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Abstract—Due to the drawbacks associated with the use of
rotor position sensors in permanent-magnet synchronous motor
(PMSM) drives, there has been significant interest in the so-called
rotor position sensorless drive. Rotor position sensorless control of
the PMSM typically requires knowledge of the PMSM structure
and parameters, which in some situations are not readily available
or may be difficult to obtain. Due to this limitation, an alternative
approach to rotor position sensorless control of the PMSM using
a diagonally recurrent neural network (DRNN) is considered. The
DRNN, which captures the dynamic behavior of a system, requires
fewer neurons and converges quickly compared to feedforward
and fully recurrent neural networks. This makes the DRNN an
ideal choice for implementation in a real-time PMSM drive system.
A DRNN-based neural observer, whose architecture is based on
a successful model-based approach, is designed to perform the
rotor position estimation on the PMSM. The advantages of this
approach are discussed and experimental results of the proposed
system are presented.

Index Terms—Motor drives, neural networks, observers, perma-
nent magnet motors, sensorless operation.

I. INTRODUCTION

I N high-performance permanent-magnet synchronous
motor (PMSM) applications, high resolution rotor angle

information is required to operate the machine efficiently and
to generate smooth torque. A resolver or encoder attached to
the shaft of the rotor is typically used to supply this position
feedback. These high resolution position sensors add length
to the machine, raise system cost, increase rotor inertia and
require additional cabling. The desire to eliminate the rotor
position sensor from PMSM applications has resulted in the
development of several techniques for sensorless operation
[1]–[6]. In general, the techniques for sensorless control of
the PMSM include open-loop flux estimators using the stator
currents and voltages, third harmonic voltage-based position
estimators, back electromotive-force (emf) waveform detection
methods, and observers and rotor angle estimators based on
position-dependent stator inductance variation.

The flux linkage estimation method [1] integrates the phase
voltage minus the stator resistance drop to estimate the angle of
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the flux linkage space vector. This angle is then used to produce
the appropriate stator current references. This method, how-
ever, suffers at low speeds where integrator drift is a problem.
Furthermore, estimation accuracy is highly sensitive to varia-
tions in the stator resistance, which is known to be temperature
dependent.

A technique that monitors the third harmonic voltage to ob-
tain the rotor angle has been developed in [2]. This technique
is applicable to the brushless dc machine with trapezoidal back
emf waveshape, but is of little relevance to the PMSM, which
normally has a sinusoidal airgap flux distribution.

In the waveform detection techniques such as in [3], a specific
characteristic of the back emf is exploited to determine the rotor
position. These methods are simple and may be implemented
using low-cost components, but accurate determination of the
rotor angle is difficult because of the required low-pass filtering
and the low amplitude of the back emf at low speeds. These
techniques are more applicable to the brushless dc motor, where
an open phase voltage may easily be measured.

The pioneering work in [4] implemented a model-based ob-
server to determine the rotor angle. This observer, however, was
found to be sensitive to mechanical parameters such as load
torque, viscous and damping friction and inertia—parameters
that are often changing dynamically or are unknown. In [5], the
dependency on the mechanical parameters is removed in an ob-
server-based approach, but the need for an electrical model of
the machine remains.

For a salient rotor PMSM application, the position-dependent
inductance variation can be monitored to derive the rotor angle
[6]. This method, however, is unusable for the many machines
that are constructed with surface-mounted permanent magnets
in the rotor.

The increasing role of the artificial neural network (ANN)
in a wide variety of engineering applications has spurred in-
terest in its application to power electronics and motor drive
systems. The artificial neural network (ANN) has several attrac-
tive characteristics that justify this interest, including a parallel
distributed structure, ability to learn and identify nonlinear dy-
namics, ability to generalize and adaptivity. These characteris-
tics suggest the enormous potential of the ANN in motor drive
systems, including the sensorless PMSM.

A frequently used neural-network structure is the feedfor-
ward ANN. The drawbacks to using the feedforward ANN in
real-time motor control applications include its static mapping
characteristic, the requirement for a large number of neurons,
and a long training time. Often, a tapped delay line is used with
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the feedforward ANN to remove the static mapping restriction
and obtain a dynamic mapping. This approach requires that the
order of the system dynamics be known in advance to choose a
suitable ANN structure.

Recently, the diagonally recurrent neural network (DRNN)
with dynamic structure was introduced [7] where self-feedback
of the hidden neurons ensures that system dynamics may be
captured without the tapped delay approach. In addition to
its dynamic mapping capabilities, the DRNN requires fewer
neurons, is more easily implemented in real-time systems, and
converges quickly compared to feedforward and fully recurrent
ANN structures [7]. Thus, a new approach for neural observa-
tion of the PMSM rotor position using a DRNN topology is
considered.

II. M ODEL-BASED OBSERVERAPPROACH

Assuming that the mathematical model for the PMSM is
available, in [5], sensorless control of the PMSM was achieved
using the system model and a Luenberger observer. In this
work, a separation of time scales is used to yield a linear system
model for the PMSM. With this approach, the fast electrical
dynamics are represented by

(1)

(2)

where the state, input, and output vectors are given by

(3)

(4)

(5)

In (1)–(5), , and represent the flux linkage, ter-
minal voltage, and phase current, respectively, of the fictitious
windings in the two phase stationary reference frame. The
symbol represents the rotor angle in electrical radians.

The state space matrices are given by

(6)

(7)

The term represents the angular velocity of the rotor
shaft in electrical radians per second and is the perma-
nent–magnet flux constant. The symbols, , and

Fig. 1. Rotor position observer for PMSM using Luenberger observer.

represent the phase resistance, self-inductance and leakage
inductance, respectively, whileis the electrical time constant
of the machine. The subscript associated with the matrix
indicates that this matrix varies with the angular velocity of the
rotor and is therefore a time-varying system matrix.

From (6), the fast electrical model is dependent on the slowly
varying angular velocity, which is considered to be a parameter
in the fast time scale. In a sensorless application, the angular
velocity must also be estimated. This is accomplished by con-
sidering the back emf to be a space vector. From this viewpoint,
the magnitude and polarity of the velocity can be determined
from magnitude and direction of rotation, respectively, of the
rotating back emf vector [5]

(8)

The result is the system shown in Fig. 1 in which two separate
observers—angular velocity and rotor position estimators—are
used to achieve the objective of rotor position estimation. The
observer gain matrix shown in Fig. 1 is selected to achieve the
required convergence characteristics. A tremendous advantage
to this approach is that it does not require any knowledge of the
mechanical parameters such as load torque, friction, and rotor
inertia which are often difficult to obtain, or are changing with
time.

Despite the independence from the mechanical variables, this
model-based approach requires some knowledge of the PMSM
structure and electrical parameters, which in some situations is
not readily available or difficult to obtain. Back EMF waveshape
and saliency characteristics for a PMSM are not always avail-
able from the manufacturer. Due to this potential dilemma, a
new approach should be considered—the neural observer. Due
to the many advantages of the approach outlined before, the
DRNN-based neural observer is based in principal on the struc-
ture of the Luenberger observer developed in [5].



102 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 18, NO. 1, MARCH 2003

Fig. 2. DRNN structure.

III. D IAGONAL RECURRENTNEURAL NETWORK

A. DRNN Structure

The structure of the DRNN is shown in Fig. 2 for a system
with inputs, recurrent neurons, and two output neurons. In
a DRNN, the only recurrent connections that are allowed are
self-recurrent connections in the hidden layer, where the re-
current connections are assumed to incorporate a delay. In the
absence of the self-recurrent connections, the architecture be-
comes a feedforward network.

The generated output of themth output layer neuron andjth
recurrent layer neuron are given in (9) and (10), respectively,
and the sum of inputs to recurrent neurons is given in (11)

(9)

(10)

(11)

In (11), represents theith input to the neural network
at discrete timek. The weight matrices , , and rep-
resent the input layer weight (connecting inputi and recurrent
neuronj), the weights of the self feedback loop for neuronj
and the output layer weight from recurrent neuronj to themth
output neuron, respectively. The superscriptsI, D, andO associ-
ated with the weights are used to indicate the input, diagonally
recurrent, and output layers, respectively. The functionf( ) in
(10) is the commonly used bipolar tansigmoid transfer charac-
teristic where

(12)

The bias terms shown in Fig. 2 for the recurrent and output
layer neurons are also included in (9) and (11) by considering
the bias as a weighted connection with unity input. That is,

and in (9) while and
in (11).

B. Dynamic Backpropagation

The goal of backpropagation is to minimize a cost function,
which is normally selected to be the squared error between the
actual ANN output and the desired value. Let the training set
consist of the desired output of theth output layer neuron

and the input pattern . With the desired output de-
fined, the error corresponding to output neuronis represented
by

(13)

and the total cost function to be reduced during the training
process is

(14)

A training algorithm applicable to the DRNN using dynamic
backpropagation has been developed in [7] and [8]. In the fol-
lowing, these results are extended for the case of multiple output
neurons. As shown in [7], a rule for continuous updating of the
weights is

(15)

where represents the learning rate,is the iteration index,
is a momentum term, and represents the change

in weight at the previous iteration. The momentum term is
included to help ensure that the error converges to a global min-
imum. To apply (15) to the DRNN training, any specific input,
output, or recurrent weight may be substituted for the symbol

. The remaining results required to implement dynamic back-
propagation are summarized in (16)–(20)

(16)

(17)

(18)

(19)

(20)

Note that the output layer weights are influenced by only the
error at the output neuron to which the weight connects. For the
recurrent and input layer weights, however, the error for each
neuron in the output layer contributes to the weight update.

IV. DRNN-BASED ROTORPOSITION ESTIMATION

Based on a separation of time scales introduced in the pre-
ceding section, the DRNN-based neural observer is now de-
veloped. Like the Luenberger approach previously outlined, the
system inputs to the proposed DRNN-based rotor position ob-
server structure are the stator voltages and currents. Similar to
the model-based method, the neural rotor position estimation
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Fig. 3. DRNN-based neural observer for PMSM rotor angle.

process shown in Fig. 3 is separated into stator current, angular
velocity, and rotor position estimators.

A. Description of Neural-Based Rotor Angle Observer

1) Neural Current Observer:The neural current observer
included in the structure of Fig. 3 is used to map the estimated
angular velocity and the applied terminal voltage to the
estimated stator current . Since the rotor position is not di-
rectly measurable in a sensorless drive, machine variables such
as the stator current must be represented in the estimated ro-
tating reference frame. The actual d-q reference frame, which is
fixed to the rotor and its relation to the estimated D-Q reference
frame, is shown in the space vector diagram of Fig. 4. Trans-
forming the terminal quantities from the stationary three-phase
reference frame implies the use of the well-known Park transfor-
mation [9] using the estimated rotor angle. The PMSM model
transformed into the rotating d-q reference frame is

(21)
where represents the differential operator and and
represent the terminal voltages and currents, respectively, in the
reference frame fixed to the rotor. The termsand in (21)
represent the stator inductance in the direct and quadrature axis,
respectively, and are equal in a round-rotor machine, so that

.
The neural current observer has no knowledge of the angular

difference between the d-q and D-Q axes, and therefore, the
measured current must be resolved into its components in the
estimated reference frame ( ), as shown in Fig. 4. Thus, the
DRNN is trained to estimate the stator current . With the
assumption that the actual and estimated reference frames are
collinear, this mapping can be represented mathematically by

(22)

where and are the estimated and measured currents,
respectively, in the estimated reference frame. The output of the

Fig. 4. Space vector diagram of PMSM in the rotating reference frame.

neural current observer is compared with the actual measured
currents to yield the estimation error

(23)

The estimation error obtained by (23) is backpropagated to
the current estimator DRNN, where the backpropagation al-
gorithm described previously is used to adjust the connection
weights.

2) Neural Velocity Observer:The neural velocity observer
shown in Fig. 3 is used to map input voltage and current to the
estimated PMSM angular velocity. The recurrent structure of
the DRNN allows the velocity to be estimated from these inputs
by learning the dynamics given in (8). Adaptive online correc-
tion to the neural velocity observer weights is generated from
the velocity estimation error. A velocity estimation error is at-
tainable despite the lack of a sensor because over a sufficiently
long time period, the time derivative of the estimated rotor angle
approaches the actual angular velocity. Thus, in steady state, an
indication of the velocity estimation error is available and the
neural velocity observer is trainable online under certain oper-
ating conditions.

It should be noted that since velocity changes much slower
than the electrical dynamics of the current observer, the velocity
observer may be updated at a rate much slower than the fast cur-
rent observer. This aspect of the velocity estimator offers advan-
tages in a real-time computing system.

3) Position Estimation Correction:In Fig. 3, the angle esti-
mation block generates rotor angle by integrating the estimated
angular velocity, with adjustment derived from the current es-
timation error given in (23). This process is similar to the op-
eration of the observer gain matrix used in the model-based
approach, which corrects statesand in (3) from the cur-
rent estimation error. The usefulness of the current estimation
errors to correct the position estimate can be demonstrated by
the transformation of (21) into the estimated reference frame,
which yields

(24)
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Fig. 5. Rotor angle estimation and correction block.

Comparing (22) and (24) and assuming a small angular dif-
ference gives

(25)

where and are the current estimation errors defined in
(23). Clearly, from (25), information regarding the angle esti-
mation error is included in the current estimation error quanti-
ties, which suggests the position estimation strategy shown in
Fig. 5.

B. DRNN Topology for Rotor Position Observer

Through experimentation, 15 neurons in the hidden recurrent
layer were found to produce good results for the neural current
observer. This number was selected to produce fast convergence
and robust dynamic capturing capabilities. The output layer con-
tains two neurons—one for each of the direct and quadrature
axis current estimates.

Both the velocity and position estimation DRNN use five neu-
rons in the hidden layer. In both cases, the output layer consists
of a single neuron. The recurrent and output layers neurons for
each of the three DRNN estimators use a tansigmoid and linear
transfer functions, respectively.

C. DRNN Observer Training

The goal of the DRNN training process is to minimize the
rotor position estimation error and to learn the machine dy-
namics. The proposed DRNN-based system was trained in two
steps: offline training in which the dynamics of the PMSM are
learned and online training where the adaptation of PMSM pa-
rameters is achieved.

1) Offline Training: The offline training process starts with
a random initialization of the weights in each layer. Weights are
normalized based on the expected range at the input neurons.
The first set of training data consists of steady-state motoring
in each direction with a constant load, in which case the rotor
velocity is the constant synchronous speed. For each training
iteration, the DRNN output is compared to its target. The re-
sulting error function is then used with the dynamic backprop-
agation algorithm to adjust the weights of the DRNN. After the
sum-squared error for the first set of training data converges to a
predetermined threshold, additional training data consisting of

various speeds and load torques are slowly introduced one at a
time. The offline training process is completed when the training
data set consists of the entire range of operation for the motor
under consideration and the sum-squared error meets the goal.

Each of the three DRNN neural estimators was first trained
offline by using dynamic backpropagation. The neural current
and velocity estimators are first trained, followed by the posi-
tion estimator. The input vector to the current estimator DRNN
consists of the stator voltages and rotor angular velocity, while
the target vector is the actual stator current vector. The velocity
estimation DRNN uses the stator voltage and current vectors as
the inputs and the actual rotor velocity as the target vector. The
position estimation DRNN uses the rotor velocity and current
estimation errors as its inputs and the actual rotor angle as the
target. For the offline training, the actual rotor angle and velocity
were both obtained from a hollow shaft encoder temporarily at-
tached to the shaft of the PMSM.

For the current estimator DRNN, approximately 6500
training iterations at a constant learning rate of .05 produced
the weights used to perform system simulations. Significantly
fewer iterations were required by both the velocity and position
estimation DRNN.

2) Online Training: Much like state feedback correction is
necessary in the model-based approach, adaptive correction of
the DRNN weights is important in the neural estimator. Online
training is performed to account for the inevitable parameter
drift associated with operating temperature fluctuations.

For the DRNN current estimator, adaptive correction is
achieved much like the offline training, with the exception that
estimated rotor velocity is used as an input to the DRNN since
actual velocity is not available in the real system. The velocity
estimator may be trained online during periods of steady-state
operation. In steady state, the time derivative of the estimated
rotor angle approaches the actual velocity over a sufficient
period of time. Thus, under steady-state operating conditions,
the actual velocity determined from the estimated rotor angle
can be used to adjust the weights of the velocity estimator
online. Online training of the position estimation DRNN was
not used, since the actual rotor angle is not available in a
sensorless system.

D. Experimental Results

After the training of the DRNN, some test patterns were ap-
plied to the system to evaluate the effectiveness of the training
process. The performance is tested under various steady-state
and transient conditions.

Fig. 6 shows the DRNN observer performance at relatively
high speed with a load equal to half-rated torque. In this exper-
iment, an initial angle estimation error of 30 electrical degrees
was intentionally introduced to the system. As demonstrated in
the figure, the error is quickly corrected and the angle estima-
tion error quickly approaches zero.

In Fig. 7, the robustness of the system to load torque vari-
ations is examined. For this experiment, a fast load change is
imposed on the system. The results of this experiment demon-
strate that the proposed system performs well under such load
changes. This is the expected result, since the neural observer
is patterned after the model-based approach, which was shown
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Fig. 6. NN estimation accuracy at 800 r/min, 5 ft-lb.

Fig. 7. NN estimation accuracy—400 r/min, fast load change.

Fig. 8. Online training of 2.5-HP PMSM—initial training iteration.

in [5] to be robust to the mechanical parameters such as load
torque.

In order to evaluate the effectiveness of the DRNN adapta-
tion process, the system was trained offline using data from a
7.5 horsepower PMSM with stator resistance and inductance of
.12 and 3.2 H, respectively, and a voltage constant of

. The system was then trained online using a 2.5
horsepower motor with stator resistance and inductance of 1.35

and 1.3 H, respectively, and . The posi-
tion estimation performance is shown in Fig. 8 for the first on-
line training iteration. After much additional online training, the
rotor angle estimation error shown in Fig. 9 was achieved. This
result demonstrates the principal advantage of the neural ap-
proach—machine operation can effectively be learned without
accurate knowledge or need of machine parameters.

In Fig. 10, the robustness of the DRNN rotor position esti-
mation technique to angular velocity estimation error is demon-
strated. For this experiment, a50 percent error in the estimated
rotor velocity was intentionally introduced to the system. The

Fig. 9. Online training of 2.5-HP PMSM—after many training iterations.

Fig. 10. NN estimation accuracy with velocty estimation error.

Fig. 11. NN estimation accuracy for speed reversal.

figure shows that, despite the exaggerated error in the angular
velocity, the rotor position is still estimated with acceptable ac-
curacy for many applications.

Finally, Fig. 11 shows the performance of the rotor position
estimator during a speed reversal. Here, significant error is ev-
ident around the zero speed operation where the slope of the
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rotor angle becomes zero. This is due to the well-known un-
observability of rotor angle at zero speed because of the lack
of developed stator voltage under those operating conditions.
Sensorless operation at zero speed is known to be problematic,
and thus, startup and speed reversals are often achieved through
alternate strategies [10]–[13] while the estimator is effectively
disabled.

V. CONCLUSIONS

A neural-based observer, whose architecture is patterned
from the results of a model-based approach, was designed and
applied to the rotor position estimation task for the PMSM.
The DRNN was selected for the neural topology due to its
dynamic mapping characteristics, fast convergence, and ease
of implementation in real-time systems. Both the DRNN
and model-based approach have demonstrated insensitivity
to mechanical parameters such as load torque, inertia, and
friction. In addition, the DRNN approach has shown the ability
to learn the PMSM dynamics and robustness to the unavoidable
drift and uncertainty of PMSM parameters. The advantages
demonstrated by the DRNN approach are significant in gen-
eral-purpose PMSM drives, where the end user may not know
the PMSM parameters required by a model-based approach.
In cases where machine parameters, saliency characteristics,
and back emf waveshape are well defined, however, the
model-based approach has produced superior rotor position
estimation results in the experiments.
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