the construction of ξ−, ξ+ and the condition of this Lemma it follows that λ(ξ+) ≥
λ(ξ−).

Analyze now the two available cases using (9).

1. If ω: η(ω) = 1, then ξa(ω) = ξ+, ξb(ω) = ξ−.

2. If ω: η(ω) = 0, then ξa(ω) = ξb(ω) = ξ(ω).

Combining these two results, we have λ(ξa) ≥ λ(ξb), ∀ω ∈ Ω.

Finally, using Lemma 1 we get
α(pξa) ≥ α(pξb),

that is equivalent to α(a) ≥ α(b) because of (10), (11).

4. Robustness Evaluation for SPRT

Let the hypothetical model described in Section 1 be not satisfied, so the log likelihoods
λn = λ(xn), n ∈ N, are independent and identically distributed random variables with some
p.d.f. p̃λ(x), that may deviate from the hypothetical p.d.f. pλ(x), but the distance between
p̃λ(x) and pλ(x) in the L1-metric does not exceed ε:

ρL1 (p̃λ(·), pλ(·)) =
∫
R
|p̃λ(x)− pλ(x)|dx ≤ ε, (12)

where 0 ≤ ε ≤ ε0, and the maximal admissible deviation ε0 is a priori known.
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Denote by L1(pλ, ε) the family of probability density functions p̃λ(x) that satisfy the inequality
(12) for the fixed value of ε. Let the cumulative probability distribution function F̃λ(x)
corresponds to the p.d.f. p̃λ(x). Let α(p̃λ, ε) be the type I error probability for the SPRT (4),
(5), when the log likelihood (3) has the p.d.f. p̃λ(·) ∈ L1(pλ, ε).

Let us construct the least favorable probability distribution of λn, i.e. the p.d.f. that maxi-
mizes the value of α(·, ε) within the set L1(pλ, ε).

Consider the p.d.f.
p̄λ(x) = 1(g−,+∞)(x)pλ(x) +

ε

2
δ(x− g+), (13)

where δ(·) is the Dirac δ-function,

g+ = C+ − C−, Fλ(g−) =
ε

2
.

Lemma 3 The function p̄λ(·) belongs to L1(pλ, ε).

Proof. Find ρL1(p̄λ(·), pλ(·)) using (13):∫
R
|p̄λ(x)− pλ(x)|dx =

∫
(−∞,g−)

pλ(x)dx+
∫
(g−,+∞)

|p̄λ(x)− pλ(x)|dx =

ε

2
+
ε

2
·
∫
(g−,+∞)

δ(x− g+)dx = ε. (14)

Lemma is proved.

Now let us prove that if the random variables {λn} have the p.d.f. p̄λ(x), then the type I
error probability α(p̄λ) is the highest value within the neighborhood L1(pλ, ε).

Theorem 1 If the p.d.f. p̃λ(·) belongs to L1(pλ, ε), then the following inequality holds:

α(p̃λ, ε) ≤ α(p̄λ, ε). (15)

Proof. Take any p.d.f. p̃λ(·) ∈ L1(pλ, ε). Denote as in Lemma 2:

p =
∫
(p̃λ>pλ)

(p̃λ(x)− pλ(x)) dx =
∫
(p̃λ≤pλ)

(pλ(x)− p̃λ(x)) dx;

ε−(q) =
∫
(−∞,g−)

q(y)dy,

where q(·) is some arbitrary p.d.f.

Note that p ≤ ε/2 and construct the auxiliary p.d.f.s q1(·) and q2(·):

q1(x) = 1(p̃λ≤pλ)(x)p̃λ(x) + 1(p̃λ>pλ)(x)pλ(x) + p · δ(x− g+) =

1(p̃λ<pλ)(x)p̃λ(x) + 1(p̃λ≥pλ)(x)pλ(x) + p · δ(x− g+),

q2(x) = 1(g−,+∞)∩(p̃λ<pλ)(x)p̃λ(x) + 1(g−,+∞)∩(p̃λ≥pλ)(x)pλ(x)+

ε−(q1)δ(x− g−) + p · δ(x− g+). (16)

The p.d.f. q1(x) is constructed from p̃λ(x) by “transferring” of the probability measure equals
to p from the set {p̃λ > pλ} to the point {g+}. The p.d.f. q2(x) is constructed from q1(x)
by “transferring” of the probability measure (equaled to ε−(q1) =

∫
(−∞,g−) q1(y)dy) from the

sets {p̃λ < pλ} ∩ (−∞, g−) and {p̃λ ≥ pλ} ∩ (−∞, g−) to the point {g−}.
Compare the four error probabilities α(p̃λ), α(q1), α(q2) and α(p̄λ) using (16). Consider the
sets, where the mentioned p.d.f.s differ from each other:

{x : p̃λ(x) < q1(x)} ⊆ {g+}, {x : p̃λ(x) > q1(x)} ⊆ {x : p̃λ(x) > pλ(x)} \ {g+},
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{x : q1(x) < q2(x)} ⊆ {g−}, {x : q1(x) > q2(x)} ⊆ (g−,+∞),

{x : q2(x) < p̄λ(x)} ⊆ ((g−,+∞) ∩ {x : p̃λ(x) < pλ(x)}) ∪ {g+},
{x : q2(x) > p̄λ(x)} ⊆ {g−}.

According to Lemma 2 we have inequalities

α(p̃λ, ε) ≤ α(q1, ε) ≤ α(q2, ε) ≤ α(p̄λ, ε).

Therefore, the inequality (15) holds.

Corollary 1 The error probability α(p̄λ, ε) is a monotone function w.r.t. the neighborhood
size ε, and ∀ε ∈ [0, ε0] the following inequality holds:

α(p̄λ, ε) ≤ α(p̄λ, ε0).

Proof follows from the result of Lemma 2.

Calculate now the instability coefficient κ (Kharin 2013b) that characterizes the relative incre-
ment of the type I error probability for the SPRT under distortion (12) from the hypothetical
version:

κ =
α+ − α0

α0
≥ 0,

where
α0 = α(pλ), α+ = sup

p̃λ∈L1(pλ,ε), ε∈[0,ε0]
α(p̃λ, ε).

Corollary 2 The instability coefficient for the error type I probability of the SPRT is equal
to

κ =
α(p̄λ, ε0)− α(pλ)

α(pλ)
≥ 0.

Proof. The result follows from Lemma 3, Theorem 1 and Corollary 1.

5. Robustness Evaluation for Trimmed SPRT

To decrease the influence of distortions on the error probabilities of the test (4), (5) we
construct the trimmed probability density function pλ(x) for the log likelihood (3) following
the idea of Kharin (2002):

pgλ(x) = 1(g−,g+)pλ(x) + ε−δ(x− g−) + ε+δ(x− g+), (17)

where g−, g+ ∈ R, g− < g+, are some trimming parameters for λn;

ε− = ε−(pλ) = Fλ(g−), ε+ = ε+(pλ) = 1− Fλ(g+). (18)

Note that the function pgλ(x) defined by (17) is some probability density function as it is
nonnegative and the norm condition holds:∫

R
pgλ(y)dy =

∫
R

1(g−,g+)pλ(y)dy +
∫
R
ε−δ(y − g−)dy +

∫
R
ε+δ(y − g+)dy =∫

(g−,g+)
pλ(y)dy + ε− + ε+ = (Fλ(g+)− Fλ(g−)) + Fλ(g−) + (1− Fλ(g+)) = 1.

The sequential test (4) – (6) constructed using the test statistic with the trimmed probability
density function (17) instead of λ(·) will be called the trimmed SPRT. If g− = −∞ and
g+ = +∞, then the trimmed p.d.f. pgλ(·) coincides with pλ(·), i.e. we have no trimming.
Prove now that if the p.d.f. p̃λ(·) belongs to the ε-neighborhood in the L1-metric of the
function pλ(·), then the trimmed p.d.f. p̃gλ(x) belongs to the ε-neighborhood of the function
pgλ(·) in the same metric.
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Lemma 4 If p̃λ ∈ L1(pλ, ε), then p̃gλ ∈ L1(pgλ, ε).

Proof. Using (17), (18) evaluate the distance:∫
R
|p̃gλ(x)− pgλ(x)|dx =

∫
(g−,g+)

|p̃λ(x)− pλ(x)|dx+

|ε−(s̃)− ε−(s)| ·
∫
R
δ(x− g−)dx+ |ε+(s̃)− ε+(s)| ·

∫
R
δ(x− g+)dx =∫

(g−,g+)
|p̃λ(x)− pλ(x)|dx+ |ε−(s̃)− ε−(s)|+ |ε+(s̃)− ε+(s)| =

∫
(g−,g+)

|p̃λ(x)− pλ(x)|dx+

∣∣∣∣∣
∫
(−∞,g−)

(p̃λ(x)− pλ(x)) dx

∣∣∣∣∣+∣∣∣∣∣
∫
(g+,+∞)

(p̃λ(x)− pλ(x)) dx

∣∣∣∣∣ ≤
∫
R
|p̃λ(x)− pλ(x)|dx ≤ ε,

that proves the statement of the Lemma.

Let us find now the least favorable probability distribution for the fixed parameters of trim-
ming g− and g+, that maximizes the value of α(·, ε) within L1(pgλ, ε). In other words, let us
prove that if p̄λ(·) corresponds to the LFD in L1(pλ, ε), then p̄gλ(·) corresponds to the LFD in
L1(pgλ, ε).

If p̄λ(·) satisfies (13), then p̄gλ(·), constructed according to (17), is determined by the equation

p̄gλ(x) = 1(g−,g+)(x) pλ(x) +
(
ε− − ε

2

)
δ(x− g−) +

(
ε+ +

ε

2

)
δ(x− g+). (19)

Theorem 2 If the probability density function p̃λ(·) belongs to the set L1(pλ, ε), then the
following inequality holds:

α(p̃gλ, ε) ≤ α(p̄gλ, ε).

Proof. The Theorem statement follows from Lemma 4 and Theorem 1.

Corollary 3 The error probability α(p̄gλ, ε) is a monotone function w.r.t. the variable ε, and
for every ε, 0 ≤ ε ≤ ε0, the following inequality takes place:

α(p̄gλ, ε) ≤ α(p̄gλ, ε0).

Proof. The Corollary statement follows from Lemma 4 and Theorem 1.

Now calculate the instability coefficient (Kharin 2011b) for the type I error probability of the
SPRT under distortion (12).

Corollary 4 The instability coefficient for the error type I probability of the trimmed SPRT
is equal to

κ =
α(p̄gλ, ε0)− α(pgλ)

α(pgλ)
≥ 0.

Proof follows from Lemma 4, Theorem 2 and Corollary 3.

6. Conclusions

The least favorable probability distributions of the log likelihood ratio statistic are constructed
in the paper for the distortions in the L1-metric. The obtained results are useful for evalu-
ation of the difference between hypothetical and actual error probabilities under functional
distortions in observation distributions, adjusted in the mentioned metric.
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The results for the error type II probabilities are obtained in the same way.

The instability coefficient characterizes robustness of the SPRT and of the trimmed SPRT
quantitatively.

The research is partially supported by the ISTC Project B-1910.
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