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AN APPROACH TO SOLUTION OF THE SCHRÖDINGER

EQUATION USING FOURIER-TYPE FUNCTIONALS

Seung Jun Chang, Jae Gil Choi, and Hyun Soo Chung

Abstract. In this paper, we consider the Fourier-type functionals on
Wiener space. We then establish the analytic Feynman integrals involv-
ing the ⋄-convolutions. Further, we give an approach to solution of the
Schrödinger equation via Fourier-type functionals. Finally, we use this ap-
proach to obtain solutions of the Schrödinger equations for harmonic oscil-
lator and double-well potential. The Schrödinger equations for harmonic
oscillator and double-well potential are meaningful subjects in quantum
mechanics.

1. Introduction

Let C0[0, T ] denote the one-parameter Wiener space, that is, the space of
continuous real-valued functions x on [0, T ] with x(0) = 0. In 1948, Feynman
assumed the existence of an integral over a space of paths and used this integral
in a formal way in his approach to quantum mechanics [9]. A number of
mathematicians have attempted to give rigorously meaningful definitions of
the Feynman integral with appropriate existence theorems and have expressed
solutions of the Schrödinger equation in terms of their integrals. One of these
approaches is based on the similarity between the Wiener and the Feynman
integrals, where procedures are developed to obtain the Feynman integrals
from the Wiener integrals by an analytic extension from the real axis to the
imaginary axis.

Consider a differential equation

(1.1)
∂

∂t
ψ(u, t) =

1

2λ
∆ψ(u, t)− V (u)ψ(u, t)

with the initial condition ψ(u, 0) = ϕ(u), where ∆ is the Laplacian and V is an
appropriate potential function. For λ > 0, this is the diffusion equation with
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the potential V (u). From the Feynman-Kac formula we know that the solution
of equation (1.1) can be written as a Wiener integral

∫

C0[0,T ]

ϕ(λ−1/2x(T )) exp

{
−
∫ T

0

V (λ−1/2x(s))ds

}
dm(x).

It is a well-known fact that when the time is replaced with the imaginary time,
this diffusion equation becomes the Schrödinger equation

(1.2) i
∂

∂t
ψ(u, t) = −1

2
∆ψ(u, t) + V (u)ψ(u, t)

with the initial condition ψ(u, 0) = ϕ(u). Hence the solution of the Schrödinger
equation (1.2) is obtained via the analytic Feynman integral.

For a more detailed study, see [9, 10, 12, 13, 14, 15, 19, 21].
In [7], the authors introduced the Fourier-type functionals via the Fourier

transform and studied some properties of the Fourier-type functionals. The
Fourier-type functionals are useful in applications of the analytic Feynman inte-
gral to quantum theory. In this paper, we obtain a solution of the Schrödinger
equation (1.2) which is the limit of the analytic Feynman integrals for the
Fourier-type functionals. We then use our results to obtain solutions of the
Schrödinger equations for harmonic oscillator and double-well potential. Fi-
nally, we give some applications as remarks.

2. Definitions and preliminaries

In this section, we list some definitions and results from [7, 8, 20].
Throughout this paper, we will assume that each functional F : C0[0, T ] → C

we consider is scale-invariant measurable and that
∫
C0[0,T ] |F (ρx)|dm(x) < ∞

for each ρ > 0 (see [11]).
First, we state the definition of the analytic Feynman integral.

Definition 2.1. Let C denote the complex numbers, let C+ = {λ ∈ C :

Re(λ) > 0} and let C̃+ = {λ ∈ C : λ 6= 0 and Re(λ) ≥ 0}. Let F : C0[0, T ] →
C be a measurable functional such that for each λ > 0, the Wiener integral

J(λ) =

∫

C0[0,T ]

F (λ−1/2x)dm(x)

exists. If there exists a function J∗(λ) analytic in C+ such that J∗(λ) = J(λ)
for all λ > 0, then J∗(λ) is defined to be the analytic Wiener integral of F over
C0[0, T ] with parameter λ, and for λ ∈ C+, we write

J∗(λ) =

∫ anλ

C0[0,T ]

F (x)dm(x).

Let q 6= 0 be a real number and let F be a functional such that J∗(λ) exists
for all λ ∈ C+. If the following limit exists, we call it the analytic Feynman
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integral of F with parameter q and write
∫ anfq

C0[0,T ]

F (x)dm(x) = lim
λ→−iq

∫ anλ

C0[0,T ]

F (x)dm(x),

where λ→ −iq through values in C+.

For v ∈ L2[0, T ] and x ∈ C0[0, T ], let 〈v, x〉 denote the Paley-Wiener-
Zygmund (PWZ) stochastic integral. One can show that for each v ∈ L2[0, T ],
〈v, x〉 exists for a.e. x ∈ C0[0, T ] and if v ∈ L2[0, T ] is a function of bounded vari-

ation on [0, T ], then 〈v, x〉 equals the Riemann-Stieltjes integral
∫ T

0
v(t)dx(t)

for s-a.e. x ∈ C0[0, T ]. Also, 〈v, x〉 has the expected linearity property. Fur-
thermore, 〈v, x〉 is a Gaussian process with mean 0 and variance ‖v‖22. For a
more detailed study of the PWZ stochastic integral, see [5, 6, 7, 8].

The following theorem is a well-known integration formula which is to be
used several times throughout the present paper.

Theorem 2.2. Let {α1, . . . , αn} be an orthonormal set of functions from

L[0, T ]. Let f : Rn → C be Borel measurable, and let

F (x) = f(〈α1, x〉, . . . , 〈αn, x〉) ≡ f(〈~α, x〉).
Then

(2.1)

∫

C0[0,T ]

F (x)dm(x) =

∫

C0[0,T ]

f(〈~α, x〉)dm(x)

=

(
1

2π

)n
2
∫

Rn

f(~v) exp

{
− |~v|2

2

}
d~v,

where |~v| =
√
v21 + · · ·+ v2n in the sense that if either side of (2.1) exists, then

both sides exist and the equality holds.

Now we state some well-known properties of the Fourier transform as a
lemma (see [20]).

Lemma 2.3. (1) Let f ∈ C∞(Rn) be such that all Laplacians ∆kf , k =
0, 1, . . ., belong to L2(R

n). Then

(2.2) ∆̂kf(~ξ) = (−1)k|~ξ|2kf̂(~ξ),
where f̂ is the Fourier transform of f ,

(2.3) f̂(~ξ ) =

(
1

2π

)n
2
∫

Rn

f(~u) exp{i~u · ~ξ}d~u, ~u, ~ξ ∈ Rn,

and ~u · ~ξ = u1ξ1 + · · ·+ unξn.
(2) The following statement is called the Paley-Wiener-type theorem for the

Fourier transform on Rn. A function f , square integrable on Rn, is the restric-

tion on Rn of an entire function of exponential type if and only if ∆kf belong

to L2(R
n) for all positive integers k.
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Let S(Rn) be the Schwartz space of infinitely differentiable function f(~u)
decaying at infinity together with all its derivatives faster than any polynomial
of |~u|−1. Note that the Fourier transform is an isomorphism on the Schwartz

space S(Rn). Also, ∆kf and ∆̂kf are elements on S(Rn) for all k = 1, 2, . . ..
Now we introduce the Fourier-type functionals defined on C0[0, T ] (see [7]).

Definition 2.4. Let {α1, . . . , αn} be an orthonormal set of functions from
L2[0, T ]. For f ∈ S(Rn), let

(2.4) ∆kF (x) = (∆kf)(〈~α, x〉), k = 0, 1, . . .

and

(2.5) ∆̂kF (x) = ∆̂kf(〈~α, x〉), k = 0, 1, . . . .

The functionals in (2.4) and (2.5) are called the Fourier-type functionals defined
on Wiener space C0[0, T ].

We obtain a useful formula for the Fourier-type functionals which will be

used in the last section. Using equation (2.2), the Fourier-type functional ∆̂kF
given in equation (2.5) can be expressed by

(2.6) ∆̂kF (x) = (−1)k|〈~α, x〉|2kF̂ (x)
for all k = 0, 1, . . ..

3. Feynman integral for the Fourier-type functionals

In this section, we evaluate the analytic Fenyman integrals for the Fourier-
type functionals.

Theorem 3.1. Let ∆̂kF be defined as in equation (2.5). Then for all q ∈
R − {0}, the analytic Feynman integral of ∆̂kF exists and is given by the

formula

(3.1)

∫ anfq

C0[0,T ]

∆̂kF (x)dm(x) =

(
1

2π

)n
2
∫

Rn

(∆kf)(~v) exp

{
− i|~v|2

2q

}
d~v

for all k = 0, 1, . . ..

Proof. By using equations (2.1) and (2.3), we have that for all λ > 0,
∫

C0[0,T ]

∆̂kF (λ−1/2x)dm(x)

=

(
λ

2π

)n
2

(
1

2π

)n
2
∫

Rn

∫

Rn

(∆kf)(~v) exp

{
i~v · ~ξ

}
d~v exp

{
− λ|~ξ|2

2

}
d~ξ

=

(
1

2π

)n
2
∫

Rn

(∆kf)(~v) exp

{
− |~v|2

2λ

}
d~v.
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By using Morera’s theorem, the last expression above is an analytic function
of λ ∈ C+ and is a continuous function of λ ∈ C̃+, which, by letting λ → iq,
yields equation (3.1). Furthermore, we obtain that

∣∣∣∣
∫ anfq

C0[0,T ]

∆̂kF (x)dm(x)

∣∣∣∣ ≤
∫

Rn

|(∆kf)(~v)|d~v <∞

for all q ∈ R−{0}. Hence we complete the proof of Theorem 3.1 as desired. �

Recall that the convolution of the Fourier transform has many useful basic
properties. Many mathematicians have used these properties to solve appro-
priate differential equations in their fields. In Theorem 3.1, we considered the
Fourier-type functional via the Fourier transform. So we need a new concept
that resembles the convolution of the Fourier transform.

Next we give the definition of ⋄-convolution of functionals on C0[0, T ].

Definition 3.2. Let F be defined as in Definition 2.4 and let G be the Fourier-
type functional on C0[0, T ] of the form

G(x) = g(〈~α, x〉).
We define their ⋄-convolution by

(F ⋄G)(x) = (f ∗ g)(〈~α, x〉).
The ⋄-convolution preserves a useful property of convolution for the Fourier

transform as follows. Let F and G be the Fourier-type functionals on C0[0, T ].
Then the ⋄-convolution (F ⋄ G) of F and G always exists since f and g are
elements of S(Rn) and

(3.2) ̂(F ⋄G)(x) = (2π)
n
2 F̂ (x)Ĝ(x) = ̂(G ⋄ F )(x).

Equation (3.2) plays a key role in this paper.
In our next theorem, we establish the analytic Feynman integral for the

⋄-convolution of F and G.

Theorem 3.3. Let F and G be defined as in Definition 3.2. Then for all

q ∈ R− {0}, the analytic Feynman integral of (F ⋄G) exists and

(3.3)

∫ anfq

C0[0,T ]

̂(F ⋄G)(x)dm(x) = (2π)
n
2

∫ anfq

C0[0,T ]

F̂ (x)Ĝ(x)dm(x).

Also, both sides of the above equation are given by the formula

(3.4)

(
1

2π

)n
2
∫

Rn

(f ∗ g)(~v) exp
{
− i|~v|2

2q

}
d~v.

Proof. From Theorem 3.1, the left-hand side of equation (3.3) exists since

(̂f ∗ g) ∈ S(Rn). Also, using equation (3.2), we establish equation (3.3) as de-

sired. Equation (3.4) follows by letting k = 0 and replacing ∆̂F with ̂(F ⋄G)
in equation (3.1). Hence we complete the proof of Theorem 3.3 as desired. �
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4. A solution of the Schrödinger equation

In this section, we will show that the solution of the Schrödinger equation
(1.2) is the limit of the analytic Feynman integrals for the Fourier-type func-
tionals under appropriate conditions.

From the definitions of the Fourier-type functionals and the analytic Feyn-
man integral, we obtain some important observations. Let

(4.1) F (x) ≡ ϕ(x(T )) exp

{
−
∫ T

0

V (x(s))ds

}
,

where ϕ and V are as in equation (1.1). Then the solution of the diffusion
equation (1.1) is the Wiener integral∫

C0[0,T ]

F (λ−
1

2 x)dm(x)

and the solution of the Schrödinger equation (1.2) is the analytic Feynman
integral ∫ anf1

C0[0,T ]

F (x)dm(x)

of F . Using these observations, we obtain a solution of the Schrödinger equation
(1.2) which is the limit of the analytic Feynman integrals for the Fourier-type
functionals. Before we do this, we need the following assumptions.

Assume that

(4.2) exp

{
−
∫ T

0

V (x(s))ds

}
= lim

m→∞
V̂m(x)

for a.e. x ∈ C0[0, T ], where

(4.3) V̂m(x) = f̂m(〈α, x〉)
and fm is an element of S(Rm) for eachm = 1, 2, . . .. Then V̂m is a Fourier-type

functional and V̂m is bounded on C0[0, T ] for each m = 1, 2, . . .. Let

Fm(x) ≡ ϕ(x(T ))V̂m(x).

Then we have

(4.4) lim
m→∞

Fm(x) = F (x)

for a.e. x ∈ C0[0, T ].
In our next lemma, we give a solution of the diffusion equation (1.1) which

is the limit of the Wiener integrals for the Fourier-type functionals.

Lemma 4.1. Let ϕ and V̂m be given by equations (1.1) and (4.3), respectively.
Assume ϕ is a bounded function. Then

lim
m→∞

∫

C0[0,T ]

ϕ(λ−
1

2x(T ))V̂m(λ−
1

2x)dm(x)

is a solution of the diffusion equation (1.1).
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Proof. By our assumption on ϕ and the fact that |V̂m(x)| ≤ M,M > 0 for all
m = 1, 2, . . ., we see that

ϕ(λ−
1

2 x(T ))V̂m(λ−
1

2x)

is bounded on C0[0, T ]. Hence using the Bounded Convergence Theorem and
equations (4.2) and (4.4), we complete the proof of Lemma 4.1 as desired. �

The following theorem is the first main result of this paper. The solution of
the Schrödinger equation (1.2) is the limit of the analytic Feynman integrals
for the Fourier-type functionals

Theorem 4.2. Let ϕ and V̂m be as in Lemma 4.1. Then

(4.5) lim
m→∞

∫ anf1

C0[0,T ]

ϕ(x(T ))V̂m(x)dm(x)

is a solution of the Schrödinger equation (1.2).

Proof. From Lemma 4.1, for λ > 0,
∫

C0[0,T ]

ϕ(λ−
1

2x(T ))V̂m(λ−
1

2 x)dm(x)

always exists. By using Morera’s theorem, the last expression is an analytic
function of λ ∈ C+ and is a continuous function of λ ∈ C̃+ and so the analytic
Feynman integral

∫ anf1

C0[0,T ]

ϕ(x(T ))V̂m(x)dm(x)

exists for all m = 1, 2, . . .. Furthermore, by using the Bounded Convergence
Theorem, we have

lim
m→∞

∫ anf1

C0[0,T ]

ϕ(x(T ))V̂m(x)dm(x) =

∫ anf1

C0[0,T ]

F (x)dm(x),

where F is given by equation (4.1). Hence we have the desired result. �

The following theorem is the second main result of this paper. We obtain an
expression for the solution of Schrödinger equation (1.2) via the ⋄-convolution.

Theorem 4.3. Let ϕ and V̂m be as in Theorem 4.2. Assume that ϕ ∈ S(Rν)

for all ν = 1, 2, . . . and Φ̂ is a Fourier-type functional so that Φ̂(x) = ϕ(x(T )).
Then

lim
m→∞

(2π)−
m
2

∫ anf1

C0[0,T ]

̂(Φ ⋄ Vm)(x)dm(x)

is also a solution of the Schrödinger equation (1.2).
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Proof. Our assumptions and equation (3.3) tell us that, for each m = 1, 2, . . .,

(4.6)

∫ anf1

C0[0,T ]

Φ̂(x)V̂m(x)dm(x) = (2π)−
m
2

∫ anf1

C0[0,T ]

̂(Φ ⋄ Vm)(x)dm(x).

Using Theorem 4.2, the limit of the left-hand side of equation (4.6) exists and
hence we complete the proof of Theorem 4.3 as desired. �

The following remark immediately follows from equation (4.6).

Remark 4.4. Let ϕ, Vm,Φ and F be as in Theorem 4.3. Then

lim
m→∞

∫ anf1

C0[0,T ]

Φ̂(x)V̂m(x)dm(x)

is also a solution of the Schrödinger equation (1.2).

5. Applications

In this section, we give some applications of our results from Section 4 that
are meaningful subjects in quantum mechanics.

When V (u) = a2u2, a ∈ R − {0} in equation (1.1), this equation is called
the diffusion equation for harmonic oscillator

(5.1)
∂

∂t
ψ(u, t) =

1

2λ
∆ψ(u, t)− a2u2ψ(u, t)

with the initial condition ψ(u, 0) = ϕ(u) and hence the solution of the diffusion
equation for harmonic oscillator is given by

∫

C0[0,T ]

ϕ(λ−1/2x(T )) exp

{
− a2

λ

∫ T

0

x2(s)ds

}
dm(x).

Also, when the time is replaced with the imaginary time, this diffusion equation
for the harmonic oscillator (5.1) becomes the Schrödinger equation for the
harmonic oscillator

(5.2) i
∂

∂t
ψ(u, t) = −1

2
∆ψ(u, t) + a2u2ψ(u, t)

with the initial condition ψ(u, 0) = ϕ(u).
Throughout this section, we will show that the solution of the Schrödinger

equation for harmonic oscillator (5.2) is the limit of the analytic Feynman
integrals for the Fourier-type functionals. In order to do this, we will state
some previous results from [1, 2, 3, 4] as follows.

Let

C′
0[0, T ] =

{
w ∈ C0[0, T ] : w(t) =

∫ t

0

w(s)ds, w ∈ L2[0, T ]
}
.

Then it is a separable infinite dimensional Hilbert space with inner product

(w1, w2)C′

0
=

∫ T

0

w′
1(t)w

′
2(t)dt.
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As is known, (C′
0[0, T ], C0[0, T ],m) is an example of an abstract Wiener space

[16].
Let S : C′

0[0, T ] → C′
0[0, T ] be the linear operator defined by

Sw(t) =

∫ t

0

w(s)ds.

Then we see that the adjoint operator S∗ of S is given by

S∗w(t) = w(T )t−
∫ t

0

w(s)ds =

∫ t

0

[w(T )− w(s)]ds

and the linear operator A = S∗S is given by

Aw(t) =

∫ T

0

min{s, t}w(s)ds.

Furthermore, we see that A is a self-adjoint operator on C′
0[0, T ] and that

(w1, Aw2)C′

0
= (Sw1, Sw2)C′

0
=

∫ T

0

w1(s)w2(s)ds

for all w1, w2 ∈ C′
a,b[0, T ]. Hence A is a positive definite operator, i.e.,

(w,Aw)C′

0
≥ 0 for all w ∈ C′

a,b[0, T ].

One can show that the orthonormal eigenfunctions {em} of A are given by

(5.3) em(t) =

√
2T

(m− 1
2 )π

sin

(
(m− 1

2 )π

T
t

)
≡

∫ t

0

αm(s)ds

with corresponding eigenvalues {βm} given by

(5.4) βm =

(
T

(m− 1
2 )π

)2

.

Furthermore, it can be shown that {em} is a basis of C′
0[0, T ] and so {αm} is

a basis of L2[0, T ], and that A is a trace class operator and so S is a Hilbert-
Schmidt operator on C′

0[0, T ]. In fact, the trace of A is given by TrA = 1
2T

2 =∫ T

0
tdt. In this case,

(5.5)

∫ T

0

x2(s)ds = lim
m→∞

m∑

j=1

βj〈αj , x〉2

for a.e. x ∈ C0[0, T ].
The following lemma follows from equation (5.5).

Lemma 5.1. For each n = 1, . . ., let βn be as in equation (5.4). Then we

obtain

lim
m→∞

exp

{
− a2

m∑

j=1

βj〈αj , x〉2
}

= exp

{
− a2

∫ T

0

x2(s)ds

}

for a.e. x ∈ C0[0, T ].
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We note that there is a function fm in S(Rm) so that

f̂m(~ξ) = exp

{
−a2

m∑

j=1

βjξ
2
j

}
.

In fact, fm is given by the inverse Fourier transform of

exp

{
−a2

m∑

j=1

βjξ
2
j

}
.

Now, let Vm(x) = fm(〈~α, x〉). Then Vm is a Fourier-type functional and so V̂m
is also a Fourier-type functional. Furthermore, we obtain

(5.6) V̂m(x) = exp

{
−a2

m∑

j=1

βj〈αj , x〉2
}

and so, by using Lemma 5.1,

lim
m→∞

V̂m(x) = exp

{
− a2

∫ T

0

x2(s)ds

}

for a.e. x ∈ C0[0, T ]. Also, for all m = 1, 2, . . ., |V̂m(x)| ≤ 1 and

lim
m→∞

ϕ(x(T ))V̂m(x) = F (x)

for a.e. x ∈ C0[0, T ], where F is given by equation (4.1). These facts tell
us that our assumptions in Section 3 are satisfied. Hence we can apply our
results from the previous section to obtain a solution of the diffusion equation
for harmonic oscillator (5.1) and of the Schrödinger equation for harmonic
oscillator (5.2) which are the limits of the Wiener integrals and of the analytic
Feynman integrals, respectively, for the Fourier-type functionals.

(1) The solution of the diffusion equation for harmonic oscillator (5.1) is
the limit of the Wiener integrals for the Fourier-type functionals. Let ϕ and

V̂m be given by equations (2.1) and (5.6), respectively. Assume that ϕ is a
bounded function. Then the limit of the Wiener integrals for the Fourier-type
functionals

lim
m→∞

∫

C0[0,T ]

ϕ(λ−
1

2x(T ))V̂m(λ−
1

2x)dm(x)

is a solution of the diffusion equation for harmonic oscillator (5.1).
(2) The solution of the Schrödinger equation for harmonic oscillator (5.2)

is the limit of the analytic Feynman integrals for the Fourier-type functionals.

Let ϕ and V̂m be given by equations (2.1) and (5.6), respectively. Assume that
ϕ is a bounded function. Then

lim
m→∞

∫ anf1

C0[0,T ]

ϕ(x(T ))V̂m(x)dm(x)

is a solution of the Schrödinger equation for harmonic oscillator (5.2).
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(3) Also, we obtain an expression for the solution of the Schrödinger equation

for harmonic oscillator (5.2) via the ⋄-convolution. Let ϕ and V̂m be given
by equations (2.1) and (5.6), respectively. Assume that ϕ ∈ S(Rν) for all

ν = 1, 2, . . . and Φ̂ is a Fourier-type functional so that Φ̂(x) = ϕ(x(T )). Suppose

that Φ̂ is a Fourier-type functional so that Φ̂(x) = ϕ(x(T )). Then

lim
m→∞

(2π)−
m
2

∫ anf1

C0[0,T ]

̂(Φ ⋄ Vm)(x)dm(x)

is also a solution of the Schrödinger equation for harmonic oscillator (5.2).
Now we establish solutions of the diffusion equation and the Schrödinger

equation for harmonic oscillator having a special initial condition, but are very
useful in quantum mechanics.

Recall the diffusion equation

∂

∂t
ψ(u, t) =

1

2λ
∆ψ(u, t)− a2u2ψ(u, t)

with the initial condition ψ(u, 0) = ϕ(u). For the present application, we choose
the following initial condition

ψ(u, 0) = ϕ(u) =

{
A, |u| ≤ L/2,
0, |u| > L/2,

where A is a real constant. In view of the Schrödinger equation, this condition
corresponds to a pulse wave packet with constant amplitude A in the given
range of |u| ≤ L/2 [17]. From Lemma 4.1, the solution of the diffusion equation
for harmonic oscillator with the given initial condition is

A lim
m→∞

∫

C0[0,T ]

V̂m(λ−
1

2x)dm(x).

Now using equations (2.1) and (5.4), it follows that

∫

C0[0,T ]

V̂m(λ−
1

2x)dm(x) =

(
1

2π

)m
2
∫

Rm

exp

{
−a

2

λ

m∑

j=1

βju
2
j −

|~u|2
2

}
d~u

=

m∏

j=1

(
λ

2a2βj + λ

)

=

m∏

j=1

(
(j − 1

2 )
2π2λ

2a2T + (j − 1
2 )

2π2λ

)
.

Hence the solution of the diffusion equation for harmonic oscillator with the
wave packet reads

A lim
m→∞

m∏

j=1

(
(j − 1

2 )
2π2λ

2a2T + (j − 1
2 )

2π2λ

)
= A sech

(√
2a2T

λ

)
.
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Furthermore, the solution of the Schrödinger equation for harmonic oscillator
with the wave packet is

lim
m→∞

∫ anf1

C0[0,T ]

ϕ(x(T ))V̂m(x)dm(x) = A lim
m→∞

m∏

j=1

(
− (j − 1

2 )
2π2i

2a2T − (j − 1
2 )

2π2i

)

= Asech

(√
2a2T

−i

)
= A sec

(√
−i2a2T

)
.

So far, we have considered the harmonic oscillator. In our next statements,
we will introduce another well-known potential in quantum mechanics.

For positive real constants m, a, and ω, let

(5.7) V (u) =
mω2

8a2
(u2 − a2)2.

This is a double-well potential with two minima at u = ±a [18]. For sufficiently
large a, by expanding the potential at u = ±a, one can obtain the following
expression:

V (u) =
mω2

2
(u ∓ a)2

[
1± u∓ a

a
+

(u∓ a)2

4a2

]

≃ mω2

2
(u ∓ a)2.

This implies that when a is large, the double-well potential becomes two sep-
arate harmonic oscillators at u = ±a, which is discussed in the previous state-
ment. For this special case, we can exploit the results obtained from the previ-
ous statement and find solutions of the diffusion equation and the Schrödinger
equation for double-well potential with large separation by choosing the same
initial condition for ϕ(u).

When V (u) = mω2

8a2 (u2 − a2)2 in equation (1.1), this equation is called the
diffusion equation for double-well potential with two minima at u = ±a

(5.8)
∂

∂t
ψ(u, t) =

1

2λ
∆ψ(u, t)− mω2

8a2
(u2 − a2)2ψ(u, t)

with the initial condition ψ(u, 0) = ϕ(u) and hence the solution of the diffusion
equation for double-well potential is given by

∫

C0[0,T ]

ϕ(λ−1/2x(T )) exp

{
− mω2

8a2

∫ T

0

(λ−
1

2x2(s)− a2)2ds

}
dm(x).

Also, when the time is replaced with the imaginary time, this diffusion equation
for the harmonic oscillator (5.1) becomes the Schrödinger equation for the
harmonic oscillator

(5.9) i
∂

∂t
ψ(u, t) = −1

2
∆ψ(u, t) +

mω2

8a2
(u2 − a2)2ψ(u, t)

with the initial condition ψ(u, 0) = ϕ(u).



AN APPROACH TO SOLUTION OF THE SCHRÖDINGER EQUATION 271

We note that
x4(t) = 〈α, x〉4,

where α(s) = χ[0,t](s) and so
∫ T

0

x4(s)ds =

∫ T

0

〈α, x〉4ds.

Let {α1, . . . , αn} be as in equation (5.3). Then the set {α, α1, . . . , αn} may
not be an orthonormal set of functions from L2[0, T ]. But by Gram-Schmidt
process, we obtain an orthonormal set {α′

1, . . . , α
′
m}. In this case, we set α′

1 =
α

‖α‖2

. Also, note that

V (u) =
mω2

8a2
u4 − mω2

4
+
mω2a2

8
and so

exp

{
−
∫ T

0

V (x(s))ds

}

= exp

{
− mω2

8a2

∫ T

0

x4(s)ds+
mω2

4

∫ T

0

x2(s)ds+
mω2a2

8

}

= lim
m→∞

exp

{
− mω2

8a2

∫ T

0

〈α′
1, x〉4ds+

mω2

4

m∑

j=2

βj〈α′
j , x〉2 +

mω2a2

8

}
.

These facts tell us that our assumptions in Section 3 are satisfied. Hence we can
apply our results from the previous section to obtain a solution of the diffusion
equation for double-well potential (5.8) and of the Schrödinger equation for
double-well potential (5.9) which are the limits of the Wiener integrals and of
the analytic Feynman integrals for the Fourier-type functionals as the case of
harmonic oscillator.

Finally, we give some additional results as remarks. We will investigate
a series representation of the analytic Feynman integral for the Fourier-type
functional using hypergeometric series expansion which is different form Taylor
series expansion.

The following statement is well-known and plays a key role in Remarks 5.2
and 5.3 below. The hypergeometric function has a hypergeometric series given
by

1F1[a, b, z]

= 1 +
a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

z3

3!
(5.10)

+
a(a+ 1)(a+ 2)(a+ 3)

b(b+ 1)(b+ 2)(b+ 3)

z4

4!
+ · · · =

∞∑

s=0

(a)s
(b)s

zs

s!
,

where (a)s is a pochhammer symbol, that is,

(a)s = a(a+ 1)(a+ 2) · · · (a+ s− 1).
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If a and b are integers, a < 0 and either b > 0 or b < a, then the series yields a
polynomial with a finite number of terms. If b ∈ Z− ∪ {0}, then 1F1[a, b, z] is
undefined.

In Fourier transform theories, it is not easy to evaluate ∆̂kf of f ∈ S(Rn).

But using equation (2.2), ∆̂kf can be evaluated easily whenever f̂ of f is evalu-
ated. Likewise, it also is not easy to evaluate the analytic Feynman integral for

∆̂kF of a Fourier-type functional F . However, we will use equation (2.6) and
the hypergeometric series expansion to easily evaluate the analytic Feynman

integral for ∆̂kF . Equation (5.11) is the series representation of the analytic

Feynman integral for the Fourier-type functional ∆̂kF using hypergeometric
series expansion.

Remark 5.2. Let ∆̂kF be given by equation (2.5). Then the analytic Feynman

integral for ∆̂kF exists and is given by the formula

(5.11)

∫ anf1

C0[0,T ]

∆̂kF (x)dm(x)

=

(√
−i
2π

)n ∑

l1+···+ln=k

(−1)kk!

l1! · · · ln!

∫

Rn

f(~u) exp

{
− i|~u|2

2

}

n∏

j=1

(2i)lj
2Γ(12 + lj)√

−2i
1F1

[
− lj ,

1

2
,
iu2j
2

]
d~u,

where 1F1 is given by equation (5.10) and Γ is the Gamma function.

Equation (5.11) follows from the Multinomial Theorem, the definition of
analytic Feynman integral and an integration formula

∫

R

ξ2k exp

{
− λ

2

(
ξ − iu

λ

)2}
dξ =

(
2

λ

)k 2Γ(12 + k)√
2
√
λ

1F1

[
− k,

1

2
,
u2

2λ

]
.

We finish this paper by stating an application of equation (5.11).

Remark 5.3. Let V̂m be given by equation (5.6). Let

(5.12) i
∂

∂t
ψ(u, t) = −1

2
∆ψ(u, t) + ∆kV (u)ψ(u, t)

be a modified Schrödinger equation for a pulse wave packet with constant
amplitude introduced in the previous section. Then the solution of the modified
Schrödinger equation for harmonic oscillator (5.12) is given by

A lim
m→∞

∫ anf1

C0[0,T ]

∆̂kVm(x)dm(x).
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Furthermore, using Remark 5.2, we have

(5.13)

∫ anf1

C0[0,T ]

∆̂kVm(x)dm(x)

=

(√
−i
2π

)m ∑

l1+···+lm=k

(−1)kk!

l1! · · · lm!

∫

Rm

Vm(~u) exp

{
− i|~u|2

2

}

m∏

j=1

(2i)lj
2Γ(12 + lj)√

−2
1F1

[
− lj,

1

2
,
iu2j
2

]
d~u.

Equation (5.13) tells us that the solution of the modified Schrödinger equation
for harmonic oscillator (5.12) is the limit of the hypergeometric series expan-
sions.
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