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Abstract. Off-road autonomous navigation is one of the most difficult automation challenges from the point of
view of constraints on mobility, speed of motion, lack of environmental structure, density of hazards, and typical
lack of prior information. This paper describes an autonomous navigation software system for outdoor vehicles
which includes perception, mapping, obstacle detection and avoidance, and goal seeking. It has been used on sev-
eral vehicle testbeds including autonomous HMMWV’s and planetary rover prototypes. To date, it has achieved
speeds of 15 km/hr and excursions of 15 km.

We introduce algorithms for optimal processing and computational stabilization of range imagery for terrain map-
ping purposes. We formulate the problem of trajectory generation as one of predictive control searching trajectories
in command space. We also formulate the problem of goal arbitration in local autonomous mobility as an optimal
control problem. We emphasize the modeling of vehicles in state space form. The resulting high fidelity models sta-
bilize coordinated control of a high speed vehicle for both obstacle avoidance and goal seeking purposes.

An intermediate predictive control layer is introduced between the typical high-level strategic or artificial intelli-
gence layer and the typical low-level servo control layer. This layer incorporates some deliberation, and some envi-
ronmental mapping as do deliberative AI planners, yet it also emphasizes the real-time aspects of the problem as do
minimalist reactive architectures.

Keywords: mobile robots, autonomous vehicles, rough terrain mobility, terrain mapping, obstacle avoidance, goal-
seeking, trajectory generation, requirements analysis
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1 Introduction

In earlier papers [32][33][34][35], the authors derived
a set of requirements for autonomous off-road mobil-
ity that also suggest an approach to meeting those
requirements. This paper is concerned with the design
and implementation of a system that learns from the
results of our earlier theoretical analysis. We have
called this system RANGER - for Real-Time Autono-
mous Navigator with a Geometric Engine1.

We emphasize the real-time nature of high speed
autonomous mobility and, as a result, have been very
concerned with such matters as efficiency, speed,
throughput, and response time.

Our approach is based fundamentally on the state
space representation of a multi-input / multi-output
dynamical system and is a departure from precedent in
the following ways:

• We use an active and adaptive approach to percep-
tion that minimizes the amount of perceptual data
processed.

• We use a predictive control formulation of trajec-
tory generation and search.

• We use an optimal control formulation of goal
arbitration.

2 Local Autonomous Mobility

The navigator addresses what we will call thelocal
navigation problem for autonomous vehicles. That is,
the problem of deciding what to do based only on what
can be seen at the moment within the field of view of
the environmental sensors. The problem of global
planning is outside our scope in this paper.

2.1 Introduction

Consider the task of path planning for an autonomous
vehicle travelling cross country over rough terrain at
high speeds.

2.1.1 Scope of Problem

We can scope the problem in terms of several parame-
ters:

• Overall Goal. In general, the vehicle must achieve
some useful goal. The goal may be to move from
an initial position to some other distant position, to
map an entire area, or to search an area for objects.

• Degree of Optimization. Standards for what con-
stitutes achievement of the goal may vary from
satisfaction of certain constraints (e.g. avoid colli-
sion with obstacles) to optimization of an arbitrary
utility function (e.g. fuel consumption or distance
travelled).

1. The name RANGER is also being used currently for an unrelated
free-flying space vehicle under development by David Akin at the
University of Maryland.

• Difficulty of Terrain . In realistic terrain, the vehi-
cle is challenged by regions that would cause
tipover, trapped wheels, or loss of traction. Some
regions are not traversable at all and others may
cause disastrous system failures such as falling
into an abyss.

• Depth of Prior Knowledge. Both the goal to be
achieved and the characteristics of the environ-
ment may be expressed and/or known to varying
degrees of detail. The goal may be expressed as a
point to achieve, a path to follow, an object to find,
or something much more abstract. The environ-
ment may be completely known of partially
mapped at various levels of detail and richness of
expression.

2.1.2 Problem

Within these parameters, we can characterize the prob-
lem we have addressed in the following terms:

• The overall goal is to follow a predefined path that
is assumed to be free of local planning minima.

• We attempt to follow this path as closely as possi-
ble while travelling as fast as possible and avoid-
ing any obstacles that may appear.

• We attempt to operate on barren, rolling terrain
that may contain ravines, cliffs, and regions that
would tip the vehicle.

• We have no prior knowledge of the environment
beyond the path we are to follow.

2.1.3 Previous Work

Groundbreaking work on this and related problems
has been conducted at Hughes [10][9][13][36][45],
JPL [41][55], CMU [16][20][22][23][24] and INRIA
[28], among many others. Generally speaking, early
systems were slower than later ones, and speed, excur-
sion, and run time have improved with the general
improvement in component technology and algo-
rithms.

2.1.4 Solution

Our general approach to the problem has been to insert
an architectural layer between strategic planning and
actuator control which we will calltactical control.
This layer, being faster than planning yet more intelli-
gent than control will be able to understand vehicle
maneuverability sufficiently well for robust path track-
ing and react fast enough for robust obstacle avoid-
ance.
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2.2 Preliminaries

2.2.1 Conventions

2.2.1.1 Lexical Conventions

The paper will introduce many new terms as a device
to foster brevity and precision. New terms will be
defined in their first appearance in the text. They will
generally be highlightedthus, and will appear in a
glossary at the end of the paper for easy reference.

2.2.1.2 Coordinate Conventions

The angular coordinates of a pixel will be expressed in
terms of horizontal angle orazimuth , and vertical
angle orelevation . Three orthogonal axes are con-
sidered to be oriented along the vehicle body axes of
symmetry. Generally, we will arbitrarily choose z up, y
forward, and x to the right:

• x - crossrange, in the groundplane, normal to the
direction of travel.

• y - downrange, in the groundplane, along the
direction of travel.

• z - vertical, normal to the groundplane.

2.2.1.3 Notational Conventions

We will carefully distinguish range,  measured in 3D
from a range sensor, and the projection of range
onto the groundplane. Generally, both will be mea-
sured forward from the sensor unless otherwise noted.

2.2.1.4 Nomenclature

Certain vehicle dimensions that will be important are
summarized in the following figure. One distinguished
point on the vehicle body will be designated the vehi-
cle control point. The position of this point and the ori-
entation of the associated coordinate system is used to
designate the pose of the vehicle.

The wheelbase is , and the wheel radius is . The
height of the sensor above the groundplane is desig-
nated  and its offset rear of the vehicle nose is . The
height of the undercarriage above the groundplane is

. Range measured from the sensor is designated .

A complete list of symbols is provided at the end of
the paper for easy reference.

2.2.2 Terminology

Any vehicle which attempts to navigate autonomously
in the presence of unknown obstacles must exhibit per-
formance that satisfies a basic set of requirements. At
the highest level, if the system is to survive on its own,
the vehicle control system must implement a policy of
guaranteed safety.

This requirement to guarantee safety can be further
broken down into four other requirements on perfor-
mance and functionality expressed in terms of timing,
speed, resolution, and accuracy. In order to survive on
its own, an autonomous vehicle must implement the
four policies of:

• guaranteed response: It must respond fast enough
to avoid an obstacle once it is perceived.

• guaranteed throughput: It must update its model
of the environment at a rate commensurate with its
speed.

• guaranteed detection: It must incorporate high
enough resolution sensors and computations to
enable it to detect the smallest event or feature that
can present a hazard.

• guaranteed localization: It must incorporate suf-
ficiently high fidelity models of itself and the envi-
ronment to enable it to make correct decisions and
execute them sufficiently accurately.

2.2.3 Subproblems

Analysis shows [31] that traditional configuration
space planning techniques applied to cross-country
navigation suffer from problems of poor reliability and
stability, and poor computational efficiency. Indeed,
our experience has demonstrated regular collisions
with obstacles that were seen and reacted to. There
were two general reasons for this behavior:

• computational inefficiency: there was not enough
time to decide what to do.

• command following problem: the specific trajec-
tory used to avoid the obstacle could not be exe-
cuted reliably or stably.

Yet another common problem is the well-knownlocal
minimum problem. It arises from the use of local
rather than global optimization strategies. This prob-
lem is consideredoutside the scope of our work here,
though one of the authors [53] addresses this problem
in our target environment in other writings.
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Figure 1: Important Vehicle Dimensions.
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2.3 Standard Architectural Model

Consider the following hierarchical architectural
model. This is a convenient view for organizing the
description of the system.

2.3.1 Spectrum of Characteristics

Higher levels of the hierarchy tend to be characterized
by computation that is more symbolic, logical, search-
oriented, sequential, deliberative and abstract than
lower layers. Lower layers tend to be characterized by
computation that is more spatial or temporal, arith-
metic, repetitive, parallel, reactive, and concrete than
higher layers. As a general rule, higher layers exhibit
longer reaction times and longer cycle times.

The policy layer concerns itself with the generation
and monitoring of mission level objectives such as
“stay alive’, “find the bomb”, etc. Generally, the goals
of this level are not subject to much compromise. Pol-
icy does not change often and is usually constant over
the duration of a mission. Policy is often imparted per-
manently to a system by its human designers.

The strategic layer corresponds to the deliberative,
logical, goal-generating component of autonomous
systems. It concerns itself with the larger picture
within the confines of policy; with avoiding local plan-
ning minima, with overall optimality, and with model-
ing and memory of the environment. Relative to lower
layers, it is often obliged to consume more time in its
deliberations of longer term strategic concerns.

By contrast, the control layer corresponds to the real-
time command following component of autonomous
systems. It concerns itself with the immediate low
level issues of how much power should be applied to
actuators and generally, with doing exactly what it is

told to do to the best of its ability. Relative to higher
layers, it is often obliged to consume more bandwidth
as it reacts almost instantly to short term immediate
concerns.

It is clear that both longer term strategic and shorter
term reactive concerns will contend for computational
resources. Plainly, there are limits to the degree to
which any system can be both smart and fast. Faced
with this reality, the design problem becomes one of
making the best of available resources.

2.4 Tactical Control Layer

Much of our work resides in the layer we are calling
tactical control. We identify this layer in order to
more effectively connect the strategic and control lay-
ers, and to provide a place solve many of the problems
mentioned earlier.

2.4.1 Strategic - Control Connection

A direct connection of the strategic layer (say, the glo-
bal path planner) to the control layer (actuator control)
becomes less feasible as speeds increase. Further,
there are times when one or the other generates incor-
rect output and the other is either not intelligent
enough or not fast enough to compensate.

There are certainly times when the goals specified by
the strategic layer must be ignored because it is not
aware of the immediate environment but the control
layer is not intelligent enough to compensate. There
are also times when the control layer is unable to fol-
low its commands but the strategic layer is too slow to
alter the command.

Our solution to this problem is to have a third layer
more intelligent than control and faster than planning.
This layer:

• Views the goals from the strategic layer as recom-
mendations that it may be override when the situa-
tion demands it.

• Incorporates sufficient bandwidth to ensure vehi-
cle survival at the coordinated actuator control
level.

• Incorporates a sufficiently accurate model of vehi-
cle dynamics that it understands and adapts to the
inability of the controller to follow its commands.

This three layer architecture imparts a degree of auton-
omy to the layer below the strategic to allow it to
implement basic survival a temporarily disregard
strategic imperatives.

2.4.2 Intelligent Predictive Control

We characterize the navigator as an intelligent predic-
tive controller because it closes the overall perceive-
think-act loop for a robot vehicle based on intelligent
assessment of both the surrounding environment and
the abilities of the vehicle to maneuver.

Figure 2: Standard Model . This type of hierarchical
architecture is common. Higher layers tend to be
more deliberative etc. whereas lower layers tend to
be more reactive etc. Our control formulation of
mobility fits in at the “tactical” level.

Goals

Set Points

Commands Feedback

States

Policy Layer

Objectives

Status

Search-Oriented

Repetitive

Logical
Symbolic
Sequential
Deliberative
Abstract Strategic Layer

Tactical Layer

Control Layer

Physical Layer

Arithmetic
Spatio-temporal
Parallel
Reactive
Concrete



An Approach to Rough Terrain Autonomous Mobility  5

The system shares many characteristics with strategic
planning:

• It performs an amount of search and heuristics are
employed to reduce that search.

• It models the environment and responds to it, so it
merits the designationintelligent.

• It considers alternatives in an abstract space that is
a transformation of reality - in this case, command
space instead of the configuration space com-
monly used in strategic motion planning.

• It considers the consequences of its actions using
time continuous precedence information in the
form of a feedforward system dynamics model.

• It employs some memory of the state of the envi-
ronment and of the vehicle.

Likewise, the system also shares characteristics with
controllers.

• It models the vehicle with a multivariate differen-
tial equation.

• It is very concerned with response time and
throughput management as is common of real-
time systems.

• It is concerned with latencies and time tags and the
precise timing of events.

• It concerns itself with command following -
although it may temporarily override its com-
mands.

2.5 Architecture

At the highest level, the system can be considered to
consist of 5 modules as shown in the following data
flow diagram:

2.5.1 Position Estimator

The Position Estimator is responsible for integrating
diverse navigation sensor indications into a single con-
sistent indication of vehicle state. Vehicle state infor-
mation includes the positions of all actuators and some
of their derivatives, and the 3D state of motion of the
vehicle body. This module may be the built-in naviga-
tion Kalman filter or another system which generates
the same output.

2.5.2 Map Manager

The Map Manager integrates discrete samples of ter-
rain geometry or other properties into a consistent ter-
rain map which can be presented to the vehicle
controller as the environmental model. It maintains a
current record of the terrain immediately in front of
the vehicle which incorporates all images necessary,
and which automatically scrolls as the vehicle moves.

2.5.3 Vehicle

The Vehicle object is both the control loop feedfor-
ward element and an abstract data structure which
encapsulates the vehicle state. It incorporates FIFO
queues which store a short time history of vehicle
states and commands. Old state information is
required by the map manager in order to register
images in space. The current vehicle state and old
commands are used in the feedforward dynamic simu-
lation.

2.5.4 Controller

The Controller object is responsible for coordinated
control of all actuators. This module includes regula-
tors for sensor head control, an obstacle avoidance tac-
tical controller and a path following strategic
controller. It also incorporates an arbiter to resolve dis-
agreements between the latter two controllers.

2.5.5 Perception

The Perception module is responsible for understand-
ing or interpreting input images and putting them in a
form suitable for the Map Manager to process. Exam-
ples of perceptual preprocessing include stereoscopy
(stereo vision) which computes range from two or
more images taken from disparate viewpoints, and ter-
rain-typing which labels each pixel in an image as
rock, road, shrubbery or tree. Stereo vision is the only
perception that is currently supported, although laser
range images can be fed directly to the map manager.

2.6 Results

The system has been tested on the vehicles shown in
the following figure. We have used laser range data
and stereo range data to build maps of the terrain over
which the vehicle must travel. In the former case,
excursions of 15 kilometers and instantaneous speeds
of 15 km/hr have been achieved while tracking a
coarsely specified path. Average speed was on the
order of 7 km/hr.

Figure 3: System Data Flow : Five components
make up the tactical control layer.
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3 Perception

This section discusses the motivation behind, and
implementation of the 3D perception algorithm for
extracting relevant geometry from a range image
sequence. We propose a relatively simple method of
approaching the minimum required perceptual
throughput in a terrain mapping system, and hence the
fastest possible update of the environmental model.
The technique proposed will be relevant to any appli-
cation that models the environment with a terrain map
or other 2-1/2 D representation.

3.1 Introduction

The surface of the surrounding terrain can be sensed
by any number of means, but the two most commonly
used ones in outdoor scenarios are laser rangefinders
and stereo vision. We represent the surface of the sur-
rounding terrain by a sampled, uniform density data
structure often called aterrain map or cartesian ele-
vation map.

3.1.1 Problem

When attempting to navigate over rough terrain, few
assumptions about the shape of the terrain ahead can
be made. It can be necessary to convert images into a
full description of the geometry of the scene at rela-
tively high rates. As a result, the speed of rough terrain
navigation is typically limited by the throughput of the
perception system. We will call this predicament the
perceptualthroughput problem. Perceptual through-
put can be expressed in units of range or intensity pix-
els measured per second, or its equivalent.

We address here this typical performance limitation of
autonomous outdoor vehicles. Analysis suggests [31]

that much of the computational resources used to
image and interpret the environment can be a waste of
resources in mobility scenarios. This waste occurs for
three principle reasons:

• The vertical field of view is often too wide from a
throughput perspective. Obstacles and other haz-
ards normally appear in the field of view long
before they can be resolved, and long after they
cannot be avoided.

• Sensor frame rate is often too fast. The sensor ver-
tical field of view is normally aligned with the
direction of travel so that image sequences nor-
mally contain much redundant information.

• Square pixels are not optimally shaped. The pro-
jection of image pixels on the groundplane is nor-
mally elongated in the wrong direction for robust
obstacle detection and minimum throughput.

From the days of the Stanford Cart [44] to the Autono-
mous Land Vehicle [10], vehicle speed has been lim-
ited, at least in part, by limited perceptual throughput.
We will show how to eliminate much of this ineffi-
ciency in order to generate perceptual throughput
requirements that can be met easily.

3.1.2 Solution

One approach to reducing redundant information is the
use of laser and video line scanners. These have seen
use in specialized high-speed inspection applications
for some time. In satellite applications, synthetic aper-
ture radar has used vehicle motion to provide the scan-
ning motion of the sensor along the direction of travel.
The essential principle involved in these examples is
to avoid scanning the sensor when either the motion of
the vehicle or the motion of the environment already
accomplish the scanning.

However, the use of line-scanned sensors is difficult on

Figure 4: Some Navigation Testbeds:A modified military HMMWV and a RATLER Planetary Rover prototype.
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rough terrain because abrupt attitude changes of the
vehicle body cause holes in the coverage of the sensor.
Software adaptation provides the best of both worlds
because it gives the ideally focussed attention neces-
sary for high speed and the wide field of view neces-
sary for rough terrain.

In our earlier paper [34], we have showed that required
perceptual throughput is polynomial in the reaction
distance. This analysis suggests that certain
approaches to mapping the environment in mobility
scenarios can waste significant computational
resources.

We have also showed that straightforward techniques
promise to significantly increase the overall efficiency
of terrain mapping perception algorithms. This
improvement can be accomplished by exploiting con-
straints and several assumptions that are valid in most
outdoor mobility scenarios.

The basic idea is to selectively process only the data
that matters in range imagery. Known here asadap-
tive perception, the technique also has the beneficial
side-effects of automatically adapting to changes in
vehicle speed and attitude, and to the local slope of the
imaged terrain. Through this technique we achieve
near minimum perceptual throughput and hence, near
maximum safe vehicle speeds.

A fundamental tenet ofactive vision [1][2] is to direct
attention to the part of the scene that is relevant to the
task at hand, rather than to interpret and model the
scene. Our work provides a concrete example of at
least one aspect of active vision. Although we do
model the scene, we actively search for the data we
need.

3.2 Preliminaries

We will use two primary techniques for reduction of
the perceptual inefficiencies mentioned above:

• We will actively maintain afocus of attention and
process perceptual data only in aregion of inter-
est that contains the most useful information.

• We will actively and intelligently subsample the
data within that region of interest for adequate -
but not unnecessarily high - resolving power.

These two strategies will be referred to collectively as
adaptive perception - the organizing principle of our
approach to terrain mapping for high speed mobility.

3.2.1 Terminology

We will call a region of space for which sensory data
is required aregion of interest, abbreviated ROI.

3.2.1.1 Regions of Interest

It also will be important to distinguish the coordinate
system implied by the sensor image - called theimage
plane from a set of coordinates attached to the terrain -

called theground plane.

An ROI defined on the groundplane will be called a
ground plane ROI. Such a region will have an image
in the image plane which will be called an image
plane ROI.

3.2.1.2 Differential Relationships

Let  and  be the elevation and azimuth coordinates
of an image pixel. Computing derivatives of the range
image of flat terrain leads to the differential relation-
ships between groundplane (x,y) resolution and image
plane resolution ( , ):

The completely correct transformations also depend
on the local terrain gradients. These are unknown a
priori because terrain geometry is the very thing the
sensor is supposed to measure.

3.2.1.3 Response Distance

A quantity of central concern to us will be the distance
that the vehicle requires to react to an external event
such as the appearance of an obstacle in the sensor
field of view. This distance will be called theresponse
distance and its precise value will depend on:

• the speed of the vehicle when the event happens
• when the response is considered to be complete
• the maneuver chosen as the response

3.2.2 Subproblems

We have, at this point, nominatedadaptive percep-
tion as a solution to the perceptual throughput prob-
lem. Unfortunately, this leads to a new set of
problems, but we will be able to solve them with addi-
tional strategies and clearly identified assumptions.

3.2.2.1 Response - Resolution Tradeoff Problem

From the point of view of responding robustly to
obstacles, it is best to detect obstacles early, or equiva-
lently, at high range from the vehicle. However, from
the point of view of sensor resolving power, it is best
to detect obstacles as close as possible to the vehicle
where data quality and spatial resolution tends to be
highest. In other words, the farther away an obstacle is
detected, the easier it is to avoid, but the harder it is to
detect it robustly. When either resolution or range is

Figure 5: Regions of Interest.  A region of interest
in the ground plane forms a corresponding image in
the image plane.
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limited, we can detect an obstacle robustly or avoid it
robustly, but not both. This is theresponse-resolution
tradeoff.

We will manage this tradeoff by explicitly computing
the minimum distance required for robust obstacle
avoidance and looking for obstacles only beyond this
distance. This technique will be called adaptive loo-
kahead.

3.2.2.2 Selection Problem

The mapping from the groundplane ROI to the image
plane ROI is both nonlinear (a projective transform)
and a function of the unknown shape of the terrain. It
seems, therefore, that it is not at all straightforward to
efficiently find the image plane ROI. Consider, for
example, the straightforward solution of converting
coordinates of all pixels in the image and then compar-
ing their positions to the groundplane ROI. After pix-
els that are not in the groundplane ROI are eliminated,
one is left with the image plane ROI. While this would
certainly work, it can be far too inefficient to be useful.

For terrain mapping, the largest computational cost of
a range pixel is the conversion of its coordinates from
the image plane to the ground plane. In attempting to
select only the data of interest by converting the coor-
dinates of all pixels, one has already done most of the
perception task anyway. Any straightforward attempt
to selectively process data in a region of interest appar-
ently falters becausethe problem of selection is as dif-
ficult as the problem of perception.

We will use assumptions to decouple these problems.
When the assumptions are combined with an appropri-
ate choice of the groundplane ROI, we will be able to
partially infer the shape of the image plane ROI and
compute its position by very efficient image plane
search. The algorithm for doing this will be called
adaptive sweep.

3.2.2.3 Sampling Problem

The sampling problem is the nonuniform and aniso-
tropic distribution of pixels on the groundplane which
corresponds to a uniform and isotropic distribution of
the corresponding pixels in the image plane. The Jaco-
bian matrix which relates the two distributions
depends on both the image projective transform and
the local terrain slope at each point. The impact of this
problem is that not only is the shape of the image
plane ROI distorted and of unknown position but the
local pixel density required to sample the groundplane
uniformly is both unknown and different everywhere
in the image plane ROI.

This variation in pixel density is shown below for flat
terrain. Each ellipse represents the footprint of a pixel.
It is the variation in density which we are illustrating,
not the density itself, so the images were subsampled
to avoid clutter.

We will solve this problem to some degree by choos-
ing the best compromise and, at other times, by
actively computing the required image plane resolu-
tion from extrapolation. The algorithm for doing this
will be calledadaptive scan.

3.2.3 Assumptions

Certain assumptions will be key components of our
approach - either because they must be made or
because they can be made with little or no loss of gen-
erality.

3.2.3.1 Stationary World

One of our most fundamental assumptions will be that
the environment is self stationary. That is, the environ-
ment will be supposed to consist of rigid bodies whose
relative positions are fixed - at least while they are in
the field of view of the environmental sensor. While
the bodies comprising the environment are self station-
ary, our vehicle is in motion with respect to them. The
value of this assumption is that it allows us to image a
point in the environment only once and, because only
the vehicle moves, its subsequent position relative to
the vehicle at any later time can be inferred solely
from the vehicle motion.

3.2.3.2 Small Incidence Angle

We will use the termsmall incidence angle assump-
tion to refer to the situation where image pixels inter-
sect a theoretical flat world at glancing angles. This is
guaranteed to be the case if:

• the sensor is mounted on the vehicle roof, and
• pixels inside the response distance are ignored,

and
• the vehicle speed is relatively high

because, under these conditions, the sensor height is
small relative to the range of any pixel.

In the figure above, this assumption implies the valid-
ity of the following approximations:

We will call  therange and  therange projection.
It is easy to show that the relative error incurred in

Figure 6: Sampling Problem . Equally spaced
image pixels are not equally spaced on the
groundplane - even for flat terrain. The situation is
worse for rough terrain.
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assuming that these two quantities are the same is the
square of the ratio . We will concentrate now on a
specific class of region of interest - one that can be
specified in terms of two range extremes. Let us define
a range window or range gate as an interval given by

 and  or, equivalently, by its corresponding
range projection extremes  and .

Suppose a pixel’s range projection  is in a range pro-
jection gate:

Then, to first order, we have, under our assumption:

Which is to say that we can directly compare range
pixel values (an image plane ROI) to a region of inter-
est on the groundplane (a groundplane ROI) while
incurring very little relative error. The small incidence
angle assumption allows us to efficiently implement a
test in the image plane of membership in a ground-
plane ROI. Under our assumption, it is not necessary
to convert range pixel coordinates so it inexpensively
decouples the problem of selection from that of per-
ception. Only those pixels which satisfy the inexpen-
sive image plane ROI membership test need have their
coordinates converted for mapping purposes.

3.2.3.3 Near Monotone Range Assumption

At this point, we have an efficient test for membership
in a groundplane ROI. However, it is still expensive to
test every pixel in a range image against a range gate.
A final important assumption is the assumption that
the environment is 2-1/2 dimensional with respect to
the direction of gravity. That is, at all points, a line
aligned with gravity pierces the first reflecting surface
of the environment at most once. This assumption jus-
tifies a terrain map representation and it also allows us
to assume that range is a near monotonic function of
image elevation angle. The worst case violation of this
monotone range assumption is the reduction in range
that occurs when a vertical surface is scanned as

shown below.

The computational advantage of the assumption is that
once the maximum range is found in an image, all pix-
els above it in the same column of the image can be
safely assumed to be beyond that range. It will turn out
later that this assumption will only be used in laser
rangefinder implementations of adaptive perception.
Stereo vision will not require it.

3.2.4 Design

Our adaptive perception algorithm confines the pro-
cessing of range geometry in any cycle of computa-
tions to an image plane ROI with the following
properties:

• It extends beyond the vehicle response distance.
• Its size is the distance moved since the last cycle.

The algorithm has three conceptual parts as outlined
below.

3.2.4.1 Adaptive Lookahead

Adaptive lookahead means the process of adapting
the position of the groundplane ROI to assure that
there is sufficient time to react to hazards. There is
some minimum range inside of which it is unnecessary
to look because the vehicle is already committed to
travel there. Also, there is some maximum range
beyond which it is unnecessary to look because there
will be time to look there later. In detail implementa-
tion, the algorithm can set the minimum range to the
response distance, or alternately, set the maximum
range to response distance plus the distance travelled
per cycle.

3.2.4.2 Adaptive Sweep

Adaptive sweep is the process of adapting the width
of the groundplane ROI to assure that there are no
holes or excessive overlaps in the coverage of the sen-
sor. The ROI width is set to the distance travelled since
the last computational cycle. This determines both the
maximum and minimum range projections in the
groundplane and they are trivially converted to the
image plane ROI based on assumptions mentioned
earlier.
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Figure 7: Imaging Geometry . The height of the
sensor above the ground plane is normally small
compared to the ranges measured.
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3.2.4.3 Adaptive Scan

Adaptive scan is the process of managing resolution
within the image plane ROI in order to achieve uni-
form groundplane resolution. For the data of interest,
it will be possible to compute an approximate mapping
from groundplane resolution to image plane resolution
and images will be subsampled by appropriate factors
to achieve near uniform groundplane resolution.

3.2.5 Implications

Certain implications of using the adaptive perception
algorithm are worth noting here.

3.2.5.1 Minimum Computational Cost Implies Highest
Speeds

The minimum computational cost of this approach to
perception has implications for the real-time perfor-
mance of autonomous vehicles. The maximum useful
range of a perception sensor is often limited by rea-
sons of eye safety, computational cost, limited angular
resolution etc. Given this limit, the highest safe vehicle
speeds are normally achieved by minimizing reaction
times. The only element of reaction time that can be
changed easily is often the component due to the time
required to process imagery or perform other compu-
tations. Therefore, to the degree that our approach
minimizes the computational cost of perception, it also
increases the vehicle speeds that can be achieved.

3.2.5.2 Adaptive Sweep Implies Image Stabilization

Our software adaptive approach to perception has the
side effect of computationally pointing the sensor ver-
tical field of view by responding to both changes in the
vehicle attitude and changes in the shape of the
imaged terrain. While the shape of the range window
may be very irregular in image space, it always corre-
sponds to a regular semi-annulus in the ground plane.
If the vertical field of view is wide enough and the
range sensor is fast enough in terms of range pixel
rate, this software adaptation is superior to the tech-
nique of physically stabilizing the sensor because it
responds instantaneously.

3.3 Adaptive Lookahead

The three techniques described in the previous section
can be applied to any range image generated by an
imaging laser or radar sensor or a stereo vision system.
It is also possible to embed adaptive perception into a
stereo vision algorithm - which will be the subject of a
special section. For both classes of imagery, range
imagery and stereo pairs, the adaptive lookahead algo-
rithm is common.

A vehicle may attempt to turn to avoid obstacles and
maintain its forward speed, it may elect to stop com-
pletely, or it may choose any other arbitrary trajectory.

The choice of trajectory determines the details of com-
puting the response distance. For our purposes, adap-
tive lookahead is implemented by computing the
distance required to execute a 90° turn at the current
speed. This gives the maximum range of the range
window.

The groundplane ROI must be defined very precisely
in terms of distances from some specific point on the
vehicle at some specific time. The problem of finding
the data in this region in an image taken previously
involves several aspects of time delays and geometric
offsets.

• The sensor is not mounted at the vehicle reference
point, so the ROI is adjusted for this offset.

• The vehicle is not itself a point, so the ROI must be
enlarged to provide data at the positions of the
wheels forward and aft of the reference point.

• There may be significant delay associated with the
acquisition of an image, so the ROI must be
adjusted for the age of the image.

• The most recent vehicle state estimate is itself
somewhat old and computation takes finite time.
The ROI may need to be adjusted for these effects
depending on the instant with respect to which the
ROI is defined.

3.4 Adaptive Sweep/Scan-Range Imagery

If one starts with a dense range image, the algorithm
consists of the mapping of the range window into
image space and the extraction of the data.

3.4.1 Adaptive Sweep

Terrain roughness and nonzero vehicle roll mean that
the position of the range window in the image is differ-
ent for each column so the range window is processed
on a per column basis. In order to robustly find the
range window, each column is processed in the bot-
tom-to-top direction.

A conceptual C code fragment is as follows. The
image itself is of dimensions rows by cols. A constant
rectangular subwindow of the image is searched which
is delimited by the image plane coordinates start_row,
start_col, end_row, and end_col. This region is known
to always contain the ROI.

The monotone range assumption appears as the
break statement after the first conditional of the inner
loop. The start_col and end_col variables implement a
fixed azimuth and elevation angle window within
which the range window always lies on typical terrain.

3.4.2 Adaptive Scan

The variables row_skip and col_skip have values cor-
responding to the constant image subsampling factors
that give the most acceptable groundplane resolution.
In the case of range images, adaptive scan is imple-
mented by a literal subsampling of the image. Also,
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this subsampling applies to both the data in the ROI
and the data below the ROI that is not processed. That
is, adapting the resolution can benefit the speed of
handling both the processed and the unprocessed data.

Because the differential transformation from the
image plane to the groundplane is unknown, a per-
fectly robust, optimal subsampling solution is not
available. However, a spectrum of approaches to reso-
lution management are available based on the fre-
quency of update of the row_skip and col_skip
variables and how they vary with range for an assumed
flat world. They can be computed based on:

• the highest projected value of the ROI maximum
range, Rmax, based on the known speed limits of
the vehicle.

• the value of ROI maximum range, Rmax, for the
current computational cycle.

• the instantaneous value of range, R, at the current
pixel.

These options have been listed in order of increasing
speed and decreasing robustness.

In the least adaptive form of adaptive scan, the number
of pixels skipped in the horizontal and vertical direc-
tions can be set based on the average or worst case
expected value of the maximum range.

In the next most adaptive form, the image plane reso-
lutions are recomputed for each image based on the
current ROI maximum range. In the most adaptive
form, image plane resolutions can be recomputed
based on the instantaneous range image values. How-
ever, it can be awkward to vary the azimuth resolution
as a function of range if one chooses to process the
image by columns.

The ratio of maximum to minimum range is normally

small, so the variation in  (row_skip) is also small.
Under this assumption, a good compromise is to use
the worst case azimuth resolution and the instanta-
neously computed elevation resolution.

Although the flat world assumption may seem inap-
propriate on rough terrain, the use of it in adaptive
scan works well in practice.

3.5 Adaptive Sweep/Scan-Stereo Imagery

The principles of the earlier section could be applied
directly to the output of a stereo vision system. Yet,
because stereo also consumes computational
resources, it seems worthwhile to investigate whether
similar techniques can be employed inside of the ste-
reo algorithm itself in order to avoid computing range
pixels that subsequently would be eliminated anyway.

Traditionally, the stereo problem is cast as one of
determining the range for every pixel in the image.
Traditional stereo finds the range for each possible
angular pixel position. Conversely, our adaptive
approach to stereo finds the angular positions in the
image plane of each possible range value. It deter-
mines those pixels whose range value falls within a
small range window, and it does so without computing
the ranges of pixels which are not of interest. This
principle is sometimes calledrange gating in laser
rangefinders which employ it.

The motivation for the approach in the case of stereo is
the observation that the region of terrain which is
beyond the vehicle response distance usually corre-
sponds to a very narrow range in stereo disparity
space. The nonlinear relationship between range and
disparity also implies that range resolution is relatively
poor at high ranges, so the computation of the range of
low range pixels can be wasteful. However, as before,
the problem of selection, of determining membership
in a range gate without computing the range, seems
difficult.

3.5.1 Embedded Adaptive Sweep in Stereo Vision

For stereo ranging systems, the basic principle of the
range window can be converted to adisparity win-
dow1 for a stereo system because the range and dispar-
ity are related by the stereo baseline.

3.5.1.1 Disparity Window

The basic stereo configuration for perfectly aligned

1. There is a slight difference in the geometry of a stereo range
image (perspective) compared to a rangefinder image (spherical
polar). Therefore, a disparity window corresponds to a window on
the y coordinate and not the true polar range. In most circumstances,
this distinction can be safely ignored.

j = start_col;
while (j <= end_col+col_skip)

{
i = end_row;
while (i >= start_row-row_skip)

{
R = range(i,j);
if (R > Rmax )

break;
else if( R < Rmin )

{i -= row_skip; continue;}
else process_pixel_into_map();

i -= row_skip;
}

j += col_skip;
}

Figure 9: Adaptive Sweep Algorithm . The range
window is processed on a per column basis in order
to robustly extract the data of interest.
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cameras is given below. It is useful to remove the

dependence of disparity on the focal length by
expressing disparity as an angle. Define thenormal-
ized disparity thus:

Then, for a range window between 25 meters and 30
meters, and a stereo baseline of 1 meter, the angular
width of the corresponding disparity window is:

Thus, the range of disparities which corresponds to a
typical range window is roughly 1% of a typical cam-
era field of view (40°). In other words, the image
coordinates of corresponding points in both images are
very close to each other if the range of the point is
beyond the response distance.

3.5.1.2 Local Minimum Problem

In traditional area-based stereo, correlations (or any of
a number of other measures of similarity of two image
subwindows) are computed for a wide range of dispar-
ities. Then the algorithm searches along the curve gen-
erated for each pixel for the disparity, ,
corresponding to the global correlation maximum. The
case for normalized image crosscorrelation is illus-

trated below.

If, however, the search were limited to the disparity
window whose boundaries are  and  in the
above figure, the point of maximum correlation that
would be found would only be a local minimum. No
information other than the absolute value of the mea-
sure of similarity would indicate this. If a range image
were generated based on the results of this limited dis-
parity search, the image would contain:

• correct ranges for pixels whose true range hap-
pened to fall within the range window searched.

• incorrect ranges for pixels like the one illustrated
above which defeated our best attempts to identify
them at this stage of processing.

Nevertheless, the environment is often smooth, and
this smoothness leads to the property that correct
ranges tend to form large smooth regions whereas
incorrect ones do not as illustrated below.

It is well known that spurious matches occur funda-
mentally because regions which do not correspond
physically actually look more or less the same. Several
solutions to this repetitive texture problem help the sit-
uation somewhat but the simple technique of comput-
ing connected components and removing small
regions [43] works effectively and is computationally
free because a disparity image cleanup pass is required
even when a wide disparity range is searched.
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Figure 10: Stereo Triangulation. The relationship
between disparity , range , baseline , and focal
length  is derived from similiar triangles.
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3.5.2 Embedded Adaptive Scan in Stereo Vision

In the case of stereo vision, the situation for adaptively
changing resolution is more complex because range
resolution and angular resolution are coupled. That is,
once angular resolution is fixed, range resolution is
also fixed, yet each has independent constraints
imposed on it by the application. It is not possible, for
instance, to aggressively reduce horizontal image reso-
lution (as would be done with a range image) at the
input to stereo because range resolution will also be
dramatically and unacceptably degraded.

The least that can be done, however, is to compute the
degree to which the output range image would be sub-
sampled and then the latter stages of stereo (the stages
past the correlation computation) can simply ignore
the unwanted pixels. Before correlation, those
unwanted pixels may be needed to participate in com-
puting the correlations.

3.6 Results

The following two sections present performance
results for adaptive perception based on laser range
images and stereo vision. For these results, the vehicle
speed is 3 meters/second and the resolution of the gen-
erated terrain map is 0.75 meters in both horizontal
directions. An oversampling factor of 2 is also incor-
porated into adaptive scan as a safety margin to protect
against terrain undersampling.

While adaptive perception resamples a range image
for optimum coverage of the terrain, the specific
attributes of the range sensor and cameras used for the
following results are given in the table below:

3.6.1 Range Image Adaptive Perception

In a typical image, the pixels that are actually pro-
cessed by the adaptive perception algorithm form a
horizontal band that is jagged-edged and of varying
width. The width of the band decreases if the vehicle
speed increases because adaptive lookahead will move
the window up in the image where a smaller width
projects onto the same groundplane distance.

The following figure gives a sequence of range images

for a run of our navigation system simulator1 on very
rough terrain using a simulated rangefinder where the
pixels that were actually processed fall between the
thin black lines. On average, only 75 range pixels out
of the available 10,000 (or 2%) were processed per
image. In terms of areas imaged per second, the sys-
tem throughput is increased by a factor of 100 times,
or two orders of magnitude.

There are five range images arranged vertically on the
left. These are rendered as intensity images where
darker greys indicate increasing distance from the sen-
sor. The terrain map constructed by the perception sys-
tem is rendered on the right. The top figure shows the
map as an image where lighter greys indicate higher
elevations. In the center of the map is the vehicle at the
position where the 5th image was captured. The lower
right figure is the same terrain map rendered as a wire-
frame surface from the vantage point of the initial
position.

There are three hills in the scene whose range shadows
are clearly visible in the terrain map. In the first image,
the vehicle is accelerating but still travelling relatively
slowly. The range window is relatively wide and posi-
tioned near the bottom of the image. The first hill is in
the range window. In the second image, the second hill
is in the range window and the first hill has already
been processed. In the third image, the third hill is now
in the range window. In the fourth image, the vehicle is
driving past the first hill and is rolled to the right
because of it. This rolls the image to the left and the
algorithm compensates appropriately. In the fifth
image, the range window has moved past the third hill
to the flats beyond and a fourth hill is barely visible in
the distance.

1. The system performs identically on real images but simulated
ones were used here in order to illustrate several points in limited
space.

Table 1: Sensor Parameters

Attribute
ERIM

rangefinder
CCD

camera

Image Rows 64 640

Image Cols 256 486

Hor. Field of View 80° 20°
Vert. Field of View 30° 20°
Hor. Angular Res 0.3125° 0.0412°
Vert. Angular Res 0.4688° 0.0312°
Frame Rate 2 Hz 30 Hz

Figure 13: Adaptive Rangefinder Perception.  The
processing of five range images is illustrated as the
vehicle drives through an obstacle course of three
hills.
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Actual perception performance is given in the tables
below for a series of images of flat terrain. In the table,
the nonadaptive value corresponds to the result
obtained by processing all pixels in the ERIM range
image. The adaptive value is the value obtained by our
range image algorithm:

The results do not scale linearly with pixels processed
because the adaptive result includes a constant setup
time. Nonetheless, the adaptive result is 16 times faster
than the nonadaptive result and if the ERIM sensor
had higher angular resolution, the improvement would
be proportionally better. The system uses barely ade-
quate spatial resolution and eliminates redundant mea-
surements and hence achieves minimum throughput.

3.6.2 Stereo Vision

The following figure illustrates the operation of
embedded adaptive stereo on two horizontal baseline
input images. These are images of a barren ravine road
near CMU taken from inside the ravine. The initial
input images appear at the left. To the right of these are
the nonadaptively processed disparity and range
images. To the extreme right are the adaptively pro-
cessed disparity and range images. The disparity
images are shown to demonstrate the spurious matches
which are caused by incorrectly chosen extrema in the
correlation versus disparity curves.

A breakdown of this run is shown in the table below:

4 Terrain Mapping

This section discusses the motivation behind, and
implementation of our highly efficient approach to ter-
rain mapping. We discuss methods for elimination of
the need to copy and/or interpolate the data structure
to incorporate incoming new data, methods to com-
pensate for sensor motion, and methods for the repre-
sentation of terrain shape uncertainty.

4.1 Introduction

Terrain mapping is the process by which surface
descriptions, obtained from different vantage points,
are accumulated into a consistent environmental
model [22]. In order to provide the rest of the system
with a single, coherent, uniform density data structure
we transform images into a regularly-spaced cartesian
grid called aCartesian Elevation Map (CEM) or
simply amap.

4.1.1 Problem

In our early attempts to map terrain for a fast moving
outdoor vehicle, we encountered severe computational
inefficiency problems for several reasons:

• The treatment of the motion of the vehicle through
the environmental model necessitated a physical
shift of data that was very expensive.

• Interpolation of the values of unknown cells from
their neighbours was very expensive.

• Massive distortions of reality due to sensor motion
were introduced as the vehicle speed increased.

4.1.2 Solution

We have developed methods to manage these prob-
lems that include:

• A special terrain map data structure and access
routines.

• Real-time methods for processing sensor data.

Table 2: Rangefinder Adaptive Perception
Performance (SPARC 20)

Attribute Nonadaptive Adaptive

Pixels Processed
Per Image

16384 75

Run Time 0.352 secs 0.022 secs

Figure 14: Adaptive Horizontal Baseline Stereo .
The incorrect disparities due to incorrect matches are
cleaned up with an efficient filter.

Input Images Nonadaptive Adaptive

Range RangeRight

Left Disparity Disparity

Table 3: Stereo Adaptive Perception Performance
(SPARC 20)

Attribute  Nonadaptive Adaptive

Output Rows 120 48

Output Cols 128 128

Disparities 60 10

Preprocessing 102 msecs. 41 msecs.

Correlation 683 msecs. 69 msecs.

Postprocessing 754 msecs. 74 msecs.

Total Runtime 1539 msecs. 203 msecs.
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4.2 Preliminaries

4.2.1 Terminology

In the map, each cell encodes  where the z coordi-
nate is unique for any pair i,j and is referenced to some
fixed coordinate system called the navigation coordi-
nate system with respect to which the vehicle moves.
Individual elevation buckets in a terrain map are called
cellsto distinguish them from range imagepixels.

4.2.2 Subproblems

Once we have implemented a wrapping terrain map
data structure, we will face a new problem in distin-
guishing data from two different regions of space that
happen to fall into the same cell. We will be able to
manage this problem through the introduction of a
new data field - the “age” of a cell.

4.2.3 Assumptions

Under some circumstances, natural outdoor terrain is
well approximated by a surface expressed as z = f(x,y)
where the z axis is aligned with the local gravity vec-
tor. An important exception to this assumption is trees
and other large vegetation. We will assume that either
we operate in barren terrain or that we can safely fill in
the space beneath branches in our models. Thus, the
use of a terrain map normally means that the2-1/2 D
world assumption is being adopted.

4.2.4 Design

Our implementation includes the following elements:

• A 2D ring-buffer implementation of a terrain map
that accommodates vehicle motion through mod-
ulo arithmetic indexing.

• Methods for processing perceptual data that never
require copying, traversal, or interpolation of the
terrain map.

• Straightforward methods to compensate incoming
geometry for camera motion.

4.2.5 Implications

Before these methods were first adopted, over half of
our processor time was consumed in simply managing
the terrain map. That is, map management was more
expensive than perception and planning combined.
After they were adopted, the cost of terrain map man-
agement became so small that it was insignificant.

4.3 Wrappable Map

Using 30 meters of lookahead in planning, 1/6 meter
resolution, and 20 bytes of memory per map cell, over
1/2 megabyte of memory is required to store a typical
map. If this map is stored as a physically coherent
block of memory, it must be physically shifted and
copied after the acquisition of each image in order to

account for the relative motion between the vehicle
and the terrain.

4.3.1 2D FIFO Queue

Our solution to this problem is a classical one from
computer science - the FIFO queue. A simple array
accessed with modulo arithmetic suffices tologically
scroll the map as the vehicle moves byphysically
wrapping around in memory. As in all FIFOs, the
queue size must be chosen to exceed the worst case
amount of memory required.

Let the rows and columns of the terrain map be
aligned with the axes  of the navigation frame
and be divided into cells of resolution  by . Let
the map width and height be  and  respectively.
The indices into the array are determined by modulo
arithmetic as follows:

The operator  is the least integer function and
 is the floating point remainder function.

The operation of the technique when applied to three
successive images is indicated below or both a physi-
cally scrolling and a wrappable map data structure.
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Figure 15: Wrappable Map Indexing. Using modular
arithmetic, all of 2D space maps, with wraparound
into a finite map.
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Figure 16: Wrappable Terrain Map . Data remains
in the map until it is overwritten by incoming data
from somewhere else that happens to fall in the
same place in memory.
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4.3.2 Cell Tags

This approach creates new problems. The mapping
from world coordinates to map indices is multiply
defined and therefore the inverse mapping is not a
function. In mathematical terms, the coordinate trans-
form is notonto.

An infinity of points in global coordinates correspond
to a single cell in the map, so remnants of images of
arbitrary age may remain in the map indefinitely. Sup-
pose the elevation at the point (15, 25) is needed and
the map is 10 by 10. Then the point (5, 15) may also be
in the map. A query for the elevation at (15, 25) may
get the elevation at (5, 15) instead.

We manage this problem in a very simple way.
Although all data remains in the map until it is over-
written, each entry is tagged with the distance that the
vehicle had travelled since the start of the mission at
the time the pixel was measured. The interface rou-
tines then perform two important hidden functions:

• If the tag of the last update is too old, the interface
routines report the cell as empty. This makes it
impossible for old data to poke through the holes
in new data.

• When the tag of new incoming data is significantly
different from the one in the cell, it indicates wrap-
around, so the statistical accumulators in the cell
are first cleared. This ensures that two physically
distinct regions of space are not confused and
merged together.

4.4 Sensor Motion Compensation

By the time an image is received by the perception
system, the vehicle may have moved a considerable
distance since the image was acquired. So, the pro-
cessing of the geometry in the image must account for
the exact position of the vehiclewhen the image was
taken.

Further, some sensors such as scanning laser range-
finders may require significant time to scan the laser
beam over the environment. In the worst case, there is
a distinct vehicle pose associated with each pixel in a
ladar image. If this motion is not accounted for, the
terrain maps computed from images will be grossly in
error.

4.4.1 Smear and Offset

The worst case is a high angular velocity turn. If
rangefinder scanning takes about 0.5 secs and the vehi-
cle is travelling at 6 mph and turning sharply, its angu-
lar velocity can be as high as 1 rad/sec, so an obstacle
can be smeared by 30° in a rangefinder image at high
speed. Similarly, if the input latency is 0.5 secs and it
is not accounted for, objects will also be shifted by
30° in a rangefinder image at high speed. Of course,
the range to an object will also be overestimated by the
distance travelled in 1 second.

4.4.2 Pose History and Lookup

We remove this distortion of range images is removed
by maintaining a history of vehicle poses sampled at
regular intervals for the last few minutes of execution.
When a pixel is processed, we search the vehicle pose
FIFO for the precise vehicle position at which each
range pixel was measured.

4.5 Interpolation

The terrain map is not interpolated at all because inter-
polation requires a complete traversal which is too
expensive to perform. Instead, the responsibility for
interpolation is left with the users of the map.

4.5.1 Impact of Vehicle Maneuverability

Spatial interpolation of the entire map is wasteful
because vehicle maneuverability constraints may pre-
vent many places from being reachable. Hence, the
data in such regions is not necessary at all and interpo-
lating there is a waste of resources.

4.5.2 Impact of Occlusion

Note that occlusion is inevitable in rough terrain, so
spatial interpolation can never succeed fully without
unjustified and harmful smoothness assumptions.

4.5.3 Temporal State Interpolation

We will see later that the path plannerinterpolates
vehicle state in timeinstead of interpolating the map in
space. Further, the assessment of hazards is based on a
time signal which may or may not be known at a par-
ticular point in time. The system is robust by design to
unknown signal values and, as a by-product of its pro-
cessing, computes an assessment of how much geome-
try is actually unknown and reacts accordingly.

4.6 Errors and Uncertainty

Practical solutions require methods to deal with both
systematic and random error sources that corrupt the
incoming data and its eventual representation.

4.6.1 Image Registration

A simple image registration algorithm is used in situa-
tions where edge artifacts are introduced by various
forms of position and range sensor errors. The basic
mechanism is to compute and remove the average ele-
vation deviation between the overlapping regions of
consecutive images.

Currently, only the elevation,  coordinate is matched
and this seems to work best in practice. When the z
deviation of two consecutive images is computed, it is
applied to all incoming geometry samples in order to
remove the mismatch error.

z
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4.6.2 Elevation Uncertainty

After the mean mismatch error is removed, there are
still random errors in the elevation data. In order to
represent the variation in geometry in a single map cell
and to improve signal to noise ratios, ascatter matrix
is computed [28] incrementally as each new range
pixel is merged into the map. The scatter matrix is
defined as:

The advantage of this incremental approach is that the
mean and standard deviation of the evolving 3D distri-
bution is available at any point in time from some sim-
ple formulas. Specifically, the deviation in z is useful
for computing the uncertainty in the hazard estimates

generated by the path planner.

4.7 Results

RANGER has been integrated with a stereo vision sys-
tem at the Jet Propulsion Laboratory [41] on a
HMMWV. The following figure  shows a short auton-

omous excursion along a dirt road bounded by trees
and bushes on the right and a ravine on the left. The
sequence of images to the left are the stereo range
images. To the right are intensity images of the scene
corresponding to the range images.

The images are positioned in correspondence with
their associated position in the terrain map. The terrain
map, drawn in the center, is rendered with intensity
proportional to elevation. The path followed is drawn
leading to the position of the vehicle near the end of
the run. The run terminates at the end of the road. Two
distinct obstacle avoidance maneuvers occur. The first
is a left turn to avoid a large tree and the second is a
recovery right turn to prevent falling into the ravine.

5 Path Planning

This section discusses the motivation behind, and the
implementation of our predictive control approach to
trajectory representation, generation and search. We
will call the collection of these three capabilitiespath
planning in our context.

Our approach will be a departure from precedent that
formulates the classical planning problem of deciding
where to go largely in terms ofpredictive control. This
approach will have advantages whenever speed is high
enough for dynamics to matter or when nonholonomic
motion constraints are operative. Our approach is sim-
ilar to the approach to cluttered environment planning
adopted in [15] and it echoes earlier work presenting a
duality between feedforward control and deliberative
planning [46].
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Figure 17: A short cross country excursion. (a) shows a sequence of range images from a stereo vision system
mounted on a HMMWV vehicle. (c) shows a sequence of intensity images from one of the cameras. (b) and (d)
show an overhead view of an elevation map that was generated.
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5.1 Introduction

The local intelligent mobility problem can be charac-
terized in terms of a search of the immediately visible
environment, scanning for hazards, and seeking a goal
while simultaneously avoiding any hazards that
appear. Regardless of many other design variables, all
or part of the local environment is typically searched.

5.1.1 Problem

Our initial attempts to search trajectories were
founded on classical C-space techniques [40]. These
attempts were very slow, brittle, and inelegant, but
they were educational. In our early work, we encoun-
tered the following major problems:

• computational inefficiency: There was not
enough time to decide what to do. Conversely, the
inefficiency of computations limited vehicle
speeds that could be safely achieved.

• command following problem: Specific trajecto-
ries used to avoid obstacles often could not be exe-
cuted reliably or stably.

Our computational inefficiency problem was caused
by a treatment of vehicle trajectories that was expen-
sive and often wasteful. Our command following prob-
lem arose from issuing commands to the vehicle that
were either wrong or unrealistic.

Further, consideration of these unrealistic trajectories
in search tended to waste computational resources,
thereby increasing reaction time and aggravating the
first problem of computational inefficiency.

After conducting a study of some related real-time
issues [32], we concluded that classical C-space plan-
ning techniques were ineffective in our domain. A new
approach was necessary.

5.1.2 Solution

Motion planning is a problem involving search. Recall
that heuristic search efficiency can be improved by
appropriate ordering of constraints because some have
more power to limit search than others. Ourpredictive
control formulation amounts to a constraint ordering
heuristic that improves the efficiency of search. The
elements of our approach are:

• We represent trajectoriesimplicitly in terms of the
commands that are issued to the vehicle actuators,
and ...

• The corresponding spatial trajectory is computed
from a highly accurate state space vehicle model
that guarantees mechanical feasibility by construc-
tion.

Through this technique we completely bypass many of
the difficulties of trajectory generation and search for
nonholonomic vehicles with real actuator response
characteristics.

5.2 Preliminaries

Before proceeding to describe our technique, a few
necessary terms will be defined.

5.2.1 Terminology

We will use a single point on the vehicle called theref-
erence point to describe its motion. A spatial descrip-
tion of the continuous sequence of positions achieved
or considered will be called apath, and when the time
dimension is added, atrajectory .

5.2.1.1 Mechanical Feasibility of a Trajectory

The kinematics constraint is a term used to express
the fact that steering mechanisms may be unable to
achieve arbitrarily small curvatures. Any path which
respects these mechanical limitations of the steering
system is said to bekinematically feasible.

The dynamics constraint is a catchall term used to
express the fact that system behavior is governed by
differential equations. Any trajectory which satisfies
this set of constraints is said to bedynamically feasi-
ble.

A trajectory ismechanically feasible if it is both kine-
matically and dynamically feasible. Such a trajectory
describes a physically achievable motion.

A trajectory which is safe for the vehicle to execute
(i.e free from significant hazards) is calledadmissible.

5.2.1.2 Representations and Spaces

It will be necessary to distinguish several alternate
forms of trajectory representation. In general, the sys-
tem has available to it at any time a space of possible
commands that it can send to the vehicle controller for
execution. This space of commands will be called the
command space and a point in this space is acom-
mand vector.

Commands may or may not map directly onto the
vehicle actuators, but when they are expressed directly
in terms of actuated variables, they span theactuation
space. In our case, vehicle commands map more or
less directly onto the speed and steering actuators.

When these commands are applied to the vehicle actu-
ators, the vehicle kinematics, dynamics, and the
mechanics of terrain following cause it to traverse a
unique trajectory. We can represent this trajectory in
terms of the time evolution of a vector quantity called
the vehicle state vector,which spans an abstractstate
space.

Nominally, the state vector includes the position and
orientation of the vehicle body, and the positions of
any articulations. Depending on the order of the sys-
tem dynamics, it will also include time derivatives.

If time dependence is removed from the description by
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representing only the geometry of the motion and time
derivatives are eliminated from the description, the
resulting description turns out to be aconfiguration
space (C-space).

5.2.1.3 Command Versus Response

A distinction which is independent from representa-
tion is the distinction betweencommand andresponse.
The first is a specification of requested motion
whereas the second is the actual response to that
request. The degree to which these two agree is one
measure of the fidelity of control that has been
achieved.

5.2.1.4 Duality of States and Events

It will be useful to distinguish two approaches to
dynamic system modeling that are analogous to the
duality between actions and states that has been well
discussed in the AI literature [25].

In a state based representation, system motion is
viewed as a series of states that are altered by events.
In anevent based representation, the state of the sys-
tem is derived implicitly from its initial state and all
events that have occurred up to a particular point.

While the choice of one representation over another
does not affect the capability for expression, it does
affect the relative ease with which certain properties
are represented and reasoned about.

5.2.1.5 C-Space Methods

Robot planning has commonly used an abstraction
known asconfiguration space (C-space) [40] - a
space spanned by any set of parameters that uniquely
describe the configuration of the robot.

Relatively speaking, the determination of trajectory
admissibility (safety) is fairly trivial in C space but
significant work is required to ensure feasibility.

C-space methods, like state based methods, require an
inverse model that computes the command trajectory
that corresponds to the chosen C-space trajectory.

Such a model cannot be easily inverted and it may not
be invertible at all for an arbitrary C-space curve.
While C-space planning is a powerful paradigm, it is
not an effective technique in problems where the
model is difficult to invert. Such situations include
cases where the system:

• requires a dynamic model1, or
• is nonlinear, or
• is underdetermined (nonholonomic).

1. We will consider any situation where a derivative is required in a
state vector to compute accurate trajectories to be one where a
“dynamic” model is required. The need for one increases as speed
increases.

5.2.1.6 Command Space Methods

The command space described earlier represents the
space of alternative commands that the vehicle can
receive. Such commands can always be executed in
the sense that a legitimate, unique, computable
response exists for all commands - although the
response may not follow the command closely.

In this case, the determination of trajectory feasibility
is fairly trivial whereas it requires some work to ensure
that it is admissible.

Command space methods, like event based methods,
require aforward model that computes the C-space
trajectory that corresponds to the chosen command
trajectory. Both forms of model are indicated  below.

5.2.2 Subproblems

5.2.2.1 Trajectory Generation Problem

The command following problem arises either because
the command itself was infeasible to begin with, or the
controller performance is inadequate. If we choose to
blame the trajectory rather than the controller, we will
call the predicament thetrajectory generation prob-
lem.

Legitimate constraints are imposed on trajectories by
vehicle limitations that amount to very strong con-
straints on the feasibility of arbitrary trajectories
expressed in configuration space. Such constraints
include:

• actuator and plant kinematic and dynamic limits in
the form of braking and steering maneuverability.

• underactuation of the vehicle
• processing and communication delays

Consider a simple situation where the vehicle com-
mand space consists of speed , and curvature

, and the configuration space consists of position
 and heading  in two dimensions.

In attempting to generate trajectories that are feasible,
several difficulties will emerge because the relation-

Figure 18: Forward and Inverse Models . These
have analogous definitions in robot manipulator
dynamics.
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ship between a C-space trajectory and its command
space equivalent is multivariate, nonlinear, coupled,
and underdetermined.

The equations which map command space to C-space
in a flat 2D world are given below:

We will call these equations aforward model. By
contrast, an inverse model would be a solution to the
problem of computing the A space curve from the C
space curve. That is, the inverse model generates
clothoid curves for Ackerman steered vehicles.

The generation of clothoids is a difficult problem that
is further aggravated by the need to account for
dynamics and latencies. Note however, that the for-
ward model provides the inverse correspondence trivi-
ally, and in its integral form, is simply the equations of
dead reckoning. The trajectory generation problem
here is only difficult in one direction.

We have

5.2.2.2  Vehicle Model Fidelity Problem

It is often necessary for the system to understand the
degree to which a particular motion can be accom-
plished. Poor fidelity of this aspect of the vehicle
model means that the system will not understand its
own motion. This in turn will lead to:

• unreliablility of obstacle avoidance
• instability of path following

The perceptual horizon of any vehicle is the maximum
range of the perception sensor. At moderate speeds
(<10 mph), it tends to be roughly equal to the worst
case distance it takes for the steering actuator to move
to its commanded position.

When dramatic steering changes are required to avoid
a hazard, the navigation system operates almost
entirely in the regime where curvature is continuously
changing. This observation leads to the conclusion that
the use of arc rather than clothoid models of Acker-
man steering are incorrect at even moderate speeds.

The following figure indicates accurately the differ-
ence between an arc model and a clothoid model of
vehicle response to a command to switch from a hard
left to a hard right turn. The maximum rate of the

steering wheel is 30° per second.

Suppose an obstacle existed to the left of the vehicle
and it issued a hard right command to avoid it. The
response to such a command is the clothoid shown, so
the vehicle would drive straight into the obstacle -
being fundamentally unable to avoid it at the current
speed.

5.2.3 Design

Our approach to managing these problems is to:

• Invert the order in which the common planning
constraints of feasibility and admissibility are sat-
isfied through a forward modeling approach to tra-
jectory generation.

• Employ an accurate state space model of vehicle
response as the forward model.

It turns out that it is far more efficient to search for an
admissible trajectory in a space of feasible ones than
vice-versa and that sufficiently accurate models of
vehicle motion are relatively easy to generate in state
space form.

5.2.4  Implications

An important implication of the approach is that the
generated trajectories are mechanically feasible by
construction. While the input commands to the model
respect only the maximum curvature constraint, the
output state estimate is consistent with the response of
all actuators and the body kinematics of motion over
rough terrain.

Thus, we have simplified the computation of the corre-
spondence between command and response. This sim-
ple correspondence available through our control
formulation combined with high fidelity models intro-
duces the following benefits:

• Reliability : System reliability is enhanced
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Figure 19: Mapping from Command Space to C
space . These are also the equations of dead
reckoning.
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Figure 20: Model Fidelity at 5 m/s speed: The
clothoid model correctly accounts for how long
it really takes to reverse curvature.
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because dynamic feasibility is inherent in forward
modeling approaches.

• Accuracy: Higher fidelity models make it possible
to drive close to hazards when necessary and to
track paths with low error.

• Stability : Vehicle control, whether for the purpose
of obstacle avoidance or goal-seeking, remains sta-
ble at high speeds.

• Performance: Computational complexity of plan-
ning is reduced because the dynamics constraint is
a valuable heuristic to limit search. This reduction
in complexity leads to enhanced response times
and higher speed motion.

5.3 Trajectory Representation &
Generation

We will represent response trajectories implicitly in
terms of the commands to which they correspond.
When necessary, we will use a forward model to gen-
erate the response from the command through a pro-
cess classically calledfeedforward.

The process which converts a command space trajec-
tory to a state space trajectory is the solution of a con-
strained multidimensional differential equation which
we will call thestate space model.

5.3.1 Linear State Space Model

For a linear system, the conventional state space
model of a system is the following two matrix equa-
tions:

Note in particular thatthe first equation is a differen-
tial one. This kind of model is known classically as a
multivariate state space system. It can be mapped
onto our problem as follows. Let us assume the system
is linear and describe the function of the matrices and
vectors. The system of equations can be represented in
a block diagram as follows:

The system dynamics matrix, A, models actuator
constraints, kinematics, and dynamics, and body
dynamics. It propagates the state of the vehicle for-
ward in time. Our system model is based on the

assumption that velocity can be considered constant
for a small period of time.

The input distribution matrix , B, models communi-
cation delays and any kinematics that relate command
space to actuation space1.

The command vectoru includes vehicle steering and
speed commands as well as command signals to any
articulated sensor heads. Generally, alternative com-
mands can be any time-varying command vectoru(t).

The terrain disturbancesud model the terrain contact
constraint2. Alternately, an abstract kinematic equa-
tion of the formg(x) = 0 can be used. Terrain geome-
try is represented in a terrain map data structure that is
generated by the perception system.

The state vector x includes the vehicle steering,
speed, and the state of motion of the vehicle body and
any articulated sensor heads. It includes the 3D posi-
tion and 3-axis orientation of the vehicle body as well
as its linear and angular velocity.

Theoutput vector y can be any function of both state
and inputs. It will be discussed later in the context of
obstacle avoidance.

5.3.2 Nonlinear State Space Model

The actual system model used is nonlinear. Funda-
mentally, this is because the actuators move with the
vehicle, so the transformation from command space to
state space depends on vehicle attitude and hence on
state.

1. For example, it would be the inverse Jacobian in resolved-rate
control that maps cartesian inputs onto joint velocities.
2. Of course, at sufficiently high speeds, the vehicle need not remain
in contact with the terrain.

dx = A x + B u

y = C x + D u
dt

B
u x

+

+
dt∫

A

ud

y

Figure 21: Multivariate Linear System Block
Diagram . This model can be used to represent a
vehicle driving over terrain.

C

Figure 22: Forward model . This model is used to
predict vehicle state given actuator commands ( ,

). The output state contains rate of heading ( ),
vehicle velocity( ), heading( ), pitch( ), roll( ) and
position ).
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The nonlinear model computes trajectories resulting
from vehicle commands. The inputs to the model are
the steering angle , (corresponding to the desired
path curvature), and throttle , (corresponding to
desired speed) and an elevation map of the terrain
ahead of the vehicle.

The commands are first delayed through a FIFO queue
to account for communications and processing and
passed through a model of the actuator dynamics. In
the case of the throttle (speed) the influence the gravi-
tational load is so significant that it must be modeled.

The predicted steer angle response  is passed
through a model of the steering column to predict the
actual curvature , of the path traversed. The product
of curvature and speed provides angular velocity .
The linear velocity  is converted to world coordi-
nates to generate the components of vehicle velocity
along the world frame axes and then integrated to pro-
vide position .

Pitch  and roll  are determined by placing the vehi-
cle wheels over the terrain map and allowing the vehi-
cle to settle. Heading  is computed by integrating the
angular velocity after converting coordinates to the
world frame.

5.3.3 State Space Simulator

Thus, the basic simulation loop can be written as fol-
lows. At each time step:

• simulate suspension - determine attitude from ter-
rain geometry and position

• simulate propulsion - determine new speed from
command, state, and attitude

• simulate steering - determine angular velocity
from steering and speed

• simulate body - dead reckon from linear and angu-
lar velocity and time step

The positions of distinguished points on the body,
called reference points, are maintained in navigation
coordinates throughout the simulation. The suspension
model that is used is based on assumptions of rigid ter-
rain and suspension and it computes the attitude of the
vehicle which is consistent with terrain contact.

Propulsion is modeled as a proportional controller
with gravity compensation. The steering model is
based on an angular velocity limit on the steering
wheel and the bicycle model of steering kinematics.
Body dynamics are simulated using the 3D dead reck-
oning equations.

5.4 Trajectory Search

The basic search process used is generate and test. WE
employ this technique while conducting acommand
space search over the feasible set of response trajecto-
ries.

The system considers a number of command space

alternatives which span the entire set of commands
available for the vehicle at some gross resolution.
These are then converted to response state space and C
space trajectories through feedforward and subse-
quently evaluated by both obstacle detection and goal
seeking.

For a rigid-bodied vehicle moving in three dimen-
sional space, the C-space can be considered to be a
subset of state space - that is, the coordinates of the
vehicle control point expressed as (x, y, z, roll, pitch,
yaw). The command space for a conventional automo-
bile is spanned by the variables of speed and path cur-
vature and these variables map more or less directly to
the controls of throttle and steering.

5.4.1 Feedforward

By the definition of state, the system can be projected
arbitrarily far forward in time based only on the com-
mand signal, terrain contact constraint, and time.
Hence, the system model constitutes astate space
simulator as shown below.

The set of trajectoriesxi(t) which:

• satisfies the model equations (dx/dt = A x + B u )
• maintains contact with rigid terrain (g(x) = 0)

is called thefeasible set.

The constraints are satisfied by construction through
feedforward of the system dynamics and altering the
vehicle attitude at each step in the simulation to
enforce terrain contact.

5.4.2 Predictive Control vs. C Space Planning

The differences between classical C space planning
and command space planning are indicated in the fol-
lowing figure. On the left of the figure, the search of
planning alternatives is expressed inconfiguration
space. A commonly invoked assumption is the expres-
sion of obstacles as discrete points in this space. When
a clear region or set of points has been found in front
of the vehicle, atrajectory generation algorithm is
invoked to map C space onto the vehicle command
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Figure 23: State Space Simulator . Because a
state space model retains state, it can be used to
project motion that corresponds to a command
arbitrarily far into the future. The inverse model on
the right is never explicitly evaluated.
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space and these commands are sent to the hardware for
execution.

On the right of the figure is thepredictive control
approach. Note first that the direction of the arrows are
reversed. The inverse system model is never evaluated
explicitly. The system simply remembers the corre-
spondence of command to response trajectories and
inverts this list of ordered pairs.

It is clear from the figure that state space is, in fact, a
superset of configuration space - including all C space
variables plus any derivatives that appear in the system
dynamic model.

5.5 Results

While it is difficult to compute the shapes of regions in
configuration space in closed form, it is relatively easy
to write a computer program to enumerate all possibil-
ities and fill in boxes in a discrete grid which repre-
sents C-space at reduced resolution. The three
dimensional C-space for an Ackerman steer vehicle
for an impulse turn at 4.5 m/s was generated by this
forward technique.

The results are plotted below in heading slices of 1/16
of a revolution. Symmetry generates mirror images
along the heading axis, so two slices are plotted on
each graph. The maneuver is a turn from zero curva-
ture to the maximum issued at time t = 0. A dot at a
particular point (x,y) in any graph indicates that the
heading of the slice is obtainable at that position.
There are 16 slices in total of which 6 are completely
empty (i.e the vehicle cannot turn around completely
in 20 meters). The total percent occupancy of C-space
is the ratio of the total occupied cells to the total num-
ber of cells. This can be computed from the figure to

be 3.1%.

So 97% of the C-space of the vehicle is infeasible if
the limited maneuverability of the vehicle is modeled.
The maneuverability is limited by both the nonzero
minimum turn radius and the steering actuator
response. Note that occupancy of C-space does not
account for higher level dynamics. There are severe
constraints on the ability to “connect the dots” in these
graphs which aggravate the situation further.

6 Goal Arbitration

This section discusses the motivation behind, and the
implementation of our optimal control approach to
goal arbitration. The proposed approach is similar in
formulation to work in classical optimal control [37]
in that it seeks to determine control signals that will
both satisfy constraints and optimize a performance
criterion.

6.1 Introduction

In addition to trajectory search, the local intelligent
mobility problem involves an aspect of goal arbitra-
tion. For example, given a goal path to follow and the
simultaneous goal of avoiding obstacles, it is likely
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involves a difficult inverse model. Instead, a
representative number of command space
alternatives are transformed, through feedforward,
to state space, and then to C space and then
checked for intersection with obstacles.

Space
Model

Generator

-10 0 10
X Coordinate

0

10

20

Y
 C

oo
rd

in
at

e

-10 0 10
X Coordinate

0

10

20

Y
 C

oo
rd

in
at

e

 1*PI/8  PI/16

-10 0 10
X Coordinate

0

10

20

Y
 C

oo
rd

in
at

e

-10 0 10
X Coordinate

0

10

20

Y
 C

oo
rd

in
at

e

 3*PI/8  PI/16

-10 0 10
X Coordinate

0

10

20

Y
 C

oo
rd

in
at

e

 5*PI/8  PI/16

-10 0 10
X Coordinate

0

10

20

Y
 C

oo
rd

in
at

e

 4*PI/8  PI/16

 0*PI/8  PI/16

 2*PI/8  PI/16

Figure 25: Ackerman Steer Configuration
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s, 97% of the configuration points in front of the
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and frequently the case that these goals will conflict.
More plainly, an obstacle may appear directly on the
goal path.

We will discuss here our mechanism for dealing with
this conflict as well as the manner in which candidate
trajectories are ranked for both their obstacle avoid-
ance and goal-seeking potential.

6.1.1 Problem

Let us define thestrategic goal as some path or posi-
tion to be followed or achieved and thetactical goal as
that of simultaneously avoiding all hazardous condi-
tions. If both goals are implemented as independent
behaviors they will naturally disagree on the com-
mands to the actuators. This legitimate and inevitable
conflict will be called theactuator contention prob-
lem.

6.1.2 Solution

Solutions to this problem must decide how to either:

• Merge both commands together to generate a
third.

• Give one behavior priority over the other.

Regardless of how this is done, the general technique
involved isarbitration . Several approaches have been
used ranging from subsumption of one behavior in
favor of another [8] to consensus-building and voting
techniques [47].

A spectrum of approaches exist with extremes that
correspond roughly to bureaucracy and democracy.
Our approach is somewhat intermediate between these
extremes. It recognizes that:

• Some behaviors, like obstacle avoidance, must be
given absolute veto power over unsafe trajectories.

• Others, like goal seeking can profitably optimize
performance through search and ranking of the
remaining alternative trajectories.

6.2 Preliminaries

6.2.1 Terminology

Any number of potential hazardous situations may
exist along a trajectory. Some of these hazards include:

• discrete obstacles like rocks, holes, and trees that
would damage the vehicle through collision.

• hazardous configurations like extreme pitch and
roll angles that would damage the vehicle through
tipover.

• hazardous states like extreme lateral or longitudi-
nal acceleration which could damage the vehicle
through tipover or loss of traction and control.

• traction traps like wheel sized holes, high center-
ing terrain, and regions of ice or slippery terrain
that would prevent further vehicle motion.

• catastrophic falls like ravines and cliffs that could
damage the vehicle through complete loss of ter-

rain contact, followed by ballistic motion, fol-
lowed by catastrophic collision.

A path isadmissible if it would be safe for the vehicle
to traverse it.

6.2.2 Design

Our basic approach is to notice that the mobility prob-
lem can be expressed in the familiar terms of optimal
control theory and to then apply the associated tech-
niques and abstractions of this theory.

Architecturally, the tactical control layer consists of
coexisting hazard avoidance and goal seeking behav-
iors that are managed by an arbiter to avoid conflict as
shown below:

In fact, the seeking and/or avoidance occur when the
arbiter chooses an alternative and sends it to the con-
trol layer. The other two entities simply rank the can-
didate trajectories that are given to them.

6.2.3 Implications

Our approach has the advantage that some limited
degree of local intelligent behavior emerges naturally.
For example, wall or other extended feature following
emerges because optimization will keep the vehicle
close to an obstacle between it and the goal. However,
once a break in the extended feature appears, the sys-
tem will immediately seize the opportunity to reac-
quire the goal path.

6.3 Arbitration

Note that the satisfaction of either goal may be
expressed as a constraint or as some utility function to
be optimized. For example, we could optimize safety
by choosing the safest overall candidate trajectory or
we might rigidly enforce a path to follow as a con-
straint. We believe the reverse is more appropriate.
That is, hazard avoidance is a constraint and goal seek-
ing is to be optimized.

Hence, the task of safe navigation can be expressed in
classical optimization terms. The navigator must

Strategic Layer

Figure 26: Optimal Control Arbitration . The
tactical control layer consists of a trajectory
generator (not shown), two purposeful behaviors,
and an arbiter to coordinate them.
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achieve some useful goal while simultaneously satis-
fying the constraint of avoiding damage to the vehicle
or its payload and the constraints of limited vehicle
maneuverability.

6.3.1 Feasible Set

We will express this optimal control problem as fol-
lows. Let ui(t) be a candidate command signal. The
response to this candidate command, denotedxi(t), is
generated from the nonlinear system dynamics and
terrain following models:

Let the set of mechanically feasible trajectories,
denotedXf, be those which satisfy the above two
equations. The response trajectory is a member of this
feasible set:

Note that the space of possible commands to issue is
continuous. Rather than deal with variational calculus,
we will sample the feasible set of trajectories at some
practical resolution that ensures adequate coverage of
the set and search the alternatives exhaustively.

6.3.2 Output Vector

The hazard vector, y, consists of rankings of every
point along a response trajectory for its relative safety
in terms of several of the hazard conditions mentioned
earlier. By and large, safety can be determined kine-
matically from the state and the terrain map. Each ele-
ment of the vector corresponds to a different hazard.

Let us define the safety threshold vector,ysafe, as the
constant vector whose elements are the maximum safe
values of each element of the hazard vector. A trajec-
tory is safe when:

Let the set of safe trajectories, denotedXa, be those
whose associated hazard vectors satisfy the above
equation. Such a response trajectory is a member of
theadmissible set:

6.3.3 Optimal Control Problem

While there are many potential forms of strategic goal
that might be assigned to the vehicle, let us assume,
without loss of generality, that agoal trajectory, xgoal,
of some form has been assigned.

Further, let us define agoal functional, L[ xi(t)], to be
an arbitrary expression of how well a particular trajec-
tory follows the goal trajectory. If we use the inte-
grated length of the vector difference, we might write:

The optimal control problem can now be represented
as follows:

6.4 Adaptive Regard

Although predictive control manages the complexity
of trajectory search, it does nothing to minimize the
cost of evaluating a particular trajectory for its safety
and/or goal seeking potential. Efficient trajectory eval-
uation is the subject of this section.

We minimize wasted computation in trajectory evalua-
tion by selectively processing only the data that mat-
ters along the trajectory in the environmental model.
Known here asadaptive regard, the technique is the
analog of our adaptive approach to perception in that it
minimizes references to the environmental model just
as adaptive perception minimizes references to
images.

6.4.1 Detection Zone

The immediately material information forms a region
in the environmental model which we call thedetec-
tion zone - that region of the near environment which
the vehicle can reach but is not already committed to
travelling and about which an immediate decision of

x = f(x,u)

g(x) = 0

System Dynamics

Terrain Following

.

xi(t) ∈Xf Feasibility

Hazard Kinematicsy = h(x)

Safety|y| < ysafe

xi(t) ∈Xa Admissibility

L[ xi(t)]=||xi(t)-xgoal(t)||

Minimize:L[ xi(t)]=||xi(t)-xgoal(t)||
ui(t)

Subject to:

Goal Proximity

Figure 27: Optimal Control Arbitration . Driving
safely toward a goal can be formulated in terms of
optimizing a functional over a set of trajectories that
are both safe and mechanically feasible.

x = f(x,u)

g(x) = 0

System Dynamics
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traversability is needed to continue moving.

6.4.2 Remaining Zones

Thus, in our search for hazards wedo not look for haz-
ards in the following regions:

• free zone: where the vehicle cannot go
• dead zone: where the vehicle is committed to go
• horizon zone: where the decision can be delayed

The precise location of the detection zone is obtained
trivially from a time window into the response trajec-
tories computed by command feedforward in the state
space model.

6.4.3 Planning Window

The planning window planning is analogous to the
range window in perception. It confines the search for
hazards to the detection zone. One of the highest level
system requirements is to attempt to maintain continu-
ous motion, so adaptive regard is based on turning
maneuvers (which consume more space) rather than
braking maneuvers.

An impulse turn is a turn from zero curvature to the
maximum allowed curvature. The planning window is
computed by predicting the distance required to exe-
cute an impulse turn at the current speed with the best
available estimates of the output latencies that will
apply.

Precision in computation of the planning window
requires careful treatment of time. The planning win-
dow is measured from the position where the vehicle
will be when the steering actuator starts moving.

6.4.4 Real-Time Latency Modeling

The planning problem has latency concerns similar to
those of perception. Without latency models, obstacle

avoidance significantly underestimates the distance
required to react for two reasons.

• Position estimate input latency implies that the
vehicle is actually much closer to an obstacle than
the last available position measurement suggests.

• Command output latency and actuator dynamics
imply that it actually takes much more distance to
turn than would be expected from instantaneous
response models.

A model of these latencies is accomplished with the
following mechanisms:

• all input and output is time-stamped
• all input and output is stored in internal FIFO

queues
• all sensor latencies are modeled
• all actuator latencies are modeled

These FIFO queues do not introduce artificial delay -
they are used tomodelthe delays which already exist
in the system.

6.5 Hazard Detection

The process of hazard detection is the process of com-
puting the hazard output vector. The hazard vector
moves over time in ahazard space in response to the
movement over time of the vehicle state vector in state
space. That is, there is a hazard trajectoryyi(t) which
corresponds to each state trajectoryxi(t), which in turn
corresponds to each command signal vector,ui(t).

Once the vehicle trajectoryxi(t) is known, a set of haz-
ard models is used to compute its relative safety with
respect to the associated terrain information in the
environmental model.

6.5.1 Types of Hazards

Each element of the hazard vector corresponds to a
different hazardous condition. Each scalar hazardyj(t)
is a function of the vehicle state, the terrain on which it
rests, and the input commands. Some typical hazards
are:

• Tipover: The movement of the weight vector out-
side of the support polygon formed from the wheel
contact points.

• Body Collision: Collision of the underbody with
the terrain.

• Discrete Obstacles: Regions of locally high ter-
rain gradient.

• Unknown Terrain : Regions that are occluded,
outside the field of view of the sensors, unknown
from poor measurement accuracy or resolution, or
devoid of matter (such as the region beyond a cliff
edge).

6.5.2 Hazard Signals

As an example of a hazard signal, consider expressing
proximity to tipover in terms of excessive pitch or roll
angle. Let the elevations of the front and rear points on

Figure 28: Detection Zone For Braking Maneuver.
In any candidate vehicle maneuver a swath of
ground is covered. The detection zone is the region
which must be verified to be safe in the current
computational cycle to prevent collisions.
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the vehicle longitudinal axes after enforcing terrain
contact be  and . The pitch tipover hazard
signal is then given by:

The other three hazards above are computed from the
volume under the belly, the local terrain gradient, and
the total trajectory length for which the terrain is
unknown respectively.

6.5.3 Trajectory Safety

In order to assess the safety of an entire trajectory, it is
necessary to integrate out the time dimension and
merge all of the predictions of different hazard types
together. This process generates a holistic estimate of
the degree of safety expected if the associated com-
mand is executed.

Although many alternatives for doing this present
themselves, we have achieved acceptable performance
by ranking the whole trajectory using the worst hazard
at the worst point in time. The output of this process is
the safety ratings of all trajectories - which is supplied
later to the optimal control arbiter.

6.6 Goal Seeking

The process of goal-seeking starts with the process of
computing the goal functional. Many techniques for
computing the proximity of two trajectories are possi-
ble, but the one we chose here is a modification of the
classicalpure pursuit algorithm.

The most general form of path-based strategic goal is a
literal trajectory to follow1. Other types of goals such
as headings, points, and curvatures, can be extracted as
trivial subcases of the more general path tracking
problem.

6.6.1 Basic Pure Pursuit

The pure pursuit algorithm [48] is a proportional con-
troller formed on the heading error computed from the
current heading and the heading derived from the cur-
rent vehicle position and agoal point on the path.

The goal point is computed by finding the point on the
path which is a predetermined distance  from the

1. The arbiter can easily integrate the real-time inputs of a human
supervisor through this mechanism.

current vehicle position.

Heading is measured at the center of the rear axle. The
proportional gain  is normalized by the lookahead
distance . This can be viewed an adaptive element
or, more simply, as a unit conversion from heading
error to curvature because the ratio  is the aver-
age curvature required to reacquire the path at the goal
point.

6.6.2 Rough Terrain Pure Pursuit

A few modifications are introduced to adapt pure pur-
suit for rough terrain. Extremely large tracking errors
must be acceptable to the servo without causing insta-
bility if obstacles are to be avoided robustly. This is
made possible by two devices indicated in the follow-
ing figure.

The system maintains a running estimate of the point
on the path which is closest to the current vehicle posi-
tion in order to avoid an expensive search of the entire
path each iteration. This closest point is used instead
of the current vehicle position as the origin of the loo-
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Figure 29: Basic Pure Pursuit . A proportional
controller formed on the heading error to acquire a
goal point at a given lookahead distance.
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Figure 30: Adaptive Pure Pursuit . The point
closest to the vehicle on the path replaces the
vehicle position.

Goal
Point

Closest
Point

Path



An Approach to Rough Terrain Autonomous Mobility  28

kahead vector.

The lookahead distance is adaptive to the current
tracking error - increasing as the error increases as
indicated in the accompanying code fragment:

The first while loop is responsible for maintaining a
running record of the close point, point 2. It searches
through an arc length window which adapts to the path
tracking error. As the error gets larger, this loop will
cause the close point to jump over high curvature
kinks in the path as they become less relevant at the
resolution of the tracking error.

The second while loop computes the goal point in an
identical manner. It basically moves point 3 forward
until it falls outside a circle centered at the vehicle
whose radius is the sum of the error distance  and
the nonadaptive lookahead .

In this way, when an obstacle avoidance maneuver
causes significant path error, the algorithm will search
to reacquire the path on the other side of the obstacle
instead of causing a return to the front of the obstacle.

Under normal circumstances when the vehicle is
tracking the path, the close point is at the vehicle posi-
tion, the error distance is close to zero, and the adap-
tive lookahead is the nonadaptive lookahead. Hence,
the algorithm gracefully degenerates to classical pure
pursuit when obstacle avoidance is not necessary.

6.6.3 Feedforward Pure Pursuit

The devices of the previous section account for obsta-
cle avoidance. However, basic pure pursuit also suffers
from speed related problems. Instability results from
large tracking errors, too short a lookahead distance or

too high a gain.

The goal functional is generated by evaluating, at each
point on each candidate trajectory, the distance from
the vehicle to the goal point. The minimum distance
over the entire trajectory is the functional value associ-
ated with it.

The following figure shows how accurate models of
response stabilizes goal seeking.

In the above situation, if an arc-based model were
used, the system would issue a hard left command.
However, the more accurate clothoid model reveals
that such a command would actuallyincrease the
tracking error leading to even more overcorrection. A
tracker based on a more accurate clothoid model
would recognize the situation and issue a zero curva-
ture command that would correctly acquire the goal at
the lookahead distance.

6.7 Results

In the RANGER navigator, command alternatives are
expressed in terms of constant speed, constant curva-
ture commands. Several times a second, the optimal
control arbiter considers approximately ten steering
angles to use during the next control cycle. The for-
ward model simulates the effect of using these steering
angles over a short period of time and evaluates each
of the resultant paths. Any steering angles that result
in paths that go near or through hazardous vehicle con-
figurations are discarded. The steering angle that
results in a path that is optimal based on several crite-
ria is chosen.

In the figure below the system issues a left turn com-
mand to avoid a hill to its right. The histograms repre-
sent the votes for each candidate trajectory (higher
values indicate safer trajectories). The hazards are:

• ROLL: excessive roll
• PITCH: excessive pitch
• BODY: collision with the body

Figure 31: Adaptive Pure Pursuit Algorithm . The
lookahead is adapted to allow for large tracking
errors when obstacles are avoided.

min = HUGE; way_pt = close;
while(L23 < L12 + lookahead)

{
x3 = path_x[way_pt];
y3 = path_y[way_pt];
if( L13 < min )

{
close = way_pt;
}

way_pt++;
}

way_pt = close;
while(L13 < L12 + lookahead)

{
x3 = path_x[way_pt];
y3 = path_y[way_pt];
goal_pt = way_pt;
}

L12
L23

Arc Model
(Unstable)

Clothoid

Figure 32: Feedforward Pure Pursuit . Inaccurate
models of response lead to servo instability. Note that
the vehicle is in a sharp left turn and happens to have
zero heading at t=0.

Model
(Stable)
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• WHEEL: collision with the wheels

The tactical vote (TACT) is the overall vote of hazard
avoidance. The strategic vote (STRAT) is the goal
seeking vote.The arbiter chooses the third trajectory
from the left because this closest to the strategic vote
maxim (straight) while exceeding the threshold for
safety.

7 Summary and Conclusions

This section summarizes our perspectives and conclu-
sions.

7.1 Perspectives

Our implementation of a tactical control layer implies
a perspective on the need for deliberation and reactiv-
ity in autonomous vehicles. It seems that both reactiv-
ity and deliberation have their place in our approach to
local intelligent mobility.

7.1.1 Memory

From a real-time response point of view, high-speed
navigators cannot afford the computation necessary to
continually process the same scene geometry at suffi-
ciently high resolution. Thus, for high-speed naviga-
tors, the memory involved in the mapping of the
environment is an essential system capability.

7.1.2 Deliberation

For high-speed navigators, models of dynamics take
the place of models of logical precedence used in AI in
that they limit the states reachable in a small period of
time from any given state. In such navigators, the
deliberative reasoning about the future impact of cur-

rent actions that is implemented in feedforward mod-
els is an essential capability - at least to the extent that
the system must understand its own motion.

7.1.3 Reaction

The latency models developed in the paper and the
precision timekeeping that has been incorporated in
the software seem more applicable to the control sys-
tems of fighter aircraft than to autonomous vehicles. It
seems that high-speed navigators mustreason about
their ability to respond.

7.2 Conclusions

This section presents a short list of conclusions which
seem most significant to the problem and most rele-
vant to the more general problem of autonomous
mobility.

7.2.1 Tactical Control Layer

A modification on a standard architectural model of
robotic systems has been proposed which connects
strategic geometric reasoning to dynamic reactive con-
trol in an effective manner when the system under con-
trol exhibits poor command following. The problem is
solved in this intermediate layer between AI and con-
trol, between reactive and deliberative approaches.

7.2.2 Adaptive Perception

The throughput problem of autonomous navigation
can be managed at contemporary speeds by computa-
tional stabilization of the sensor sweep and active con-
trol of resolution through intelligent image
subsampling.

7.2.3 Computational Image Stabilization

Adaptive perception techniques which computation-
ally stabilize the vertical field of view provide the best
of both worlds. They provide the high throughput nec-
essary for high-speed motion and the wide field of
view necessary for rough terrain.

7.2.4 Adaptive Regard

In a manner similar to the use of a focus of attention in
perception, a focus of attention can be computed for
obstacle avoidance that reflects the capacity of the
vehicle to react at any given time.Adaptive regard
places a limit on how close a vehicle should look for
hazards because it cannot react inside of some dis-
tance. Thus, adaptive regard calls for all data inside
some lower limit to be ignored and limits are placed
on the extent of data processed beyond this minimum
limit by considerations of both minimum planning
throughput and range data quality.

7.2.5 Command Space Search

Dynamics of many kinds imply that the local planning

Figure 33: Optimal Control Arbitration .The system
chooses a steering angle from a set of candidate
trajectories.The histograms represent “votes” for
each candidate trajectory where higher values
indicate preferred trajectories.
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problem is actually relatively easy from the point of
view of search complexity. The planning “state
space1” of the high-speed Ackerman vehicle is degen-
erate. Ordering heuristics generally optimize search by
imposing the most constraining limits first and reduc-
ing the size of the search space as fast as possible. This
principle is used here because once dynamically infea-
sible paths are eliminated, only a few remaining alter-
natives are spatially distinct enough to warrant
consideration.

7.2.6 Dynamic Models

The incorporation of dynamics models has generated a
local navigation system which remains stable past the
limits beyond which our kinematically modeled sys-
tems became unstable. The use of dynamic models
also makes obstacle avoidance more reliable in general
by imparting to the system a more accurate under-
standing of its ability to respond.

7.2.7 Forward Modeling

Physical dynamics amounts to an overwhelming con-
straint on the maneuverability of a high-speed vehicle.
For a vehicle or operating regime for which classical
path generation based on via points becomes difficult,
forward modeling has the advantage that generated
trajectories are feasible by construction.

7.2.8 Arbitration

The simultaneous satisfaction of hazard avoidance and
goal seeking can cause contention for the absolute
control of vehicle actuators, and in a practical system,
this contention must be resolved through some arbitra-
tion mechanism. The problems of goal seeking, local
path planning, and hazard avoidance have been unified
into an optimal control context. In this context, a func-
tional computed over the feasible set of response tra-
jectories serves as the quantity to be optimized and the
hazard avoidance mechanism specifies the confines of
the feasible set.

7.2.9 Hazard Space

In strict mathematical terms, the configuration space
(C-space) of AI planning is a subset of the state space
(S-space) of multivariate control. It is a well-estab-
lished technique to abstract a mobile robot into a point
in six-dimensional position and attitude coordinates.
The significance of hazard space (H-space) is that it
performs the same function for dynamic planning that
C-space performs for kinematic planning.
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10 Appendix A - List of Symbols

10.1 Lowercase Alphabetics

...................... baseline

...................... undercarriage clearance

...................... disparity

.................... correct disparity

................ minimum disparity

............... maximum disparity

...................... focal length

...................... sensor height

...................... sensor / vehicle nose offset

....................... wheel radius

....................... arc length, distance travelled

....................... time

...................... crossrange coordinate

...................... downrange coordinate

....................... vertical coordinate

.................... front elevation

..................... rear elevation

10.2 Alphabetics

................... correlation

................... proportional gain

...................... vehicle wheelbase

...................... range

............... maximum range

................ minimum range

...................... scatter matrix

...................... time, time interval

...................... vehicle speed

..................... vehicle width, swath width

...................... groundplane projected range

................ min groundplane projected range

............... max groundplane projected range

............. left camera frame axes

............. right camera frame axes

10.3 Bold Alphabetics

f(x,u) .............. nonlinear system dynamics model

g(x).................. terrain following relationship

h(x) ................. hazard model

x,x(t),xi(t) ..... state vector, candidate state vector

y,y(t),yi(t) ..... output vector, candidate output vector

ysafe................. safety threshold vector

u,u(t),ui(t) .... command vector, candidate cmd vector

b

c

d

d
*

dmin
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XL YL

XR YR
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ud .....................terrain disturbance vector

A .......................system dynamics matrix

B .......................input distribution matrix

Xf .....................set of mechanically feasible trajectories

Xa.....................iset of admissable trajectories

L[ x] .................goal functional

10.4 Greek Alphabetics

......................steer angle

......................angular velocity (z component)

.......................normalized disparity

......................curvature

......................yaw, pixel azimuth, vehicle yaw

......................vehicle yaw rate

......................pitch, elevation

......................roll

10.5 Increments and Differentials

.............crossrange incremental distance

.............downrange incremental distance

.............vertical incremental distance

............pitch/elevation increment or error

...........yaw/azimuth increment or error

...................change in normalized disparity

11 Appendix B - Glossary

Ackerman steering- a steering mechanism, typical of automobiles,
where the two front wheels turn together.
active vision- an approach to vision which emphasizes the direction
of attention to the relevant parts of the scene.
actuation space- an abstract space consisting of all independent
control inputs to a system. For an automobile, this space is spanned
by steering, brake, and throttle.
adaptive lookahead - any mechanism which adapts sensory looka-
head to the speed and response of the vehicle.
actuator contention problem - the contention of software modules
for the control of actuators.
adaptive scan - an algorithm which attempts to make perceptual
groundplane resolution homogeneous and isotropic.
adaptive sweep- an algorithm which projects a focus of attention on
the groundplane into image space.
adaptive perception - an algorithm based on a focus of attention and
a resolution transform which adapts to vehicle speed and response to
provide minimum throughput and uniform minimum resolution of
perceptual processing.
adaptive regard - an algorithm based on a focus of attention and a
resolution transform which adapts to vehicle speed and response to
provide minimum throughput and uniform minimum resolution of
planning processing.
admissible- the property of being safe.
admissible set- the set of all admissible trajectories.
azimuth - the rotation of something about a vertical axis.
cartesian elevation map - see terrain map.
clothoid - a linear polynomial for curvature expressed in terms of arc
length. The trajectory corresponding to this polynomial.
command vector - the vector which contains all command inputs to
the vehicle or its controller.
command space- the space of all possible command vectors.
command following problem - the problem of causing a servo-con-

trolled device to follow its commands acceptably well.
command space search- the technique of searching through spatial
trajectories that are expressed implicitly in command space.
configuration space - any abstract space of variables which com-
pletely determines the positions of all points on a vehicle or mecha-
nism.
crossrange - the horizontal direction transverse to the sensor optical
axis.
curvature - the derivative of heading (or vehicle yaw) with respect
to distance travelled.
disparity  - the difference in the position of two corresponding points
in a pair of images.
disparity window - a range of disparities defined by a maximum and
a minimum value.
dead reckoning- the process of integrating certain equations which
express position and heading in terms of curvature and either dis-
tance or time.
dead zone - that region of the local environment which a vehicle is
committed to travelling at any particular time.
detection zone - the region of the local environment for which time
is almost up to react to hazards.
downrange - the horizontal direction aligned with the sensor optical
axis.
dynamically feasible - the property of a spatial trajectory of satisfy-
ing the dynamic model of the vehicle.
dynamics constraint - the constraints imposed on a spatial trajectory
by the dynamic model of the vehicle.
elevation - the rotation of something about a horizontal axis, or the
height of something
feasible- the property of being mechanically feasible.
feasible set- the set of all feasible trajectories.
feedforward - the process of predicting system response in the future
in order to modify the command inputs of the moment.
flat terrain assumption - the assumption that the vehicle operates in
extremely benign terrain.
focus of attention - in perception and planning, a region of space to
which computations which be confined.
forward model - a model of a dynamic system which is of the form
state = function of state and command. see inverse model.
free zones - regions of the local environment that the vehicle cannot
reach within some time horizon.
goal trajectory - the path to be followed. Generated by the strategic
control layer.
goal functional - a measure of the degree of agreement between the
goal and a candidate response trajectory.
ground plane - the surface of the terrain when it is assumed to be
flat.
goal point - the point on the path which is one lookahead distance
away in pure pursuit.
guaranteed detection - the policy of ensuring adequate resolution in
computations, sensing, and actuation.
guaranteed localization - the policy of ensuring adequate accuracy
in computations, sensing, and actuation.
guaranteed response - the policy of ensuring adequate response
time.
guaranteed safety - the policy of guaranteeing vehicle survival.
guaranteed throughput - the policy of ensuring adequate system
throughput.
hazard space - an abstract space for which every point represents the
safety of the vehicle in terms of multiple hazardous conditions.
hazard vector - a point in hazard space.
horizon zone - that region of the local environment which the vehi-
cle can afford to wait to assess.
image plane- a virtual or real plane in space upon which an imaging
sensor forms an image.
impulse turn - a turn from zero curvature to the maximum.
kinematically feasible - the property of a spatial trajectory of satis-
fying the kinematic limitations of the vehicle model.
kinematics constraint - the constraints imposed on a spatial trajec-
tory by the kinematic model of the vehicle.
inverse model - a model of a dynamic system which is of the form
command = function of state. see forward model.
latency - any type of delay in transforming inputs into outputs in a
system.
local planning problem - the problem of deciding where to drive

α
β̇
δ
κ
ψ
ψ̇
θ
φ

dx ∆x,
dy ∆y,
dz ∆z,
dθ ∆θ,
dψ ∆ψ,
∆δ
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based only on what can be seen at the moment.
local minimum problem - in planning, the problem of avoiding lo-
cal minima which effectively trap local planners.
multivariate state space system- a state space model whose state
vector contains at least two elements.
terrain mapping - the process of generating a map of the environ-
ment surrounding the vehicle.
terrain map - a data structure which represents the properties, usu-
ally the height, of terrain.

maneuver- the maneuver dynamics aspect of response.
monotone range assumption - the perception assumption that range
is monotone in elevation in the image plane.
mechanically feasible - the property of a spatial trajectory of satis-
fying the kinematic and dynamic limitations of the vehicle model.
motion distortion problem - the distortion of the world model due
to unmodeled delays or unmodeled motion.
nonholonomic - the property of a differential constraint that it cannot
be integrated.
normalized disparity - disparity divided by baseline. Measured in
radians.
output vector - the vector of outputs in a dynamic system.
path - a geometric description of a curve in space (i.e. with time pa-
rameter eliminated). See trajectory.
path planning - the process of deciding where to drive. Involves rep-
resentation, search, and selection of a path.
perception ratio - the ratio of sensor height to measured range.
Equal to the tangent of the range pixel incidence angle for flat terrain.
planning window - the focus of perceptual attention expressed in
terms of the point of actuation.
predictive control - a method of controlling something better by us-
ing feedforward.
pure pursuit - an algorithm for tracking paths characterized by steer-
ing towards a point on the path at a distance in front of the vehicle.
range - 3D cartesian distance between the image plane and the scene.
range projection - the projection of range into the groundplane
range gating - a technique of range imaging where all pixels of a par-
ticular range window or gate are acquired simultaneously.
range gate - see range window.
range image - an image whose intensity values correspond to the
range to the first reflecting surface in the environment.
range window - a region of interest specified in terms of a maximum
and a minimum range.
reaction - the computer and sensory processing aspects of response.
reaction time - the time it takes to decide on a course of action and
issue the associated commands to the hardware.
region of interest - see focus of attention.
reference point - a distinguished point on the vehicle. Used to track
its state.
registration problem - the problem that redundant measurements of
the same geometry do not agree.
resolution - the smallest difference that a system can resolve.
response- the total response of the vehicle including the computer
and sensory processing and the maneuver dynamics.
response time - the time it takes a vehicle to respond to an external
event. Equal to the sum of reaction time and maneuver time.
response-resolution tradeoff - the fact that easing response require-
ments increases resolution requirements and vice-versa.
reverse turn - a turn from one curvature extreme to the other.
sampling problem - the problem of variation in the shape and size
of range pixels when projected onto the ground plane.
small incidence angle assumption - the assumption that the percep-
tion ratio is small.
state vector - a point in state space.
state space - an abstract space of all variables of a system necessary
to define its response to inputs.
stationary environment assumption - the assumption that the envi-
ronment is a single rigid body that is stationary, that is, that there are
no dynamic obstacles or changes in the terrain etc.
sweep rate - the angular elevation rate of scanning of a range sensor.
tactical control - in the standard model, the layer responsible for dy-
namics feedforward, obstacle avoidance, and goal-seeking.
trajectory - a parametric description of a curve in space (i.e. with
time parameter explicit). See path.
trajectory generation problem - the problem of determining the

commands to issue to a vehicle to cause it to follow a given spatial
trajectory.
throughput - a measure of amount of information processed per unit
time.
throughput problem - the problem of maintaining adequate
throughput.
time constant- the coefficient of the first derivative in a first order
system.
tunnel vision problem - the problem of inadequate horizontal field
of view.
undersampling - the process of sampling below the Nyquist rate.
vertical - the direction aligned with local gravity.
wheelbase - the length of the vehicle measured from back to front
wheels.
yaw - rotation about the vertical axis.


