
An Approach to Source-Code Plagiarism Detection and

Investigation Using Latent Semantic Analysis

by

Georgina Cosma

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

University of Warwick, Department of Computer Science

July 2008

Contents

List of Figures viii

List of Tables xiii

Acknowledgements xvii

Declaration xviii

Abstract xix

1 Introduction 1

1.1 Problem Description and Motivation . 2

1.2 Research Hypotheses and Questions . 4

1.3 Research Contributions . 6

1.4 Meanings of the Word Semantic . 7

i

1.5 Thesis Organisation . 9

2 Plagiarism in Programming Assignments 11

2.1 The Extent of Plagiarism in Academia . 11

2.2 Definitions of Plagiarism . 14

2.3 Plagiarism in Computer Science . 19

2.4 Transition from Source-Code Similarity to Source-Code Plagiarism 24

2.5 Source-Code Plagiarism Detection Tools 26

2.5.1 Fingerprint based systems . 26

2.5.2 Content comparison techniques 28

2.6 Conclusion . 37

3 Towards a Definition of Source-Code Plagiarism 38

3.1 Methodology . 39

3.2 Survey Results . 42

3.2.1 Plagiarised material . 42

3.2.2 Adapting, converting, generating, and reusing source-code 45

3.2.3 Methods of obtaining material . 49

3.2.4 Source-code referencing and plagiarism 52

ii

3.2.5 Self-plagiarism and collusion in source-code 54

3.2.6 Plagiarism in graded and non-graded assignments 59

3.2.7 Assignment contribution . 63

3.2.8 Plagiarism occurrences and considerations on student collaboration 64

3.3 Source-Code Plagiarism: Towards a Definition 66

3.3.1 Reusing . 67

3.3.2 Obtaining . 68

3.3.3 Inadequately acknowledging . 69

3.4 Conclusion . 70

4 A Small Example of Applying Latent Semantic Analysis to a Source-Code Cor-

pus 72

4.1 Information Retrieval and the Vector Space Model 73

4.2 What is Latent Semantic Analysis? . 74

4.3 An Introduction to the Mathematics of LSA 78

4.3.1 An illustration of the LSA process 81

4.4 The Example Source-Code Corpus . 83

4.5 Pre-Processing the Corpus . 88

iii

4.6 Creating the Term-by-File Matrix . 90

4.7 Applying term weighting . 90

4.7.1 Applying term weighting to matrix A 93

4.8 Singular Value Decomposition . 94

4.9 Impact of LSA on Relations between Terms and Files 94

4.9.1 Term-file relations . 97

4.9.2 Term-term relations . 99

4.9.3 File-file relations . 100

4.10 Performance Evaluation Measures . 104

4.11 A Query Example . 106

4.11.1 Treating a file vector as a query 109

4.12 Conclusion . 111

5 Relevant Literature on LSA and Parameters 112

5.1 Parameter Settings for General LSA Applications 113

5.2 Parameter Settings for LSA Applications to Source-code 124

5.3 Vector Based Plagiarism Detection Tools 130

5.4 Conclusion . 132

iv

6 Parameters Driving the Effectiveness of Source-Code Similarity Detection with

LSA 134

6.1 Introduction . 135

6.2 Experiment Methodology . 138

6.3 Evaluation of Performance . 140

6.4 The Datasets . 142

6.5 Experiment Results . 145

6.6 Investigation into Similarity Values . 157

6.7 Discussion . 164

6.8 Conclusion . 166

7 Experiments on Pre-Processing Parameters using a Small Dataset 168

7.1 The Datasets, Queries and Relevant Files 169

7.2 Experiment Methodology . 172

7.3 Experiment Results . 173

7.3.1 LSA performance using the comments of source-code files 181

7.4 Java Reserved Words and LSA Performance 183

7.5 Conclusion . 185

v

8 A Hybrid Model for Integrating LSA with External Tools for Source-Code Sim-

ilarity Detection 187

8.1 Introduction . 188

8.2 Similarity in Source-code Files . 189

8.3 Similarity Categories between Files and Source-Code Fragments 192

8.4 PlaGate System Overview . 194

8.4.1 System representation . 198

8.5 The LSA Process in PlaGate . 199

8.5.1 PGQT: Query processing in PlaGate 200

8.5.2 Source-code fragment classification in PlaGate 201

8.6 PGDT: Detection of Similar File Pairs in PlaGate 202

8.7 Visualisation of Relative Similarity in PlaGate 203

8.8 Design of Functional Components in PlaGate 204

8.9 Conclusion . 208

9 Enhancing Plagiarism Detection with PlaGate 209

9.1 Experiment Methodology . 209

9.2 Performance Evaluation Measures for Plagiarism Detection 212

vi

9.3 The Datasets . 215

9.4 Experiment Results . 216

9.5 Conclusion . 225

10 PlaGate: Source-Code Fragment Investigation and Similarity Visualisation 226

10.1 Experiment Methodology . 227

10.1.1 Visualisation output notes . 228

10.2 Detection of Similar Source-Code Files using PGQT 229

10.2.1 Dataset A . 229

10.2.2 Dataset B . 231

10.3 Datasets A and B: Investigation of Source-code Fragments using PGQT . . 245

10.3.1 Comparing PGQT’s results against human judgements 250

10.4 Conclusion . 255

11 Conclusions, Discussion and Future work 258

11.1 Conclusions and Discussion . 258

11.2 Open Questions and Future Work . 263

Bibliography 268

vii

List of Figures

2.1 Similarity detection and investigation . 25

3.1 Scenarios and responses (1) . 43

3.2 Scenarios and responses (2) . 46

3.3 Scenarios and responses (3) . 50

3.4 Scenarios and responses (4) . 53

3.5 Scenarios and responses (5) . 56

3.6 Scenarios and responses (6) . 60

3.7 Responses to minimum assignment weight scenario. 64

4.1 Terms and files in a two-dimensional LSA space. 82

4.2 Terms and files in a two-dimensional LSA space - illustrating the cosine. . . 83

viii

6.1 Dataset A: MAP performance using the tnc weighting scheme across vari-

ous dimensions. 155

6.2 Dataset B: MAP performance using the tnc weighting scheme across vari-

ous dimensions. 155

6.3 Dataset C: MAP performance using the tnc weighting scheme across vari-

ous dimensions. 156

6.4 Dataset D: MAP performance using the tnc weighting scheme across vari-

ous dimensions. 156

6.5 Datasets A, B, C, D: MAP performance using the RC sub-dataset and the

tnc weighting scheme across various dimensions. 157

6.6 Dataset’s A sub-dataset RC: Sep./HFM performance using various weight-

ing algorithms and dimensions. 158

6.7 Dataset’s A sub-dataset KC: Sep./HFM performance using various weight-

ing algorithms and dimensions. 158

6.8 Datasets A, B, C, D: Mean LPM using the RC sub-dataset and the tnc

weighting scheme across various dimensions. 161

6.9 Datasets A, B, C, D: Mean HFM using the RC sub-dataset and the tnc

weighting scheme across various dimensions. 161

ix

6.10 Datasets A, B, C, D: Mean Separation using the RC sub-dataset and the tnc

weighting scheme across various dimensions. 162

6.11 Datasets A, B, C, D: Mean Sep./HFM using the RC sub-dataset and the tnc

weighting scheme across various dimensions. 162

6.12 Average MAP values for each weighting scheme across all dimensions and

datasets. 163

7.1 Recall-Precision curves for Query 3 . 179

8.1 PlaGate’s detection and investigation functionality integrated with an exist-

ing plagiarism detection tool. 195

8.2 An example boxplot chart. 204

8.3 Design of Functional Components of the PlaGate Plagiarism Detection and

Investigation System. 205

9.1 Methodology for creating a list of similar file pairs. 210

9.2 Dataset A evaluation. Cutoff values are PGDT φp = 0.70, Sherlock φs =

20, and JPlag φj = 54.8. 220

9.3 Dataset B evaluation. Cutoff values are PGDT φp = 0.80, Sherlock φs =

40, and JPlag φj = 99.2. 220

x

9.4 Dataset C evaluation. Cutoff values are PGDT φp = 0.70, Sherlock φs =

30, and JPlag φj = 91.6. 221

9.5 Dataset D evaluation. Cutoff values are PGDT φp = 0.70, Sherlock φs =

50, and JPlag φj = 100.0. 221

9.6 Average recall vs average precision performance of datasets A, B, C, and D. 222

9.7 Average F performance of datasets A, B, C, and D. 222

10.1 Dataset A: Similar files under investigation are F82-F9, F75-F28, F86-F32,

F45-F97, F73-F39. Outliers simi ≥ 0.80: F9-9,82; F75-75,28; F86-86,32. . 230

10.2 Dataset B: Similar files under investigation are F173-F142,F113-F77, F162-

F20-F171. Outliers simi ≥ 0.80: F173-173,142,156; F113-113,121,149,40,146232

10.3 F82 boxplot: Similar files under investigation are F82 and F9. Outliers

simi ≥ 0.80: Q1 - 82, 9; Q2 - 9, 82; Q3 - 91, 54, 23, 26, 104, 105, 94; Q5

- 22, 31; Q9 - 9, 82; Q10 - 9,82. 246

10.4 F75 boxplot: Similar files under investigation are F75 and F28. Outliers

simi ≥ 0.80: Q2 - 75, 28; Q3 - 22, 31; Q4 - 75, 28; Q7 - 75, 28. 247

10.5 F86 boxplot: Similar files under investigation are F86 and F32. Outliers

simi ≥ 0.80: Q1 - 86,32; Q2 - 39; Q3 - 86, 32; Q4 - 86, 85; Q5 - 86, 32;

Q8 - 86, 32; Q12 - 86, 32; Q13 - 86, 32. 248

xi

10.6 F113 boxplot: Similar files under investigation are F113 and F77. Outliers

with simi ≥ 0.80: Q1 - 121, 149, 40, 113, 146, 134, 77; Q2 - 121, 149, 40,

113, 146, 134, 77; Q4 - 121, 149, 40, 113, 146, 134, 77. Q1, Q2 and Q4 are

CL2 SCFs, Q3 is a CL1 SCF. 249

xii

List of Tables

4.1 U2, a 2 × 2 matrixΣ2 . 81

4.2 Term-by-file matrix A . 91

4.3 Formulas for local term-weights (lij) . 93

4.4 Formulas for global term-weights (gi) . 93

4.5 Formulas for document length normalisation (nj) 94

4.6 Term-by-file matrix B derived after applying term weighting to matrix A . . 95

4.7 Term-by-file matrix B4 showing the term values after applying LSA to the

weighted matrix B . 96

4.8 Extracts of term-by-file matrices A, B, and B4 98

4.9 Extract of the term-by-term matrix TTA, showing the term-term similarity

values. 100

xiii

4.10 Extract of the term-by-term matrix TTB , showing the term-term similarity

values after applying the tnc weighting scheme. 101

4.11 Extract of the term-by-term matrix TTC , showing the term-term similarity

values after applying the tnc weighting scheme and LSA. 101

4.12 File-by-file matrix FFC . 103

4.13 Average values of relevant and non-relevant files 103

4.14 Results for query q . 108

4.15 Evaluation results for query q . 108

4.16 Results for query Q1 . 109

4.17 Results for query Q2 . 109

4.18 Results for query Q3 . 110

4.19 Results for query Q4 . 110

4.20 Evaluation results for all queries . 110

6.1 MMAP values for dataset A . 147

6.2 MMAP values for dataset B . 148

6.3 MMAP values for dataset C . 149

6.4 MMAP values for dataset D . 150

xiv

7.1 Source-code specific pre-processing parameters 169

7.2 Dataset characteristics . 170

7.3 Queries and their relevant files . 171

7.4 Source-code differences between queries and their relevant files 171

7.5 Performance Statistics for Queries 1 - 3 174

7.6 Part 1: Top 20 Query 3 results in ranked order 177

7.7 Part 2: Top 20 Query 3 results in ranked order 178

7.8 Summary of Spearman rho correlations for Query 3 and its relevant files. . . 178

7.9 Spearman rho correlations for Query 3 and its relevant files (when only

comments are kept in the files) before applying LSA. 182

7.10 Spearman rho correlations for Query 3 and its relevant files (when only

comments are kept in the files) after applying LSA. 182

7.11 Summary of Spearman rho correlations for Query 3 (when only comments

are kept in the files.) . 182

7.12 RCMTRK Performance Statistics for Queries 1 - 3 184

9.1 The Datasets . 215

9.2 Performance of tools on dataset A . 218

9.3 Performance of tools on dataset B . 218

xv

9.4 Performance of tools on dataset C . 218

9.5 Performance of tools on dataset D . 219

9.6 Average change in performance of all datasets, when integrating PlaGate

with plagiarism detection tools . 219

10.1 Dataset A file pairs and their similarity values 230

10.2 Dataset A files - Five highest outliers and their values 231

10.3 Dataset B File pairs and their similarity values 231

10.4 Dataset B files - Five highest outliers and their values 233

10.5 Similarity values for all source-code fragments and their suspicious file pairs 252

10.6 Spearman’s rho correlations for all source-code fragments 253

10.7 Spearman’s rho correlations for each file computed separately. 255

xvi

Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, Dr Mike Joy, for his

expert guidance, constructive criticism and continuous support and encouragement through-

out my study. It has been a privilege to work with him.

I am deeply grateful to my advisor, Dr Steve Russ for his detailed and constructive

comments, and for his important support throughout this work.

Special thanks to Professor Erkki Sutinen for accepting my request to be the external

examiner.

Thank you also to past and present members of the Intelligent and Adaptive System

Group, particularly Jane Yau, Amirah Ismail, Shanghua Sun, Jenny Liu, Shanshan Yang for

their support and friendship.

My special thanks go to my good friend Jane Yau who I will miss dearly and has been

such a wonderful and supportive friend. I really hope that we can keep in touch.

I am deeply grateful to my parents for their continuous support and encouragement

throughout my studies. Last but not least, I would like to thank my husband for his uncon-

ditional support, advice and logical way of thinking that have been of great value for me.

I cherish his care, love, understanding and patience. Also, one of the happiest experiences

during the period of my PhD has been the birth of our lovely daughter ‘Eirene’ who has

been a source of constant joy for my husband and me.

xvii

Declaration

The contents of this thesis are a result of my own work, and it contains nothing that is based

on collaborative research. No part of the work contained in this thesis has been submitted

for any degree or qualification at any other university. Parts of this thesis were published

previously. Chapter 3 describes the main results from findings published in a detailed re-

search report [26]. Findings discussed in Chapter 3 are also published in a conference

proceeding [27], and a journal publication [28]. Parts of Chapters 2, 8, 9 and 10 are in-

cluded in a paper submitted to a journal publication [29] and it is currently under review.

xviii

Abstract

This thesis looks at three aspects of source-code plagiarism. The first aspect of the

thesis is concerned with creating a definition of source-code plagiarism; the second aspect

is concerned with describing the findings gathered from investigating the Latent Semantic

Analysis information retrieval algorithm for source-code similarity detection; and the final

aspect of the thesis is concerned with the proposal and evaluation of a new algorithm that

combines Latent Semantic Analysis with plagiarism detection tools.

A recent review of the literature revealed that there is no commonly agreed definition of

what constitutes source-code plagiarism in the context of student assignments. This thesis

first analyses the findings from a survey carried out to gather an insight into the perspectives

of UK Higher Education academics who teach programming on computing courses. Based

on the survey findings, a detailed definition of source-code plagiarism is proposed.

Secondly, the thesis investigates the application of an information retrieval technique,

Latent Semantic Analysis, to derive semantic information from source-code files. Various

parameters drive the effectiveness of Latent Semantic Analysis. The performance of La-

tent Semantic Analysis using various parameter settings and its effectiveness in retrieving

similar source-code files when optimising those parameters are evaluated.

Finally, an algorithm for combining Latent Semantic Analysis with plagiarism detec-

tion tools is proposed and a tool is created and evaluated. The proposed tool, PlaGate, is

a hybrid model that allows for the integration of Latent Semantic Analysis with plagiarism

detection tools in order to enhance plagiarism detection. In addition, PlaGate has a facility

for investigating the importance of source-code fragments with regards to their contribution

towards proving plagiarism. PlaGate provides graphical output that indicates the clusters of

suspicious files and source-code fragments.

xix

Chapter 1

Introduction

This thesis investigates the application of an information retrieval technique, Latent Seman-

tic Analysis (LSA), that derives semantic information from source-code files using informa-

tion retrieval methods. Such information is useful during the detection of similar source-

code files with regards to plagiarism detection. The performance of LSA is dependent

on parameters that can influence its performance and this research aims to investigate its

performance using various parameter settings. The effectiveness of LSA in similar source-

code file detection when those parameters are optimised will be evaluated. We propose a

technique for combining information retrieval techniques with plagiarism detection tools

in order to improve the plagiarism detection and investigation process. We also propose a

definition of what constitutes source-code plagiarism from the academic perspective.

1

1.1 Problem Description and Motivation

The task of detecting similar source-code files in programming assignments is carried out by

most academics teaching programming. A review of the current literature on source-code

plagiarism in student assignments revealed that there is no commonly agreed definition

of what constitutes source-code plagiarism from the perspective of academics who teach

programming on computing courses. Therefore, part of the research is concerned with

creating a definition of what constitutes source-code plagiarism.

This thesis is also concerned with source-code similarity detection and investigation

with a view to detecting plagiarism. Information retrieval methods have been applied to

source-code plagiarism detection, for example Moussiades and Vakali have developed a

plagiarism detection system based on the standard vector based approach and a new clus-

tering algorithm [99].

A recent article by Mozgovoy provides a review on various source-code plagiarism de-

tection approaches [100]. Most popular plagiarism detection algorithms use string-matching

to create token string representations of programs. The tokens of each document are com-

pared on a pair-wise basis to determine similar source-code segments between the files and

compute the similarity value between files based on the similar segments found. Some well

known recent structure metric systems include YAP3 [144], Plague [139], and JPlag [115].

These approaches focus on detecting plagiarism based on the source-code files structural in-

formation derived from the programming language syntax. Each file’s words and characters

2

are converted into tokens representing their semantic meaning. The comparison process is

not itself based on the semantic meaning of the file but it is rather a structural comparison,

which consists of searching for files that contain matching token sequences. Algorithms

that rely on detecting similar files by analysing their structural characteristics often fail to

detect similar files that contain significant code shuffling, i.e. this kind of attack causes

local confusion [115]. In addition, string-matching based systems convert source-code files

into tokens using a parser. String-matching systems are language-dependent depending on

the programming languages supported by their parsers, and are immune to many attacks,

but as mentioned above they can be tricked by specific attacks mainly on the structure of

the source-code.

With this in mind we are proposing a more flexible approach in detecting similar source-

code files. Specifically, we are proposing the use of an information retrieval method, Latent

Semantic Analysis (LSA) [40], to extract semantic information from source-code files and

detect files that are relatively more similar than other files in the corpus.

The similarity computation algorithms of LSA and recent plagiarism detection tools

(e.g. as described in Section 2.5) are different. One important feature of LSA is that it

considers the relative similarity between files, i.e two files are considered similar by LSA

if they are relatively more similar than other files in the corpus, whereas, recent plagiarism

detection tools compute the similarity between files on a strict pair-wise basis.

We believe that LSA can help enhance plagiarism detection when integrated with cur-

rent plagiarism detection tools. We hypothesise that LSA can be a very useful additional

3

tool that can detect suspicious source-code files that were missed by other tools and there-

fore reduce the number of plagiarism cases not detected. In addition LSA can help with

the task of investigating source-code similarity by observing the relative similarity between

source-code fragments and files.

Furthermore, the novelty of this approach is that we propose a tool for integrating LSA

with plagiarism detection tools with the aim of enhancing the source-code similarity detec-

tion and investigation process with a view to detecting source-code plagiarism.

1.2 Research Hypotheses and Questions

The main questions that this research attempts to answer are:

1. What constitutes source-code plagiarism from the perspective of academics? (Chap-

ter 3)

2. How effective is LSA for the task of similar source-code file detection when param-

eters are optimised? (Chapters 6 and 7)

(a) Which parameters drive the effectiveness of LSA? (Chapter 5)

(b) What main source-code specific pre-processing parameters exist and how do

these influence the effectiveness of LSA? (Chapters 6 and 7)

3. How can LSA be integrated with plagiarism detection tools to improve plagiarism

detection performance? (Chapter 8)

4

4. How effective is LSA when integrated with plagiarism detection tools? (Chapter 9)

5. How effective is LSA for the task of similarity investigation and visualisation of

relative similarity? (Chapter 10)

The hypotheses of this research are:

• Hypothesis 1: Perspectives of academics on what constitutes source-code plagiarism

vary. Conducting a survey will provide an insight into the perspective of academics

on this issue. The outcome of the survey will enable for a detailed definition to be

created.

• Hypothesis 2: Parameters can influence the effectiveness of the performance of LSA

with regards to the detection of similar files. Optimising these parameters can im-

prove the effectiveness of LSA with regards to detecting similar source-code files

with a view on plagiarism detection.

• Hypothesis 3: LSA can be applied successfully as a technique to extract the underly-

ing semantic information from source-code files and retrieve files that are relatively

more similar than others. Using LSA the detection process becomes more flexible

than existing approaches which are programming language dependent. Furthermore,

integrating LSA with plagiarism detection tools can increase the number of plagia-

rism cases detected by retrieving similar file pairs that were missed by other tools.

• Hypothesis 4: Source-code files that have been plagiarised contain distinct source-

code fragments that can characterise these files from the rest of the files in the corpus.

5

We hypothesise that the similarity between the plagiarised source-code fragments

and the files in which they appear will be relatively higher than the files that do not

contain the particular source-code fragment. In addition we hypothesise that using

LSA, source-code fragments can be compared to source-code files to determine their

degree of relative similarity to files.

1.3 Research Contributions

The research proposes a novel and detailed definition of what constitutes source-code pla-

giarism from the academic perspective. This is the first definition that attempts to define

source-code plagiarism based on academics’ perceptions. Grey areas regarding what con-

stitutes source-code plagiarism are also discussed.

We propose and evaluate a new use of LSA to support the plagiarism detection process.

With this approach and results, we propose a new tool to combine structural and semantic

information retrieval techniques to improve plagiarism detection.

Finally, we propose and evaluate a new approach for investigating the similarity be-

tween source-code files with regards to gathering evidence of plagiarism. Graphical evi-

dence is presented that allows for the investigation of source-code fragments with regards

to their contribution toward evidence of plagiarism. The graphical evidence indicates the

relative importance of the given source-code fragments across files in a corpus. Source-

code fragments are categorised based on their importance as evidence toward indicating

6

plagiarism. This is done by using Latent Semantic Analysis to detect how important they

are within the specific files under investigation in relation to other files in the corpus.

1.4 Meanings of the Word Semantic

The term semantic is concerned with the study of meaning in an expression. It is described

differently by different fields. In the field of programming language theory, the term is

commonly used in the context of semantics of programming languages, in which semantics

is concerned with giving a meaning to programs or functions using mathematical models.

Programming language semantics fall into three categories:

1. Operational semantics describe the behaviour of a program, by means of how it may

execute or operate, as sequences of computational steps. These sequences define the

meaning of the program [114].

2. Denotational semantics is an approach for representing the functionality of programs

(i.e. what programs do). This involves representing programs (or program constructs)

as expressions by constructing mathematical objects (called denotations). Denota-

tions represent the meanings of programs [123].

3. Axiomatic semantics define the meanings of program constructs by describing their

logical axioms. The purpose of axiomatic semantics is for proving the correctness

(i.e. input-output behaviour) of a program [129].

7

In this research we use the term semantics as commonly used within the field of lin-

guistics [85]. In this context, semantics refers to the meaning of a program, or elements

of the program such as a source-code file (e.g. a Java class), source-code fragment (e.g. a

Java method), or meaning of terms. We are concerned with two types of semantics: lexical

semantics and structural semantics. Lexical semantics is about the meaning of words, and

structural semantics describe the relationship between the meanings of words in chunks of

source-code. Source-code programs must follow the syntax rules of a programming lan-

guage that define how the keywords of the language can be arranged to make a sentence

(e.g. if statement, for loop etc).

In a corpus of student assignments, source-code files may have a similar semantic mean-

ing. This is inevitable since they are developed to solve a common programming problem

and share common programming language keywords. However, in the context of plagia-

rism, lexical and structural similarity between two files are compared. Files are considered

as suspicious if they share lexical and structural similarity that are relatively similar when

compared to other files in the corpus.

It is the degree of semantic similarity (or relatedness) between files, determined by

measuring the relative meaning between files, that defines whether two source-code files

are semantically related. Semantic similarity would be similar/same variable names that

have been renamed but have the same meaning in the context being used (i.e. synonyms).

In the context of plagiarism detection, files that are more similar than others in the corpus

are of interest, i.e. it is those files that are considered suspicious. Semantic similarity (or

8

relatedness) is often measured by the relative closeness of two files (or other artifacts e.g.

methods, terms) in the semantic space using similarity measures.

1.5 Thesis Organisation

Chapter 2 discusses general issues surrounding plagiarism in academia, existing plagiarism

definitions, and issues concerning plagiarism in computer science. A discussion on plagia-

rism detection tools and their algorithms is also presented.

Chapter 3 describes the main findings from a survey carried out to gain an insight into

the perspectives of UK Higher Education academics on what is understood to constitute

source-code plagiarism in an undergraduate context. A new definition of source-code pla-

giarism is described.

Chapter 4 provides a theoretical and practical introduction to the LSA information re-

trieval technique using a context specific example. The foundations for understanding the

basics of LSA are described by using a step-by-step procedure for discussing the applica-

tion of LSA to an example source-code corpus. This part of the thesis does not cover new

research, but rather introduces the reader to basic concepts and terminology.

Chapter 5 describes relevant literature focusing on the parameters that influence the

performance of LSA. Parameter settings that researchers have used and recommended for

effective application of LSA to natural language information retrieval tasks are described.

The main focus of this Chapter is on parameter choices made by researchers for tasks spe-

9

cific to source-code. Finally, plagiarism detection tools whose functionality is based on

information retrieval algorithms are explained.

Chapter 6 presents an analysis of the influence of parameters on the effectiveness of

source-code similarity detection with LSA. It describes experiments conducted with general

LSA parameters and source-code specific pre-processing parameters.

Chapter 7 describes the findings gathered from conducting a small experiment to inves-

tigate the impact of source-code specific pre-processing parameters on the effectiveness of

source-code similarity detection with LSA.

Chapter 8 describes similarity in source-code files and categories of source-code simi-

larity. It introduces a new tool, PlaGate, which is designed to allow the integration of LSA

with plagiarism detection tools for enhancing the similarity detection and investigation pro-

cess.

Chapter 9 presents the results of experiments performed to evaluate the detection per-

formance of PlaGate when applied alone, and when integrated with two tools, JPlag and

Sherlock.

Chapter 10 presents the results gathered from evaluating the performance of the inves-

tigation component of the PlaGate tool. The evaluation is concerned with the comparison

of PlaGate’s results to human judgements.

Chapter 11 provides an overview of the main results and conclusions of this research.

Open questions and future work are also discussed.

10

Chapter 2

Plagiarism in Programming

Assignments

This Chapter discusses general issues surrounding plagiarism in academia, plagiarism defi-

nitions, and plagiarism in computer science. A discussion on plagiarism detection tools and

their algorithms is also presented.

2.1 The Extent of Plagiarism in Academia

Plagiarism in programming assignments is a growing concern in academia. Source-code

can be obtained in various ways including the Internet, source-code banks, and text books.

A recent survey was conducted by Nadelson [105] on issues surrounding academic miscon-

duct in a large University. Nadelson gathered the perceptions of 72 academics on known

11

plagiarism incidents, and found that those academics suspected 570 incidents of miscon-

duct by undergraduate and graduate students. The majority of incidents were ‘acciden-

tal/unintentional plagiarism’ with 134 of those incidents involving undergraduate students

and 39 involving graduate students. Furthermore, a large number of incidents were reported

when academics suspected that students had submitted papers copied from the Internet.

Many incidents concerning ‘purposeful plagiarism’ were also reported. Other forms of aca-

demic misconduct reported were ‘class test cheating’ and ‘take home test cheating’. On

suspected cases of academic misconduct it was found that academics prefer to deal with

such incidents informally without bringing issues out of the classroom due to discomfort

with the University’s formal procedures. This discomfort was mainly due to two issues

– academics felt that there was not enough evidence to report these incidents, and that

proceeding formally with cases of academic misconduct would reflect negatively on their

performance as a academics [105]. Furthermore, Flint et al. [42] also identified the fact

that academics often have their own personalised perception of plagiarism definitions and

policies which may not be consistent with their University’s plagiarism policy. In addition,

Keith-Spiegel et al. [73] found that academics did not often pursue the University’s pol-

icy on dealing with plagiarism due to concerns about confronting students and not feeling

protected by University procedures, and also found that academics felt sympathy for the

impact that formal procedures would have on students.

It is important that academics take action in order to improve student behaviour. They

need to promote ethical behaviour mainly by taking action when they suspect misconduct

12

[105]. According to Hannabuss [51] plagiarism is a difficult matter because,

“evidence is not always factual, because plagiarism has a subjective dimension

(i.e. what is a lot?), because defendants can argue that they have independently

arrived at an idea or text, because intention to deceive is very hard to prove.”

Furthermore, suspected cases of plagiarism where the original text cannot be found are

the most difficult to prove, due to lack of evidence [86, 62]. In addition, although academics

may suspect plagiarism, searching for the original material and finding and collating enough

evidence to convince the relevant academic panel in charge of dealing with plagiarism cases

can be time demanding [86].

Studies have shown that the prevalence of plagiarism is on the increase [86]. On-line

resources exist where students can hire expert coders to implement their programming as-

signments [57]. These opportunities make plagiarism easier for students. Concerns about

the ease with which students can obtain material from on-line sources and use the material

in their student work have been expressed in a number of studies [69, 121].

Dick, et al. and Sheard, et al. identify various student cheating techniques and reasons

why students cheat [35, 125]. In addition, they define cheating in the form of questions

that, if answered positively, could indicate cheating. Culwin, et al. conducted a study of

source-code plagiarism in which they obtained data from 55 United Kingdom (UK) Higher

Education (HE) computing schools [30]. They found that 50% of the 293 academics who

participated in their survey believed that in recent years plagiarism has increased. Asked to

13

estimate the proportion of students undertaking source-code plagiarism in initial program-

ming courses, 22 out of 49 staff responded with estimates ranging from 20% to more than

50%.

Studies have been carried out on the impact of plagiarism on learning and teaching [34]

and suggest ways of preventing plagiarism in academia. Carroll and Appleton have devised

a good practice guide suggesting techniques for dealing with plagiarism [22].

2.2 Definitions of Plagiarism

Plagiarism in academic institutions is often expressed as copying someone else’s work (i.e.,

another students or from sources such as books), and failing to provide appropriate ac-

knowledgment of the source (i.e., the originator of the materials reproduced). The act of

plagiarism is still regarded as an offence regardless whether it was intentional or uninten-

tional.

Hannabuss [51] defined plagiarism as “the unauthorised use or close imitation of the

ideas and language/expression of someone else”. In the context of academic work, pla-

giarism can range from the citation of a few sentences without acknowledging the original

author to copying an entire document. Plagiarism is an academic offence and not a legal of-

fence, and exists as institutional rules and regulations [104, 86]. Therefore, what constitutes

plagiarism is perceived differently across institutions based on their rules and regulations.

All Universities regard plagiarism as a form of cheating or academic misconduct, but their

14

rules and regulations for dealing with suspected cases of plagiarism vary, and the penalties

imposed on cheating depend on factors such as the severity of the offence and whether the

student admits to the offence. These penalties vary amongst institutions, and include giving

a zero mark for the plagiarised work, resubmission of the work, and in serious cases of

plagiarism the penalty can be expulsion from the University.

Interestingly, Flint et al. conducted a survey of 26 academics to gain their perceptions

of student plagiarism. The academics that participated in their survey were employed at

different departments and schools at a single University. They found that staff have their

own “personalised definitions” on plagiarism. The staff perceptions were influenced by

previous experiences they had with plagiarism issues in higher education, and it was also

found that academic perceptions were not consistent with their corresponding institution’s

policy definition on plagiarism. Such inconsistencies in plagiarism definitions across aca-

demics employed at a single institution suggests inconsistencies in following the University

policy when plagiarism is detected [42, 97]. This can lead to inconsistent policy application

amongst academics in the same department/institution and can also cause different treat-

ment/punishment of suspected plagiarism cases. This inconsistency in academic perception

on plagiarism can inevitably cause confusion amongst students on what is and what is not

plagiarism [42].

Plagiarism can take many forms, including the following [97].

• Word-by-word copying, which involves directly copying sentences or chunks of sen-

tences from other peoples work without providing quotations and/or without appro-

15

priately acknowledging the original author.

• Paraphrasing, which involves closely rewriting (i.e. only changing some of the words

but not making enough changes) text written by another author and appropriately

citing the original author.

• Plagiarism of secondary sources, which involves referencing or quoting original

sources of text taken from a secondary source without obtaining and looking up the

original source.

• Plagiarism of the form of a source, is when the structure of an argument in a source is

copied without providing acknowledgments that the ‘systematic dependence on the

citations’ was taken from a secondary source. This involves looking up references

and following the same structure of the secondary source.

• Plagiarism of ideas, which involves using ideas originally expressed in a source text

without ‘any dependence on the words or form of the source’.

• Blunt plagiarism or authorship plagiarism which is taking someone else’s work and

putting another’s name to it.

Much work has been done on the perceptions of students, and why students plagia-

rise. Marshall and Garry [96] conducted a survey to gather the perceptions of 181 students

with regards to what the students understand as plagiarism. The students were presented

with small scenarios that described issues on copyright and plagiarism. They were required

16

to rate the seriousness of the described behaviour in the scenarios; how the described be-

haviours would be regarded by other students, the University and the general public; and

were also asked to indicate whether they had previously engaged in a behaviour similar to

that described in the given scenarios. They found that students generally have a poor un-

derstanding of what is plagiarism and the actions that constitute plagiarism. Their survey

results revealed that the vast majority of students (i.e. 94%) identified scenarios describing

obvious plagiarism such as “copying the words from another source without appropriate

reference or acknowledgment”, however the responses among students were inconsistent

regarding scenarios on how to correctly use materials from other sources. This involved

scenarios on plagiarism of secondary sources, plagiarism of the form of a source and para-

phrasing, where 27%, 58%, and 62% of students correctly identified this as plagiarism

respectively [96].

Many factors can motivate students to plagiarise. Factors such as inadequate time man-

agement, workload, laziness, not understanding what constitutes plagiarism, fear of failure,

high achievement expectations, cryptomnesia, thrill of breaking the rules and risk of get-

ting caught, work ethics, competitive achievement, low self esteem, time pressure, and to

increase their mark [9, 98, 17]. A more detailed discussion on why students cheat is also

given by Bennett [11].

Bennett [11] conducted a detailed literature review on factors motivating students to

plagiarise and classified these factors into five categories:

1. Means and opportunity: the fact that resources are readily available and easily ac-

17

cessible by students over the Internet makes it convenient for students to gain instant

and easy access to large amounts of information from many sources. Furthermore,

many Internet sites exist that provide essays to students, and also many of these sites

provide chargeable services to students for writing their essays and papers.

2. Personal traits: factors such as the desire to gain high marks, fear of failure, pressure

from family members, desire to achieve future job prospects and career development,

and competitive behaviour amongst students can cause them to plagiarise.

3. Individual circumstances: students who work to finance their studies have less time

to study and time pressures can cause them to cheat.

4. Academic integration: students that do not integrate or ‘fit in’ with University life,

and are therefore alienated from their courses or instructors, are more likely to cheat

than students who are better integrated in University life.

5. Other factors: these include the student’s previous experiences of plagiarism prior

to attending higher education, their education experience of developing good writing

skills, their nationality (i.e. foreign students with language difficulties are more likely

to cheat than home students fluent in the language). Other factors include age and

gender [17, 96].

Dick et al. [35] categorised the types of cheating behaviour related to plagiarism of-

fences into: copying, exams, collaboration, and deception. Copying involves taking mate-

rial from other sources, for example, students’ sharing their work, stealing another’s work,

18

and taking source-code fragments from various sources and collating them together to cre-

ate a single program. Types of cheating in exams include using materials such as cheat

sheets, lecture notes, books in a closed book exam, talking in a foreign language during an

exam, looking at another student’s exam paper, and stealing an exam paper from an aca-

demic’s office. Cheating by inappropriate collaboration involves students collaborating in-

appropriately for a particular assessment. Such types of inappropriate collaboration include

students splitting the work between them and combining the solutions to create a single

solution and all submitting the work as their own, working together to solve programming

problems which were meant to be the work of an individual student, and gaining assistance

with assessments from out of campus professional services. Deception involves students

not being truthful about their circumstances in an attempt to unfairly gain an advantage, for

example, an assessment submission date extension.

2.3 Plagiarism in Computer Science

Plagiarism in source-code files occurs when source-code is copied and edited without proper

acknowledgment of the original author [30, 62]. According to Joy and Luck [62], lexical

changes are those changes that can be done to the source-code without affecting the parsing

of the program, and structural changes are those changes made to the source code that will

affect the parsing of the code and involve program debugging. Examples of lexical changes

include changing comments and identifier names; and examples of structural changes in-

volve reordering and replacing statements.

19

Decoo’s book on academic misconduct discusses various issues surrounding academic

plagiarism, and briefly discusses software plagiarism at the levels of user-interface, content

and source-code [31]. In order to identify cases of plagiarism, one must have a clear idea

of what actions constitute plagiarism. Sutherland-Smith completed a survey to gather the

perspectives of teachers in the faculty of Business and Law at South-Coast University in

Australia [133]. Their findings revealed varied perceptions on plagiarism among academics

teaching the same subject, and the author suggests that a “collaborative, cross-disciplinary

re-thinking of plagiarism is needed.” In addition, a review of the current literature on

source-code plagiarism reveals a lack of research on the issue of what is considered source-

code plagiarism from the perspective of academics who teach programming on computing

courses.

Many definitions of plagiarism exist and these are mostly found in dictionaries. One

such definition is one obtained from an online dictionary [113],

“the unauthorized use or close imitation of the language and thoughts of an-

other author and the representation of them as one’s own original work.”

Higher and further academic institutions often have their own policies and definitions as

to what constitutes plagiarism. Plagiarism is considered to be a serious academic offence.

Furthermore, some University policies also consider it as plagiarism if students submit

material or part of material that they have previously produced and submitted for another

assessment in which academic credit was gained. This type of academic offence is referred

20

to as self-plagiarism.

A gap in the literature appears on detailed definitions of source-code plagiarism in

academia. The definitions that exist in literature were created by academics who have

developed source-code plagiarism detection tools and in their publications attempt to define

plagiarism. Their definitions are often accompanied by a list of plagiarism attacks.

Joy and Luck [62] define plagiarism as “unacknowledged copying of documents or

programs”. They identify reasons why students often cheat in programming assignments.

The reasons they provide are centered around students programming abilities. They identify

weak students that collaborate with their fellow students to produce an assignment that

requires students to work on their own; weak students who copy and edit another students

work without their permission; and poorly motivated (but not weak) students who copy and

modify another student’s work in order to avoid doing the work themselves.

Manber [93] considers two files to be similar,

“if they contain a significant number of substrings that are not too small ...

Similar files may be different versions of the same program, different programs

containing a similar procedure, different drafts of an article.”

Based on this, Manber developed a tool, Sif, with the aim of detecting similar files

with similarity levels as little as 25%. Although their system was not built with the aim

of detecting plagiarism, the author proposes that the tool could be used for this task. This

description however, is not oriented to student assignments.

21

According to Jones [59],

“A plagiarized program is either an exact copy of the original, or a variant

obtained by applying various textual transformations”.

Jones [59] provides the following list of transformations:

• Verbatim copying,

• Changing comments,

• Changing white space and formatting,

• Renaming identifiers,

• Reordering code blocks,

• Reordering statements within code blocks,

• Changing the order of operands/operators in expressions,

• Changing data types,

• Adding redundant statements or variables, and

• Replacing control structures with equivalent structures.

All the descriptions we have mentioned so far appear to be short and rather incomplete.

The above definitions confuse similarity and plagiarism. It must be kept in mind that even

22

if similarity is found between files, plagiarism can only be determined by investigating

the similarity carefully to determine whether it was suspicious (as defined below) or not-

suspicious. For example, not suspicious similarity between source-code files may exist

due to source-code examples and solutions the students were given during classes [26].

Suspicious similarity between source-code files involves source-code fragments that are

distinct in program logic, approach and functionality, and this is the kind of similarity that

could be used as strong evidence for proving plagiarism [26].

Similarity between two files is not based on the entire files, but rather on the source-

code fragments they contain. Investigation involves scrutinizing the matching source-code

fragments and judging whether the similarity between them appears to be suspicious or not

suspicious. More detail on source-code similarity is described in Section 8.2. For now, we

define the conditions under which two or more files may be considered to be suspicious:

Definition: If a significant amount of similarity is found then the files under investi-

gation can be considered similar or suspicious. Suspicious files share similar source-code

fragments which characterise them as distinct from the rest of the files in the corpus. The

majority of similar source-code fragments found in suspicious files appear in a similar form

only in the files under investigation, and share distinct and important program functionality

or algorithmic complexity.

A detailed discussion of what constitutes source-code plagiarism is given in Chapter 3.

23

2.4 Transition from Source-Code Similarity to Source-Code Pla-

giarism

Source-code plagiarism detection in programming assignments is a task many higher ed-

ucation academics carry out. Source-code plagiarism in programming assignments occurs

when students reuse source-code authored by someone else, either intentionally or uninten-

tionally, and fail to adequately acknowledge the fact that the particular source-code is not

their own [28]. Once similarity between students work is detected, the academic proceeds

with the task of investigating this similarity. The investigation process involves compar-

ing the detected source-code files for plagiarism by examining their similar source-code

fragments.

It is important that instances of plagiarism are detected and gathering sound evidence

to confidently proceed with plagiarism is a vital procedure. Joy and Luck [62] identify the

issue of the burden of proof on gathering appropriate evidence for proving plagiarism,

“Not only do we need to detect instances of plagiarism, we must also be able

to demonstrate beyond reasonable doubt that those instances are not chance

similarities.”

Other academics have raised issues related to plagiarism evidence [105, 51]. Figure 2.1

illustrates the process of detecting similarity and reaching a decision.

The detection stage often involves using computer-aided detection tools, often referred

24

Figure 2.1: Similarity detection and investigation

to as plagiarism detection tools. Although these tools are called plagiarism detection tools,

they detect similarities between students source-code programs, but it is up to the academic

to judge whether plagiarism is the reason behind the similarity found in the detected pro-

grams. As Figure 2.1 illustrates, once similarity is detected, the academic goes through the

file, identifies the matching source-code fragments. The next step is to determine whether

the detected similarity between these is innocent or suspicious (as described in Section 8.3).

Once this is done, evidence is gathered and if enough evidence exists then the files in ques-

tion can be considered suspicious. However, before a final decision is reached, a typical

process would be that the students (or student in the case of copying from sources such

as books) involved are confronted with the evidence and finally a decision as to whether

plagiarism was the case, is reached.

25

2.5 Source-Code Plagiarism Detection Tools

Many different plagiarism detection tools exist and these can be categorised depending on

their algorithms. This Section describes source-code plagiarism detection tools using the

categories identified by Mozgovoy [100]. These include fingerprint based systems, and

content comparison techniques. Various other classifications exist in the literature [79, 137,

138].

2.5.1 Fingerprint based systems

Tools based on the fingerprint approach create fingerprints for each file, which contain

statistical information about the file, such as average number of terms per line, number of

unique terms, and number of keywords. Files are considered similar if their fingerprints are

close to each other. This closeness is usually determined by measuring the distance (using

a distance function in a mathematical sense) between them [100].

In earlier years, fingerprints were employed in attribute counting systems. The first

known plagiarism detection system was an attribute counting program developed by Ot-

tenstein for detecting identical and nearly-identical student work [109, 108]. The program

used Halstead’s software metrics to detect plagiarism by counting operators and operands

for ANSI-FORTRAN modules [49, 50]. The metrics suggested by Halstead were:

• number of unique operators

• number of unique operands

26

• total number of occurrences of operators

• total number of occurrences of operands

Robinson and Soffa developed a plagiarism detection program that combined new met-

rics with Halsteads metrics in order to improve plagiarism detection [118]. Their system,

called ITPAD, consisted of three steps: lexical analysis, analysis of program structure for

characteristics, and analysis of the characteristics. ITPAD (Institutional Tool for Program

ADvising) breaks each program into blocks and builds a graph to represent the program

structure. It then generates a list of attributes based on the lexical and structural analysis

and compares pairs of programs by counting these characteristics.

Rambally and Sage [116] created an attribute counting system, which accepts student’s

programs, parses them and then creates a knowledge system which contains knowledge vec-

tors, where each vector holds information about the attributes in a student’s program. Ram-

bally and Sage use similar attributes identified by previously discussed systems, however,

they take a different approach which counts the loop-building attributes within a program.

Instead of counting variants of loop-building statements separately, they do not discrimi-

nate between different types of loops, they include the count of occurrences of all these

statements into one attribute count. Once the knowledge vectors are created the programs

are classified in a decision tree. Based on the decision tree, the programs which contain

similarities are identified.

Since then, more advanced plagiarism detection tools have been developed. The lit-

27

erature often refers to these tools as structure metric systems. Structure metric systems

compare structure of programs for similarity. Mozgovoy [100] has classified these as con-

tent comparison techniques, and these are discussed in Section 2.5.2.

Comparisons of attribute-counting and string-matching based systems have shown that

attribute counting methods alone were not adequate enough for detecting plagiarism [139,

137, 138]. More recent plagiarism detection tools such as MOSS [2] combine the finger-

printing approach with the structure metric approach.

MOSS (Measure of Software Similarity) [2, 122] is based on a string-matching algo-

rithm that functions by dividing programs into k-grams, where a k-gram is a contiguous

substring of length k. Each k-gram is hashed and MOSS selects a subset of these hash

values as the program’s fingerprints. Similarity is determined by the number of fingerprints

shared by the programs, i.e., the more fingerprints they share, the more similar they are. For

each pair of source-code fragments detected, the results summary includes the number of

tokens matched, the number of lines matched, and the percentage of source-code overlap

between the detected file pairs [122].

2.5.2 Content comparison techniques

Content Comparison techniques are often referred to as structure-metric systems in the liter-

ature. These systems convert programs into tokens and then search for matching contiguous

sequence of substrings within the programs. Similarity between programs depends on the

percentage of the text matched. Mozgovoy [100] classified content comparison techniques

28

into string matching-based algorithms, parameterised matching algorithms and parse trees

comparison algorithms.

String-matching algorithms

Most recent plagiarism detection systems rely on comparing the structure of programs.

These systems use attribute-counting metrics but they also compare the program structure in

order to improve plagiarism detection. String-matching based systems employ comparison

algorithms that are more complex than attribute counting algorithms. Most string-matching

algorithms work by converting the programs into tokens and then use a sophisticated search-

ing algorithm to search for common substrings of text within two programs.

Such systems were initially proposed by Donaldson et al. [37] who identified simple

techniques that novice programming students use to disguise plagiarism. These techniques

are:

• renaming variables,

• reordering statements that will not affect the program result,

• changing format statements, and

• breaking up statements, such as multiple declarations and output statements.

The techniques identified by Donaldson et al. [37] are of the most basic forms of attack.

Whale [139], and Joy and Luck [62] also provide a more detailed list of attacks. A much

29

more detailed list is also provided by Prechelt et al. [115]. We also provide an exhaustive

list containing plagiarism attacks, found in [26].

The program developed by Donaldson et al. [37] scans source-code files and stores in-

formation about certain types of statements. Then, statement types significant in describing

the structure are assigned a single code character. Each assignment is then represented as

a string of characters. If the string representations are identical or similar, then the pair of

programs is returned as similar.

Some recent string-matching based systems include Plague [139], YAP3 (Yet Another

Plague) [144], JPlag [115], and Sherlock [62].

In most string-matching based systems, including the ones mentioned above, the first

stage is called tokenisation. At the tokenisation stage each source-code file is replaced by

predefined and consistent tokens, for example different types of loops in the source-code

may be replaced by the same token name regardless of their loop type (e.g. while loop,

for loop). Each tokenised source-code file is thus represented as a series of token strings.

The programs are then compared by searching for matching substring sequences of tokens.

Programs that contain matching number of tokens above a given threshold are returned

as similar. Similarity between two files is most commonly computed by the coverage of

matched tokens between the detected files.

Plague [139] first creates a sequence of tokens for each file, and compares the tokenised

versions of selected programs using a string matching technique. Results are displayed as

30

a list of matched pairs ranked in order of similarity, measured by the length of the matched

portioned of the token sequences between the two files. Plague is known to have a few

problems [25]. One of the problems with Plague is that it is time-consuming to convert it to

another programming language. Furthermore, the results are displayed in two lists ordered

by indices which makes interpretation of results not immediately obvious. Finally, Plague

is not very efficient because it relies upon a number of additional Unix tools which causes

portability issues.

YAP3 converts programs into a string of tokens and compares them by using the token

matching algorithm, Running-Karp-Rabin Greedy-String-Tiling algorithm (RKR-GST), in

order to find similar source-code segments [144]. YAP3 pre-processes the source-code files

prior to converting them into tokens. Pre-processing involves removing comments, trans-

lating upper case letters to lower case, mapping synonyms to a common form (i.e., function

is mapped to procedure), reordering the functions into their calling order, and removing

all tokens that are not from the lexicon of the target language (i.e., removing all terms that

are not language reserved terms). YAP3 was developed mainly to detect breaking of code

functions into multiple functions, and to detect the reordering of independent source-code

segments. The algorithm works by comparing two strings (the pattern and the text) which

involves searching the text to find matching substrings of the pattern. Matches of substrings

are called tiles. Each tile is a match which contains a substring from the pattern and a sub-

string from the text. Once a match is found the status of the tokens within the tile are set to

marked. Tiles whose length is below a minimum-match length threshold are ignored. The

31

RKR-GST algorithm aims to find maximal matches of contiguous substring sequences that

contain tokens that have not been covered by other substrings, and therefore to maximise

the number of tokens covered by tiles.

JPlag [115] uses the same comparison algorithm as YAP3, but with optimised run time

efficiency. In JPlag the similarity is calculated as the percentage of token strings covered.

One of the problems of JPlag is that files must parse to be included in the comparison for

plagiarism, and this causes similar files to be missed. Also, JPlag’s user defined parameter

of minimum-match length is set to a default number. Changing this number can alter the de-

tection results (for better or worse) and to alter this number one may need an understanding

of the algorithm behind JPlag (i.e RKR-GST). JPlag is implemented as a web service and

contains a simple but efficient user interface. The user interface displays a list of similar file

pairs and their degree of similarity, and a display for comparing the detected similar files

by highlighting their matching blocks of source-code fragments.

Sherlock [62] also implements a similar algorithm to YAP3. Sherlock converts pro-

grams into tokens and searches for sequences of lines (called runs) that are common in two

files. Similarly to the YAP3 algorithm Sherlock searches for runs of maximum length. Sher-

lock’s user interface displays a list of similar file pairs and their degree of similarity, and

indicates their matching blocks of source-code fragments found within detected file pairs.

In addition, Sherlock displays quick visualisation of results in the form of a graph where

each vertex represents a single source-code file and each edge shows the degree of simi-

larity between the two files. The graph only displays similarity (i.e., edges) between files

32

above the given user defined threshold. One of the benefits of Sherlock is that, unlike JPlag,

the files do not have to parse to be included in the comparison and there are no user defined

parameters that can influence the system’s performance. Sherlock, is an open-source tool

and its token matching procedure is easily customisable to languages other than Java [62].

Sherlock is a stand-alone tool and not a web-based service like JPlag and MOSS. A stand

alone tool may be more preferable to academics with regards to checking student files for

plagiarism when taking into consideration confidentiality issues.

Plaggie [1] is a similar tool to JPlag, but employs the RKR-GST without any speed opti-

misation algorithms. Plaggie converts files into tokens and uses the RKR-GST algorithm to

compare files for similarity. The idea behind Plaggie is to create a tool similar to JPlag but

that is stand-alone (i.e. installed on a local machine) rather than a web-based tool, and that

has the extra functionality of enabling the academic to exclude code from the comparison,

i.e. code given to students in class.

Another plagiarism detection tool is that developed by Mozgovoy et al., called Fast

Plagiarism Detection System (FDPS) [102, 103]. FDPS aims to improve the speed of pla-

giarism detection by using an indexed data structure to store files. Initially files are con-

verted into tokens and tokenised files are stored in an indexed data structure. This allows

for fast searching of files, using an algorithm similar to that in YAP3. This involves taking

substrings from a test file and searching for matching substring in the collection file. The

matches are stored in a repository and thereafter used for computing the similarity between

files. Similarity is the ratio of the total number of tokens matched in the collection file to the

33

total number of tokens in the test file. This ratio gives the coverage of matched tokens. File

pairs with a similarity value above the given threshold are retrieved. One of the problems

with the FDPS tool is that its results cannot be visualised by means of displaying similar

segments of code [101]. Therefore, the authors combined FPDS with the Plaggie tool for

conducting the file-file comparison and visualising the results.

Parameterized matching algorithms

Parameterized matching algorithms are similar to the ordinary token matching techniques

(as discussed in Section 2.5.2) but with a more advanced tokenizer [100]. Basically, these

parameterized matching algorithms begin by converting files into tokens. A parameterized

match (also called p-match) matches source-code segments whose variable names have

been substituted (renamed) systematically.

The Dup tool [6] is based on a p-match algorithm, and was developed to detect duplicate

code in software. It detects identical and parameterized sections of source-code. Initially,

using a lexical analyzer the tool scans the source-code file, and for each line of code, a

transformed line is created. The source-code is transformed into parameters, which involves

transforming identifiers and constants into the same symbol P, and a list of the parameter

candidates. For example line x = fun(y)+3∗x is transformed into P = P (P)+P ∗P and

a list containing x, fun, y, 3 and x is generated. Then the lexical analyser creates an integer

that represents each transformed line of code. Given a threshold length, Dup aims to find

source-code p-matches between files. Similarity is determined by computing the percentage

34

of p-matches between two files. The Dup tool outputs the percentage of similarity between

the two files, a profile showing the p-matched lines of code between two files, and a plot

which displays the location of the matched code. According to [46], the Dup tool fails to

detect files if false statements are inserted, or when a small block of statements is reordered.

Other parameterized matching algorithms exist in the literature [3, 7, 56, 119, 44].

Parse Trees Comparison Algorithms

Parse tree comparison algorithms implement comparison techniques that compare the struc-

ture of files [100]. The Sim utility [46] represents each file as a parse tree, and then using

string representations of parse trees it compares file pairs for similarity. The comparison

process begins by converting each source-code file into a string of tokens where each token

is replaced by a fixed set of tokens. After tokenisation, the token streams of the files are

divided into sections and their sections are aligned. This technique allows shuffled code

fragments to be detected.

Sim employs ordinary string matching algorithms to compare file pairs represented as

parse trees. As with most string matching algorithms, Sim searches for maximal common

subsequence of tokens. Sim outputs the degree of similarity (in the range of 0.0 and 1.0)

between file pairs, and was developed to detect similarity in C programs. According to the

authors of Sim, it can be easily modified to work with programs written in languages other

than C. It can detect similar files that contain common modifications such as name changes,

reordering of statements and functions, and adding/removing comments and white spaces

35

[46].

A more recent application of parse trees comparison algorithms is that implemented in

the Brass system [10]. The functionality of Brass involves representing each program as a

structure chart, which is a graphical design consisting of a tree representation of each file.

The root of the tree specifies the file header, and the child nodes specify the statements and

control structures found in the file. The tree is then converted into a binary tree and a symbol

table (data dictionary) which holds information about the variables and data structures used

in the files. Comparison in Brass is a three part process. The first two algorithms involve

comparing the structure trees of files and the third involves comparing the data dictionary

representations of the files. Initially, similar file pairs are detected using the first compar-

ison algorithm. Thereafter, the second and third comparison algorithms are applied to the

detected file pairs.

Tree comparison involves using algorithms more complex than string matching algo-

rithms. From this it can be assumed that systems based in tree comparison algorithms are

slower than systems based on string matching algorithms [100]. The filtering technique by

Brass, speeds up the comparison process.

According to Mozgovoy [100] not much research has been carried out in the area of

parse tree algorithms, and it is not known whether these algorithms perform better than

string matching algorithms with regards to detecting similar source-code file pairs.

36

2.6 Conclusion

In this Chapter we have surveyed a wide variety of source-code plagiarism detection tools

and source-code plagiarism definitions. Although, tools designed to detect similar files in

student assignments are often referred to as plagiarism detection tools, they are essentially

similarity detection tools. These tools are programmed to detect similar source-code files

and it is up to the academic to investigate the similarities between the detected file pairs and

decide whether they are suspicious of plagiarism.

The literature review presented in this Chapter suggests that a gap exists on what con-

stitutes source-code plagiarism in academia. Most of the existing definitions are very brief

and have been created by academics, who developed plagiarism detection tools and in their

publications attempt to provide a definition of source-code plagiarism. We have conducted

a survey to gather academics perceptions on what constitutes source-code plagiarism, and

findings of the survey are described in Chapter 3.

37

Chapter 3

Towards a Definition of Source-Code

Plagiarism

A recent review of the literature on source-code plagiarism in student assignments (refer to

Chapter 1) revealed that there is no commonly agreed definition of what constitutes source-

code plagiarism from the perspective of academics who teach programming on computing

courses.

In this Chapter we discuss the findings from a survey carried out to gather an insight

into the perspectives of UK Higher Education (HE) academics of what is understood to con-

stitute source-code plagiarism in an undergraduate context and we use the survey findings

to propose a definition of what constitutes source-code plagiarism.

38

3.1 Methodology

An on-line questionnaire was distributed to academics across UK HE institutions. The

mailing list of academics was supplied by the Higher Education Academy Subject Centre

for Information and Computing Sciences (HEA-ICS). The UK has approximately 110 HE

level computing departments, for which the HEA-ICS provides support. The mailing list

contained addresses for 120 academics, most of whom were assumed to have expertise in

teaching programming.

The survey instructions specified that only academics who are currently teaching (or

have previously taught) at least one programming subject should respond. The survey was

completed anonymously, but a section in which the academics could optionally provide

personal information was included.

A total of 59 responses were received, of which 43 provided the name of their academic

institution. These 43 academics were employed at 37 departments in 34 different institu-

tions; 31 were English universities and 3 were Scottish universities. Responses received

from two or more academics from the same institution were consistent with each other.

The questionnaire was comprised mostly of closed questions requiring multiple-choice

responses. The majority of questions were in the form of small scenarios describing various

ways students have obtained, used, and acknowledged material.

The questionnaire contained two sections. Section one consisted of questions con-

cerned with issues on what constitutes source-code plagiarism from the perspective of aca-

39

demics. Each question comprised several scenarios describing different ways students have

used and acknowledged material from sources. A total of seven questions were included in

section one of the questionnaire, and the scenarios of these questions covered issues on the

following.

1. Source-code material subject to plagiarism,

2. Copying, adapting, converting source-code from one programming language to an-

other, and using software for automatically generating source-code,

3. Methods used by students to gain material and present that material as their own

work,

4. Group actions, self-plagiarism and collusion,

5. Intentional and unintentional plagiarism in graded and non-graded assignments,

6. Plagiarising by false referencing (i.e. falsification and fabrication), and

7. Considerations on plagiarism occurrences and student collaboration.

Most scenarios required respondents to select, from a choice of responses, the type of

academic offence (if any) that in their opinion applied to each scenario. Choice of responses

included ‘plagiarism (or type of plagiarism)’, ‘other academic offence’, ‘not an academic

offence’, and ‘do not know’.

The second section of the survey was concerned with gathering academics’ responses

on issues concerning plagiarism and the importance of an assignment in terms of its con-

40

tribution toward the overall module mark, and the amount of similarity that two pieces

of source-code must contain in order for academics to take certain actions on plagiarism.

Academics were also presented with two similar pieces of source-code and were asked to

provide ratings as to how similar the pieces of source-code were, and the likelihood that

plagiarism occurred. The data gathered from section two was mainly numerical, and statis-

tical tests were applied for analysing the responses. These findings are described in detail

in our research report [26]. During the design of the questionnaire, it was suspected that

some academics might be reluctant to provide answers to questions asking for quantitative

information due to the subjectivity issues surrounding the topic of similarity thresholds and

source-code plagiarism. However, for research purposes, such questions were considered as

important because they could provide an insight into similarity thresholds between source-

codes for certain actions to be taken, that would be important during the development of

software to detect source-code plagiarism.

Gathering the comments of academics on the various issues concerning plagiarism was

important because of the variety both of university regulations in this area, and of the aca-

demics opinions on such a sensitive issue. Therefore, a text-box was included below each

question for academics to provide any comments they had about issues related to the ques-

tion asked. A detailed analysis of the responses to all survey questions is reported elsewhere

[26]. The purpose of this survey was not to address in depth subjective issues, such as pla-

giarism intent and plagiarism penalties that could depend on student circumstances and

university policies.

41

3.2 Survey Results

This section discusses academics’ responses on issues surrounding source-code reuse and

acknowledgement, assignment contribution, actions when plagiarism is suspected, and stu-

dent collaboration in programming assignments. In the discussion that follows, the term

module denotes a single subject of study; for example, the Programming for Scientists

module is part of the undergraduate degree course (programme) Computer Science.

3.2.1 Plagiarised material

Plagiarism in programming assignments can go beyond the copying of source-code; it can

include comments, program input data, and interface designs.

The process of investigating whether source-code plagiarism occurred may involve

looking at other parts of a programming assignment since in some circumstances source-

code alone may not be sufficient for identifying and proving plagiarism. A programming as-

signment may include design diagrams, source-code and other documentation. Academics

were presented with the scenarios described below, and were asked to select one answer:

‘Agree’, ‘Disagree’, ‘Neither agree or disagree’.

• Plagiarism in programming assignments can involve the:

– Scenario A: Source-code of a computer program

– Scenario B: Comments within the source-code

42

Figure 3.1: Scenarios and responses (1)

– Scenario C: Design material of a computer program

– Scenario D: Documentation of a computer program

– Scenario E: User interface of a computer program

– Scenario F: Program input data, i.e. for testing the program

The responses gathered are illustrated in Figure 3.1

All academics agreed that in a programming assignment source-code can be plagia-

rised. Comments within source-code can be plagiarized and may contribute towards iden-

tifying source-code plagiarism cases. The majority of academics agree that comments can

be plagiarised and that comments may also help identify source-code plagiarism cases,

“comments are not in themselves a ‘code plagiarism’ issue but may help iden-

43

tify a case.”

Program input data and the user-interface can be subject to plagiarism if they form

part of the requirement in the assignment specification. The majority of respondents agreed

that program input data can be subject to plagiarism but this alone cannot contribute to

the identification of plagiarism. Three academics commented that copying input data is

an issue if students are assessed on their testing strategies. When students are assessed

on their testing strategies, assessment for plagiarism would occur by observing the testing

strategy, including the datasets (e.g., input data) used for testing the program, and the testing

material, including the test plan, system design documentation, technical documentation,

and user manuals. One academic noted:

“The input data are not necessarily plagiarism, but a testing strategy can be (i.e.

what and how to perform the testing, datasets used, any UAT forms, etc.). The

user interface is not necessarily generated by the user, but by the development

tool, so it cannot be considered plagiarism in this case.”

Interface designs submitted by students that appear suspicious need to be investigated

for plagiarism if the assignment requires students to develop their own interface designs.

Academics commented that whether a user-interface can be subject to plagiarism depends

on the assignment requirements, and if a user-interface is required from the students then it

can be subject to plagiarism,

“The item on user-interface is really dependent on the task: if the UI was not

44

the essence of the program, then I wouldn’t think this is an issue.”

The majority of academics agreed that any material that is unreferenced can constitute

plagiarism. One academic observed:

“I require students to write their own code and documentation, except that there

are safe-harbour provisions for permitted sources of each. They must cite their

use to be able to claim the safe-harbour provision. The permitted sources are

explicitly identified for the project.”

3.2.2 Adapting, converting, generating, and reusing source-code

Academics were provided with scenarios concerned with the copying, adapting, and con-

verting of source-code from one programming language to another, and using code-generating

software for automatically creating source-code. A code-generator is an application that

takes as input meta-data (e.g. a database schema) and creates source-code that is compliant

with design patterns. An example of shareware code-generator software is JSPMaker [63]

— when given a database this software quickly and easily creates complete source-code

and a full set of JavaServer Pages [12] that have database connectivity. The given scenarios

are as follows:

• Scenario A: A student reproduces/copies someone else’s source-code without mak-

ing any alterations and submits it without providing any acknowledgements.

45

Figure 3.2: Scenarios and responses (2)

• Scenario B: A student reproduces/copies someone else’s source-code, adapts the

code to his/her own work and submits it without providing any acknowledgements.

• Scenario C: A student converts all or part of someone else’s source-code to a different

programming language and submits it without providing any acknowledgements.

• Scenario D: A student uses code-generating software (software that one can use to

automatically generate source-code by going through wizards) and removes the ac-

knowledgement comments that were automatically placed into the code by the soft-

ware and submits it without providing any acknowledgements.

Responses to the scenarios are shown in Figure 3.2. Academics’ comments on these

scenarios raise important issues that are unique to source-code plagiarism.

46

Responses to scenarios A and B indicate a wide agreement that reproducing/copying

someone else’s source-code with or without making any alterations and submitting it with-

out providing any acknowledgements constitutes source-code plagiarism. However, con-

cerns were expressed on source-code reuse and acknowledgement. One academic com-

mented:

“ ... in O-O environments where reuse is encouraged, obviously elements of

reuse are not automatically plagiarism. I think I’d be clear on the boundaries

and limits in any given circumstance, and would hope to be able to communi-

cate that clarity to my students, but obviously there will potentially be prob-

lems. Use of the API would be legitimate without acknowledgement — or with

only the implicit acknowledgement.”

Regarding scenario B, many of the academics commented that adapting source-code

may constitute plagiarism depending on the degree of adaptation, i.e., how much code is a

copy of someone else’s work and the extent to which that code has been adapted without

acknowledgement. For example, a program may not be considered to be plagiarized if it was

started by using existing source-code and then adapted to such an extent that it is beyond all

recognition, so that there is nothing left of the original code to acknowledge. More of the

respondents, however, have raised the issue of source-code reuse and acknowledgement.

Specifically, one academic remarked:

“... code copied from a web-site that assists in a specific task is potentially

47

good practice. However, code that is a 100% copy is a different issue. I would

also be concerned about the context of this copying. If the only deliverable

were to be code and documentation the offence is clear. In this sense I suppose

it is an issue of how much of the overall assignment is actually a copy of other

work (without acknowledgement).”

On the issue of converting all or part of someone else’s source-code to a different pro-

gramming language, and submitting it without providing any acknowledgements (scenario

C), several academics remarked that if the code is converted automatically without any

or much effort from the student, then this procedure can constitute plagiarism. However,

if a student takes the ideas or inspiration from code written in another programming lan-

guage and creates the source-code entirely “from scratch”, then this procedure is not likely

to constitute plagiarism. Furthermore, in their comments academics have pointed out that

taking source-code written in one programming language and converting it to a similar pro-

gramming language, such as from C++ to Java, can constitute plagiarism. One academic,

referring to scenarios A to D, emphasized:

“In each case there must be some presumed benefit to the student in doing so

(why did they do it otherwise?) and disruption to the assessment system. Even

where the advantage might be minimal — e.g., from Prolog to C — a good

student would almost certainly acknowledge the issue and use it to discuss the

differences.”

48

Academics were asked whether plagiarism takes place if “a student uses code-generating

software, removes the acknowledgement comments that were automatically placed into the

code by the software, and submits it without providing any acknowledgements”. The ma-

jority of the respondents considered unacknowledged use of code-generating software as

plagiarism unless permission for use of such software is described in an assignment speci-

fication.

The findings suggest that students should be required to acknowledge any material they

use that is not their own original work even when source-code reuse is permitted. All

material should be acknowledged regardless of licensing permissions(e.g. open source,

free-use, fair-use).

3.2.3 Methods of obtaining material

There are several ways students can gain source-code written by another author and present

that material as their own work. In this question, the academic was asked to provide his/her

opinion as to which academic offence applies to given scenarios. The scenarios describe

methods used by students to gain material and present that material as their own work.

The purpose of this question is to determine which student actions indicate source-code

plagiarism.

The following scenarios were presented:

• Scenario A: A student pays another person (other than a student on the same module)

49

Figure 3.3: Scenarios and responses (3)

to create part or whole of source-code and submits it as his/her own work.

• Scenario B: A student pays a fellow student on the same module to create part or

whole of source-code and submits it as his/her own work.

• Scenario C: A student steals another student’s source-code and submits it as his/her

own work.

• Scenario D: A student steals another student’s source-code, edits it and submits it as

his/her own work.

• Scenario E: A student intentionally permits another student to copy all or part of

his/her programming assignment (including the source-code).

The responses of academics for are shown in Figure 3.3.

50

In scenarios A to D, plagiarism was committed alongside another academic offence(s)

such as cheating and stealing, hence some academics chose ‘plagiarism’ and others ‘other

academic offence’. Many academics commented that these scenarios constitute plagiarism

as well as other offences. One academic who considered scenarios A and B as ‘other aca-

demic offence’ and scenarios C and D as ‘plagiarism’ commented that

“...paying someone or deliberately letting someone else use your code would

both infringe the no-plagiarism declaration a student signs on submitting course-

work - so would be plagiarism.”

Another academic who considered scenarios A and B as ‘other academic offence’ and

scenarios C and D as ‘plagiarism’ commented that

“Serious cheating or deliberate plagiarism, a ‘red-card offence’. I tell the stu-

dents I am assessing them, not their sources, and this is an attempt to gain a

qualification by fraud.”

A third academic considered all scenarios to be ‘plagiarism’ justified by the following

comment.

“The act of submitting somebody else’s work as your own without acknowl-

edgment is generally plagiarism - in some of these cases other academic of-

fences have been committed too. In particular stealing another student’s work

is an academic offence (and potentially a criminal or civil offence) in its own

51

right.”

Regarding scenario E, comments received indicate that some of the academics consider

this scenario to be collusion and some consider it plagiarism. Some of the academics that

have considered this scenario as collusion commented, “intentionally permits...” is collu-

sion., “It’s a moot point what the name is, but I think I’d call the last one collusion.”, and

some of the academics that considered this scenario as ’plagiarism’ provided comments

such as, “I would see the last case as colluding in plagiarism - still an offence.”, “The last

is complicity in plagiarism, which is a form of academic misconduct”, “At my university

plagiarism and collusion are regarded as, and treated as, the same offence, so I’m not used

to making any distinction between the two.”

The findings show that there was a wide agreement between academics that this sce-

nario is an academic offence, and whether it is regarded as collusion, plagiarism or another

academic offence depends on university regulations. Some universities consider collusion

and plagiarism as separate offences, while other universities do not make any distinctions

between the two.

3.2.4 Source-code referencing and plagiarism

The respondents were asked to provide their views on scenarios regarding source-code ref-

erencing and plagiarism. The purpose of the given scenarios was to determine whether

inappropriate referencing can suggest plagiarism. The results of question 6 are presented in

52

Figure 3.4: Scenarios and responses (4)

Figure 3.4, which corresponds to the following scenarios.

• Scenario A: Not providing any acknowledgements

• Scenario B: Providing pretend references (i.e. references that were made-up by the

student and that do not exist)

• Scenario C: Providing false references (i.e. references exist but do not match the

source-code that was copied)

• Scenario D: Modifying the program output to make it seem as if the program works

The results show that academics consider copying source-code from a book or a web-

site, and not providing any acknowledgements as source-code plagiarism. For scenario A,

one academic commented that there is a difference between poor referencing and plagia-

53

rism, and that the difference between poor referencing and plagiarism is one that it is not

easily determined.

For scenarios B and C, academics commented that these scenarios show intent by the

student to plagiarise. Regarding scenario D, if source-code was copied and unacknowledged

this can constitute plagiarism as well as other academic offences characterised by academics

as ‘plagiarism’, “falsification”, “fraud”, “cheating” and as “an act that it raises ethical,

scientific and academic integrity issues”.

The findings show that there was a wide agreement between academics that scenarios B,

C, and D suggest an academic offence, however whether these are regarded as ‘plagiarism’

or ‘another academic offence’ seems to depend on university regulations.

3.2.5 Self-plagiarism and collusion in source-code

Academics were asked to provide their opinion as to which academic offence applies to

given scenarios regarding group actions, self-plagiarism and collusion. In non-programming

assignments, self-plagiarism occurs when a student reuses parts of an assignment previously

submitted for academic credit and submits it as part of another assignment without provid-

ing adequate acknowledgement of this fact. In programming modules where source-code

reuse is taught, self-plagiarism may not be considered as an academic offence. Collusion,

occurs when two or more students collaborate on an assignment when the assignment re-

quires students to work individually.

54

The scenarios presented to academics are as follows:

• Scenario A: For a group assignment, students in different groups exchange parts

of source-code with the consent of their fellow group members, and integrate the

borrowed source-code within their work as if it was that group’s own work.

• Scenario B: For a group assignment, students in different groups exchange parts of

source-code, without their fellow group members knowing, and integrate the bor-

rowed codes within their work as if it was that group’s own work.

• Scenario C: Assume that students were not allowed to resubmit material they had

originally created and submitted previously for another assignment. For a graded as-

signment, a student has copied parts of source-code that he had produced for another

assignment without acknowledging it.

• Scenario D: Two students work together for a programming assignment that requires

students to work individually and the students submit very similar source-codes.

The responses of academics for are shown in Figure 3.5.

The majority of the academics consider scenarios A, and B as plagiarism. Consider-

ing the comments given by academics to previous questions, these scenarios can consti-

tute plagiarism, collusion or another academic offence depending on university regulations.

Scenario B can constitute plagiarism, collusion as well as another academic offence since

material was obtained without permission (the type of academic offence depends on the

academic regulations of each university). Regarding scenarios A and B, some academics

55

Figure 3.5: Scenarios and responses (5)

expressed some concerns on the issue of plagiarism in group assignments. One academic

commented,

“I avoid group assignments for just these reasons. I permit students to work

together as long as they individually write their own code and documentation.

I regard this as pedagogically valuable”,

while another academic observed

“...Some students learn better while working in groups but they must ensure

that the work submitted is original and their own. The tell tale here is the

comments (and spelling mistakes) are identical.”

The majority of academics considered scenario D as an academic offence, ‘plagiarism’

56

or ‘another academic offence’. However, as mentioned above the name depends on univer-

sity regulations. Academics commented,

“the last one [scenario D] is very tricky to decide; I’m very happy for students

to work together, but very unhappy when I have to make this kind of decision.

I’d be inclined to say ‘plagiarism’, but treat a first offence leniently,”

another academic considered this scenario as

“very common and usually accompanied with denials that they had submitted

the same code and/or they didn’t know they weren’t allowed to work together.”

In student assignments, self-plagiarism occurs when a student copies entire or parts

of his/her own assignment and submits it as part of another assignment without providing

proper acknowledgement of this fact. However, when we asked academics whether it con-

stitutes plagiarism if a student resubmits source-code they have originally created and sub-

mitted previously for another assignment (see scenario C) we received some controversial

responses. The majority of the academics (48 out of 59) characterised this scenario as an

academic offence (17 as plagiarism and 31 as other academic offence). In their comments,

those academics characterised this scenario as “self-plagiarism”, “breach of assignment reg-

ulations if resubmission is not allowed”, and “fraud if resubmission is not acknowledged”.

Some academics argued that in object-oriented environments, where reuse is encour-

aged, it is inappropriate to prevent students from reusing source-code produced as part of

57

another programming assignment. The comments and responses provided by the academics

who do not consider the given scenario to constitute plagiarism or another academic offence

point to the controversial issue on source-code reuse mentioned above. One academic who

provided a ‘do not know’ response remarked that students should reuse source-code where

possible, while another, who was clear that the given scenario ‘was not an academic of-

fence’, emphasized

“I find it hard to assume that students were not allowed to resubmit material.”

A third academic, who also stated that the given scenario ‘was not an academic offence’,

asked rhetorically

“Would this ever happen in an object-oriented programming module when we

behove students not to reinvent the wheel?”

In conclusion, since 48 out of 59 academics characterised the action of resubmitting

source-code produced as part of another assessment as a type of academic offence (plagia-

rism or other) we can conclude that resubmitting source-code without providing appropriate

acknowledgements may lead to an academic offence if this is not allowed for the particular

assignment.

58

3.2.6 Plagiarism in graded and non-graded assignments

Academics were presented with brief scenarios concerning intentional and unintentional

plagiarism in graded and non-graded assignments. By non-graded assignments, we refer

to assignments that do not contribute to the overall module mark (such as some laboratory

and tutorial exercises).

In this question, academics were asked to provide their opinions as to which academic

offence applies to given scenarios. The purpose of this question is to determine whether

intentions and assignment importance influence the decision as to whether plagiarism has

occurred.

Figure 3.6 corresponds to the following scenarios:

• Scenario A: For a graded assignment, a student has copied source-code from a book

and has intentionally not provided any acknowledgements.

• Scenario B: For a graded assignment, a student has copied source-code from a book

and has unintentionally not provided any acknowledgements.

• Scenario C: For a non-graded assignment, a student has copied source-code from a

book and has intentionally not provided any acknowledgements.

• Scenario D: For a non-graded assignment, a student has copied source-code from a

book and has unintentionally not provided any acknowledgements.

The responses of academics for are shown in Figure 3.6.

59

Figure 3.6: Scenarios and responses (6)

The results show that plagiarism can occur regardless of whether or not the student

intended to provide acknowledgements to the sources they used. Academics commented

that the degree of intent determines the seriousness of the plagiarism and consequently

the penalty applied to the students work. Hence, plagiarism can occur intentionally or

unintentionally, and the penalty imposed to the student will depend on the degree of the

student’s intention to commit plagiarism,

“It is a case of degree here. Typically students do not just fail to reference one

source but many. For non graded work (presumably being used formatively) it

would be better to highlight the error without formal censure.”

The results also suggest that plagiarism can occur regardless of whether an assign-

ment is graded or non-graded. Two academics commented that plagiarism punishments for

60

graded and non-graded assignments may vary. The first academic who provided a ‘don’t

know’ response for scenarios C and D commented that

“[for scenarios C and D] it depends on what the rules were for that non-graded

assignment. If they plagiarise then it is plagiarism irrespective of whether the

assignment is graded, it just means that the penalty may be different.”

The second academic who provided a ‘plagiarism’ response for both scenarios C and

D commented that

“the act of plagiarism should be related to whether an assignment is graded or

not. The intention also would have to do with the amount of penalty applied

to.”

In addition, many academics commented that action against students should not be

taken for non-graded assignments, and in such cases, the students should be approached

and informed or warned about plagiarism implications on graded assignments

“If the assignment is not contributing towards the mark for the module then the

correct protocol should be brought to the attention of the student.”

In addition one academic who considered scenarios C and D as ‘not an academic of-

fence’ commented,

61

“My logic here is that you can’t penalise someone for an assignment they didn’t

have to do. The last two questions are still plagiarism in my view but you

couldn’t take any action against the student for it.”

Furthermore, some of the academics commented that their university regulations on

plagiarism would only apply to graded work and plagiarism is only an academic offence if

it concerns work submitted for credit. One academic stated

“last two *are* cases of plagiarism but academic regulations might define ‘of-

fence’ in terms of intention to gain higher grades.”

Another academic observed that the

“last two are not offences but morally incorrect and could lead to the practice

being repeated for assessed work when it will be plagiarism.”

In conclusion, copying without providing any acknowledgements can constitute pla-

giarism whether this is done intentionally or unintentionally. Plagiarism can occur in both

graded and non-graded assignments, regardless of the assignments contribution to the over-

all course mark. The degree of intent determines the seriousness of the plagiarism. The

penalty imposed from plagiarism in graded and non-graded assignments may differ and

may depend on the degree of intent to commit plagiarism.

Some university regulations on plagiarism seem to apply to graded assignments only.

Many academics have commented that when plagiarism is detected in non-graded assign-

62

ments, the students should be approached and informed or warned about its implications

on graded assignments. Such measures are not always explicitly described in university

regulations.

3.2.7 Assignment contribution

When prompted to consider the question: ‘What would have to be the minimum weight of

an assignment towards the overall module mark for you to proceed with investigation into

plagiarism?’, responses were largely uniform. As Figure 3.7 illustrates, the majority (32

out of 51) or respondents cited a value in the range of 0-5 %, suggesting a “zero tolerance”

policy. Furthermore, there was agreement that investigation into possible plagiarism cases

should always be pursued and appropriate action taken (either in the form of penalties or as

warnings) regardless of the assignment’s contribution towards the overall module mark.

The rationale for this attitude was clearly articulated by one respondent who warned

“If they cheat on a 5% assignment they will cheat on a larger one. A short,

sharp shock can prevent the full offence.”

In some instances, the severity of the offence is considered by the institution to vary

depending on the contribution of the assignment,

“Any contribution would bring the same investigation. However, for the full

range of penalties to be applied a minimum contribution to the degree award of

63

Figure 3.7: Responses to minimum assignment weight scenario.

7%, or a second or subsequent upheld accusation, is required. This is university

policy.”

One academic commented,

“If the assignment is not contributing towards the mark for the module then the

correct protocol should be brought to the attention of the student.”

3.2.8 Plagiarism occurrences and considerations on student collaboration

The survey raised issues on appropriate and inappropriate collaboration between students.

There was general agreement among respondents that it is “pedagogically valuable” for

students to engage actively in sharing ideas while discussing assignments as long as they

do not copy each other’s work. Three academics who encourage students to share ideas

64

commented on the benefits and pitfalls of such practice:

“I have no problem with sharing ideas. Given the restricted types of programs

undergraduate students write, it is inevitable that certain design decisions lead

to similar code. ”

This position was endorsed and elaborated by another academic who articulated a straight-

forward view on the problem,

“I am personally not too worried about students discussing their work, it is the

outright copying that I find most offensive and educationally pointless.”

A third academic observed that it is

“Important to remember that we often expect people to engage actively in dis-

cussing content and assignments. Also, as preparation for future working in

teams, we often need to be much clearer in what we require of students — and

what we don’t.”

Respondents noted that occurrences of plagiarism vary (both in type and in frequency)

depending on the tasks being undertaken at the time. Respondents reported that occurrences

of plagiarism when students are testing and debugging their software appeared to depend

on the type of testing being carried out by the students. They remarked that occurrences of

plagiarism during white box testing (tests requiring access to the code of the program under

65

test) tend to be more frequent than during black box testing (tests conducted at the software

interface level) due to the nature of these tests.

In addition, respondents noted that the distribution of marks awarded for the compo-

nents of an assignment influences in which of those component tasks plagiarism may occur.

For example, if the credit awarded for the design of a program is relatively high compared

to the credit for the coding, then students are more likely to plagiarize when performing the

design task.

Sharing ideas and sharing work were considered as two very different issues. Although

academics expressed no objections to students sharing ideas, they opposed the practice

of students collaborating and submitting similar work when assignments required them to

work individually.

3.3 Source-Code Plagiarism: Towards a Definition

Based on the responses summarized above, the following is suggested as a new definition

of what constitutes source-code plagiarism in an academic context.

Source-code plagiarism in programming assignments can occur when a student reuses

(3.3.1) source-code authored by someone else and, intentionally or unintentionally, fails

to acknowledge it adequately (3.3.3), thus submitting it as his/her own work. This involves

obtaining (3.3.2) the source-code, either with or without the permission of the original au-

66

thor, and reusing (3.3.1) source-code produced as part of another assessment (in which aca-

demic credit was gained) without adequate acknowledgement (3.3.3). The latter practice,

self-plagiarism, may constitute another academic offence.

3.3.1 Reusing

Reusing includes the following:

1. Reproducing/copying source-code without making any alterations

2. Reproducing/copying source-code and adapting it minimally or moderately; minimal

or moderate adaptation occurs when the source-code submitted by the student still

contains fragments of source-code authored by someone else.

3. Converting all or part of someone else’s source-code to a different programming lan-

guage may constitute plagiarism, depending on the similarity between the languages

and the effort required by the student to do the conversion. Conversion may not

constitute plagiarism if the student borrows ideas and inspiration from source-code

written in another programming language and the source-code is entirely authored by

the student.

4. Generating source-code automatically by using code-generating software; this could

be construed as plagiarism if the use of such software is not explicitly permitted in

the assignment specification.

67

Where source-code reuse is not allowed, reusing (3.3.1) source-code authored by some-

one else (or produced by that student as part of another assessment) and providing acknowl-

edgements may constitute a breach of assignment regulations, rather than plagiarism (or

self-plagiarism).

3.3.2 Obtaining

Obtaining the source-code either with or without the permission of the original author in-

cludes:

1. Paying another individual to create a part of or all of their source-code

2. Stealing another student’s source-code

3. Collaborating with one or more students to create a programming assignment which

required students to work individually, resulting in the students submitting similar

source-codes; such inappropriate collaboration may constitute plagiarism or collu-

sion (the name of this academic offence varies according to the local academic regu-

lations).

4. Exchanging parts of source-code between students in different groups carrying out

the same assignment with or without the consent of their fellow group members.

Incidents of source-code plagiarism can co-occur with other academic offences (such

as theft, cheating, and collusion) depending on academic regulations. The list above is in-

68

dicative of key areas where this form of plagiarism occurs, but it is certainly not exhaustive,

since there are numerous ways that students can obtain source-code written by others.

3.3.3 Inadequately acknowledging

Inadequately acknowledging source-code authorship includes:

1. Failing to cite the source and authorship of the source-code, within the program

source-code (in the form of an in-text citation within a comment) and in the appro-

priate documentation.

2. Providing fake references (i.e. references that were made-up by the student and that

do not exist); this is a form of academic offence, often referred to as fabrication,

which may co-occur with plagiarism.

3. Providing false references (i.e. references exist but do not match the source-code that

was copied); another form of academic offence, often referred to as falsification,

which may co-occur with plagiarism.

4. Modifying the program output to make it seem as if the program works when it is

not working; this too is a form of academic offence akin to falsification, which may

co-occur with plagiarism.

69

3.4 Conclusion

In this Chapter we discussed academics responses on issues surrounding source-code reuse

and acknowledgement. A general consensus exists among academics that a zero tolerance

plagiarism policy is appropriate; however some issues concerning source-code reuse and

acknowledgement raised controversial responses.

The responses revealed that a wide agreement exists among academics on the issue of

what can constitute source-code plagiarism. Because of the object-oriented nature of some

programming languages, some academics have identified important issues concerned with

source-code reuse and acknowledgement (including self-plagiarism). They also noted dif-

ferences between the approach to plagiarism adopted for graded and non-graded work. The

survey findings were used to suggest a definition of what constitutes source-code plagiarism

from the perspective of academics who teach programming on computing courses.

Much survey-based research exists addressing the prevalence of source-code plagiarism

in academia. However, surveys on the issue of what constitutes source-code plagiarism in

UK universities are rare in academic scholarship. In addition, there appears to be no com-

monly agreed description of what constitutes source-code plagiarism from the perspective

of academics who teach programming on computing courses.

Differences among university policies, assignment requirements, and personal aca-

demic preferences, can create varied perceptions among academics and students on what

constitutes source-code plagiarism. The fact that source-code reuse is encouraged in object-

70

oriented programming may lead students to take advantage of this situation, and use or adapt

source-code written by other authors without providing adequate acknowledgements.

Since reuse is encouraged in object-oriented programming, some academics have ex-

pressed different opinions on issues surrounding source-code reuse and acknowledgement.

The majority of respondents agreed that, when reuse is permitted, students should ade-

quately acknowledge the parts of the source-code written by other authors (or that the stu-

dents have submitted as part of another assessment) otherwise these actions can be con-

strued as plagiarism (or self-plagiarism).

Responses show that university policies influence the actions academics can take when

they detect plagiarism. Not all universities, however, apply these policies to assignments

that are not submitted for academic credit.

Academics teaching programming should inform students clearly of their preferences

especially on source-code reuse and acknowledgement. Avoiding confusion among aca-

demics and students is likely to reduce the occurrences of plagiarism.

71

Chapter 4

A Small Example of Applying Latent

Semantic Analysis to a Source-Code

Corpus

This Chapter provides a theoretical and practical introduction to the LSA information re-

trieval technique using a context specific example. We describe the foundations for under-

standing the basics of LSA using a step-by-step procedure for discussing the application of

LSA to an example source-code corpus. The evaluation measures described in this Chapter

will be referred to later on in the thesis.

72

4.1 Information Retrieval and the Vector Space Model

Information retrieval is an area concerned with the representation, storage, retrieval, and

maintenance of information items. In the past 30 years the area of information retrieval

has expanded to include tasks such as document classification and categorisation, systems

architecture, data visualisation, user interfaces, information filtering, and cross-language

document retrieval [5]. Amongst information retrieval systems is the Vector Space Model

(VSM) [120]. Its first use was in the SMART (Saltons Magic Automatic Retriever of Text)

retrieval system developed at Cornell University in the 1960’s.

In the Vector Space Model, a corpus of documents is represented as an m × n term-

by-document matrix A, where m (the rows of the matrix) is the number of unique words in

the corpus, n (the columns of the matrix) is the number of documents, and each element of

matrix A, aij , is the frequency (or weighted frequency) at which word i occurs in document

j. Thus in the VSM, the rows of matrix A represent the term vectors, and the columns of

matrix A represent the document vectors.

The idea behind the VSM is that similarities between vectors can be computed using

geometric relationships. Documents represented as vectors can be compared to user queries

(represented as vectors), to determine their similarity, using a similarity measure such that

documents similar to the query can be retrieved. Similarity can be measured using similarity

coefficients [48] that measure the distance between a document and a query vector. The

traditional method for computing the similarity between two vectors is the cosine measure

73

of similarity which measures the size of the angle between the two vectors.

4.2 What is Latent Semantic Analysis?

Latent Semantic Analysis (LSA) is a variant of the VSM for information retrieval. Liter-

ature on the application of LSA for information retrieval dates back to 1988. LSA is also

known as Latent Semantic Indexing (LSI), and the term LSI is used for tasks concerning

the indexing or retrieval of information, whereas the term LSA is used for tasks concerned

with everything else, such as automatic essay grading and text summarisation.

Dumais et al. [40] proposed the use of LSA as a potential technique for overcoming

deficiencies of text retrieval systems such as the VSM. Because of the variability in word

usage, i.e. variability in the words people use to describe the same word or concept (syn-

onymy), term matching methods often fail to retrieve information relevant to the user’s

query. In fact, empirical evidence suggests that the likelihood of two people choosing the

same keyword to describe a familiar object or concept is between 10% and 15% [45]. Fur-

thermore, one word can have more than one meaning (polysemy), which leads to irrelevant

information being retrieved. From this perspective, exact lexical-matching methods are de-

ficient for information retrieval. Dumais [40] proposed LSA as an information retrieval

technique to overcome the problems of exact term-matching models.

The LSA technique comprises of mathematical algorithms that are applied to text col-

lections. Initially a text collection is pre-processed and represented as a term-by-documents

74

matrix containing terms and their frequency counts in files. Matrix transformations (or term

weighting algorithms) are applied to the values of terms such that the values of terms in doc-

uments are adjusted depending on how frequently they appear within and across documents

in the collection. A mathematical algorithm called Singular Value Decomposition (SVD)

decomposes this term-by-document matrix into separate matrices that capture the similarity

between terms and between documents across various dimensions in space. The aim is to

represent the relationships between terms in a reduced dimensional space such that noise

(i.e. variability in word usage) is removed from the data and therefore uncovering the im-

portant relations between terms and documents obscured by noise [16]. LSA aims to find

underlying (latent) relationships between different terms that have the same meaning but

never occur in the same document.

Take for example, two documents which both describe how a computer monitor works

but one uses the terms computer monitor and the other documents uses the term computer

screen but both documents have similar content. LSA derives the meaning of terms by

estimating the structure of term usage amongst documents through SVD. This underlying

relationship between terms is believed to be mainly (but not exclusively) due to transitive

relationships between terms, i.e., terms are similar if they co-occur with the same terms

within documents [76]. Traditional text retrieval systems cannot detect this kind of transi-

tive relationship between terms and the consequence of this is that relevant documents may

not be retrieved. LSA categorises terms and documents into a semantic structure depending

on their semantic similarity, hence latent semantic in the title of the method.

75

LSA derives the meaning of terms by analysing their context of word usage and thus it is

guessing the meaning of a word. It represents each document as a vector in the vector space,

and treats each document as a bag of words ignoring word order. Researchers have explored

the level of meaning that LSA can extract from English texts without the use of word order

[80, 84, 117, 145]. Landauer et al. [84] compared essays written by students with target

instructional texts (i.e. by computing the cosine between the student essay vector and the

target essay vector) and human judgments. Statistical correlations revealed little difference

between LSA scores and human judgments. The authors conclude that LSA represents

meaning from text as accurately as humans however it does not require the use of word

order and syntax as humans do.

The work done by researchers on applying LSA to automate the essay grading process

[84, 117, 47, 143, 67, 65] is rather similar to the task of using LSA to detect similar source-

code files. This involves giving LSA a source-code file (represented as a target file vector)

and using it to retrieve similar files. LSA then returns a similarity value between the target

file and its similar files.

SVD appears to be the power behind LSA. The relations between terms are not ex-

plicitly modeled in the creation of the LSA space, and this makes it difficult to understand

how LSA works in general [94]. Many models for understanding LSA have been proposed

[148, 131, 36, 76]. One recent model for understanding the performance of LSA is that

by Kontostathis and Pottenger [76], who provide a framework for understanding the LSA

performance in the context of information search and retrieval. They provide mathemati-

76

cal proof that the SVD algorithm encapsulates co-occurrence and it is from this that LSA

generates semantic knowledge of text.

LSA derives semantic similarities from analysing the co-occurrence of words in a cor-

pus and relies on high dimensional vector spaces to represent meanings [33]. The meaning

of a word is determined by analysing its relationship to other words rather than defining the

meaning of a word by its properties (i.e., function, role, etc.). For example, the meaning

of a word is defined by its degree of association with other words, for example the word

computer is very close to words keyboard and screen, and far from words like swim and

umbrella [33]. LSA needs enough information to analyse in order to derive the semantics

of words successfully.

LSA is known as an intelligent information retrieval technique and is typically used

for indexing large text collection and retrieving files based on user queries. In the con-

text of text-retrieval LSA has been applied to a variety of tasks including indexing and

information filtering [43]; essay grading [84, 117, 47, 143, 67, 65]; modeling children’s se-

mantic memory [33]; cross-language information retrieval [146]; information visualisation

[82]; indexing essays [32, 38, 16]; text summarisation [74, 130]; giving feedback on essays

[145, 19]; grading of free-text responses [140, 110]; e-assessment [134]; student tutoring

[142]; source-code clustering and categorisation [71, 89, 77, 91, 92, 95], and for detecting

plagiarism in natural language text [19].

77

4.3 An Introduction to the Mathematics of LSA

LSA starts by transforming the pre-processed corpus of files into a m×n matrix A = [aij],

in which each row m represents a term vector, each column n represents a file vector, and

each cell aij of the matrix A contains the frequency at which a term i appears in file j [16].

Term weighting is then applied to matrix A. The purpose of term weighting is to in-

crease or decrease the importance of terms using local and global weights in order to

improve retrieval performance. With document length normalization the term values are

adjusted depending on the length of each file in the corpus [14].

The matrix is then submitted for Singular Value Decomposition (SVD) to derive the

latent semantic structure model. Singular Value Decomposition decomposes matrix A into

the product of three other matrices an m×r term-by-dimension matrix, U, an r×r singular

values matrix, Σ, and an n × r file by dimension matrix, V . The original matrix A can

be reconstructed by multiplying the three matrices through UΣV T where V T denotes the

transpose of matrix V.

The rank r of matrix A is the number of nonzero diagonal elements of matrix Σ. SVD

can provide a rank-k approximation to matrix A, where k represents the number of dimen-

sions (or factors) chosen, and k ≤ r. This process is known as dimensionality reduction,

which involves truncating all three matrices to k dimensions. This is done by selecting the

first k columns from matrices U , Σ, and V , and the rest of the values are deleted (or set to

zero). The reduced matrices are denoted by Uk, Σk, and Vk where Uk is a m × k matrix,

78

Σk is a k × k matrix and Vk is a n × k matrix. The rank-k approximation to matrix A, can

be constructed through Ak = UkΣkV
T
k .

It is important when computing the SVD that k is smaller than the rank r, because it

is this feature that reduces noise in data and reveals the important relations between terms

and documents [16, 13]. In addition, by reducing the sizes of matrices, computation time

is also reduced and this increases computational efficiency. Techniques for aiding with the

selection of dimensionality are discussed in Chapter 5. The most effective and commonly

used method for selecting the number of dimensions is through experimentation. In order

to perform such experiments, a number of queries and their relevant files must be known

such that the information retrieval performance of a system is evaluated when using various

k dimensional settings.

One common task in information retrieval systems involves a user placing a query in

order to retrieve files of interest. A user’s query comprises of a set of words, and in an LSA

based system, a query must be represented as a query vector and then projected into the

term-file space and then compared to all other file vectors.

The elements of the query vector contain the weighted term-frequency counts of the

terms that appear in the query, using the same weighting scheme applied to matrix A.

Thus, given a query vector q, whose non-zero elements contain the weighted term fre-

quency values of the terms, the query vector can be projected to the k-dimensional space

using Function 4.1 [16].

79

Q = qT UkΣ
−1

k , (4.1)

where on the left hand side of the equation, Q is a mapping of q into latent semantic

space, and on the right hand side of the equation q is the vector of terms in the user’s

weighted query; qT is the transpose of q; and qT Uk is the sum of the k-dimensional term

vectors specified in the query, multiplied by the inverse of the singular values Σ−1

k . The

singular values are used to separately weight each dimension of the term-file space [16].

Once the query vector is projected into the term-file space it can be compared to all other

existing file vectors using a similarity measure. One very popular measure of similarity

computed the cosine between the query vector and the file vector. Typically, using the

cosine measure, the angle between the query vector and all file vectors is computed and the

files are ranked according to their similarity to the query, i.e. how close they are to the query

in the term-file space. All files or those files with a similarity value exceeding a threshold,

are returned to the user in a ranked list sorted in descending order of similarity values, i.e.

with the files most similar to the query displayed in the top ranked. The quality of the results

can be measured using evaluation measures, such as those discussed in Section 4.10.

In the term-by-file matrix A that has columns aj the cosine similarity between the query

vector q = (t1, t2, . . . , tm)T and the n file vectors is given by [14]:

cosΘj =
aT

j q

‖ aj ‖2‖ q ‖2

=

∑m
i=1

aijqi
√

∑m
i=1

a2

ij

√

∑m
i=1

q2

i

(4.2)

80

Table 4.1: U2, a 2 × 2 matrixΣ2

Term name U2 Σ2 File ID V2

addtosubtree -0.039 -0.173 1.744 0.000 A1 -0.221 -0.293

addword -0.087 -0.134 0.000 1.458 A2 -0.221 -0.293

binarytreenode -0.039 -0.173 B1 -0.244 -0.314

boolean -0.087 -0.134 B2 -0.244 -0.314

break -0.092 -0.146 C1 -0.118 -0.454

checkword -0.087 -0.134 C2 -0.128 -0.460

compareto -0.039 -0.173 D1 -0.420 0.236

elementat -0.092 -0.146 D2 -0.414 0.275

else -0.039 -0.173 E1 -0.450 0.202

equals -0.092 -0.146 E2 -0.450 0.202

equalsignorecase -0.087 -0.134

false -0.087 -0.134

floor -0.210 0.113

for -0.225 -0.097

getleft -0.039 -0.173

for j = 1, . . . , n where n is equal to the number of files in the dataset (or the number of

columns in the term-by-file matrix A).

4.3.1 An illustration of the LSA process

In this Section we show the output matrices created after applying SVD to the corpus de-

scribed in Section 4.4. When computing dimensionality reduction the value of k is set to 2

dimensions.

Once SVD is applied to the matrix shown in Table 4.6, a 44 × 2 matrix U2, a 2 × 2

matrix Σ2, and a 10× 2 V2 are created. Table 4.1 shows an extract of the U2 matrix and the

Σ2, and V2 matrices. The name of each term, and each file ID was included in Table 4.1 for

clarity.

81

Figure 4.1: Terms and files in a two-dimensional LSA space.

As an example for visualising the similarity between terms in the LSA space, Figure

4.1 shows the terms described in Table 4.8 and the files in which they belong to, plotted

in a two-dimensional space. To create the two-dimensional space, SVD was computed by

setting the value of k to 2, and then plotting the values of the U2 and V2 matrices. The values

in the first dimension were the x co-ordinates, and the values in the second dimension were

the y co-ordinates.

The results in Figure 4.1, show that the terms that occurred in similar files, were close

together in the LSA space, and terms that occur without any particular pattern, such as

frequently occurring terms, received negative co-coordinate values and where not grouped

together in the LSA space. Figure 4.2 illustrates the angle between terms and files. Sim-

82

Figure 4.2: Terms and files in a two-dimensional LSA space - illustrating the cosine.

ilarly, when projecting a query Q to the LSA space, the cosine between the query Q and

each of the terms is computed, and files closest to the query, i.e. whose similarity is above

a given threshold, are retrieved.

In the discussion that follows, we demonstrate, using a small example, how LSA can

be applied to a corpus of files.

4.4 The Example Source-Code Corpus

The example corpus comprises of five source-code file pairs, and each file contains a source-

code fragment. Each of these file pairs contain source-code whose structure is either identi-

cal or very similar. However, the files within those file pairs contain different terms used to

83

describe the same concepts. The file pairs are: A1-A2, B1-B2, C1-C2, D1-D2, and E1-E2.

Files D1-D2, E1-E2 are considered relatively more similar than the rest of the source-code

files since their source-code fragments have similar functionality. The files comprising the

small source-code corpus are as follows.

A1 - locate:

private int locate(Object thing) {

int CNumber = 0;

int ArrIndex= -1;

for (int i = 0; i < spelling.size(); i = i + 1)

{

CNumber = CNumber + 1;

if (spelling.elementAt(i).equals(thing))

{

ArrIndex = i;

break;

}

}

return ArrIndex;

}

A2: findLinear

private int findLinear(Object thing) {

int CompNumber = 0;

int ArrayIndex= -1;

for (int i = 0; i < spellings.size();

i = i + 1)

{

CompNumber = CompNumber + 1;

if (spellings.elementAt(i).equals(thing))

{

ArrayIndex = i;

84

break;

}

}

return ArrayIndex;

}

B1: addWord

public void addWord(String word){

store[s]=word;

s++;}

public boolean checkWord(String word){

for (int i=0; i<s; i++)

{

if (store[i].equalsIgnoreCase(word))

{

return true;

}

}

return false;}

}

B2: addword

public void addWord(String word){

store[p]=word;

p=p+1;}

public boolean checkWord(String word){

for(int i=0; i<p; i=i+1)

{

if(store[i].equalsIgnoreCase(word))

return true;

}

return false; }

}

C1: addToSubTree

private void addToSubTree(BinaryTreeNode n, String v)

85

{

if (v.compareTo(n.getValue()) < 0)

{

if (n.getLeft()==null)

n.setLeft(new BinaryTreeNode(v));

else addToSubTree(n.getLeft(), v);}

else

{

if (n.getRight()==null) n.setRight(new BinaryTreeNode(v));

else addToSubTree(n.getRight(), v);

}

}

C2: addToSubTree

private void addToSubTree(BinaryTreeNode n, String s)

{

if (n!=null)

{

String nValue = (n.getValue());

if (s.compareTo(nValue) <= 0)

{

if (n.getLeft()==null)

n.setLeft(new BinaryTreeNode(new String(s)));

else

addToSubTree(n.getLeft(), s);

}

else

{

if (n.getRight()==null)

n.setRight(new BinaryTreeNode(new String(s)));

else

addToSubTree(n.getRight(), s);

}

}

}

D1: removeTile

public Tile removeTile()

86

{

Tile r1;

int randnumber;

if(total==0)

return null;

randnumber = (int) Math.round(Math.random()*1000);

r1=tiles.takeValue(randnumber%total);

total=total-1;

return r1;

}

D2: removeTile

public Tile removeTile()

{

Tile rt;

int randno;

randno = (int) Math.round(Math.random()*109);

rt=tiles.takeValue(randno-t);

t=t+1;

total=total--;

return rt;

}

E1: removeTile

public Tile removeTile()

{

int randomMyTile = 0;

randomMyTile = (int) Math.floor(Math.random()* NoofTilesInBag);

Tile tileToReturn = tilesInBag [aRandomTile];

for (int i = aRandomTile;

i < NoofTilesInBag; i++)

{

tilesInBag [i] = tilesInBag [i+1];

}

tilesInBag [NoofTilesInBag-1] = null;

NoofTilesInBag--;

87

return tileToReturn;

}

E2: removeTile

public Tile removeTile()

{

int randomTile = 0;

randomTile = (int) Math.floor(Math.random()*numberOfTiles);

Tile tileToReturn = tilesInBag [randomTile];

for (int i = randomTile;

i < numberOfTiles; i++)

{

tilesInBag [i] = tilesInBag [i+1];

}

tilesInBag [numberOfTiles-1] = null;

numberOfTiles--;

return tileToReturn;

}

4.5 Pre-Processing the Corpus

Prior to applying LSA to a text collection, the task of pre-processing the corpus is performed

such that only words remain in the data. The following is a list of possible pre-processing

parameters specific to source-code.

• removing comments,

• removing Java reserved terms,

• merging/separating terms containing multiple words, and

88

• removing obfuscation parameters found within terms, e.g. student name, is an ob-

fuscation parameter).

Some possible pre-processing parameters not specific to source-code files are:

• removing terms occurring in one file,

• removing terms occurring in all files,

• removing terms solely composed of numeric characters,

• removing syntactical tokens (e.g. semi-colons, colons),

• removing terms consisting of a single letter, and

• converting upper case letters to lower case.

For this experiment, a MATLAB Toolbox for Generating Term-Document Matrices

from Text Collections, namely the TMG tool, [147] was used to conduct the task of pre-

processing the files. During pre-processing, terms solely composed of numeric characters,

and syntactical tokens (e.g. semi-colons, colons) were removed from the source-code files.

Terms consisting of a single letter, and terms that occurred in one file were also discarded

because such terms hold no information about relationships across files. Source-code iden-

tifiers containing multiple words were treated as a single identifier, i.e. obfuscators that

joined two words together were removed such that the two words were treated as a sin-

gle word. This experiment is not concerned with investigating the impact of various pre-

89

processing parameter settings on the performance of LSA, this is done in Chapters 5 and

6.

Here is an example of what the A1-locate source-code fragment looks like after apply-

ing pre-processing:

private int locate object thing int cnumber int

arrindex for int spelling size

cnumber cnumber if spelling elementat equals thing

arrindex break return arrindex

4.6 Creating the Term-by-File Matrix

After pre-processing the files, a 44 × 10 term-by-file matrix is created, as shown in Table

4.2. The elements of this matrix contain the frequency in which a term occurs in a file, for

example, in file A1, the first column of matrix A, the term break occurs once, and the term

int occurs four times.

4.7 Applying term weighting

This Section is concerned with applying a term weighting scheme [38] to the term-by-file

matrix A. term weighting is optional and its purpose is to increase or decrease the impor-

tance of terms using local and global weights in order to improve retrieval performance.

90

Table 4.2: Term-by-file matrix A
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

addtosubtree 0 0 0 0 3 3 0 0 0 0
addword 0 0 1 1 0 0 0 0 0 0
binarytreenode 0 0 0 0 3 3 0 0 0 0
boolean 0 0 1 1 0 0 0 0 0 0
break 1 1 0 0 0 0 0 0 0 0
checkword 0 0 1 1 0 0 0 0 0 0
compareto 0 0 0 0 1 1 0 0 0 0
elementat 1 1 0 0 0 0 0 0 0 0
else 0 0 0 0 3 3 0 0 0 0
equals 1 1 0 0 0 0 0 0 0 0
equalsignorecase 0 0 1 1 0 0 0 0 0 0
false 0 0 1 1 0 0 0 0 0 0
floor 0 0 0 0 0 0 0 0 1 1
for 1 1 1 1 0 0 0 0 1 1
getleft 0 0 0 0 2 2 0 0 0 0
getright 0 0 0 0 2 2 0 0 0 0
getvalue 0 0 0 0 1 1 0 0 0 0
if 1 1 1 1 3 4 1 0 0 0
int 4 4 1 1 0 0 2 2 3 3
math 0 0 0 0 0 0 2 2 2 2
new 0 0 0 0 2 4 0 0 0 0
null 0 0 0 0 2 3 1 0 1 1
object 1 1 0 0 0 0 0 0 0 0
private 1 1 0 0 1 1 0 0 0 0
public 0 0 2 2 0 0 1 1 1 1
random 0 0 0 0 0 0 1 1 1 1
removetile 0 0 0 0 0 0 1 1 1 1
return 1 1 2 2 0 0 2 1 1 1
round 0 0 0 0 0 0 1 1 0 0
setleft 0 0 0 0 1 1 0 0 0 0
setright 0 0 0 0 1 1 0 0 0 0
size 1 1 0 0 0 0 0 0 0 0
store 0 0 2 2 0 0 0 0 0 0
string 0 0 2 2 1 4 0 0 0 0
takevalue 0 0 0 0 0 0 1 1 0 0
thing 2 2 0 0 0 0 0 0 0 0
tile 0 0 0 0 0 0 2 2 2 2
tiles 0 0 0 0 0 0 1 1 0 0
tilesinbag 0 0 0 0 0 0 0 0 4 4
tiletoreturn 0 0 0 0 0 0 0 0 2 2
total 0 0 0 0 0 0 4 2 0 0
true 0 0 1 1 0 0 0 0 0 0
void 0 0 1 1 1 1 0 0 0 0
word 0 0 4 4 0 0 0 0 0 0

91

Local weights determine the value of a term in a particular file, and global weights deter-

mine the value of a term in the entire file collection. Various local and global weighting

schemes exist [14] and these are applied to the term-by-file matrix to give high weights to

important terms, i.e. those that occur distinctively across files, and low weights to terms

that appear frequently in the file collection.

Long files have a larger number of terms and term frequencies than short files and this

increases the term matches between a query and a long file, thus increasing the retrieval

chances of longer files over small ones. When applying document length normalization

[128] the term values are adjusted depending on the length of each file in the collection.

The value of a term in a file is li,j × gi × nj , where li,j is the local weighting for term i

in file j, gi is the global weighting for term i, and nj is the document-length normalization

factor [14].

Tables 4.3, 4.4, and 4.5 contain some of the most commonly used term weighting for-

mulas [14]. Symbol fij defines the number of times (term-frequency) term i appears in file

j; let

b(fij) =















1, if fij > 0,

0, if fij = 0,

pij =
fij

∑

j fij

When discussing our findings in this thesis, we will use a three-letter string to represent

92

Table 4.3: Formulas for local term-weights (lij)

Symbol Name Formula

b Binary b(fij)
l Logarithmic log2(1 + fij)
n Augmented normalised term frequency (b(fij) + (fij/maxkfkj))/2
t Term frequency fij

a Alternate log b(fij)(1 + log2fij)

Table 4.4: Formulas for global term-weights (gi)

Symbol Name Formula

x None 1
e Entropy 1 + (

∑

j(pijlog2(pij))/log2n)

f Inverse document frequency (IDF) log2(n/
∑

j b(fij))

g GfIdf (
∑

j fij)/(
∑

j b(fij))

n Normal 1/
√

∑

j f2

ij

p Probabilistic inverse log2((n − ∑

j b(fij))/
∑

j b(fij))

each term weighting scheme with the particular local, global and normalization factor com-

binations. For example, the tec weighting scheme uses the term frequency (t) local term

weighting, the entropy (e) global term weighting, and the cosine document normalization

factor (c). In this tutorial the tnc weighting scheme will be applied.

4.7.1 Applying term weighting to matrix A

Table 4.6 shows the weighted matrix B. Comparing the term-by-file matrix A (Table 4.2)

which holds the original term values, with term-by-file matrix B (Table 4.6) which holds

the weights of terms after applying the tnc term weighting, show that term values have been

adjusted.

93

Table 4.5: Formulas for document length normalisation (nj)

Symbol Name Formula

x None 1

c Cosine (
∑

i(gilij)
2)−1/2

4.8 Singular Value Decomposition

After creating matrix B, SVD and dimensionality reduction are applied to the matrix, as dis-

cussed in Section 4.3. For our corpus we will set the value of k to 4 dimensions. Computing

the SVD of matrix B using four dimensions returns a 44× 4 term-by-dimension matrix U4,

a 4 × 4 singular values matrix, Σ4, and a 10 × 4 file-by-dimension matrix V4. The rank-k

approximation to matrix B, can be constructed through B4 = U4Σ4V
T
4

. The term-by-file

matrix B4 is shown in Table 4.7.

4.9 Impact of LSA on Relations between Terms and Files

There are three types of comparisons that can be made from the SVD model [32]:

• those comparing a term and a file (i.e. how associated are term i and file j),

• those comparing two terms (i.e. how similar are terms i and j), and

• those comparing two files (i.e. how similar are files i and j).

94

Table 4.6: Term-by-file matrix B derived after applying term weighting to matrix A
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

addtosubtree 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
addword 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00
binarytreenode 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
boolean 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00
break 0.36 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
checkword 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00
compareto 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
elementat 0.36 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
else 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
equals 0.36 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
equalsignorecase 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00
false 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00
floor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.41
for 0.21 0.21 0.18 0.18 0.00 0.00 0.00 0.00 0.23 0.23
getleft 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
getright 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
getvalue 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
if 0.09 0.09 0.08 0.08 0.23 0.27 0.09 0.00 0.00 0.00
int 0.27 0.27 0.06 0.06 0.00 0.00 0.13 0.15 0.22 0.22
math 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.29 0.29 0.29
new 0.00 0.00 0.00 0.00 0.19 0.33 0.00 0.00 0.00 0.00
null 0.00 0.00 0.00 0.00 0.21 0.27 0.13 0.00 0.14 0.14
object 0.36 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
private 0.26 0.26 0.00 0.00 0.21 0.18 0.00 0.00 0.00 0.00
public 0.00 0.00 0.25 0.25 0.00 0.00 0.15 0.17 0.17 0.17
random 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.29 0.29 0.29
removetile 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.29 0.29 0.29
return 0.12 0.12 0.21 0.21 0.00 0.00 0.25 0.14 0.14 0.14
round 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.41 0.00 0.00
setleft 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
setright 0.00 0.00 0.00 0.00 0.29 0.26 0.00 0.00 0.00 0.00
size 0.36 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
store 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00
string 0.00 0.00 0.18 0.18 0.08 0.29 0.00 0.00 0.00 0.00
takevalue 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.41 0.00 0.00
thing 0.36 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tile 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.29 0.29 0.29
tiles 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.41 0.00 0.00
tilesinbag 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.41
tiletoreturn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.41
total 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.26 0.00 0.00
true 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00
void 0.00 0.00 0.22 0.22 0.21 0.18 0.00 0.00 0.00 0.00
word 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.00 0.00 0.00

95

Table 4.7: Term-by-file matrix B4 showing the term values after applying LSA to the
weighted matrix B

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

addtosubtree 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
addword 0.00 0.00 0.31 0.31 -0.01 0.01 -0.01 -0.01 0.01 0.01
binarytreenode 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
boolean 0.00 0.00 0.31 0.31 -0.01 0.01 -0.01 -0.01 0.01 0.01
break 0.36 0.36 0.00 0.00 0.00 0.00 -0.02 -0.03 0.02 0.02
checkword 0.00 0.00 0.31 0.31 -0.01 0.01 -0.01 -0.01 0.01 0.01
compareto 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
elementat 0.36 0.36 0.00 0.00 0.00 0.00 -0.02 -0.03 0.02 0.02
else 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
equals 0.36 0.36 0.00 0.00 0.00 0.00 -0.02 -0.03 0.02 0.02
equalsignorecase 0.00 0.00 0.31 0.31 -0.01 0.01 -0.01 -0.01 0.01 0.01
false 0.00 0.00 0.31 0.31 -0.01 0.01 -0.01 -0.01 0.01 0.01
floor 0.03 0.03 0.01 0.01 0.00 0.00 0.20 0.20 0.20 0.20
for 0.22 0.22 0.18 0.18 0.00 0.00 0.10 0.10 0.14 0.14
getleft 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
getright 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
getvalue 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
if 0.09 0.09 0.08 0.08 0.25 0.25 0.03 0.01 0.03 0.03
int 0.27 0.27 0.06 0.06 0.00 0.00 0.16 0.16 0.20 0.20
math 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.29 0.28 0.28
new 0.00 0.00 0.00 0.00 0.26 0.26 0.01 0.00 0.00 0.00
null 0.01 0.01 0.00 0.00 0.24 0.24 0.11 0.10 0.10 0.10
object 0.36 0.36 0.00 0.00 0.00 0.00 -0.02 -0.03 0.02 0.02
private 0.26 0.26 0.00 0.00 0.20 0.19 -0.01 -0.02 0.02 0.02
public 0.00 0.00 0.25 0.25 -0.01 0.00 0.16 0.16 0.17 0.17
random 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.29 0.28 0.28
removetile 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.29 0.28 0.28
return 0.12 0.12 0.21 0.21 0.00 0.01 0.16 0.15 0.18 0.18
round -0.03 -0.03 -0.01 -0.01 0.00 0.00 0.20 0.20 0.19 0.19
setleft 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
setright 0.00 0.00 0.00 0.00 0.28 0.28 0.01 -0.01 0.00 0.00
size 0.36 0.36 0.00 0.00 0.00 0.00 -0.02 -0.03 0.02 0.02
store 0.00 0.00 0.31 0.31 -0.01 0.01 -0.01 -0.01 0.01 0.01
string 0.00 0.00 0.18 0.18 0.18 0.19 0.00 -0.01 0.00 0.00
takevalue -0.03 -0.03 -0.01 -0.01 0.00 0.00 0.20 0.20 0.19 0.19
thing 0.36 0.36 0.00 0.00 0.00 0.00 -0.02 -0.03 0.02 0.02
tile 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.29 0.28 0.28
tiles -0.03 -0.03 -0.01 -0.01 0.00 0.00 0.20 0.20 0.19 0.19
tilesinbag 0.03 0.03 0.01 0.01 0.00 0.00 0.20 0.20 0.20 0.20
tiletoreturn 0.03 0.03 0.01 0.01 0.00 0.00 0.20 0.20 0.20 0.20
total -0.02 -0.02 -0.01 -0.01 0.01 0.01 0.18 0.19 0.18 0.18
true 0.00 0.00 0.31 0.31 -0.01 0.01 -0.01 -0.01 0.01 0.01
void 0.00 0.00 0.22 0.22 0.19 0.20 0.00 -0.01 0.00 0.00
word 0.00 0.00 0.31 0.31 -0.01 0.01 -0.01 -0.01 0.01 0.01

96

4.9.1 Term-file relations

This Section illustrates the impact of LSA on the values of terms within files. File pairs D1-

D2, E1-E2, have been selected for investigation, these four files are relatively more similar

than the rest of the files in the collection, as they are all concerned with removing an object

(i.e. a Tile) from an array. Table 4.8 shows a selection of terms and their values, before and

after applying LSA to the file collection, and those values will be used in the discussion.

Table 4.8 has been split into four sets, each set separated by a horizontal line. The first

set contains terms that only occur in files E1 and E2. The second set contains terms that

only occur in files D1 and D2. The third set contains terms that occur in all four files D1,

D2, E1, and E2. The terms in the first three sets occur only in the files mentioned in Table

4.8 and in no other files in the corpus. The fourth set contains terms that occur across files

in the corpus without any particular pattern.

Comparing the first two sets of terms, after computing LSA each of the seven terms

now have very close values in all four files. It is suspected that the importance of the terms

in the first two sets has changed from zero to higher values mainly due to the transitive

relations between those terms and terms in sets three and four. There are various degrees of

transitive relations as discussed by Kontostathis and Pottenger [76]. Table 4.8 shows that

the first three terms originally appeared in files E1 and E2 in matrix A. These terms did

not appear in D1 or D2, but because files D1 and E1 have other terms in common, the zero

value in each of the terms in matrix B4 has been replaced by values above zero in matrix

97

Table 4.8: Extracts of term-by-file matrices A, B, and B4

A B B4

D1 D2 E1 E2 D1 D2 E1 E2 D1 D2 E1 E2

floor 0 0 1 1 0.00 0.00 0.41 0.41 0.20 0.20 0.20 0.20

tilesinbag 0 0 4 4 0.00 0.00 0.41 0.41 0.20 0.20 0.20 0.20

tiletoreturn 0 0 2 2 0.00 0.00 0.41 0.41 0.20 0.20 0.20 0.20

round 1 1 0 0 0.36 0.41 0.00 0.00 0.20 0.20 0.19 0.19

takevalue 1 1 0 0 0.36 0.41 0.00 0.00 0.20 0.20 0.19 0.19

tiles 1 1 0 0 0.36 0.41 0.00 0.00 0.20 0.20 0.19 0.19

total 4 2 0 0 0.46 0.26 0.00 0.00 0.18 0.19 0.18 0.18

math 2 2 2 2 0.26 0.29 0.29 0.29 0.28 0.29 0.28 0.28

random 1 1 1 1 0.26 0.29 0.29 0.29 0.28 0.29 0.28 0.28

removetile 1 1 1 1 0.26 0.29 0.29 0.29 0.28 0.29 0.28 0.28

tile 2 2 2 2 0.26 0.29 0.29 0.29 0.28 0.29 0.28 0.28

if 1 0 0 0 0.09 0.00 0.00 0.00 0.03 0.01 0.03 0.03

int 2 2 3 3 0.13 0.15 0.22 0.22 0.16 0.16 0.20 0.20

null 1 0 1 1 0.13 0.00 0.14 0.14 0.11 0.10 0.10 0.10

public 1 1 1 1 0.15 0.17 0.17 0.17 0.16 0.16 0.17 0.17

return 2 1 1 1 0.25 0.14 0.14 0.14 0.16 0.15 0.18 0.18

for 0 0 1 1 0.00 0.00 0.23 0.23 0.10 0.10 0.14 0.14

B4. Similarly, terms in the second set occurred only in files D1 and D2, now have a value

in files E1 and E2, and these values are very close to the ones in files E1 and E2.

Furthermore, terms in the fourth set, received a mixture of relatively low and high

values depending on their pattern of occurrences in matrix B. For example, the value of the

last term, for, in file E1 in Table 4.8 has been reduced from 0.23 to 0.14 which means that

LSA has reduced the importance of term for in file E1.

Although the choice of dimensions and weighting scheme can have an impact on the

LSA similarity values, it is not the purpose of this Chapter to investigate how these param-

eters influence LSA performance – the impact of choice of dimensionality and weighting

scheme on LSA performance is discussed in Chapter 6.

98

4.9.2 Term-term relations

The term-by-term matrices corresponding to matrices A and B hold the similarity values

between terms. A term-by-term matrix can be generated by computing XXT where X

is a term-by-file matrix. This computes the dot product between two row vectors of the

term-by-file matrix, and reflects the extent to which two terms have a similar pattern of

occurrences across the set of files [32]. Therefore, it can be assumed that each cell aij of

the term-by-term matrix represents the similarity between a term i and a term j.

After applying SVD and reducing dimensionality to k dimensions the term-by-term

matrix can be recomputed by using the Uk and Sk matrices through,

(UkΣk)(UkΣk)
T [32].

In the discussion that follows,

• TTA denotes the term-by-term matrix corresponding to matrix A computed by AAT

• TTB denotes the term-by-term matrix corresponding to matrix B computed by BBT ,

and

• TTC denotes the term-by-term matrix corresponding to matrix B4 computed by

(UkΣk)(UkΣk)
T .

The term-by-term matrices are too large to show here, and therefore only an extract of

them is shown in Tables 4.9, 4.10, and 4.11. These Tables show that, before computing

LSA, some terms never co-occurred together, and after computing LSA, those terms have a

99

Table 4.9: Extract of the term-by-term matrix TTA, showing the term-term similarity val-

ues.
floor for int math public random return tiles tilesinbag total

floor x

for 2 x

int 6 16 x

math 4 4 20 x

public 2 6 14 8 x

random 2 2 10 8 4 x

return 2 8 24 10 13 5 x

tiles 0 0 4 4 2 2 3 x

tilesinbag 8 8 24 16 8 8 8 0 x

total 0 0 12 12 6 6 10 6 0 x

similarity value.

Table 4.9, shows that the term total never occurs in the same document with either

floor or tilesinbag, hence their co-occurrences were zero. After applying term weighting

and LSA, Table 4.11 shows that the values between term pair total and floor, and the term

pair total and tilesinbag now both have a similarity value of 0.15. Although these terms

never occur together in the same files, they co-occur with one or more of the same terms.

The relationship between these terms comes from the relation: total co-occurs with math,

and math co-occurs with floor. In mathematics this kind of relationship is referred to as a

transitive relation.

4.9.3 File-file relations

The process of comparing two files is similar to that of comparing two terms described in

Section 4.9.2, except that in this case it is the dot product between the two column vectors

100

Table 4.10: Extract of the term-by-term matrix TTB , showing the term-term similarity

values after applying the tnc weighting scheme.

floor for int math public random return tiles tilesinbag total

floor x

for 0.19 x

int 0.18 0.24 x

math 0.23 0.14 0.21 x

public 0.14 0.17 0.15 0.18 x

random 0.23 0.14 0.21 0.32 0.18 x

return 0.11 0.19 0.21 0.19 0.22 0.19 x

tiles 0.00 0.00 0.11 0.22 0.12 0.22 0.15 x

tilesinbag 0.33 0.19 0.18 0.23 0.14 0.23 0.11 0.00 x

total 0.00 0.00 0.10 0.20 0.11 0.20 0.15 0.28 0.00 x

Table 4.11: Extract of the term-by-term matrix TTC , showing the term-term similarity

values after applying the tnc weighting scheme and LSA.

floor for int math public random return tiles tilesinbag total

floor x

for 0.11 x

int 0.16 0.23 x

math 0.23 0.13 0.21 x

public 0.14 0.17 0.15 0.18 x

random 0.23 0.13 0.21 0.32 0.18 x

return 0.15 0.21 0.21 0.19 0.22 0.19 x

tiles 0.16 0.08 0.13 0.22 0.12 0.22 0.12 x

tilesinbag 0.16 0.11 0.16 0.23 0.14 0.23 0.15 0.16 x

total 0.15 0.07 0.12 0.20 0.11 0.20 0.11 0.14 0.15 x

101

of a term-by-file matrix which tells the extent to which two files have a similar profile of

terms. Therefore, it can be assumed that each cell aij of the file-by-file matrix represents the

similarity between a file i and a file j. The file-by-file matrix of matrix X can be generated

by computing XT X .

After SVD and dimensionality reduction to k dimensions the file-by-file matrix can be

recomputed by (VkΣk)(VkΣk)
T .

Thus, the i, j cell of XT
k Xk can be obtained by taking the dot product between term i

and j rows of the matrix VkΣk.

In the discussion that follows,

• FFA denotes the file-by-file matrix corresponding to matrix A computed by AT A,

• FFB denotes the file-by-file matrix corresponding to matrix B computed by BT B,

and

• FFC denotes the file-by-file matrix corresponding to matrix B4 computed by

(VkΣk)(VkΣk)
T .

The effect of LSA on file-file relations will be examined by looking at the relationships

(or similarity) between files before and after LSA has been applied to the matrix. Table

4.12 shows the file-file similarity values after applying LSA.

Table 4.13 shows the average file-file values between similar and non-similar file pairs

before and after applying LSA. Average values of similar files is denoted by ms, and average

102

Table 4.12: File-by-file matrix FFC

File-file similarity k=4

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

A1 x

A2 0.99 x

B1 0.08 0.08 x

B2 0.08 0.08 1.00 x

C1 0.08 0.08 0.08 0.08 x

C2 0.07 0.07 0.11 0.11 0.98 x

D1 0.04 0.04 0.09 0.09 0.06 0.06 x

D2 0.02 0.02 0.07 0.07 0.00 0.01 0.70 x

E1 0.16 0.16 0.14 0.14 0.02 0.03 0.69 0.70 x

E2 0.16 0.16 0.14 0.14 0.02 0.03 0.69 0.70 0.71 x

Table 4.13: Average values of relevant and non-relevant files

FFA FFB FFC

average similar(ms) 0.71 0.64 0.99

average non-similar (mns) -0.06 -0.26 -0.31

difference (ms-mns) 0.77 0.90 1.30

values of non-similar files is denoted by mns. The ms value was computed by calculating

the average of all the similarity values of file pairs shown in Table 4.12 (i.e. A1:A2=0.99,

B1:B2=1.00, C1:C2=0.98, D1:D2=0.70, E1:E2=0.71, D1:E1=0.69, D1:E2=0.69, D2:E1=0.70,

D2:E2=0.70) and the mns value was computed by calculating the average of the similarity

values of the rest of the pairs. Difference, is the difference between ms and mns values. The

greater the difference the better the retrieval performance, i.e. greater separation between

similar and non-similar files is desired. The better system is the one that returns the highest

ms value, lowest mns value, and the largest separation value.

Table 4.13 shows that originally the ms and mns values are 0.71 and -0.06 respectively,

and after applying the tnc term weighting scheme the ms and mns values are reduced to

103

0.64 and -0.26 respectively. These results show that the tnc term weighting scheme has

lowered the similarity values between similar files, but has also increased the separation

between similar and non-similar files. Applying LSA to the weighted matrix, has improved

results, by giving higher values to similar files, lower values to non-similar files, and a good

separation between them.

4.10 Performance Evaluation Measures

The performance of an information retrieval system is measured by its retrieval perfor-

mance. Two standard and most frequently used measures in information retrieval system

evaluations are recall and precision. In order to evaluate an information retrieval system,

queries and their relevant files must be known beforehand.

Precision represents the proportion of retrieved files that are relevant. Precision is de-

noted by P,

P =
Fr

Ft
(4.3)

where P ∈ [0, 1]. Fr is the number of relevant files retrieved and Ft is the total number

of files retrieved for a given query. Precision is 1.00 when every relevant file returned in the

ranked list is relevant to the query.

Recall represents the proportion of relevant files that are retrieved. Recall is 1.00 when

every relevant file is retrieved. Recall, denoted by R, is defined by

104

R =
Fr

Nr
(4.4)

where R ∈ [0, 1]. Fr is the total number of relevant files retrieved, and Nr is the total

number of files relevant to the query.

The value of recall at the R-th position in the ranked list of retrieved files, where R

equals to the number of relevant files (for example, if the number of relevant files to a query

is 5 then the top 5 relevant files are retrieved), is equal to the value of R-Precision, which

is the value of precision at the R-th position in the ranked list where R is equal to the total

number of relevant files to a query. A geometric interpretation of this is provided by Aslam

et al. [4].

Average Precision (AP) is the average of the precisions of the relevant files in the re-

trieved list. This evaluation measure produces a single value summary of the ranking posi-

tions of the relevant files retrieved. This is done by averaging the precision values obtained

after each new relevant file is retrieved in the ranked list of files. The closer the AP value is

to 1.00 the better the system’s retrieval performance.

A commonly used evaluation measure for evaluating the performance of an algorithm

using more than one query, is the Mean Average Precision (MAP). MAP is the average of

the AP values of each query.

A recall-precision graph is an evaluation measure that combines recall and precision.

The recall-precision graph shows the value of precision at various points of recall.

105

Expected Search Length (ESL) is the average of the rank positions of the relevant files

in the returned list of files. The result of this gives the average number of files that must

be examined in order to retrieve a given number of files. The smaller the value of ESL,

the highest the position of the relevant files are in the ranked list and hence the better the

performance of the system.

Other evaluation measures exist that take into consideration similarity values given

to retrieved files. These include the Lowest Positive Match (LPM), Highest False Match

(HFM) and Separation (Sep) [53]. Lowest Positive Match is the lowest score given to re-

trieved file, and Highest False Match is the highest score given to a non-relevant file in

the returned list of files. Separation is the difference between the LPM and HFM. Over-

all system performance is calculated by taking the ratio of Sep./HFM, i.e. by dividing the

separation by the HFM. The highest the ratio value, the better the system performance.

4.11 A Query Example

Suppose that we are interested in retrieving files concerning terms addtosubtree, binary-

treenode, setright, and search. Since the term search is not an indexed term, it is omitted

from the query leaving terms addtosubtree, binarytreenode, and setright. The query is ini-

tially treated as a file, and transformed into a vector. That is, the frequencies of the terms in

the query (i.e. addtosubtree, binarytreenode, and setright) would be the non-zero elements

in the query vector, where each element corresponds to an indexed term.

106

q=(1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)T .

The same weighting scheme applied to matrix A (i.e the tnc term weighting scheme),

is then applied to the query vector. After applying the tnc term weighting scheme the query

becomes:

q=(0.24 0 0.24 0.71 0 0 0 0 0 0 0 0 0 0 0

0 0)T .

The query vector is then projected to the term-file space using Function 4.1. The co-

ordinate values of the query vector in the k-dimensional space (where the value of k is set

to 4) are: Q=(-0.03 0.14 0.08 0.18).

The next step involves computing the cosine similarity between the query vector and all

other file vectors. The output is a list that contains the retrieved files sorted in descending

order of similarity to the query, which positions the most similar files in the top of the list.

In Table 4.14 the column File ID shows the ID’s of the retrieved files, for example,

in Table 4.14 the file C1 is ranked first, as most relevant to the query, and the B2 file is

ranked last, as least relevant to the query. The Similarity value column displays the cosine

similarity values, each value holds the similarity between the query vector and a file vector.

The Relevant? column shows human relevance judgment, that is whether the retrieved files

are relevant to the query, where R denotes that the file is relevant and NR that is non-relevant.

Table 4.15 shows the evaluation results for the query when using threshold value thr,

and cutoff point n. When the retrieved list of files is cutoff based on the threshold value

107

thr > 0.50, evaluation measures are computed using the files which received a similarity

value above 0.50 (for example, files C1 and C2 in Table 4.14). The cutoff point r, cuts

the retrieved list of files at rth position in the ranked list. In this example we have set

the value of r to 10, where 10 is the number of files in the corpus, and this means that all

files in the corpus are retrieved and sorted in order of their similarity to the query. Using

threshold r=10, evaluation is computed by taking into consideration the positions of all files

in the corpus. When using all files in the corpus, recall will always reach 1.00, and hence it

should not be used as it tells us nothing on system performance.

Table 4.14: Results for query q

Rank File ID Similarity value Relevant?

1 C1 1.00 R

2 C2 0.99 R

3 D1 0.04 NR

4 D2 -0.03 NR

5 E2 -0.04 NR

6 E1 -0.04 NR

7 A1 -0.06 NR

8 A2 -0.06 NR

9 B1 -0.09 NR

10 B2 -0.09 NR

Table 4.15: Evaluation results for query q

thr > 0.50 r = 10

Recall 1.00 1.00

Precision 1.00 0.20

Average-Precision 1.00 1.00

ESL 1.50 1.50

LPM 0.99 0.99

HFM 0.00 0.04

Sep. 0.99 0.95

Sep./HFM 0.00 21.76

108

4.11.1 Treating a file vector as a query

Here, we take four files and treat each one as a query, thus file A1 is treated as Q1, B1 as

Q2, C1 as Q3, and D1 as Q4. The cosine between the four query vectors and all files in

the corpus are computed and the output is four lists of files, one list for each query, ranked

in descending order of similarity to the query. Tables 4.16, 4.17, 4.18, and 4.19 show the

results of each query respectively. Table 4.20 shows the results of each query using the

evaluation measures discussed in Section 4.10.

Table 4.16: Results for query Q1

Rank File ID Similarity value Relevant?

1 A1 1.00 R

2 A2 1.00 R

3 E1 0.10 NR

4 E2 0.10 NR

5 C1 0.00 NR

6 C2 0.00 NR

7 B1 0.00 NR

8 B2 0.00 NR

9 D1 -0.08 NR

10 D2 -0.10 NR

Table 4.17: Results for query Q2

Rank File ID Similarity value Relevant?

1 B1 1.00 R

2 B2 1.00 R

3 E1 0.04 NR

4 E2 0.04 NR

5 C2 0.02 NR

6 A2 0.00 NR

7 A1 0.00 NR

8 C1 -0.02 NR

9 D1 -0.03 NR

10 D2 -0.05 NR

109

Table 4.18: Results for query Q3

Rank File ID Similarity value Relevant?

1 C1 1.00 R

2 C2 1.00 R

3 D1 0.05 NR

4 A1 0.00 NR

5 A2 0.00 NR

6 E2 -0.02 NR

7 E1 -0.02 NR

8 B1 -0.02 NR

9 B2 -0.02 NR

10 D2 -0.03 NR

Table 4.19: Results for query Q4

Rank File ID Similarity value Relevant?

1 D1 1.00 R

2 D2 1.00 R

3 E2 0.98 R

4 E1 0.98 R

5 C2 0.05 NR

6 C1 0.05 NR

7 B1 -0.03 NR

8 B2 -0.03 NR

9 A2 -0.08 NR

10 A1 -0.08 NR

Table 4.20: Evaluation results for all queries

Q1 Q2 Q3 Q4

File ID 1 3 5 7

No. of relevant files to the query 2 2 2 4

Recall 1 1 1 1

Precision 0.20 0.20 0.20 0.40

Average-Precision 1.00 1.00 1.00 1.00

ESL 1.50 1.50 1.50 2.50

LPM 1.00 1.00 1.00 0.98

HFM 0.10 0.04 0.05 0.05

Separation 0.90 0.96 0.95 0.93

Sep./HFM 9.46 23.33 19.37 17.38

110

4.12 Conclusion

In this Chapter we described the Vector Space Model, and provided a theoretical and prac-

tical introduction to the Latent Semantic Analysis information retrieval technique. Using

a small source-code corpus, we described a step-by-step process of applying LSA to the

corpus, and computing the similarity between source-code files.

We have used a small corpus to demonstrate LSA, and we are aware that LSA must

have a sufficient number of files and terms to be able to effectively generate knowledge

about the meaning of words and files, and to be able to sufficiently identify groups of files

that are relatively more similar than others.

Many open questions exist surrounding the theoretical and mathematical understand-

ings of LSA, and describing exactly why LSA works still remains a challenge by Informa-

tion retrieval researchers.

Chapters 5 and 6 explore the influence of parameter choice on LSA performance with

regards to detecting similar source-code files on larger source-code corpora.

111

Chapter 5

Relevant Literature on LSA and

Parameters

This Chapter discusses relevant literature with the main focus on the parameters that influ-

ence the performance of LSA. We begin the discussion by investigating parameter settings

researchers have used and recommended for effective application of LSA to natural lan-

guage information retrieval tasks. We then focus the discussion on parameter choices made

by researchers for tasks specific to source-code. Finally, we describe some plagiarism de-

tection tools whose functionality is based on information retrieval algorithms.

112

5.1 Parameter Settings for General LSA Applications

Although LSA is a well studied technique that has had many applications, there are some

issues surrounding the choice of parameters that influence its performance. A review of

the recent literature shows that various researchers are using various different parameter

settings for achieving best LSA performance. The main parameters influencing the perfor-

mance of LSA can be categorised into the following groups:

• Document pre-processing,

• Term-weighting algorithms,

• Choice of dimensionality, and

• Choice of similarity measure.

Document pre-processing operations include the following [5].

• Lexical analysis of text: this involves the identification of words in the text. This step

involves identifying the spaces in the text as word separators, and consideration of

digits, hyphens, punctuation marks, and the case of letters.

• Stopword elimination: this involves the elimination of words with a high frequency

in the document corpus. This involves removing prepositions, conjunctions and com-

mon words that could be considered as useless for purposes of retrieval, e.g. words

such as the, and, and but, found in the English language.

113

• Stemming of words: this involves transforming variants of words with the same root

into a common concept. A stem is the portion of the remaining word after removing

its affixes (i.e. suffixes and prefixes). An example of a stem is the word eliminat

which is the stem of the variants eliminated, eliminating, elimination, and elimina-

tions. In natural language texts, stemming is considered to improve retrieval perfor-

mance.

• Selection of index terms: this involves selecting from the index the words to be used

as index terms. Some approaches to this involve selecting only the noun terms in

the text and thus eliminating verbs, adjectives, adverbs, connectives, articles and pro-

nouns.

• Construction of thesauri: this operation involves constructing a set of important

words in a subject domain, and for each of those words creating a set of related

words. The main purpose of a thesaurus is to assist users with selecting searching

terms.

Much research has been done on the impact of various parameters on the retrieval per-

formance of the standard VSM. With regards to the corpus size, it is well argued that more

reliable results are gained from a larger corpus size [111, 117]. Rehder et al. [117] inves-

tigated the efficacy of LSA as a technique for evaluating the quality of student responses

against human ratings. They found that for 106 student essays, the performance of LSA

improved when files contained between 70-200 words.

114

Landauer [84] found that the scores assigned by LSA to essays (i.e. a target essay and a

short text) were closely related to human judgments as were the human judgments to each

other. Landauer [81] stresses that the ability of LSA to produce similarity estimates close

to human judgments is not a matter of word frequencies, term weighting, co-occurrence

counts, or correlations in usage, but depends on a mathematical algorithm which has the

power to infer deeper relations of meaning in text. According to Landauer [84], the perfor-

mance of LSA depends on

“the derivation of the semantic space of optimal dimensionality. The fact that

LSA can capture as much of meaning as it does without using word order shows

that the mere combination of words in passages constrains overall meaning

very strongly.”

Landauer et al. [83] recommend the use of 300 dimensions, Wild et al. [143] sug-

gest that 10 dimensions are a good starting point, Dumais [38] found that 100 dimensions

worked well for their test collections. The optimal dimensions selected by Kontostathis for

7 large corpora containing between 1,033 and 348,577 documents ranged from 75 to 500

depending on the corpus [75]. Chen et al. [24] implemented an LSI search engine and for

a collection of 600,000 documents they used 400 dimensions. Berry et al., [16] discuss the

algebra behind LSA and demonstrate the SVD algorithm using a small corpus of 20 small

documents (each consisting of a book title and the index terms within each book title ranged

between 1 and 5) and a total of 16 index terms. They demonstrated the results when using 2,

115

4, and 6 dimensions and found that 2 dimensions were sufficient for retrieving the relevant

files of a given query. Using a test database containing medical abstracts, Deerwester et al.

[32] found that the performance of LSA can improve considerably after 10 or 20 dimen-

sions, reaches a peak between 70 and 100 dimensions and then starts to slowly diminish.

Jessup and Matrin [58] also found that for their datasets a choice of factors ranged from 100

to 300 factors, and Berry [13] suggests keeping at least 100 to 200 factors.

When SVD is applied without any dimensionality reduction, the performance of LSA

is very close to that of the SVD. Without dimensionality reduction the number of factors k

is set to r, where r is the rank of the term-by-document matrix, then the term-by-document

matrix Ak will exactly reconstruct the original term-by-document matrix A [16]. Kon-

tostathis [75] compared the performance of LSA with that of the traditional VSM on four

large collections and found that the results of LSI when k=r were equivalent to the results

of the standard VSM. Similar findings were reported by Pincombe [112] who found that,

for a corpus of 50 documents, there was major improvement in LSA performance when

the number of factors was increased from 10 to 20, and that optimal LSA performance was

achieved when no dimensionality reduction was applied, i.e. k=r. Dumais applied LSA on 9

corpora where the number of documents in each corpus ranged between 20,108 and 56,920

documents [39].

Amongst the first researchers to compare the performance of LSA to that of the VSM

were Lochbaum and Streeter [87]. They found that compared to the VSM, LSA had the ad-

vantage of being able to detect relevant documents when the terminology used in the query

116

did not match that of the document. They also reported that when the number of singular

values is equal to the rank of the raw term-by-document matrix, the results returned by

LSA and VSM are the same [87]. Jessup and Martin [58] found that LSA always matched

or slightly outperformed the performance of the VSM across a wide range of collections.

Choice of term weighting can influence the performance of LSA and Dumais found that

results improved (measured by AP) considerably when applying the local log and global en-

tropy weighting schemes. Dumais concluded that global weights IDF and entropy increased

system performance by 27% and 30% respectively, and the combination of the local weight-

ing scheme log and global weighting scheme entropy improved performance by 40% when

compared to the raw weighting scheme (i.e. no weighting)[38]. Dumais also found that,

on average, the normal and GfIdf weighting algorithms had a negative impact on perfor-

mance, i.e. applying those weightings decreased performance by 11% and 7% respectively

when compared with raw term frequency. However, it was also found that applying the

normal and GfIdf global weightings improved retrieval performance by as much as 7% and

6% respectively. Their results suggest that the corpus also influences the performance of

weighting schemes [38].

The findings by Dumais [38] were similar to those reported by Harman [52]. In early

literature, Harman [52] investigated the impact of term weighting for the task of query

retrieval using the VSM. They found that using term-weighting improved retrieval results

significantly when compared to no term weighting - they reported a 44% increase in average

precision. Harman found that the IDF and entropy weightings produced large performance

117

improvements over the raw term weighting (i.e. raw term weighting) – IDF 20%, entropy

24%, log-entropy 35%, log-entropy combined with a document length normalisation algo-

rithm 44%.

Other literature reports findings of system improvement in retrieval performance (by

means of precision and recall) when a weighting scheme is applied to a corpus using the

VSM [88, 60].

Nakov et al. [107] experimented with combinations of weighting algorithms considered

by Dumais [38] and Jones [60] in order to evaluate their impact on LSA performance. They

found that local and global weight functions are independent of each other and their per-

formance (measured by average precision) is dependent on the corpus they are applied on.

They found that for some corpora of text using the logarithm local weighting instead of raw

term weighting resulted in higher precision, and on others resulted in consistently lower pre-

cision. With regards to global weighting functions, they found that applying global weight-

ing functions none, normal, and GfIdf, resulted in lower precision regardless of the corpus

text and local weighting function applied and the global weight entropy outperformed all

other global weighting functions. The choice of weighting functions is dependent on the

purpose the LSA application serves [107].

Sudarsun et al. [132] evaluated IDF+NDV which is the IDF global weight combined

with Normalized Document Vector (NDV) weighting, and IWF+NDV which is the Inverse

Word Frequency (IWF) weighting combined with NDV. They studied the impact of weight-

ing functions when the corpus size increases and found that the IDF+NDV weighting func-

118

tion outperformed all other weighting functions they had experimented with. IDF+NDV

produced 99% accuracy for a corpus of 100,000 documents, whereas IDF produced 98%

accuracy.

Pincomber [112] compared three local and three global weighting schemes for cor-

relation to a set of files containing document pairs judged as similar by humans. They

found that global weighting had a greater effect on correlations than local weighting. The

global weighting function entropy performed better than the normal weighting and both

were shown to perform significantly better than the IDF global weight function. Their find-

ings also show that use of a stop word list and adding background documents during the

construction of the LSA space significantly improves performance. They found that choice

of parameters has a major impact on LSA performance – the correlations between LSA

and human judgments of pairwise document similarity varied between 0.60 and -0.01. The

results are consistent with the literature where the log-entropy weighting scheme performed

better in information retrieval [38] and text categorisation [107].

With regards the weighting scheme, the results by Wild et al. [143] were quite different

to those by Pincomber [112] and the rest of the literature discussed. They found that the IDF

global weighting outperformed all other weighting functions, and no clear indication as to

which local weighting function performed best. They also found that combining stemming

with stop-word filtering resulted in reduced average correlations with the human scores.

The findings of Wild et al. [143], who also investigated the correlations between LSA and

human scores, were consistent with those by Pincomber [112] who found that filtering stop

119

words using a stop-word list improves results.

Wild et al. [143] also experimented with three similarity measures: Pearson-correlation,

Spearman’s rho and Cosine. They found that best results were returned using when the

Spearman’s rho correlation was applied to their corpus. The most commonly used measure

for comparing LSA vectors that has been shown for giving good results for information

retrieval tasks is the cosine similarity measure [80].

The algebra behind the LSA algorithm was first described by Deerwester et al. [32]

and is also further explained by Berry et al. [16, 15]. Those authors describe the geometry

of the SVD process and the resulting matrices. They demonstrate the process of applying

SVD, and show that the optimal rank-k approximation of a term-by-document matrix can

be obtained by applying SVD and truncating the resulting matrices into k dimensions.

The power of LSA lies behind the SVD algorithm but also LSA gets its power from a

variety of sources such as the corpus, term weighting, the cosine distance measure [141, 84].

The issue on the optimal number of factors to retain in order to best capture the semantic

structure of the document collection still remains an unanswered question. The literature

suggests that the choice of dimensions depends on factors such as the corpus itself, corpus

size, choice of factors, the weighting scheme and pre-processing settings. In addition, these

parameters must be customised for the purpose of the LSA application (e.g. whether it is

for essay grading, similarity detection, or file searching by user queries).

120

A more critical question is that of “How can the optimal rank be chosen?” [58], in

other words what is the optimal number of factors (also referred to as singular values, or

dimensions) to retain and how can this number be chosen?

In the literature relevant to LSA and information retrieval, the number of factors is most

frequently selected through experimentation. Researchers have investigated at techniques

for automating the process of dimensionality reduction, Kakkonen et al. [66, 68], inves-

tigated statistical techniques and proposed the use of statistical methods (i.e. validation

methods) as a mean for automating the dimensionality reduction process in LSA.

Most literature on understanding of LSA for information retrieval is through empirical

testing. A theoretical and mathematical understanding of LSA that is beyond empirical

evidences is important in order to gain a better understanding of LSA [36, 76]. Researchers

have proposed many different theoretical and mathematical approaches to understanding

LSA. Theoretical approaches include a subspace-model [148], using the multiple regression

statistical technique and Bayesian methods in an attempt to explain the functionality behind

LSI [131], and a probability model for LSI using the cosine similarity measure [36].

Some researchers have investigated the SVD algorithm in order to provide a better un-

derstanding of LSA. Schütze studied the values produced by the SVD algorithm and the

meaning captured at various dimensions [124]. They found that all dimensions were po-

tentially useful because different dimensions were important for different semantic distinc-

tions. Their findings suggest that choice of dimensionality is also dependent on the purpose

of the LSA application. Kakkonen et al. [66] investigated statistical techniques automat-

121

ing the process of dimensionality reduction and found that choice of dimensions is corpus

dependent.

Kontostathis and Pottenger [76] examined the values produced by LSA and found that

high-order co-occurrences are important in the effectiveness of LSA. They provide math-

ematical evidence that term co-occurrence is very important in LSA. They demonstrate

that LSA gives lower similarity values to terms that co-occur frequently with many other

words (reduces ‘noise’) and gives higher values to important term-term relations. They

have examined the values between terms that have a first order co-occurrence up to fifth

order co-occurrence using the original term-by-document matrices and truncated (reduced

dimensionality) term-by-document matrices.

Kontostathis and Pottenger considered the average number of paths for the term pairs

classified in the five different types of order-co-occurrence [76]. They found that the first

order co-occurrence term pairs with the higher average number of paths tend to receive

negative similarity values, pairs with fewer co-occurrence paths tend to receive lower simi-

larity values, and pairs with a moderate number of co-occurrence paths tend to receive high

similarity values. It is from this observation that they claim that LSA gives lower similarity

values to terms that co-occur frequently with many other words (reduces ’noise’) and gives

higher values to important term-term relations. They also claim that terms with a second

order co-occurrence and a high number of connectivity paths tend to receive high similarity

values, while those terms with a second order co-occurrence and a moderate number of

connectivity paths tend to receive negative similarity values. They claim that terms with

122

second order co-occurrence can be considered as the ‘latent semantics’ that are emphasized

by LSA.

However, Landauer et al. [84] argues that:

“LSA’s ability [to generate knowledge from texts without the use of word or-

der or syntax] is not a simple matter of counting and weighting words or co-

occurrences, but depends on its derivation of a semantic space of optimal di-

mensionality from the mutual constraints reflected in the use of many words in

many contexts.”.

Perfetti discusses co-occurrence in language research and investigates the limitations

of co-occurrence based systems [111].

The literature proposes several approaches for determining the intrinsic dimensionality

of a dataset. Intrinsic (or effective) dimensionality is the number of dimensions needed to

model the data without losing important information. Although the literature suggests many

techniques for selecting dimensionality, there are no set dimensionality reduction methods

or the number of dimensions that should be chosen, because the number of dimensions

selected is likely to depend on the dataset in question.

Techniques for aiding with selection of dimensionality include Cattell’s scree test [23],

Kaiser’s eigenvalue greater than unity rule [64], the Maximum Likelihood test [61], Horn’s

parallel analysis [54], Velicer’s Minimum Average Partial (MAP) [136] and Bartlett’s chi-

square test [8]. The literature also contains studies that compare the principal component ex-

123

traction methods, including [55] and [41]. Furthermore, Zwick and Velicer et al. [149, 150]

have investigated various principal component extraction methods across various factors

including sample size, number of variables, number of components, and component satura-

tion.

The experimental results of Zwick and Velicer [149] suggest that Cattell’s SCREE test

and Velicer’s MAP test performed better than other tests when tested on a variety of situ-

ations. Compared to the other rules for determining the number of components to retain,

Cattell’s scree test is a graphical test, and is one of the most popular used test for quickly

identifying the number of components to retain.

5.2 Parameter Settings for LSA Applications to Source-code

This Section provides an insight into research related to LSA and source-code similarity

with emphasis on parameter selection.

The literature does not appear to contain any LSA based tools for detecting source-code

plagiarism in student assignments or an evaluation of LSA on its applicability to detecting

source-code plagiarism. Mozgovoy [100, 101] describes various source-code plagiarism

detection approaches with emphasis on source-code plagiarism. He states that the current

literature lacks a deep evaluation of LSA and its applicability to detecting plagiarism.

The only literature that appears is that by Nakov [106] which briefly describes findings

on applying LSA to a corpus of source-code programs written in the C programming lan-

124

guage by Computer Science students. Their results show that LSA was able to detect the

copied programs. It was also found that LSA had given relatively high similarity values

to pairs containing non-copied programs. The authors assume that this was due to the fact

that the programs share common language reserved terms and due to the limited number

of solutions for the given programming problem. The authors mention that they have used

datasets comprising of 50, 47, and 32 source-code files and they have set dimensionality

to k=20. Considering the size of their corpora, their choice of dimensions appears to be

too high, and we strongly suspect that this was the main reason that the authors report very

high similarity values to non-similar documents. The authors justify the existence of the

high similarity values to be due to files sharing language reserved terms. However, the

use of a suitable weighting scheme and appropriate number of dimensions can reduce the

chances of this happening. In their paper, the authors do not provide details of their choice

of parameters other than their choice of dimensions (which also lacks justification). Work

done by Nakov [106] is very brief and lacks proper analysis and evaluation.

LSA has been applied to source-code with the aim of categorising software repositories

in order to promote software reuse. Much work has been done in the area of applying

LSA to software components. Some of the tools developed include MUDABlue [71] for

software categorisation, Softwarenaut [89] for exploring parts of a software system using

hierarchical clustering, and Hapax [77] which clusters software components based on the

semantic similarity between their software entities (whole systems, classes and methods).

Other literature includes the application of LSA to categorising software repositories in

125

order to promote software reuse [91, 92, 95, 90].

Maletic and Valluri applied LSA to source-code and found that LSA had successfully

grouped source-code into clusters based on their semantic similarity, sections of source-

code that had a high degree of semantic similarity were grouped together and sections

that shared no similarity to others remained apart [92]. Also, Marcus and Maletic have

investigated the effectiveness of LSA for identifying semantic similarities between pieces

of source-code and they found that LSA successfully grouped semantically similar docu-

ments together into clusters [91]. They have developed a system called PROCSSI (short for

PROgram Comprehension Combining Semantic Information) which uses LSA to identify

semantic similarities between pieces of source-code.

Kawaguchi et al. [70] have compared three approaches to software categorisation:

clones-based similarity metrics, decision trees, and LSA, in order to find relations between

software components. Their corpus consisted of 41 software systems (and 22,048 identi-

fiers). The source-code pre-processing involved deleting all the comments, keywords (lan-

guage pre-defined words) and words that appeared only in one software system from the

code. The cosine measure was used for computing the similarity value of two software

systems. Their results show that many similar software components have received low sim-

ilarity values. Kawaguchi et al. [70] identified the problem being with the parameters they

had used. Kawaguchi et al. [72] took a new approach to detecting the similarity between

software systems by introducing a new clustering step. Similar software systems were re-

trieved based on the similarity between their identifiers. They describe MUDABlue [72],

126

an LSA based system they have developed for software categorisation. They have used the

same pre-processing approach described in [70], which proved to be unsuccessful in their

previous experiment. After pre-processing and performing LSA, the similarities between

pairs of identifiers were computed using the cosine similarity measure and the similar iden-

tifiers were clustered. Each identifier cluster represents a category. Software systems are

retrieved based on the identifier clusters and the similar software systems are placed into

software clusters. The software clusters are titled using the names of the identifiers with the

highest values. The MUDABlue system consists of a database and a web-based user inter-

face. The database retrieves source-code categories and stores them into the database. The

user interface allows for browsing the software repository using the categories contained

in the database. The evaluation of MUDABlue was computed using the recall, precision,

and the f-measure information retrieval evaluation measures. The performance of the sys-

tem was compared to two other software tools GURU and SVM (Support Vector Machine).

GURU and SVM use automatic software categorisation methods. Kawaguchi et al. [72]

have shown that MUDABlue (f=0.72) has performed better than GURU (f=0.66) and SVM

(f=0.65).

Kuhn et al. [77, 78] have developed a system called Hapax, for creating semantic clus-

ters of source-code entities. Hapax is built on top of the Moose re-engineering environment.

Basically Hapax is concerned with pre-processing, applying LSI and clustering software

components. It takes as input a software system decomposed into various levels of granu-

larity such as packages or classes and methods. Initially, Hapax begins by pre-processing

127

the source-code corpus, which involves removing the keywords of the programming lan-

guage, and hence only keeping identifier names. Comments found in the source-code were

kept, but English words contained in a predefined stop-list were extracted from the com-

ments as these would not help discriminate between documents [89]. The Potter stemming

algorithm was also applied such that words were reduced to their morphological root, for

example, words entity and entities would become entiti. Compound identifier names are

split into parts, for example word FooBar is split into two words, foo and bar. A term-by-

document matrix is then created. After experimenting with various weighting schemes the

authors decided to use the ltf-idf (log term-frequency local and idf global weighting algo-

rithms) weighting scheme. However, they do not provide evidence of these experiments in

their published work [77, 78] or proper justification for their selection. LSI is then applied

to the term-by-document matrix to build an index with semantic relationships. The authors

have used 10 to 25 dimensions in their experiments. The similarity between term vectors

and between document vectors was computed with the cosine measure. These similarities

were represented in a correlation matrix. The authors have used a hierarchical clustering

algorithm for clustering the entities in the correlation matrix. This clustering algorithm rep-

resents clusters as a dendrogram (hierarchical tree) with clusters as its nodes and documents

as its leaves. Based on a given threshold, or a predefined number of clusters, the dendro-

gram can be broken down into clusters. They use the LSI index to retrieve the semantic

similarity between software entities (whole systems, classes and methods). The documents

in clusters are treated as queries for retrieving the relevant terms, and clusters are labeled

128

using those terms. The software entities and their sub-entities were clustered according to

their similarity. Kuhn et al. [77] applied LSI to cluster software components with the as-

sumption that software parts that use similar terms are related. The most important terms

were obtained from each cluster in order to produce the cluster descriptions. The similarities

were presented in correlation matrix. Using Hapax they have performed experiments with

software written in Java and Smalltalk. Hapax represents the clusters using a distribution

map and a correlation matrix. Hapax was tested on three corpora; the first corpora consisted

of 11,785 terms and 726 documents at the granularity of classes written in Smalltalk; the

second corpus consisted of 2,600 terms and 4,324 documents at the granularity of methods

written in Smalltalk, and the third corpus consisted of 2,316 terms and 806 classes written

in Java.

The research by Lungu et al. [89] is concerned with LSA and using interactive visu-

alisation software for interactively exploring the software entities and their relationships

using hierarchical clustering. Their research is closely related to reverse software engineer-

ing. They have modified the Hapax software tool to include interactive visualisation of

clustered software components. Limitations of Hapax are that it fails to properly identify

clusters if the identifiers are poorly named, and comments are poorly described. The authors

identify the strength of LSI to retrieve similar artifacts regardless of their attribute names,

however, they also identify that if most identifiers in a system are not properly described

then Hapax fails to correctly identify clusters of similar documents. Furthermore, the au-

thors identify the issue that decomposing source-code at the granularity level of methods

129

threatens the performance of LSI, as small methods do not contain enough information to

allow LSI to acquire knowledge about the documents (i.e. methods). Lungu et al. [89]

have developed a tool called Softwarenaut for exploring parts of a software system using

hierarchical clustering.

5.3 Vector Based Plagiarism Detection Tools

Information retrieval methods have been applied for source-code plagiarism detection by

Moussiades and Vakali [99]. They have developed a plagiarism detection system called

PDetect which is based on the standard vector-based information retrieval technique. PDe-

tect represents each program as an indexed set of keywords and their frequencies found

within each program, and then computes the pair wise similarity between programs. Pro-

gram pairs that have similarity greater than a given cutoff value are grouped into clusters.

Their results also show that PDetect and JPlag are sensitive to different types of attacks and

the authors suggest that JPlag and PDetect complement each other.

LSA has been applied to natural language plagiarism detection of student essays [19].

Britt et al., developed a system called SAIF which identifies suspected cases of plagiarism

in student essays. SAIF works by comparing student essay pairs and those with a cosine

higher than a given threshold (i.e. 0.75) are considered for possible plagiarism. SAIF was

able to identify approximately 80% of texts that contained sentences that were plagiarised

or quoted without the use of citation, and LSA performed particularly well at detecting

130

the documents from which particular essay statements originated from (i.e. it detected

approximately 90% of the cases) in order to provide feedback on coverage and plagiarism.

Information retrieval methods have been also been applied for natural-text plagiarism

detection. COPS [18] is a program developed for detecting copied documents in Digi-

tal Libraries. COPS decomposes each document into sentences and groups sentences into

chunks, and then checks for overlapping chunks in documents. The system detects docu-

ments that contain a number of matched sentences above a given threshold. The problem

with this approach is that it is confused by equations, figures, and abbreviations. COPS

relies on punctuation for recognising when a sentence begins and ends, and problems were

encountered with detecting documents with poor punctuation. Also, another problem of

COPS was that it did not detect plagiarism when parts of the sentences overlapped with the

sentences of the original document. To avoid the drawbacks of COPS they have developed

a plagiarism detection system called SCAM (Stanford Copy Analysis Mechanism)[126].

SCAM is based on the standard vector-based information retrieval technique. Each

document is represented as a vector containing the frequency of each possible word occur-

rence in a document. Similar documents are detected by comparing the vector of a given

document (or query) against the vectors of documents in the document collection using a

new similarity measure, the relative frequency model (RFM). The RFM similarity measure

is a modified version of the cosine similarity measure. Instead of frequencies of words in

the document, they use the relative frequencies of words in the cosine similarity algorithm.

In addition, the similarity measure they proposed contains a parameter whose value

131

must be entered by the user and it is unclear to the authors what the ideal parameter value

should be for datasets other than the ones tested in their experiment [126].

One of the problems encountered by both vector-based tools PDetect [99] and COPS

[126] is the number of false positives returned.

An information retrieval technique worth mentioning is the one created by Broder,

called Shingles [20, 21]. This technique was developed for finding duplicate and near du-

plicate documents on the web. Each document is decomposed into a sequence of tokens.

Each document is presented as a continuous set of tokens called a shingle. A shingle is

known as an q-gram where q is the length of the shingle. Shingles uses a mathematical

concept called resemblance, which measures the percentage of overlap between two doc-

uments (intersection of features over the union of features between two documents). The

resemblance between two documents, A and B is a number between 0 and 1, and the nearer

the resemblance is to 1 the more likely that the documents are “roughly the same”, i.e. they

have the same content regardless of modifications such as formatting, minor corrections,

capitalisation, etc. Duplicate and near-duplicate documents are retrieved based on a given

threshold.

5.4 Conclusion

LSA has been applied successfully to many applications and the literature suggests that

the performance of LSA greatly depends on factors such as the corpus, and on the choice

132

of parameters including the weighting scheme, number of dimensions, and pre-processing

parameters. In addition, parameter choice also depends on the task LSA will be applied to.

The literature review shows that many researchers have applied different weighting

schemes when applying LSA to tasks such as retrieval, categorisation, classification of data,

and no clear indication exists as to which parameters work best for tasks. In addition,

many researchers choose their parameters without justifying their choices. Their choice of

weighting scheme is one parameter which is often neglected to be appropriately justified.

The literature suggests that parameter choice can influence the performance of LSA,

and suggests that when LSA is introduced to a new task that parameters should be optimised

for that specific task.

Chapters 6 and 7 are concerned with evaluating the efficiency of LSA for the new task of

detecting similar source-code files. We describe experiments concerned with investigating

the influence of parameters that drive the effectiveness of source-code similarity detection

with LSA.

133

Chapter 6

Parameters Driving the Effectiveness

of Source-Code Similarity Detection

with LSA

Source-code analysis with LSA has recently been a topic of increasing interest. Although

previous authors have applied LSA to various information retrieval tasks, it is still not clear

which and how parameters impact on the effectiveness of LSA. Literature suggests that

parameters must be optimised for the specific task for which LSA has been applied.

This Chapter presents an analysis of the influence of parameters on the effectiveness of

source-code similarity detection with LSA using real source-code datasets. It describes ex-

periments conducted with general LSA parameters and source-code specific pre-processing

134

parameters. The general parameters we experimented with were term-weighting schemes

and dimensionality (i.e. how many factors to retain), and the source-code specific pre-

processing parameters involve source-code comments, programming language reserved

terms (i.e. keywords), and skeleton code.

We show that each of the identified parameters influences the performance of LSA, and

that choice of parameters is interdependent of each other.

6.1 Introduction

Previous researchers have reported that LSA works well with textual information retrieval,

and suggest optimal parameter settings for best performance. However, it is not clear which

and how parameters influence the effectiveness of LSA. We are aware that performance of

LSA depends on the corpus itself, and thus what might be ‘optimal’ parameters for corpus

A, may not be optimal for corpus B, hence no set ideal parameter settings exist. We aim

to investigate the influence of parameters and identify those settings that appear to perform

better in overall for the task of source-code similarity detection with LSA.

The experiments described in this Chapter are concerned with finding the combination

of parameters that drive the effectiveness of similar source-code file detection with LSA.

We are not aware of any literature investigating the behaviour of parameters for the task

of similar source-code file detection. We identify pre-processing parameters specific to

source-code and evaluate their impact on LSA performance.

135

The experiments described in this Chapter aim to answer the following questions:

• What is the impact of keeping/removing comments and/or Java reserved terms and/or

and skeleton code on LSA performance?

• What is the impact of weighting algorithms on LSA performance? Which weighting

algorithm works best for the task?

• How does choice of dimensionality impact on performance? What is the optimal

number of dimensions for each corpus?

Document pre-processing, as described in Section 5.1, is a common procedure in infor-

mation retrieval. The experiments discussed in this Chapter focus on the impact of those

pre-processing parameters specific to Java source-code, i.e. source-code comments, Java

reserved terms (i.e. keywords), and skeleton code. We have not performed stemming or

stop-word removal on the comments within the source-code files. This raises a question:

• What is the impact of applying stemming and/or stop-word removal to source-code

comments on the effectiveness of source-code similarity detection with LSA?

We will not attempt to answer the above question, because our focus is mainly on pre-

processing parameters within the source-code (rather than on the comments). We are con-

sidering comments in their original form and applying only pre-processing as it is applied

to source-code.

136

The similarity measure applied to compute the distance between two vectors influences

the retrieval performance of LSA [143]. In our experiments we use the cosine similarity

measure to compute the distance between two vectors, as it is the most common measure

of similarity used in the literature and has been shown to produce good results.

Another open question here is,

• How does the cosine measure compare to other distance measures for the task of

similar source-code file detection with LSA?

Literature claims that the cosine document length normalisation, which adjusts the term

values according to the document length, can improve retrieval performance [128]. Pivoted

document length normalization [127] is a technique used to modify normalization func-

tions. With document length normalization, the probability of retrieval of a document is

related to the normalization factor used while weighting the terms for those documents, i.e.

the higher the normalization factor values for a document, the lower its chances of retrieval.

Pivoted document length normalization aims to improve retrieval performance by correcting

the problem of normalization factors, and thus adjusts the document length factor assigned

to each document such that documents of all lengths are retrieved with similar chances. In

effect, the pivoted document length normalization algorithm is an adjustment to document

length normalization algorithms such that relevant documents of smaller size will have a

better chance of being retrieved. In an experiment by Singhal et al. [127], an improve-

ment of 9-12% in average precision (for 50 queries) was obtained when the pivoted cosine

137

document length normalisation was used over cosine document length normalization.

The results from the experiments we performed returned very high precision values

and thus we did not experiment with pivoted document length normalisation, however the

following question remains unanswered,

• What is the impact of applying pivoted cosine document length normalisation on

LSA effectiveness for similar source-code file detection?

In this Chapter we describe the results of an experiment investigating various parame-

ters influencing the behaviour of LSA on the application of detecting similar source-code

files, and customise the parameters such that LSA can achieve its best performance. Our

hypothesis is that system performance depends on factors such as the corpus, choice of

pre-processing parameters, choice of weighting scheme, and choice of dimensionality. Fur-

thermore, we hypothesise that parameters are interdependent of each other.

6.2 Experiment Methodology

For the experiments we used four Java datasets. The datasets are all real datasets created by

University students as part of their course. The Java datasets were obtained from computer

science programming courses from the University of Warwick. Ethical consent had been

obtained for using the datasets.

In order to evaluate the retrieval performance of LSA, a set of queries and their relevant

138

files are required. The process for creating the sets of queries and their relevant files is as

follows.

1. We initially passed the corpora into external tools JPlag and Sherlock. The output

gathered together from external tools consisted of groups of similar files. Using the

output of the tools, we created four preliminary lists (i.e. one corresponding to each

corpus) containing groups of similar source-code files. To create a list of queries

and their relevant files, one random file was selected from each file group to act as

the query and the remaining files of the group were acting as the relevant files to the

query.

2. Preliminary LSA experiments were performed using the preliminary lists of queries

and their relevant files. The weighting schemes and dimensionality settings by which

LSA performed (using the MAP evaluation measure) best were selected. The findings

from this initial experiment revealed that the combination of tnc weighting scheme,

RC pre-processing parameter (as described in Section 6.4), and setting the value of k

between 15 and 30 dimensions worked well on all datasets.

3. Thereafter, those parameters were applied to our PlaGate tool, described in Chapter

8, in order to detect more similar file pairs, and create a complete (to the best of our

knowledge) list of similar file groups.

4. A final list containing queries and their relevant files was formed, the experiment to

test parameters was re-conducted and the performance of LSA using various param-

139

eters was re-evaluated and the findings are described in this Chapter.

During these experiments the independent variables vary, while the controlled vari-

ables remain constant. The performance of LSA is evaluated with different independent

variables, to measure its performance with different behaviours. Our independent variables

were the weighting scheme, pre-processing technique, and choice of dimensionality. Our

controlled variables were the queries and their relevant files, the corpora, and the measure

of similarity. Our dependent variables were the Mean Average Precision, LPM, HFM, and

Sep./HFM evaluation measures.

We wrote source-code programs, using the MATLAB programming language, for per-

forming the task of similar source-code file detection and evaluation, allowing us to alter

the independent variables we selected in our experimental design.

6.3 Evaluation of Performance

Many IR evaluation measures exist and these were described in Chapter 4. To evaluate the

overall effectiveness of each algorithm we will use Average Precision (AP) as the initial

overall evaluation measure. AP appears to be an evaluation measure frequently used by

the information retrieval community for evaluating system performance. AP takes into

consideration the position of the relevant files in the retrieved list of files. An AP value of

1.00 indicates that only relevant files were detected in the top ranked with no irrelevant files

between them.

140

The Mean Average Precision (MAP) evaluation measure is the mean (or average) AP

values of all queries. When computing AP for each query, we computed it by taking into

consideration the precision values of all relevant files for the given query (i.e. no threshold

was applied to shorten the list of retrieved files). Thus AP was computed up to rank position

n, where n is the total number of files in the corpus. This is because we want to evaluate

the rank position of all the relevant files for each query, and by taking into consideration the

position of all relevant files we get a picture of overall performance. The higher the value

of the MAP, the better the performance of the system, i.e. the fewer non-relevant files exist

between relevant ones.

To gain a better picture of the behaviour of a retrieval algorithm it is more precise to use

more than a single measure to summarise its full behaviour [5]. We will apply the evaluation

measures proposed by Hoad and Zobel [53] as additional measures for evaluating system

performance, because these take into consideration similarity values between the queries

and the retrieved files. When the relevant files to a query are not known beforehand (i.e in

real use of the system), the similarity values given to files in the returned ranked list can

help indicate and differentiate between the potentially relevant and non-relevant files for a

given query.

141

6.4 The Datasets

The characteristics of the Java datasets, including the number of relevant file pairs detected

are described in Section 9.3. Each of the datasets contained source-code files written by

students who had been given frameworks of four Java classes and were required to write

the source-code.

The Linux shell script sed utility and the TMG tool [147] were used for conducting

the pre-processing tasks and creating six sub-datasets for each corpus. The pre-processing

conducted is standard to that carried out by the information retrieval community when pre-

processing files destined to be represented as vectors of a term-by-file matrix. During this

pre-processing, terms that were solely composed of numeric characters were removed, syn-

tactical tokens (i.e, semi-colons, and colons) were removed, terms combining letters and

numeric characters were kept, terms that occurred in less than two files were removed and

upper case letters were translated into lower case.

In the context of source-code files, identifiers which consisted of multiple terms sepa-

rated by underscores were treated as single terms (i.e. after pre-processing student name

became one term studentname). Hyphenated terms were also merged together. The reason

for merging rather than separating such identifiers is because each identifier whether it con-

sists of one or two words (separated by underscore) represents one meaning in the source-

code file. One issue with pre-processing parameters was whether to separate source-code

identifiers comprising of multiple words into their constituents. Taking into consideration

142

the amount of time needed to develop an application to perform the task of breaking mul-

tiple words into their constituents, it was decided not to perform large experiments using

this parameter. We considered it useful to perform a small experiment for investigating the

impact on system effectiveness when separating identifiers comprising of multiple words.

The results from that would indicate whether it would be beneficial to separate such terms

with regards to system effectiveness. The small experiment is described in Chapter 7.

Other than the pre-processing mentioned above, we did not interfere with the source-

code provided by students, we did not correct any code that would not compile, and did

not use any stemmers or spell checkers. We then began the experiment by creating the

sub-datasets for each corpus of files.

Each Java dataset is pre-processed six times using the following pre-processing param-

eters, thus creating six sub-datasets for each dataset:

• Keep Comments (KC)

• Keep Comments and Remove Keywords (KCRK)

• Keep Comments and Remove Keywords and Remove Skeleton code (KCRKRS)

• Remove Comments (RC)

• Remove Comments and Remove Keywords (RCRK)

• Remove Comments and Remove Keywords and Remove Skeleton code (RCRKRS)

143

Pre-processing by removing comments involves deleting all comments from source-

code files and leaving files solely consisting of source-code. When keeping comments in

files all source-code comments and the source-code are kept in the files.

A list of all known Java reserved terms or keywords was used as a stop-list. The words

contained in the stop-list were removed from all Java files to create the relevant sub-datasets

(i.e. KCRK, and RCRK).

All terms found in the skeleton files relevant to each corpus were added to the stop

list of Java reserved terms, thus creating four new different stop lists (i.e. one for each

corpus), and each stop list was applied to the relevant corpus to create the new sub-datasets

(KCRKRS, and RCRKRS).

In total, we were testing 1224 different algorithm combinations (12 weighting schemes,

6 pre-processing parameters, and 17 different dimension settings) on four corpora. We

decided to experiment with those weighting schemes most commonly used and tested by

LSA researchers. The following twelve local, global, and document length normalisation

weighting schemes were tested: txx, txc, tfx, tfc, tgx, tgc, tnx, tnc, tex, tec, lex, lec. The

algorithms for these weighting schemes are presented in Chapter 4.

A range of seventeen different k dimensions will be tested, ranging from 2 to n (i.e.

2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, n) where n=r, where r is the

rank of the term-by-file matrix. The number of n dimensions depends on the corpus size.

We decided to stop at 100 dimensions and also to display performance at n dimensions.

144

Our datasets contained no more than 200 files, and thus we decided to show the effect of

choosing too few and too many dimensions by evaluating LSA’s performance when using

a range of 2 to 100 dimensions, and also when using the maximum possible number, n,

of dimensions. Mathematically, as the value of k approaches the rank r of the term-by-file

matrix, LSA approaches the traditional VSM retrieval performance, thus the performance

of the VSM is equivalent to LSA when k=r [75].

After creating the sub-datasets, the TMG tool was applied and a term-by-file matrix was

created for each sub-dataset. We created batch scripts using the MATLAB programming

language to apply LSA and evaluate system performance using various parameters (the

weighting functions were provided by the TMG tool, our script called those functions).

Once the batch process was finished, all the results were stored in a matrix, and these

results were then copied into statistical packages for creating charts.

6.5 Experiment Results

We evaluated the application of various weighting schemes and k dimensionality settings

using the AP evaluation measure. The AP for each query, and thereafter the MAP which

is the mean AP of all queries, were computed. We define MMAP as Maximum Mean

Average Precision, which is the MMAP value reached by LSA when using a certain param-

eter. Tables 6.1, 6.2, 6.3, and 6.4 show the MMAP values for each dataset’s sub-datasets.

After computing the MAP value using various weighting schemes and k dimensions, the

145

maximum MAP (MMAP) value reached by LSA when using each weighting scheme was

recorded alongside the number of dimensions that were needed for the particular MMAP

value to be achieved. For example, for dataset’s A sub-dataset KC (Table 6.1), the high-

est MMAP value reached by the txx weighting scheme was 0.86 at 20 dimensions. The

emboldened values are the highest MMAP values recorded for each sub-dataset.

When comparing the performance of LSA using various weighting algorithms, it is

important to take into consideration the number of dimensions each weighting algorithm

needed to reach its MMAP value. For example, observing the results for sub-dataset KC of

dataset A, shown in Table 6.1, the highest MMAP recorded was that by the lec algorithm,

MAP=0.96 k=40, closely followed by the tnc algorithm, MAP=0.95 k=25. The differ-

ence in MAP is only 0.01 but there is considerable difference in the number of dimensions

needed, i.e. lec needed 15 more dimensions. Of course, the number of dimensions impacts

on computational effort, therefore, from this perspective, we can consider tnc to be a better

algorithm with regards to dataset’s A sub-dataset KC. An unanswered question here is:

• How much precision should we compromise by adjusting dimensionality on improv-

ing computational effort?

We will not attempt to answer this question because our experiments are not focusing

on evaluating the computational efficiency aspects of LSA.

The findings from Tables 6.1, 6.2, 6.3, and 6.4 are summarised as follows:

• Dataset A: The tnc weighting scheme achieved best MMAP value and thus outper-

146

Table 6.1: MMAP values for dataset A
KC KCRK KCRKRS RC RCRK RCRKRS Averages

txx 0.86 0.86 0.86 0.78 0.75 0.54 0.77

k 20 60 60 15 40 106 50.17

txc 0.86 0.86 0.85 0.79 0.80 0.55 0.79

k 20 45 45 40 60 2 35.33

tfx 0.94 0.92 0.92 0.91 0.87 0.61 0.86

k 40 40 40 35 45 70 45.00

tfc 0.93 0.94 0.93 0.88 0.88 0.60 0.86

k 70 80 80 60 60 60 68.33

tgx 0.73 0.70 0.69 0.74 0.69 0.54 0.68

k 25 20 15 20 15 2 16.17

tgc 0.82 0.74 0.64 0.75 0.69 0.57 0.70

k 30 50 10 20 40 10 26.67

tnx 0.92 0.92 0.92 1.00 1.00 0.63 0.90

k 40 40 40 35 25 70 41.67

tnc 0.95 0.96 0.95 1.00 1.00 0.61 0.91

k 25 25 25 15 15 80 30.83

tex 0.87 0.87 0.88 0.85 0.82 0.60 0.82

k 30 30 30 30 35 60 35.83

tec 0.94 0.94 0.94 0.87 0.87 0.61 0.86

k 80 80 70 70 60 80 73.33

lex 0.94 0.93 0.93 0.97 0.97 0.62 0.90

k 20 30 30 20 25 70 32.50

lec 0.96 0.94 0.95 0.97 1.00 0.61 0.91

k 40 20 20 10 90 45 37.50

147

Table 6.2: MMAP values for dataset B
KC KCRK KCRKRS RC RCRK RCRKRS Average

txx 0.94 0.91 0.86 0.90 0.88 0.85 0.89

k 60 70 80 10 45 40 50.83

txc 0.95 0.88 0.86 0.90 0.87 0.60 0.84

k 15 20 15 10 5 25 15.00

tfx 0.78 0.78 0.78 0.74 0.74 0.73 0.76

k 45 70 70 40 40 40 50.83

tfc 0.84 0.83 0.83 0.79 0.78 0.77 0.81

k 15 15 15 15 15 35 18.33

tgx 0.92 0.82 0.77 0.91 0.88 0.81 0.85

k 35 60 70 25 15 40 40.83

tgc 0.92 0.78 0.74 0.95 0.89 0.80 0.85

k 15 20 10 15 20 20 16.67

tnx 0.84 0.84 0.83 0.90 0.90 0.90 0.87

k 70 70 60 60 60 60 63.33

tnc 0.85 0.85 0.85 0.91 0.91 0.91 0.88

k 10 10 10 15 15 15 12.50

tex 0.80 0.80 0.80 0.74 0.74 0.74 0.77

k 45 45 45 90 90 90 67.50

tec 0.83 0.81 0.80 0.79 0.79 0.77 0.80

k 15 15 15 15 15 15 15.00

lex 0.86 0.85 0.85 0.86 0.86 0.86 0.86

k 60 60 60 40 40 40 50.00

lec 0.88 0.88 0.87 0.90 0.89 0.87 0.88

k 15 15 15 10 10 10 12.50

148

Table 6.3: MMAP values for dataset C
KC KCRK KCRKRS RC RCRK RCRKRS Average

txx 0.78 0.74 0.98 0.81 0.77 0.77 0.81

k 15 15 35 90 80 90 54.17

txc 0.81 0.76 0.96 0.82 0.78 0.78 0.82

k 40 50 45 80 90 80 64.17

tfx 0.65 0.65 0.91 0.71 0.71 0.70 0.72

k 80 70 70 70 70 70 71.67

tfc 0.73 0.71 0.94 0.75 0.70 0.69 0.75

k 80 90 25 60 50 50 59.17

tgx 0.72 0.71 0.93 0.73 0.69 0.64 0.74

k 90 80 60 50 70 70 70.00

tgc 0.75 0.74 0.92 0.74 0.69 0.67 0.75

k 80 70 60 80 80 100 78.33

tnx 0.83 0.79 0.95 0.82 0.80 0.79 0.83

k 25 25 25 20 35 35 27.50

tnc 0.84 0.82 0.97 0.88 0.85 0.85 0.87

k 20 15 15 20 15 25 18.33

tex 0.70 0.70 0.90 0.75 0.73 0.71 0.75

k 60 90 50 70 80 80 71.67

tec 0.73 0.72 0.96 0.71 0.70 0.69 0.75

k 80 80 10 60 50 80 60.00

lex 0.74 0.74 0.96 0.74 0.74 0.73 0.78

k 20 20 25 35 60 60 36.67

lec 0.78 0.77 0.93 0.78 0.78 0.75 0.80

k 35 40 25 20 25 25 28.33

149

Table 6.4: MMAP values for dataset D
KC KCRK KCRKRS RC RCRK RCRKRS Average

txx 0.80 0.77 0.75 0.83 0.80 0.79 0.79

k 25 60 45 30 60 50 45.00

txc 0.82 0.77 0.76 0.84 0.80 0.79 0.80

k 20 20 20 30 10 10 18.33

tfx 0.70 0.69 0.69 0.73 0.73 0.73 0.71

k 45 40 40 25 45 45 40.00

tfc 0.74 0.74 0.74 0.78 0.77 0.77 0.76

k 15 15 15 25 25 25 20.00

tgx 0.79 0.73 0.73 0.81 0.74 0.73 0.76

k 30 25 25 35 70 25 35.00

tgc 0.73 0.70 0.70 0.79 0.74 0.73 0.73

k 30 30 30 10 15 15 21.67

tnx 0.71 0.71 0.70 0.81 0.83 0.82 0.76

k 15 20 15 10 10 10 13.33

tnc 0.82 0.79 0.79 0.92 0.86 0.86 0.84

k 10 15 15 5 15 15 12.50

tex 0.70 0.70 0.70 0.74 0.73 0.73 0.72

k 45 45 50 50 40 40 45.00

tec 0.67 0.67 0.67 0.72 0.72 0.72 0.70

k 10 5 15 25 25 25 17.50

lex 0.64 0.65 0.65 0.70 0.72 0.72 0.68

k 15 15 15 25 90 90 41.67

lec 0.76 0.76 0.76 0.78 0.78 0.78 0.77

k 15 15 15 20 20 20 17.50

150

formed all other weighting schemes across 4 out of 6 sub-datasets. For subdataset

KCRKRS, lec reached MMAP of 0.95 at 20 dimensions whereas tnc reached 0.95

at 25 dimensions which indicates similar performance. For RCRKRS, the MMAP

of lec and tnc were equal (0.61) however, tnc needed 35 more dimensions to reach

that MMAP value. On average, across sub-datasets the tnc weighting scheme out-

performed all other weighting schemes giving the highest MMAP (0.91) at an aver-

age 30.38 dimensions. Comparing the overall results of the tnc and lec weighting

schemes, both their average MMAP values were 0.91, however, tnc performed better

by means of dimensionality, i.e. on average tnc needed 6.67 fewer dimensions to

reach the MMAP of 0.91. Applying the tnc weighting scheme, computing the SVD

using 15 dimensions, and using the RC or RCRK pre-processing parameters gives

excellent retrieval results. For sub-datasets KC, KCRK, KCRKRS, RC, RCRK per-

formance was high with only 15 to 25 dimensions depending on the sub-datasets.

Clearly, removing comments, keywords, and skeleton code at once (RCRKRS) re-

moves too much terms (and meaning) from files and thus causes major decrease

in LSA performance. Comparing KCRKRS with RCRKRS, when using the tnc

term-weighting scheme, we see a difference in LSA performance, i.e the MMAP

value of KCRKRS is MMAP=0.95 at k=25 and the the highest MAP of RCRKRS

is MMAP=0.61 k=80 dimensions, which suggests that when removing keywords and

skeleton code, it is best to keep comments in as these are likely to hold some meaning

about the files, but this depends on the corpus.

151

• Dataset B: On average the tnc and lec weighting schemes outperformed all other

weighting schemes with a MMAP average of 0.88 at an average of 12.50 dimen-

sions. The highest MMAP value was achieved by txc and tgc weighting schemes,

achieving MMAP of 0.95 at 15 dimensions, when applied to the RC and KC sub-

datasets. However, the pattern of behaviour of those two weighting schemes appears

unpredictable across sub-datasets. In overall, the performances of tnc and lec were

very close. Highest MMAP values were achieved when applying the tnc weight-

ing scheme and using 15 dimensions – performance was 0.91 at 15 dimensions for

sub-datasets RC, RCRK, RCRKRS, and performance for the remaining sub-datasets

ranged between 0.85 and 0.91 when using 10 to 15 dimensions.

• Dataset C: Interpreting the results for dataset C is very straightforward – the tnc

weighting scheme outperformed all other weightings. Highest MMAP performance

(0.97) was achieved when using 15 dimensions and the KCRKRS sub-dataset, fol-

lowed by the RC sub-dataset with MMAP of (0.88) with 20 dimensions.

• Dataset D: Again, the results are very clear – the tnc weighting scheme outperformed

all other weighting schemes. Highest MMAP was 0.92 at only 5 dimensions, fol-

lowed by RCRK and RCRKRS both achieving MMAP of 0.86 at 15 dimensions.

Results suggest that choice of parameters is interdependent – performance of weighting

schemes depends on the choice of pre-processing parameters, the corpora and the choice

of dimensionality. In overall, the average MMAP values of each dataset show that the tnc

152

weighting scheme performed well on most sub-datasets when using between 10 and 20

dimensions. With regards to which pre-processing parameter (i.e. sub-dataset) performed

best, the results vary depending on the weighting algorithm applied. When using the tnc

term-weighting scheme the highest MMAP values achieved for each dataset are as follows:

• Dataset A: RC (MMAP=1.00, k=15), RCRK (MMAP=1.00, k=15),

• Dataset B: RC (MMAP=0.91, k=15), RCRK (MMAP=0.91 k=15),

RCRKRS (MMAP=0.91, k=15),

• Dataset C: KCRKRS (MMAP=0.97, k=15), and

• Dataset D: RC (MMAP=0.92, k=5).

The results show that the tnc weighting scheme and the RC pre-processing parameter

performance reached highest MMAP values for datasets A, B and D. With regards to dataset

C, highest performance (MMAP=0.97 k=15) was achieved using the tnc weighting scheme

on the KCRKRS sub-dataset, followed by MMAP=0.88 k=20 when using the tnc weighting

algorithm on the RC sub-dataset.

It is clear that choice of pre-processing has a major impact on performance. Figures

6.1, 6.2, 6.3, and 6.4 show the performance of datasets A, B, C, and D respectively, using

the tnc weighting algorithm and various k dimensions. These figures illustrate the differ-

ence in system performance when using various pre-processing parameters (i.e. represented

as sub-datasets). For example, in dataset A, Figure 6.1 shows that applying the RCRKRS

153

pre-processing has a devastating effect on system performance, which suggests that by re-

moving comments, keywords and skeleton code altogether we remove important meaning

from files.

An important finding is that although choice of pre-processing influences performance,

it does not influence the number of dimensions needed. The pattern of behaviour across

Figures 6.1, 6.2, 6.3, and 6.4 is very similar – MAP performance improves significantly after

10 to 15 dimensions and then remains steady or decreases when 35 dimensions are reached,

and then begins to fall slowly and gradually. Another common observation is that when

reaching maximum number of possible dimensions, performance decreases significantly.

This shows that at maximum dimensionality, irrelevant information is captured by the LSA

model, which causes LSA to not be able to differentiate between similar and non-similar

files.

At n dimensions, performance reaches that of the SVM [75]. Our results show that

when customising our parameters, and selecting between 10 and 35 dimensions, the per-

formance of LSA outperforms that of the SVM. Figure 6.5 shows that when n dimensions

are used, the performance of LSA worsens. When the value of k is set to n, where n is

equal to the number of files in the term-by-file matrix, the performance of LSA reaches that

of the VSM, and from this we can conclude that applying LSA for source-code similarity

detection, performs better that the VSM.

154

Figure 6.1: Dataset A: MAP performance using the tnc weighting scheme across various

dimensions.

Figure 6.2: Dataset B: MAP performance using the tnc weighting scheme across various

dimensions.

155

Figure 6.3: Dataset C: MAP performance using the tnc weighting scheme across various

dimensions.

Figure 6.4: Dataset D: MAP performance using the tnc weighting scheme across various

dimensions.

156

Figure 6.5: Datasets A, B, C, D: MAP performance using the RC sub-dataset and the tnc

weighting scheme across various dimensions.

6.6 Investigation into Similarity Values

LSA computes the cosine similarity between a given query vector with all file vectors in

the vector space. Our hypothesis is that choice of pre-processing and choice of dimensions

impacts on the similarity values between a query and its relevant files. A good system

would give high scores to similar file pairs, low scores to non-similar file pairs, and using

the terminology and evaluation measures proposed by Hoad and Zobel [53] the greater the

separation between the cosine values given to the LPM and HFM the better the performance

of the system. Hoad and Zobel’s [53] evaluation measures are described in Section 4.10.

In the discussion in Section 6.5 we established that the tnc weighting algorithm gave

good results (i.e. high MMAP) and the RC pre-processing parameter was also a good

157

Figure 6.6: Dataset’s A sub-dataset RC: Sep./HFM performance using various weighting

algorithms and dimensions.

Figure 6.7: Dataset’s A sub-dataset KC: Sep./HFM performance using various weighting

algorithms and dimensions.

158

choice. The results also revealed that with regards to achieving high AP, 15 was good

choice of dimensions.

Figure 6.5 shows the performance of sub-datasets RC of all datasets when using the

tnc weighting algorithm across various dimensions. The chart shows that good choice of

dimensions is between 15 and 35, using more dimensions starts to have a negative impact

on performance.

Because our aim is to find the best parameter combinations for the task of source-code

similarity detection with LSA, we are also concerned with the similarity values (and not

simply the positions of relevant files in the retrieved list of files) assigned to similar source-

code files when various parameters are applied. This is because we aim to use the findings

from the experiments described in this Chapter when developing the LSA based tool for

source-code similarity detection (as described in Chapters 8, 9, and 10).

Choice of weighting scheme, pre-processing and dimensionality also influence the sim-

ilarity values given to files. Take for example dataset A, Figure 6.6 shows the Sep./HFM

performance using various weighting algorithms and dimensions on the RC sub-dataset, and

Figure 6.7 shows the Sep./HFM performance using various weighting algorithms and di-

mensions on the KC sub-dataset. Clearly, each Figure illustrates that performance is highly

dependent on the choice of weighting scheme, and comparing the two Figures shows that

similarity values are also dependent on the choice of pre-processing parameters.

Although best AP results were returned at 15 dimensions we strongly suspect that with

159

regards to similarity values given to relevant and non-relevant files, 15 dimensions is too

few – however, for an information retrieval task where results are ordered in a ranked list

and where the similarity value does not really matter, then 15 dimensions are appropriate

for the system to retrieve the most relevant files in the top ranked. For the purpose of our

task were thresholds will be applied, similarity values are crucial to system performance.

Figures 6.8, 6.9, 6.10, and 6.11 show the mean values of the LPM, HFM, Separation,

and Sep./HFM, respectively, over all queries for each dataset’s RC sub-dataset. The average

Sep./HFM values for all datasets are also displayed in each Figure.

Figure 6.8 shows that on average, values given to the relevant files lowest in the re-

trieved list are near and above 0.80 when using 2 to 15 dimensions. In order to decide

whether 15 dimensions is sufficient, we need to observe the similarity values given to non-

relevant files (i.e. the HFM values). Figure 6.9 shows that at 15 dimensions non-relevant

files received, on average, very high similarity values, i.e. above 0.70. Separation between

relevant and non-relevant files (as shown in Figure 6.10) is very small (0.03 and below)

which indicates that many non-relevant files received high similarity values. Figure 6.11

shows that between 2 and 15 dimensions, overall performance measured by Sep./HFM was

very low (0.22 and below). These results clearly suggest that with regards to similarity val-

ues, more dimensions are needed if the functionality of filtering files above a given threshold

will be included in system implementation. At 30 and above dimensions, the average val-

ues given to non-relevant files are 0.53 or below (see Figure 6.9), and there appears to be a

good amount of separation (see Figure 6.10) between the similarity values given to relevant

160

Figure 6.8: Datasets A, B, C, D: Mean LPM using the RC sub-dataset and the tnc weighting

scheme across various dimensions.

Figure 6.9: Datasets A, B, C, D: Mean HFM using the RC sub-dataset and the tnc weighting

scheme across various dimensions.

161

Figure 6.10: Datasets A, B, C, D: Mean Separation using the RC sub-dataset and the tnc

weighting scheme across various dimensions.

Figure 6.11: Datasets A, B, C, D: Mean Sep./HFM using the RC sub-dataset and the tnc

weighting scheme across various dimensions.

162

and non-relevant files (i.e. average separation at 30 dimensions is 0.14, highest average

separation recorded is 0.18).

With regards to good choice of dimensionality, observing the values of separation show

that there is not much change in the curve after 30 dimensions. Also, system performance

by means of Sep./HFM increases considerably (i.e. by 0.57 points) between 15 and 30

dimensions.

Figure 6.12 shows that, in overall, when term-weighting schemes were combined with

document length normalisation the results improved. Weighting scheme names ending with

the letter c (e.g. txc, tnc) are those which were combined with cosine document length

normalisation.

Figure 6.12: Average MAP values for each weighting scheme across all dimensions and

datasets.

163

6.7 Discussion

The results clearly show that choice of parameters influences the effectiveness of source-

code similarity detection with LSA. Conducting experiments using various parameters and

reaching a conclusion as to which parameters in overall performed best for our task, has

proven to be a rather tricky task. Most evaluations of performance in the literature are based

on precision, however, in our case, it was necessary to investigate the similarity values

assigned to files as these are crucial for the task of source-code similarity detection for

which we will be applying LSA.

Our results suggest that pre-processing by removing comments and using the tnc weight-

ing scheme consistently gives good results. Setting k to 15 dimensions is ideal for all

datasets, if the aim of the system is to retrieve a ranked list of files sorted in order of simi-

larity to a query, without use of thresholds (i.e. cut-off values) or without depending on the

value of the similarity between the query and retrieved files as indicators of similarity.

In the event that threshold values will be used by the system, the results suggest that

the number of dimensions must be increased to 30, such that similarity values are more

representative of the actual similarity between the queries and files. In addition, our results

show that having a low number of dimensions gives relatively high values to non-similar

files, and thus retrieving many false positives when using a threshold value as a cutoff.

In overall, the results revealed that removing comments from source-code improves

results. The experiment also revealed that when using the tnc weighting scheme, remov-

164

ing comments and keywords reduced the MMAP value of datasets C and D. Furthermore,

removing comments, Java reserved terms and skeleton code all at once caused a major re-

duction in performance of dataset A, and not much effect on datasets B, and C, and caused

some reduction in performance on dataset D (i.e. compare columns RC, RCRK, RCRKRS

of Table 6.1, 6.2, 6.3, 6.4).

With regards to which the most effective choice of pre-processing and term-weighting

parameters were for our datasets, our results suggest that the tnc weighting scheme and

RC pre-processing parameters performed consistently well. On average, optimal number

of dimensions appears to be between 10 and 30 depending on the task, (i.e. whether or not

thresholds will be used by the system) after 30 dimensions performance begins to deterio-

rate.

Comparing our results with previous research in the field of textual information re-

trieval, we found that our results are different – applying the term frequency local term

weighting, and normal global weighting algorithms outperformed all other weighting schemes

(with or without combining it with the cosine document length normalisation). These results

are not consistent with those by Dumais [38] who found that the normal global weighting

performed significantly less than all other weighting schemes she experimented with. We

have experimented with all weighting algorithms Dumais has experimented with and more.

Researchers have tested various weighting schemes and best results were reported

when applying the logarithm as the local, and the entropy as the global weighting scheme

[107, 38, 112]. However, Wild et al. [143] found that the IDF global weighting outper-

165

formed all other weighting functions, and no clear indication as to which local weighting

function performed best. Our results also show that the log-entropy combination performed

well but only when combined with document length normalisation. Dumais [38] has not

experimented with document length normalisation algorithms.

6.8 Conclusion

This Chapter described results gathered from conducting experiments to investigate the

impact of various parameters on the effectiveness of source-code similarity detection with

LSA. Our results show that the effectiveness of LSA for source-code file similarity detection

is dependent on choice of parameters. The results also suggest that choice of parameters

are interdependent of each other, and also dependent on the corpus and the task that LSA

has been applied to.

We evaluated the influence of parameters on LSA performance using a range of eval-

uation measures that do and do not make use of similarity values. Our results suggest that

for tasks which involve giving a query to the system that outputs ranked results (i.e. files

similar to the query in order of similarity) then the similarity values are not important when

evaluating system performance. However, in a system where thresholds will be used (i.e.

when a user gives a query and requires the system to retrieve files where similarity between

the query and files are above a given threshold) then similarity values are of great impor-

tance to system performance. The results show that choice of dimensionality has a great

166

impact on these similarity values, and that retrieval systems which make use of thresholds

are likely to require approximately 15 more dimensions. These results strongly suggest that

choice of LSA dimensionaly is task dependent.

Chapter 7 describes a small experiment conducted to closely observe the behaviour of

LSA using pre-processing parameters specifically applicable to source-code files.

167

Chapter 7

Experiments on Pre-Processing

Parameters using a Small Dataset

The aim of this Chapter is to investigate the impact of source-code specific pre-processing

parameters on the effectiveness of source-code similarity detection with LSA. We exper-

imented with pre-processing parameters that involve transforming identifiers, removing

keywords from source-code, and source-code comments. We will conduct this experiment

using the tnc weighting scheme, as this was reported to be the most effective, from the

experiments discussed in Chapter 6.

168

Table 7.1: Source-code specific pre-processing parameters

Keep or remove comments Merge or separate terms containing

multiple words

KCMT Keep Comments Merge Terms

KCST Keep Comments Separate Terms

RCMT Remove Comments Merge Terms

RCST Remove Comments Separate Terms

7.1 The Datasets, Queries and Relevant Files

This Chapter describes an initial investigation into the impact of source-code specific pa-

rameters on LSA performance. This experiment was carried out on a small dataset con-

sisting of 51 source-code files produced by 17 undergraduate students at the University of

Warwick. The students were given three skeleton classes and were advised to use these as

a starting point for completing their program.

The TMG software [147] was used to pre-process the files. During pre-processing

the following were removed from the files: terms solely composed of numeric characters,

syntactical tokens (e.g. semi-colons, colons) and terms consisting of a single letter. In

addition, comments were removed from the source-code. This procedure was performed

using the sed Linux utility.

This dataset was pre-processed four times, each time using a different parameter com-

bination as shown in Table 7.1. This created four sub-datasets; KCMT, KCST, RCMT, and

RCST. The Linux shell script sed utility was used to strip the comments from the source-

code and create the RCMT and RCST datasets.

169

Table 7.2: Dataset characteristics
Dataset Characteristics KCMT KCST RCMT RCST

Number of documents 51 51 51 51

Number of terms (after the normaliza-

tion)

682 637 208 183

Average number of indexing terms per

document

443.69 564.02 192.94 302.90

Pre-processing by removing comments involves deleting all comments from source-

code files and thus keeping only the source-code in files. When keeping comments in files

all source-code comments and source-code are kept in the files.

Merging terms involves transforming each term comprised of multiple words into a

single term regardless of the obfuscation method used within that term, e.g. student name

and studentName both become studentname. Hyphenated terms were merged together.

Separating terms involves splitting terms comprising of multiple words into separate

terms, e.g. student name and studentName become two terms – student and name. Hy-

phenated terms were separated into their constituent terms.

The TMG software [147] was thereafter used to create the term-by-file matrices and

to apply the tnc term-weighting scheme as described in Section 4.7. Table 7.2 shows the

characteristics of the four datasets.

Three query files and their relevant files were identified from the corpus and used for

evaluating the performance of LSA on the four sub-datasets; these are shown in Table 7.3.

No other similar files existed in the corpus. Relevant files were those files we identified as

similar to the query files. The identified pairs contain differences that could be considered

170

Table 7.3: Queries and their relevant files

Query ID Relevant files Total relevant

Query 1: F2 F2, F5, F8, F11 4

Query 2: F14 F14, F17 2

Query 3: F37 F37, F19, F22, F25, F28, F31, F34, F40, F25 8

Table 7.4: Source-code differences between queries and their relevant files

File ID pairs Structural

changes

Identifier

& variable

changes

Iteration &

selection

statement

changes

Math

expression

changes

Introduction

of bugs

F2-F5
√ √ √ √

F2-F8
√ √ √ √

F2-F11
√ √ √

F14-F17
√

F37-F22
√

F37-F28
√

F37-F31
√

F37-F34
√

F37-F19
√ √

F37-F40
√ √

F37-F25
√

as attempts to hide similarity between the files. The source-code differences between each

query and its relevant files are shown in Table 7.4.

In Table 7.4 Structural changes are those changes made to the source-code structure

which include changes to the position of source-code fragments with or without affect-

ing the overall program functionality. Identifier and variable changes include modifying

the names, types and position of identifiers, changing modifiers (i.e. private, public, pro-

tected, final) in variable declarations, modifying values assigned to variables, and splitting

or merging identifier declarations. Iteration and selection statement modifications include

modifying conditions to become equivalent conditions, modifying statements to become

171

equivalent statements, modifying the order of selection statements, converting a selection

statement to an equivalent one (i.e. an if to a switch statement) and adding more execution

paths. Mathematical expression modifications include modifying the order of the operands

(e.g. x < y can become y > x), modifying mathematical expressions without affecting the

output and combining multiple mathematical expressions. Introduction of bugs involves

making changes to the source-code such that functionality is affected and that the source-

code cannot be compiled.

7.2 Experiment Methodology

Once the term-by-file matrices of sub-datasets KCMT, KCST, RCMT and RCST (described

in Section 7.1) were created, the tnc weighting scheme was then applied to each of the

term-by-file matrices. We have selected to use the tnc term-weighting scheme because

it has been shown to work well on our source-code datasets (as discussed in Chapter 6).

SVD and dimensionality reduction were performed on the matrix using 10 dimensions. An

experiment using the queries (see Table 7.3), and evaluating performance using the AP

evaluation measure, revealed that 10 was a sufficient number of dimensions. The reduced

term-by-file matrix was then reconstructed by Ak = UkSkV
T
k .

Three file vectors were selected from the Ak matrix and treated as query vectors. The

selected query vectors correspond to the files identified to be used as queries, shown in Table

7.3. The cosine similarity between each query vector and each of the other file vectors in

172

the vector space were computed.

For each query, a ranked list of files was created with the most relevant positioned at the

top of the list. Performance of each query was then evaluated using the evaluation measures

discussed in Section 4.10. The results from conducting the experiment are described in

Section 7.3.

The main aim of this experiment is to investigate the impact of source-code specific

parameters on LSA performance with regards to identifying similar source-code files. In

addition to the standard evaluation measures used by the IR community, such as recall and

precision, it is important to use evaluation measures that make use of similarity values, as

discussed in Chapter 6. These evaluation measures are also explained in Section 4.10.

7.3 Experiment Results

LSA performance was evaluated using a retrieved list consisting of all files returned in order

of similarity to the query such that statistics on all relevant files were captured. Hence, when

similarity was computed between each query vector and all other files vectors, the full list

comprising the 51 files in order of similarity was used. The results are shown in Table 7.5.

In addition to the evaluation measures described in Section 4.10, we will use the P@100%R,

which is the value of precision when 100% recall is achieved. The Table shows precision

and AP values at 100% recall. Figure 7.1 shows the value of precision at various points of

recall. The discussion in the remaining of this Section is based on Table 7.5.

173

Table 7.5: Performance Statistics for Queries 1 - 3

KCMT

Query no. R-

Precision

P@100%R AP ESL LPM% HFM% Sep.

1 1.00 1.00 1.00 2.50 86.37 39.85 46.53

2 1.00 1.00 1.00 1.50 98.16 48.08 50.08

3 0.88 0.67 0.96 5.00 20.15 32.01 -11.87

Average 0.96 0.89 0.99 3.00 68.23 39.98 28.25

KCST

Query no. R-

Precision

P@100%R AP ESL LPM% HFM% Sep.

1 1.00 1.00 1.00 2.50 72.25 62.30 9.96

2 1.00 1.00 1.00 1.50 99.06 29.26 69.80

3 0.88 0.53 0.93 5.50 15.03 43.21 -28.18

Average 0.96 0.84 0.98 3.17 62.11 44.92 17.19

RCMT

Query no. R-

Precision

P@100%R AP ESL LPM% HFM% Sep.

1 1.00 1.00 1.00 2.50 97.05 31.29 65.75

2 1.00 1.00 1.00 1.50 99.62 28.82 70.79

3 1.00 1.00 1.00 4.50 67.68 32.72 34.96

Average 1.00 1.00 1.00 2.83 88.11 30.94 57.17

RCST

Query no. R-

Precision

P@100%R AP ESL LPM% HFM% Sep.

1 1.00 1.00 1.00 2.50 85.48 48.77 36.72

2 1.00 1.00 1.00 1.50 99.83 23.06 76.77

3 1.00 1.00 1.00 4.50 74.91 49.21 25.70

Average 1.00 1.00 1.00 2.83 86.74 40.34 46.40

174

When comparing various systems, the better system would return the highest LPM,

lowest HFM, highest separation, and highest HFM./Separation values. Comparing the re-

sults of the KCMT and KCST sub-datasets, the average LPM is higher by 6.12% in KCMT

which means that on average the lowest relevant files received a higher similarity value with

KCMT. In addition separation is greater for KCMT by 11.06% which indicates that there

was a better separation between relevant and non-relevant files.

AP was below 1.00 for both KCMT and KCST meaning that irrelevant files were re-

turned amongst the relevant ones. This observation is verified by the value of HFM being

higher than that of LPM for Query 3 for both KCMT and KCST. Precision was higher in

KCMT which means that relevant files were retrieved higher up the list than in KCST. The

average ESL values for KCMT and KCST compared, show that for KCST the user has to go

through a longer list of files before reaching all the relevant files. These results suggest that

when comments are kept in the source-code, merging terms that are comprised of multiple

words appears to improve retrieval performance, for this particular corpus.

Comparing RCMT and RCST, the average LPM is higher for RCMT by 1.40% and

separation is higher by 10.77% which suggests that merging terms increases the separation

value and hence causes a much greater separation between the values given to the last

relevant and first non-relevant file.

Precision and AP were the same for RCMT and RCST. The main difference was in the

similarity values given to files. On average, RCST has given lower values to LPM files and

higher values to HFM files. Looking at the overall performance by means of Sep./HFM,

175

results show that removing comments and avoid splitting identifiers (i.e. RCMT) improves

system performance.

Overall performance improved when identifiers consisting of multiple words were not

separated (i.e. merged in the case where they were separated by obfuscators) regardless

of whether comments were removed or kept in the source-code performance improved

greatly. The Sep./HFM values were: KCMT 0.71%, KCST 0.38%, RCMT 1.85%, and

RCST 1.15%. Therefore, merging terms increased overall performance by 0.33% when

comments were kept in the source-code, and by 0.70% when comments were removed

from the source-code.

In summary, RCMT outperformed all other pre-processing combinations. From the re-

sults we can hypothesize that performance improves when removing comments and merg-

ing terms that contain multiple words.

Table 7.5 shows that performance of Query 3 was in overall relatively low, and hence,

the behaviour of Query 3 across the datasets was further investigated. Table 7.7 shows

the top 20 results in ranked order of similarity to Query 3 when the different sub-datasets

are used. Files are ranked in order of their similarity to the query with the most similar

positioned at the top of the list. In the Rel? column R denotes relevant files, and NR non-

relevant files. The cosine between the query and the file is also shown in the Sim column.

The Sim column also shows the average cosine values of the relevant files (R) and the non-

relevant files (NR).

176

Table 7.6: Part 1: Top 20 Query 3 results in ranked order

KCST KCMT

R FID Rel? Sim R FID Rel? Sim

1 37 R 1.00 1 37 R 1.00

2 28 R 0.95 2 19 R 0.98

3 31 R 0.94 3 28 R 0.97

4 19 R 0.92 4 31 R 0.95

5 22 R 0.90 5 22 R 0.91

6 25 R 0.71 6 40 R 0.71

7 24 NR 0.43 7 25 R 0.64

8 40 R 0.35 8 13 NR 32

9 33 NR 0.28 9 24 NR 0.32

10 43 NR 0.24 10 33 NR 0.21

11 12 NR 0.22 11 43 NR 0.21

12 32 NR 0.21 12 34 R 0.20

13 30 NR 0.19 13 15 NR 0.15

14 39 NR 0.18 14 30 NR 0.15

15 34 R 0.15 15 14 NR 0.15

16 27 NR 0.14 16 39 NR 0.14

17 3 NR 0.11 17 32 NR 0.13

18 14 NR 0.11 18 27 NR 0.09

19 13 NR 0.09 19 5 NR 0.06

20 46 NR 0.08 20 46 NR 0.06

Average R 0.74 R 0.79

Average NR 0.20 NR 0.16

Continued on the next page...

177

Table 7.7: Part 2: Top 20 Query 3 results in ranked order

RCST RCMT

R FID Rel? Sim R FID Rel? Sim

1 37 R 1.00 1 37 R 1.00

2 31 R 0.99 2 28 R 0.98

3 22 R 0.98 3 22 R 0.98

4 40 R 0.96 4 19 R 0.97

5 28 R 0.96 5 40 R 0.97

6 25 R 0.96 6 31 R 0.96

7 34 R 0.89 7 25 R 0.87

8 19 R 0.75 8 34 R 0.68

9 7 NR 0.49 9 10 NR 0.33

10 10 NR 0.42 10 24 NR 0.24

11 24 NR 0.30 11 46 NR 0.19

12 46 NR 0.25 12 7 NR 0.17

13 43 NR 0.24 13 43 NR 0.16

14 30 NR 0.20 14 16 NR 0.13

15 38 NR 0.16 15 13 NR 0.10

16 12 NR 0.14 16 30 NR 0.09

17 33 NR 0.12 17 29 NR 0.06

18 23 NR 0.12 18 33 NR 0.05

19 3 NR 0.08 19 3 NR 0.04

20 48 NR 0.08 20 23 NR 0.04

Average R 0.94 R 0.93

Average NR 0.22 NR 0.13

Table 7.8: Summary of Spearman rho correlations for Query 3 and its relevant files.

Summary table F19 F22 F25 F28 F31 F34 F40 Average

F37(KCST) 0.85 0.77 0.74 0.87 0.86 0.26 0.44 0.69

F37(KCMT) 0.93 0.78 0.68 0.90 0.86 0.38 0.67 0.74

F37(RCST) 0.52 0.91 0.85 0.85 0.97 0.70 0.81 0.80

F37(RCMT) 0.89 0.87 0.66 0.88 0.84 0.61 0.86 0.80

178

Figure 7.1: Recall-Precision curves for Query 3

179

Figure 7.1 shows the precision-recall graphs for Query 3. Each graph shows precision

at various points of recall. Table 7.7 shows that with regards to the KCST sub-dataset,

files F40 and F34 were ranked in 8th and 15th position respectively with irrelevant files

preceding them. Merging terms (KCMT) improved the positions of files F40 and F34,

however irrelevant files still preceded file F34. KCMT retrieved file F34 in 12th position

with four irrelevant files before it. Comparing KCST and KCMT, merging terms increased

the average of cosine values given to relevant files by 0.05, and decreased the average

similarity value of irrelevant files by 0.04.

Part 2 of Table 7.7 shows that removing comments caused files F34 and F40 to move

up the ranked list of files. Comparing RCST and RCMT, the results show that merging

terms (RCMT) has slightly decreased the average similarity value of relevant files by 0.01,

however the average similarity value of the non-relevant files also decreased by 0.07 which

suggests an improvement in performance when terms are merged. RCST and RCMT have

retrieved all eight relevant files in the top ranked with no non-relevant files in between them.

In summary the results show that when merging identifiers, the results further improved

both when comments were kept in (KCMT) and removed (RCMT) from the source-code.

We suspect that since each identifier whether it consists of one, two or more words (sepa-

rated or not by obfuscators) represents one purpose and meaning in the source-code, sepa-

rating the terms contained in each identifier increases noise and appears to have a negative

impact on LSA performance.

The results also suggest that comments within source-code have a negative impact on

180

LSA performance, and removing these improves performance for this particular dataset.

Next, we investigate this hypothesis by investigating the source-code similarities before

and after applying LSA.

7.3.1 LSA performance using the comments of source-code files

Our hypothesis is that keeping comments within source-code files may have a negative

impact on LSA performance. To examine this hypothesis we investigate the source-code

comment differences between file F37 and its relevant files. We chose to investigate file

F37 as it was the one having the largest number of relevant files, as shown in Table 7.3.

All source-code was removed from the files, such that each file only consisted of source-

code comments. Comments that contained source-code identifiers that comprised of multi-

ple words, were merged into a single term, because this setting has reported best results in

our previous experiments discussed in this Chapter. Thereafter pre-processing as described

in Section 7.1, was applied. This produced a 582 × 51 term-by-file matrix, A, containing

only the comments found in the files.

SVD and dimensionality reduction were performed on matrix A, and after experi-

menting with various dimensionality settings, the dimensionality parameter k, was set to

5. Thereafter, the reduced matrix was reconstructed, creating a term-by-file matrix Ak.

Spearman’s rho correlations were computed between file F37 and all its relevant files using

matrices A, and Ak. Correlations were chosen to investigate the relationship between file

F37 and its relevant files before and after applying LSA. Tables 7.9 and 7.10 contain the cor-

181

Table 7.9: Spearman rho correlations for Query 3 and its relevant files (when only com-

ments are kept in the files) before applying LSA.

tf raw F19 F22 F25 F28 F31 F34 F37 F40

F19 1.00 0.57 0.45 0.48 0.56 0.41 0.65 0.45

F22 0.57 1.00 0.38 0.58 0.63 0.37 0.62 0.40

F25 0.45 0.38 1.00 0.39 0.38 0.38 0.44 0.42

F28 0.48 0.58 0.39 1.00 0.67 0.40 0.58 0.50

F31 0.56 0.63 0.38 0.67 1.00 0.36 0.66 0.44

F34 0.41 0.37 0.38 0.40 0.36 1.00 0.41 0.40

F37 0.65 0.62 0.44 0.58 0.66 0.41 1.00 0.40

F40 0.45 0.40 0.42 0.50 0.44 0.40 0.40 1.00

Table 7.10: Spearman rho correlations for Query 3 and its relevant files (when only com-

ments are kept in the files) after applying LSA.

tnc k=5 F19 F22 F25 F28 F31 F34 F37 F40

F19 1.00 0.91 0.61 0.87 0.85 0.46 0.97 0.84

F22 0.91 1.00 0.60 0.97 0.98 0.58 0.95 0.79

F25 0.61 0.60 1.00 0.55 0.51 0.80 0.54 0.85

F28 0.87 0.97 0.55 1.00 0.98 0.65 0.92 0.81

F31 0.85 0.98 0.51 0.98 1.00 0.59 0.92 0.74

F34 0.46 0.58 0.80 0.65 0.59 1.00 0.47 0.81

F37 0.97 0.95 0.54 0.92 0.92 0.47 1.00 0.79

F40 0.84 0.79 0.85 0.81 0.74 0.81 0.79 1.00

relations between file F37 and its relevant files before and after LSA is applied, respectively,

and Table 7.11 shows the summary of correlations.

Table 7.11 shows that LSA increased the correlations for all but F37-F25 and F37-F34

file pairs, which only increased by 0.06 and 0.09 points respectively. The relatively low

Table 7.11: Summary of Spearman rho correlations for Query 3 (when only comments are

kept in the files.)

Summary table F19 F22 F25 F28 F31 F34 F40 Average

system a (before LSA) F37 0.65 0.62 0.44 0.58 0.66 0.41 0.40 0.54

system b (after LSA) F37 0.97 0.95 0.54 0.92 0.92 0.47 0.79 0.79

system b − system a 0.32 0.33 0.09 0.34 0.26 0.06 0.39 0.26

182

correlations between these file pairs, before and after LSA is applied, suggest that the sim-

ilarity between comments of these file pairs is relatively low. Reflecting back to Table 7.7

we notice that in dataset KCMT files F25 and F34 have again received relatively low sim-

ilarity values when compared to the similarity values given to the rest of the relevant files.

However, this was not the case for dataset RCMT whose files contained no comments – the

similarity values between files F37-F25 and F37-F34 have improved considerably1. These

findings suggest that removing comments from the source-code files can have a positive

impact on the retrieval performance of LSA. These results are consistent with our findings

described in 6, which suggest that when the tnc weighting scheme is applied, removing

comments from the source-code, in overall improves retrieval performance.

7.4 Java Reserved Words and LSA Performance

The reserved words (or keywords) of the Java programming language and the structure

of the source-code help one to understand its meaning (i.e. semantics). Our experiments

described in Chapter 6, suggest that when appropriate parameters are selected, LSA appears

to perform well in identifying similar source-code files regardless of the fact that it treats

every file as a bag of words and does not take into consideration the structure of files.

The purpose of this experiment is to investigate the influence of the Java reserved words

on LSA performance using a small corpus of source-code files. In this experiment we used

1Note that since terms containing multiple words were merged in this experiment, only the results with

KCMT and RCMT were compared.

183

Table 7.12: RCMTRK Performance Statistics for Queries 1 - 3

RCMTRK

R-

Precision

P@100%R AP ESL LPM% HFM% Sep.

Average 1.00 1.00 1.00 2.83 86.72 36.08 50.63

the RCMT sub-dataset (because our previous experiments suggest that these parameters

work well on source-code datasets) and removed the Java reserved terms from the dictio-

nary, hence creating a new sub-dataset RCMTRK. This created a 178 × 51 term-by-file

matrix. In total, 30 Java reserved terms were removed from the matrix. The tnc weighting

scheme was applied, and after experimentation, dimensionality was set to 10.

The similarity values between the queries and files in the vector space were computed,

and performance was evaluated. The results are displayed in Table 7.12. Comparing the

results of sub-datasets RCMT with those of RCMTRK, shown in Tables 7.5 and 7.12 re-

spectively, show that RCMTRK received a lower LPM, higher HFM, and a lower separation

value, and these are all indicators that RCMTRK has performed worse than RCMT. These

results suggest that removing Java reserved words from the corpus can have a negative

impact on performance when the corpus is pre-processed using the RCMT settings.

Java reserved words, can be considered as holding information about the structure of

files, which provides information about the semantics (i.e. meaning) of files. By removing

such information, meaning from files is removed, and this has a negative impact on the

performance of LSA. The results gathered from Chapter 6 suggest that whether or not re-

moving Java reserved terms (keywords) has a negative impact on performance is dependent

184

on the corpus, but also on other parameter choices such as weighting scheme and dimen-

sionality. In overall, the results of both Chapter 6 and this Chapter suggest that when the tnc

term weighting scheme is applied and comments are removed from the source-code, it is

best to leave the Java reserved terms within the source-code in order to avoid removing too

much meaning from files. Furthermore, weighting schemes work by adjusting the values

of terms depending on their local and global frequencies, and thus the values of frequently

occurring terms (such as Java reserved terms) are managed by the weighting schemes. Fre-

quently occurring Java reserved terms will be adjusted, such that they have relatively lower

values in each file, and this suggests that keeping them is not likely to have negative im-

pact on performance, as long as choice of dimensionality is carefully considered. Each

dimension captures different levels of meaning about files in the corpus, and thus finding a

dimensionality setting that works best for a dataset is important in similarity detection.

7.5 Conclusion

This Chapter follows on from experiments described in Chapter 6, describing experiments

conducted with a small dataset to observe the performance of selected pre-processing pa-

rameters specific to source-code files. The results from the small experiment revealed that

separating identifiers and keeping comments in the source-code increases noise in the data,

and decreases LSA performance.

We are aware that the experiment discussed in this Chapter was based on a small dataset

185

and only three queries, however, the main purpose of the experiment was to use a manage-

able dataset for conducting experiments and observing the behaviour of LSA when source-

code specific pre-processing parameters to a small corpus.

We are also aware that performance of LSA is corpus dependent, and also depends on

choice of parameters, and this raises the questions of

• what is the impact of separating identifiers comprising of multiple words on the ef-

fectiveness of source-code similarity detection with LSA when using large datasets?,

and

• what is the impact of computational efficiency for conducting such a task?

The results described in this Chapter are consistent with those results described in

Chapter 6 where four different and larger source-code datasets were used for conducting

the experiments. The results from our experiments revealed that removing comments from

source-code, merging terms containing multiple words, and keeping Java reserved terms,

improves the effectiveness of LSA for the task of source-code similarity detection.

186

Chapter 8

A Hybrid Model for Integrating LSA

with External Tools for Source-Code

Similarity Detection

This chapter describes similarity in source-code files and categories of source-code similar-

ity. We propose a model that allows for the application of LSA for source-code plagiarism

detection and investigation. The proposed tool, PlaGate, is a hybrid model that allows for

the integration of LSA with plagiarism detection tools in order to enhance plagiarism de-

tection. In addition, PlaGate has a facility for investigating the importance of source-code

fragments with regards to their importance in characterising similar source-code files for

plagiarism, and a graphical output that indicates clusters of suspicious files.

187

8.1 Introduction

In Chapter 3 we proposed a detailed definition as to what constitutes source-code plagia-

rism from the perspective of academics who teach programming on computing courses.

The proposed definition is mostly concerned with student actions that indicate plagiarism.

In this Chapter we go a step further and describe the type of similarity found in student

assignments. We also propose a tool for combining LSA and existing plagiarism detection

tools.

Once similarity between students’ work is detected, the academic compares the de-

tected source-code files for plagiarism. This Chapter describes the functionality behind

PlaGate, a tool for detecting similar source-code files, and investigating similar source-code

fragments with a view to gathering evidence of plagiarism.

PlaGate is a hybrid model that can be integrated with external plagiarism detection

tools. Most recent plagiarism detection tools are string-matching algorithms. The motiva-

tion behind PlaGate comes from the way the two algorithms (i.e. string-matching based and

LSA) detect similar files.

String-matching tools have been shown to work well for detecting similar files, how-

ever, they are not immune to all types of plagiarism attacks [115]. For example, string-

matching based systems use parsing based approaches and often source-code files are not

parse-able or compilable. This situation causes files to be excluded from the detection com-

parison. Furthermore, the performance of string-matching based tools are known to suffer

188

from local confusion [115]. These tools compute the pair-wise similarity between files.

PlaGate, is based on a different approach – it is language independent, files do not need to

be parsed or compiled to be included in the comparison, and it is not affected by structural

changes in the code (i.e. hence local confusion is not a problem).

8.2 Similarity in Source-code Files

Similarity between two files is not based on the entire files, but rather on the source-code

fragments they contain. Investigation involves scrutinizing similar source-code fragments

and judging whether the similarity between them appears to be suspicious or innocent. If a

significant amount of similarity is found then the files under investigation can be considered

suspicious.

As part of a survey conducted by Cosma and Joy [26], academics were required to

judge the degree of similarity between similar source-code fragments and justify their rea-

soning. The survey revealed that it is common procedure during the investigation process,

while academics compare two similar source-code fragments for plagiarism, to take into

consideration factors that could have caused this similarity to occur. Such factors include:

• The assignment requirements — for example students may be required to use a spe-

cific data structure (e.g. vectors instead of arrays) to solve a specific programming

problem;

• Supporting source-code examples given to students in class — these might include

189

skeleton code that they could use in their assignment solutions;

• Whether the source-code fragment in question has sufficient variance in solution —

that is, whether the particular source-code fragment could have been written differ-

ently; and

• The nature of the programming problem and nature of the programming language

— for example, some small object-oriented methods are similar, and the number of

ways they can be written are limited.

All similarity between files must therefore be carefully investigated to determine whether

it occurred innocently or suspiciously (i.e. due to plagiarism). The survey findings revealed

that source-code plagiarism can only be proven if the files under investigation contain dis-

tinct source-code fragments and hence demonstrate the student’s own approach to solving

the specific problem. It is source-code fragments of this kind of similarity that could indi-

cate plagiarism [26].

In addition, according to the survey responses, similar source-code fragments under

investigation must not be “short, simple, trivial (unimportant), standard, frequently pub-

lished, or of limited functionality and solutions” because these may not provide evidence

for proving plagiarism. Small source-code fragments that are likely to be similar in many

solutions can be used to examine further the likelihood of plagiarism, but alone they may

not provide sufficient evidence for proving plagiarism. Section 8.3 describes the types of

similarity found between files, and the kind of similarity that is considered suspicious.

190

Furthermore, the survey responses revealed that academics considered the following

factors as evidence of similarity between source-code fragments [26].

• Lack of indentation, bad or identical indentation,

• Changed identifiers but same structure and logic the same,

• Program logic is the same,

• Source-code structure is the same,

• Same or same-bad source-code formatting, for example, both source-codes have the

same location of white spaces between words,

• Similar source-code comments,

• The same number of lines and each line has the same functionality,

• Shared class variable,

• Similar mistakes in the two source-codes,

• Similarity between unusual lines of code, and

• Lexical, syntactical, grammatical and structural similarities.

191

8.3 Similarity Categories between Files and Source-Code Frag-

ments

In student assignments two source-code fragments may appear similar, especially when they

solve the same task, but they may not be plagiarised. When investigating files for plagiarism

some source-code fragments would be used as stronger indicators than others, and from this

perspective source-code fragments have varying contributions to the evidence gathering

process of plagiarism. This Section presents a criterion for identifying the contribution

levels of source-code fragments.

This criterion was developed after considering the findings from a survey discussed in

Section 8.2 and in [26]. The survey was conducted to gather an insight into what consti-

tutes source-code plagiarism from the perspective of academics who teach programming

on computing subjects. A previous study revealed that similarity values between files and

between source-code fragments are a very subjective matter [26], and for this reason the

criterion developed consists of categories describing similarity in the form of levels rather

than similarity values.

The contribution levels (CL) for categorising source-code fragments by means of their

contribution toward providing evidence for indicating plagiarism are as follows.

• Contribution Level 0 – No contribution. This category includes source-code frag-

ments provided by the academic that appear unmodified within the files under consid-

eration as well as in other files in the corpus. Source-code fragments in this category

192

will have no contribution toward evidence gathering. Examples include skeleton code

provided to students and code fragments presented in lectures or handouts.

• Contribution Level 1 – Low contribution. This category includes source-code frag-

ments belonging to the Contribution Level 0 – No contribution category but which

are modified in each file in which they occur in a similar manner. Examples include

template code provided to students to structure their code, and source-code fragments

which are coincidentally similar due to the nature of the programming language used.

Source-code fragments in this category may only be used as low contribution evi-

dence if they share distinct lexical and structural similarity.

• Contribution Level 2 – High contribution. The source-code fragments belonging

to this category appear in a similar form only in the files under investigation, and

share distinct and important program functionality or algorithmic complexity.

The similarity levels (SL) that can be found between files are as follows:

• Similarity Level 0 – Innocent. The files under investigation do not contain any

similar source-code fragments, or contain similar source-code fragments belonging

to the Contribution Category 0: No contribution, and Contribution Level 1 – Low

contribution categories.

• Similarity Level 1 – Suspicious. The files under investigation share similar source-

code fragments which characterise them as distinct from the rest of the files in the cor-

pus. The majority of similar source-code fragments found in these files must belong

193

to the Contribution Level 2 – High contribution category although some belonging to

Contribution Level 0 – No contribution and Contribution Level 1 – Low contribution

categories may also be present and may contribute to the evidence. Enough evidence

must exist to classify the files under investigation in this category.

8.4 PlaGate System Overview

The PlaGate tool aims to enhance the process of plagiarism detection and investigation. Pla-

Gate can be integrated within external plagiarism detection tools with the aim of improving

plagiarism detection (i.e. by increasing the number of similar file pairs detected) and to

provide a facility for investigating the source-code fragments within the detected files.

The first component of PlaGate, PlaGate’s Detection Tool (PGDT), is a tool for detect-

ing similar files. This component can be integrated with external plagiarism detection tools

for improving detection performance.

The second component of PlaGate, PlaGate’s Query Tool (PGQT), is integrated with

PGDT and the external tool for further improving detection performance. PGQT has a vi-

sualisation functionality useful for investigating the relative similarity of given source-code

files or source-code fragments with other files in the corpus. In PlaGate, the source-code

files and source-code fragments are characterised by LSA representations of the meaning

of the words used. With regards to investigating source-code fragments, PGQT compares

source-code fragments with source-code files to determine their degree of relative similarity

194

Figure 8.1: PlaGate’s detection and investigation functionality integrated with an existing

plagiarism detection tool.

to files. Files that are relatively more similar than others, contain distinct (i.e. contribution

level 2) source-code fragments that can distinguish these files from the rest of the files in

the corpus. The hypothesis is that similarity between the distinct source-code fragments

and the files in which they appear will be relatively higher than the files that do not contain

the particular source-code fragment, in the LSA space. From this it can be assumed that the

relative similarity (i.e. importance) of a source-code fragment across files in a corpus can

indicate its contribution level toward indicating plagiarism.

Figure 8.1 illustrates the detection functionality of PlaGate and how it can be integrated

195

with an external tool.

The similarity detection functionality of PlaGate is described as follows:

1. Similarity detection is performed using the external tool.

2. External tool outputs a list containing the detected file pairs based on a given cutoff

value.

3. PlaGate’s List Management component (PGLM) stores the detected files in the mas-

ter list of detected file pairs.

4. Similarity detection is carried out with PGDT and similar file pairs are detected based

on a given cutoff value.

5. PGLM stores the detected files in the master list of detected file pairs.

6. PGLM removes file pairs occurring more than once from the master list.

7. PGQT takes as input the first file, Fa, from each file pair stored in the master list.

8. PGQT treats each Fa file as a query and detects file pairs based on a given cutoff

value.

9. PGLM updates the master list by including the file pairs detected by PGQT. Steps 5

and 6 are thereafter repeated one more time.

PGQT can also be used for visualising the relative similarity of source-code fragments

and files. This procedure is described as follows:

196

1. PGQT accepts as input a corpus of source-code files1 and source-code fragments to

be investigated.

2. PGQT returns graphical output in the form of boxplots that indicate the contribution

levels of source-code fragments.

3. PGQT returns the files most relative to the particular source-code fragment.

4. PGQT returns the category of contribution of the source-code fragment in relation to

the files under investigation specified by the user.

PGQT can also be used for visualising the relative similarity between files. This proce-

dure is described as follows:

1. PGQT accepts as input a corpus of source-code files1, and accepts as queries the

source-code files to be investigated (these could be files from the master list or any

other file in the corpus selected by the academic).

2. PGQT returns output in the form of boxplots that indicate the relative similarity be-

tween the queries and files in the corpus.

3. PGQT returns the relative degree of similarity between files in the corpus.

1The source-code file corpus only needs to be input once either at the detection stage or at the investigation

stage.

197

8.4.1 System representation

The following definitions describe the PlaGate components:

• A file corpus C is a set of source-code files

C = {F1, F2, . . . , Fn}

where n is the total number of files.

• A source-code fragment, denoted by s, is a contiguous string of source-code extracted

from a source-code file, F .

• A source-code file (also referred to as a file) F is an element of C, and is composed

of source-code fragments, such that

F = {s1, s2, . . . , sp}

where p is the total number of source-code fragments found in F .

• A set of source-code fragments S extracted from file F is

S ⊆ F .

• File length is the size of a file F , denoted by lF , is computed by

lF =
∑q

i=1
ti

where ti is the frequency of a unique term in F , and q is the total number of unique

terms in F .

• Source-code fragment length is the size of a source-code fragment s, denoted by ls,

is computed by

198

ls =
∑u

i=1
ti

where ti is the frequency of a unique term in s, and u is the total number of unique

terms in s.

8.5 The LSA Process in PlaGate

The LSA process in PlaGate is as follows:

1. Initially a corpus of files is pre-processed, by removing from the files terms that

were solely composed of numeric characters, syntactical tokens (e.g. semi-colons,

colons), terms that occurred in less than two files (i.e. with global frequency less than

2), and terms with length less than 2. Prior experiments, described in Chapters 6 and

7, suggest that removing comments and Java reserved terms, and merging identifiers

consisting of multiple words improves retrieval performance, and therefore those pre-

processing parameters were employed in the PlaGate tool.

2. A pre-processed corpus of files into an m × n matrix A = [aij], in which each row

represents a term vector, each column represents a file vector, and each cell aij of the

matrix A contains the frequency at which a term i appears in file j [16]. Each file F,

is represented as a vector in the term-by-file matrix.

3. Term-weighting algorithms are then applied to matrix A in order to adjust the impor-

tance of terms using local and global weights and document length normalization.

Our previous experiments conducted suggest that the LSA performs well for the task

199

of source-code similarity detection when the term frequency local weight, normal

global weight and cosine document length normalisation were applied to our cor-

pora. The tnc term weighting Function is integrated into PlaGate.

4. Singular Value Decomposition and dimensionality reduction are then performed on

the weighted matrix A. Our experiments described in Chapter 6 revealed that for our

datasets, setting k to 30 dimensions reported good results. Because we will test Pla-

Gate using the same datasets described in Chapter 6, we have set k to 30 dimensions.

8.5.1 PGQT: Query processing in PlaGate

After computing LSA, an input file or source-code fragment (that needs to be investigated)

is transformed into a query vector and projected into the reduced k-dimensional space.

Given a query vector q, whose non-zero elements contain the weighted term frequency

values of the terms, the query vector can be projected to the k-dimensional using Function

4.1 found in Section 4.3. Once projected, a file F, or source-code fragment s, is represented

as a query vector Q.

The similarities between the projected query Q and all other source-code files in the

corpus are computed using the cosine similarity. We have selected to implement the cosine

measure in PlaGate, because, as already mentioned in Chapter 6, it is the most popular

measure for computing the similarity between vectors and has been shown to produce good

results. The cosine similarity involves computing the dot product between two vectors (e.g.

the query vector and file vector) and dividing it by the magnitudes of the two vectors, as

200

described in Equation 4.2. This ratio gives the cosine angle between the vectors, and the

closer the cosine of the angle is to +1.0 the higher the similarity between the query and file

vector. Therefore, in the m × n term-by-file matrix A the cosine similarity between the

query vector and the n file vectors is computed using Function 4.2 found in Section 4.3.

Hence the output is a 1 × n vector SV in which each element svi, contains the similarity

value between the query and a file in the corpus,

sv = sim(Q,F), ∈ [−1.0, +1.0]

8.5.2 Source-code fragment classification in PlaGate

Common terms can exist accidentally in source-code files and due to the factors discussed

in Section 8.2, this can cause relatively high similarity values between files in an LSA based

system. For this reason criteria have been devised for classifying the source-code fragments

into categories.

Each source-code fragment can be classified into a contribution level category based

on the similarity value between the source-code fragment (represented as a query vector)

and selected files under investigation (each file represented as a single file vector). This

similarity is the cosine between the query vector and the file vector as discussed in Section

8.5.1. The classification of similarity values is performed as follows.

1. PlaGate retrieves the sim(Q,F) similarity value between a query Q and the selected

file F .

201

2. Based on the value of sim(Q, F) PlaGate returns the classification category as con-

tribution level 2 (if sim(Q,F) ≥ φ), otherwise contribution level 1.

The value of φ depends on the corpus, and setting φ to 0.80 is suitable for our datasets.

This will be explained in detail in Chapter 10.

8.6 PGDT: Detection of Similar File Pairs in PlaGate

This Section describes the process of detecting pairs of similar files using the PlaGate de-

tection tool. Treating every file as a new query and searching for similar files that match

the query would not be computationally efficient or feasible for large collections. This is

because each file must be queried against the entire collection. For this reason, instead

of the cosine similarity algorithm described in Section 8.5.1, Function 8.1 will be used for

computing the similarity between all files in the collection. After applying SVD and dimen-

sionality reduction to the term-by-file matrix, A, the file-by-file matrix can be approximated

by

(VkΣk)(VkΣk)
T . (8.1)

This means that element i, j of the matrix represents the similarity between files i and j

in the collection.

202

8.7 Visualisation of Relative Similarity in PlaGate

The output from PlaGate is visualised using boxplots. Boxplots (also called box-and-

whisker plots) are graphical display methods for visualising summary statistics. The box-

plot was originated by Tukey, who called it schematic plot [135].

To construct a boxplot, a SV vector (see Section 8.4.1) is initially ordered from smallest

to largest sv1, . . . , svn and then the median, upper quartile, lower quartile and interquartile

range values are located. The median value is the middle value in a dataset. The lower-

quartile (LQ) is the median value of the data that lie at or below the median. The upper-

quartile (UQ) is the median value of the data that lie at or above the median. The box

contains 50% of the data. The inter-quartile range (IQR) is the difference between the

UQ and the LQ. The IQR is the range of the middle 50% of the data, and eliminates the

influence of outliers because the highest and lowest quarters are removed. The range is the

difference between the maximum and minimum values in the data.

A mild outlier is a value that is more than 1.5 times the IQR and an extreme outlier is

a value that is more than 3 times the IQR. In the box-and-whisker plot the mild outliers are

marked with a small circle (o) and the extreme outliers are marked with an asterisk (*).

Mild and extreme upper limit outliers are calculated as ULmo = UQ − 1.5 × (IQR)

and ULeo = UQ − 3.0 × (IQR) respectively, and mild and extreme lower limit outliers

are calculated as LLmo = LQ − 1.5 × (IQR) and LLeo = LQ − 3.0 × (IQR) respec-

tively. Adjacent values are the highest and lowest values in the dataset within the limits, i.e.,

203

Figure 8.2: An example boxplot chart.

smaller than the lower limit and larger than the upper limit. If no outliers exist the adjacent

values are the minimum and maximum data points. The whiskers extend from the LQ to

the lowest adjacent value and from the upper-quartile to the highest adjacent value.

Using boxplots, the data output from PlaGate can be visualised and quickly interpreted.

Boxplots help the user to identify clustering type features and enable them to discriminate

quickly between suspicious and not suspicious files.

8.8 Design of Functional Components in PlaGate

The components of PlaGate in Figure 8.3 are described as follows:

204

Figure 8.3: Design of Functional Components of the PlaGate Plagiarism Detection and

Investigation System.

205

• Source-code files: these are the source-code files that comprise the corpus, stored on

the users system.

• PGDT GUI: takes as input a corpus of source-code files.

• File pre-processing: this Function pre-processes the corpus.

• Create TFM: stores the pre-processed files into a term-by-file matrix (TFM). Term

weighting and cosine document length normalisation algorithms are applied to the

term-by-file matrix.

• TFM: the weighted term-by-file matrix.

• SVD: performs Singular Value Decomposition on the term-by-file matrix.

• SVD matrices: this database contains the term-by-dimension, file-by-dimension and

singular values matrices generated after performing SVD.

• Create RTFM: this component computes the reduced term-by-file matrix.

• RTFM: the reduced term-by-file matrix created after performing SVD on TFM.

• Compute similarity 1: computes the pair-wise similarity values of file, using the

reduced file-by-dimension and dimension-by-dimension matrices created from SVD.

• FF similarity matrix: holds the file-by-file matrix created from computing the Com-

pute Similarity 1 Function.

206

• PGLM: is PlaGate’s List Management component and takes as input the detected file

pairs from PGDT, PGQT, and the external tool and creates a master list of detected

file pairs.

• PGQT auto-search: takes as input the first file from each file pair detected by PGDT

and the external tool and treats it as a query input into the PGQT tool.

• Master list of detected file pairs: contains all detected file pairs, i.e. those file pairs

with similarity above a given cutoff value.

• Query: this is a source-code file or source-code fragment under investigation.

• PGQT GUI: takes as input one or more queries and a cutoff value by the user.

• Project queries: this process involves the projection of queries to the existing LSA

space.

• Query Matrix: this is a matrix holding the projected query vectors.

• Compute similarity 2: This Function computes the cosine distance between each

projected query vector and all file vectors in the RTFM.

• QF similarity matrix: this repository holds the cosine similarity values between the

query and each file of the RTFM.

• Classification: this Function takes the values from the QF similarity matrix and clas-

sifies them into categories.

207

• Display classification output: this displays the classification category of each query

(i.e. given source-code fragment).

• Visualisation: this component takes as input the vectors from the QF similarity matrix

and for each vector creates a boxplot as a visualisation technique.

• Graphical output: this is a visual output containing box plots created by the Visuali-

sation Function.

• External Tool: this is a plagiarism detection tool external to the PlaGate system.

• E.T detected files: these are the similar file pairs detected by the external tool.

• Detected Files Output: output showing the detected file pairs.

8.9 Conclusion

In this Chapter we discussed similarity in source-code files, and similarity between files

from the perspective that suspicious source-code files can be identified by the distinct

source-code fragments they share.

We proposed a tool, PlaGate, for source-code plagiarism detection and investigation

with LSA, which can be integrated with external plagiarism detection tools.

Chapter 9 is concerned with evaluating the performance of PlaGate against two external

tools, i.e. Sherlock and JPlag.

208

Chapter 9

Enhancing Plagiarism Detection with

PlaGate

This Chapter is concerned with evaluating the similarity detection performance of PlaGate.

The experiments described in this Chapter were conducted using four Java source-code

datasets. The performance of PlaGate when applied alone on the source-code datasets,

and when integrated with two external plagiarism detection tools, JPlag and Sherlock was

evaluated.

9.1 Experiment Methodology

The experiment is concerned with evaluating the performance of PlaGate against two exter-

nal plagiarism detection tools, Sherlock and JPlag. Detection performance when the tools

209

Figure 9.1: Methodology for creating a list of similar file pairs.

function alone and when integrated with PlaGate was evaluated. The evaluation measures

recall and precision that are described in Section 4.10 were adapted for the task of evaluat-

ing similarity detection, as described in Section 9.2.

In order to evaluate the detection performance of tools using the evaluation measures

discussed in Section 9.2, the total number of similar file pairs in each corpus must be known.

Figure 9.1 illustrates the process of creating the list of similar file pairs.

Initially, tools PGDT, Sherlock, and JPlag were separately applied on each corpus in

order to create a master list of detected file pairs for each corpus. For each corpus, three

lists of detected file pairs (based on a given cutoff value as discussed in Section 9.2) were

created, where each list corresponds to a tool output. These three lists were merged into

a master list. Other known similar file pairs not identified by the tools were also included

210

in the master list of detected file pairs. Thereafter, PGQT was applied to every Fa file in

the list (that is the first file in a pair of files) and file pairs with similarity value above φp

were retrieved and added to the master list of detected file pairs. Academics scrutinised

the detected file pairs contained in the master list and identified the similar file pairs. The

final outcome consisted of four lists, i.e. one for each corpus, containing the grouped ID

numbers of similar files.

After constructing the list of similar file pairs, the detection performance of each tool

was evaluated using the evaluation measures discussed in Section 9.2. The detection results

returned by each tool were based on a given cutoff value, this is also discussed in Section

9.2. In addition, detection performance is evaluated when PGQT is applied to a) all detected

file pairs in the list, and b) only to those file pairs judged as similar by the academics.

Results gathered from the second case will be marked with PGQT v2 in the description of

results.

Detection tools are expected to detect similar file pairs, and it would not be reasonable

to penalise a system for detecting similar file pairs that are not suspicious. As described in

Section 8.2 similarity found between files may or may not be suspicious. The transition in

decision from similar to suspicious is one that the academic should make.

211

9.2 Performance Evaluation Measures for Plagiarism Detection

This Section describes evaluation of the comparative performances of PGDT, PGQT, JPlag

and Sherlock. The similarity values provided by these three tools are not directly compara-

ble since they use a different measure of similarity.

Two standard and most frequently used measures in information retrieval system eval-

uations are recall and precision, and these have been adapted to evaluate the performance

of plagiarism detection.

The similarity for two files sim(Fa, Fb) is computed using a similarity measure. Based

on a threshold φ, the file pairs with sim(Fa, Fb) ≥ φ are detected. For the purposes of

evaluation the following terms are defined:

• Similar file pairs: each similar file pair, s, contains files that have been evaluated by

human graders as similar. A set of similar file pairs is denoted by S = {s1, s2, . . . , sx},

where the total number of known similar file pairs in a set (i.e. corpus) is x = |S|.

• Detected file pairs: are those pairs that have been retrieved with sim(Fa, Fb) ≥ φ.

The total number of detected file pairs is |DF |. The total number of similar file pairs

detected is denoted by |SD|, and the total number of non-similar file pairs detected

is denoted by |NS|. A set of detected file pairs is denoted by DF = SD ∪ NS =

{sd1, sd2, . . . , sdx} ∪ {ns1, ns2, . . . , nsy}, where SD ⊆ S.

• PlaGate’s cutoff value, φp, typically falls in the range 0.70 ≤ φp < 1.00. Any file

212

pairs with sim(Fa, Fb) ≥ φp are detected. The cutoff values for PGDT were selected

experimentally. For each dataset, detection was performed using cutoff values φp =

0.70 and φp = 0.80. The cutoff value selected for each dataset was the one that

detected the most similar file pairs and fewest false positives.

• JPlag’s cutoff value is φj , where 0 < φj ≤ 100, φj is set to the lowest sim(Fa, Fb)

given to a similar file pair sdi detected by JPlag.

• Sherlock’s cutoff value is φs, and is set to the top N detected file pairs. Sherlock

displays a long list of detected file pairs sorted in descending order of similarity

(i.e. from maximum to minimum). With regards to selecting Sherlock’s cutoff value,

each corpus was separately fed into Sherlock and each file pair in the returned list

of detected file pairs was judged as similar or non-similar. The cutoff value is set to

position N in the list of detected file pairs where the number of non-similar file pairs

begins to increase. In computing Sherlock’s precision N = |DF |.

Recall, denoted by R, is the proportion of similar file pairs that are detected based on

the cutoff value, φ. Recall is 1.00 when all similar file pairs are detected.

Recall =
|SD|
|S| =

number of similar file pairs detected

total number of similar file pairs
(9.1)

where R ∈ [0, 1].

Precision, denoted by P, is the proportion of similar file pairs that have been detected in

the list of files pairs detected. Precision is 1.00 when every file pair detected is similar.

213

Precision =
|SD|
|DF | =

number of similar file pairs detected

total number of file pairs detected
(9.2)

where P ∈ [0, 1].

The overall performance of each tool will be evaluated by combining the precision and

recall evaluation measures. It is reasonable to penalise a system if it fails to detect similar

file pairs, rather than when it detects false positives (i.e. non-similar), from the viewpoint

that it increases the workload for the final judgment by the academic [115]. We consider it

worthwhile to view some false positive (i.e. not-suspicious) file pairs if it means detecting

some true positive (i.e. similar) file pairs in order to increase the number of plagiarism cases

detected. For this reason we have assigned more weight to recall, hence the factor of 2 in

equation 9.3. As a single measure for evaluating the performance of tools for plagiarism

detection, the weighted sum of precision and recall will be computed by:

F = (Precision + 2 × Recall)/3 (9.3)

where F ∈ [0, 1]. The closer the value of F is to 1.00 the better the detection perfor-

mance of the tool.

214

Table 9.1: The Datasets
A B C D

Number of files 106 176 179 175

Number of terms 537 640 348 459

Number of similar file pairs 6 48 51 79

Number of files excluded from comparison by JPlag 13 7 8 7

9.3 The Datasets

Four corpora comprising Java source-code files created by students were used for con-

ducting the experiments. These were real corpora produced by undergraduate students on

a Computer Science course at the University of Warwick. Students were given simple

skeleton code to use as a starting point for writing their programs. Table 9.1 shows the

characteristics of each dataset.

In Table 9.1, Number of files is the total number of files in a corpus. Number of terms is

the number of terms found in an entire source-code corpus after pre-processing is performed

as discussed in Section 8.5. Number of similar file pairs is the total number of file pairs that

were detected in a corpus and judged as similar by academics.

JPlag reads and parses the files prior to comparing them. JPlag excludes from the

comparison process files that cannot be read or do not parse successfully. In Table 9.1, the

last row indicates the number of files excluded from comparison by JPlag. PlaGate and

Sherlock do not exclude any files from the comparison process.

215

9.4 Experiment Results

Tables 9.2, 9.3, 9.4, and 9.5 show the results, for datasets A, B, C, and D, respectively,

gathered from evaluating the detection performance of PGDT, Sherlock and JPlag on their

own and when Sherlock and JPlag are integrated with PGDT and PGQT. The results are

also illustrated in Figures 9.2, 9.3, 9.4, and 9.5. The discussion that follows corresponds to

those Tables and Figures.

The results for dataset A show that PGDT outperformed Sherlock by means of pre-

cision, however Sherlock outperformed PGDT by means of recall. When Sherlock was

integrated with PGDT (or PGDT and PGQT) the value of recall reached 1.00 which means

that all similar file pairs were detected, however precision was lower due to the false pos-

itives detected by Sherlock. JPlag reported lower recall and precision values than PGDT,

and recall and precision values both improved when JPlag was combined with PGDT and

PGQT.

The F results for dataset B, show that Sherlock and JPlag both outperformed PGDT.

JPlag’s precision reached 1.00 meaning that no false positives were detected, however,

JPlag performed poorly by means of recall. Sherlock returned high recall and precision

values. Integrating the the external tools with PGDT and PGQT improved recall, but low-

ered precision.

With regards to dataset C, PGDT and JPlag both reported perfect precision, i.e. no

false positives, however their recall was very low. Sherlock, had better recall than PGDT

216

and JPlag, however, it reported lower precision. Similarly, as with dataset’s A and B, inte-

grating the plagiarism detection tools with PGDT and PGQT improved recall, but lowered

precision, compared to using the tools alone. The F results gathered from experiments

performed on dataset C, show that Sherlock and JPlag outperformed PGDT. Integrating

PGDT with Sherlock and JPlag increased detection performance compared to when using

the external tools alone.

Finally, the F results gathered from experiments performed on dataset D, show that

Sherlock and JPlag outperformed PGDT compared to using the tools alone. Performance

improved when Sherlock was combined with PGDT, and when Sherlock was combined with

PGDT and PGQT. JPlag’s performance decreased when combined with PGDT and when

integrated with PGDT and PGQT (or PGQTv2), compared to when using JPlag alone. A

closer look at the values in Table 9.5 revealed that when combining JPlag with PGDT recall

increased slightly, but precision decreased considerably, which indicates that many false

positives were detected by PlaGate for this particular dataset.

With regards to the results gathered from all datasets, when PGQTv2 was used, preci-

sion increased than when using PGQT.

Table 9.6 holds the data on how recall and precision performance increases or decreases

when PGDT, PGQT, and external plagiarism detection tools are integrated. Figure 9.6

shows the average recall values and average precision values over all datasets; and Figure

9.7 shows the average performance F over all datasets.

217

Table 9.2: Performance of tools on dataset A
Recall Precision F

PGDT φp = 0.70 0.67 0.80 0.71

Sherlock 0.83 0.25 0.64

PGDT ∪ Sherlock@20 1.00 0.27 0.76

PGDT ∪ Sherlock@20 ∪ PGQT 1.00 0.23 0.74

PGDT ∪ Sherlock@20 ∪ PGQTv2 1.00 0.29 0.76

JP lag φj = 54.8 0.50 0.75 0.58

PGDT ∪ JP lag 0.67 0.67 0.67

PGDT ∪ JP lag ∪ PGQT 0.83 0.71 0.79

PGDT ∪ JP lag ∪ PGQTv2 0.83 0.83 0.83

Table 9.3: Performance of tools on dataset B
Recall Precision F

PGDT φp = 0.80 0.38 0.75 0.50

Sherlock@40 0.75 0.90 0.80

PGDT ∪ Sherlock@40 0.83 0.83 0.83

PGDT ∪ Sherlock@40 ∪ PGQT 0.96 0.78 0.90

PGDT ∪ Sherlock@40 ∪ PGQTv2 0.96 0.82 0.91

JP lag φj = 99.2 0.42 1.00 0.61

PGDT ∪ JP lag 0.46 0.79 0.57

PGDT ∪ JP lag ∪ PGQT 0.54 0.79 0.62

PGDT ∪ JP lag ∪ PGQTv2 0.54 0.79 0.62

Table 9.4: Performance of tools on dataset C
Recall Precision F

PGDT φp = 0.70 0.23 1.00 0.49

Sherlock φs = 30 0.51 0.87 0.63

PGDT ∪ Sherlock@30 0.65 0.89 0.73

PGDT ∪ Sherlock@30 ∪ PGQT 0.65 0.89 0.73

PGDT ∪ Sherlock@30 ∪ PGQTv2 0.65 0.94 0.75

JP lag φj = 91.6 0.37 1.00 0.58

PGDT ∪ JP lag 0.57 1.00 0.71

PGDT ∪ JP lag ∪ PGQT 0.71 0.88 0.76

PGDT ∪ JP lag ∪ PGQTv2 0.71 1.00 0.80

218

Table 9.5: Performance of tools on dataset D
Recall Precision F

PGDT φp = 0.70 0.28 0.76 0.44

Sherlock φs = 50 0.57 0.90 0.68

PGDT ∪ Sherlock@50 0.70 0.82 0.74

PGDT ∪ Sherlock@50 ∪ PGQT 0.82 0.76 0.80

PGDT ∪ Sherlock@50 ∪ PGQTv2 0.82 0.90 0.85

JP lag φj = 100.0 0.25 1.00 0.50

PGDT ∪ JP lag 0.28 0.52 0.36

PGDT ∪ JP lag ∪ PGQT 0.30 0.55 0.38

PGDT ∪ JP lag ∪ PGQTv2 0.30 0.55 0.38

Table 9.6: Average change in performance of all datasets, when integrating PlaGate with

plagiarism detection tools

Increase/decrease

of average recall

Increase/decrease

of average pre-

cision

PGDT ∪ Sherlock vs Sherlock 0.13 -0.08

PGDT ∪ Sherlock vs PGDT 0.42 0.06

PGDT ∪ Sherlock ∪ PGQT vs Sherlock 0.25 -0.14

PGDT ∪ Sherlock ∪ PGQT vs PGDT 0.54 0.00

PGDT ∪ Sherlock ∪ PGQTv2 vs Sherlock 0.25 0.00

PGDT ∪ Sherlock ∪ PGQTv2 vs PGDT 0.54 0.14

PGDT ∪ JP lag vs JPlag 0.03 -0.48

PGDT ∪ JP lag vs PGDT 0.00 -0.24

PGDT ∪ JP lag ∪ PGQT vs JPlag 0.05 -0.45

PGDT ∪ JP lag ∪ PGQT vs PGDT 0.02 -0.21

PGDT ∪ JP lag ∪ PGQTv2 vs JPlag 0.05 -0.45

PGDT ∪ JP lag ∪ PGQTv2 vs PGDT 0.02 -0.21

219

Figure 9.2: Dataset A evaluation. Cutoff values are PGDT φp = 0.70, Sherlock φs = 20,

and JPlag φj = 54.8.

Figure 9.3: Dataset B evaluation. Cutoff values are PGDT φp = 0.80, Sherlock φs = 40,

and JPlag φj = 99.2.

220

Figure 9.4: Dataset C evaluation. Cutoff values are PGDT φp = 0.70, Sherlock φs = 30,

and JPlag φj = 91.6.

Figure 9.5: Dataset D evaluation. Cutoff values are PGDT φp = 0.70, Sherlock φs = 50,

and JPlag φj = 100.0.

221

Figure 9.6: Average recall vs average precision performance of datasets A, B, C, and D.

Figure 9.7: Average F performance of datasets A, B, C, and D.

222

Following is a summary of the results based on Tables 9.6, and Figures 9.6 and 9.7.

• Integrating external tools with PGDT increases the number of similar file pairs de-

tected, i.e. improves recall. However, this integration also increases the number of

non-similar file pairs detected (i.e. those non-similar file pairs which received a sim-

ilarity value above the given cutoff value), and this caused a decrease in precision.

Integrating Sherlock with PGDT, improves recall by 0.13 than when using Sherlock

alone, and when PGDT is integrated with JPlag performance is improved by 0.03,

however, precision suffers a decrease by -0.08 when Sherlock is concerned, and by

-0.48 when JPlag is integrated with PGDT.

• When external tools are integrated with both PGDT and PGQT there is a further

increase in recall that when external tools are used alone, i.e. an increase of 0.25

when Sherlock is integrated with PGDT and PGQT, and an increase of 0.05 when

JPlag is concerned. However, there is also a further decrease in precision.

• There is slight improvement in overall F performance when PGQTv2 is applied rather

that PGQT. PGQTv2 is applied only on files in file pairs judged as similar by the

academics, and results show that precision is improved without compromising recall.

• With regards to dataset D, integrating PGDT and PGQT (or PGQT v2) with JPlag

decreased overall performance by 0.12. Although the total number of similar file

pairs detected was increased when JPlag was integrated with PGDT and PGQT or

PGQTv2 (i.e. recall increased by 0.05), many non-similar file pairs were detected

223

which caused a large decrease in precision (i.e. from 1.00 to 0.45).

• Average results, shown in Figure 9.7, suggest that integrating PGDT and PGQTv2

with external tools improves overall detection performance.

Similarity often occurs in groups containing more than two files. Sherlock and JPlag

often failed to detect some of the files from groups containing similar files. JPlag failed to

parse some files that were similar to other files in a corpus (and they were excluded from

the comparison process), and also suffered from local confusion which resulted in failing to

detect similar file pairs [115]. Local confusion occurs when source-code segments shorter

than the minimum-match-length parameter have been shuffled in the files. String matching

algorithms tend to suffer from local confusion, which also appears to be the reason why

Sherlock missed detecting similar file pairs. Sherlock often failed to detect similar file pairs

because they were detected as having lower similarity than non-similar files (i.e. retrieved

further down the list and lost among many false positives) mainly due to local confusion.

PlaGate’s PGDT and PGQT do not suffer from local confusion because they are not

based on detecting files based on structural similarity, hence they cannot be tricked by code

shuffling. Furthermore, unlike JPlag, files do not need to parse or compile to be included in

the comparison process. One issue with PlaGate, is that it detects more false positives than

the external tools we experimented with, and hence the following question arises:

• How can we modify PlaGate such that less false positives are detected?

Overall results suggest that integrating PlaGate’s PGDT and PGQT components with

224

external plagiarism detection tools improves overall detection performance.

9.5 Conclusion

This Chapter proposes a novel approach based on LSA for enhancing the plagiarism detec-

tion process. A tool PlaGate, has been developed that can function alone or be integrated

with current plagiarism detection tools for detecting plagiarism in source-code corpora.

The findings revealed that PlaGate can complement external plagiarism detection tools by

detecting similar source-code files missed by them.

This integration resulted in improved recall at the cost of precision, i.e. more true posi-

tives but also more false positives in the list of detected files. In the context of source-code

plagiarism detection, string-matching based detection systems (such as those discussed in

Section 2.5.2) have shown to detect fewer false positives than an LSA based system. Over-

all performance was improved when PlaGate’s PGDT and PGQT tools were integrated with

the external tools JPlag and Sherlock.

225

Chapter 10

PlaGate: Source-Code Fragment

Investigation and Similarity

Visualisation

This Chapter is concerned with evaluating the performance of the investigation component

of the PlaGate tool. This component of PlaGate computes the relative importance of source-

code fragments within all the files in a corpus and indicates the source-code fragments

that are likely to have been plagiarised. Evaluation of results is conducted by comparing

PlaGate’s results to human judgements.

226

10.1 Experiment Methodology

This Chapter applies the PGQT tool as a technique for detecting groups of similar files

and investigating the similar source-code fragments within them. We evaluate PlaGate’s

PGQT tool to investigating the similarity between source-code files with regards to gather-

ing evidence of plagiarism. The experiment described in this Chapter follows on from the

experiment discussed in Chapter 9.

From the file pairs detected in datasets A and B in Chapter 9, four pairs of suspicious

files were selected for investigation using the PlaGate tool. The file pairs containing the

source-code fragments for investigation are, F113-F77, F75-F28, F82-F9, and F86-F32.

The first file from each file pair (i.e. F113, F75, F82, and F86) was decomposed into

source-code fragments at the level of Java methods. This resulted in thirty-four pairs of

similar source-code fragments each consisting of one Java method, and these were treated

as queries to be input into PGQT.

For evaluation purposes, academics with experience in identifying plagiarism graded

each pair of source-code files and source-code fragments based on the criteria discussed in

Section 8.3. Boxplots were created for each set of source-code fragments and arranged in

groups, each containing boxplots corresponding to source-code fragments extracted from a

single file.

Sections 10.2.1 and 10.2.2 discuss the visualisation output from detecting similar file

pairs in datasets A and B. Suspicious and innocent file pairs have been selected as examples

227

for investigating the visualisation component of PlaGate’s PGQT tool.

Section 10.3 discusses the visualisation output from investigating file similarity using

source-code fragments from the suspicious file pairs in datasets A and B.

10.1.1 Visualisation output notes

As discussed in Section 8.5, when PGQT is used for plagiarism detection, a selected file F

is treated as a query, it is expected that the particular file selected will be retrieved as having

the highest similarity value with itself, and shown as an extreme outlier in the relevant

boxplot. Therefore, if file F1 is treated as a query, the file most similar to that will be the

file itself (i.e., F1). In the evaluation this similarity will be excluded from comparison.

Boxplots were created for each of the files under investigation.

When PGQT is used for plagiarism investigation, the similarity value between a source-

code fragment belonging to the contribution level 2 category (described in Section 8.3),

and the file F from which it originated, is expected to be relatively high compared to the

remaining files in the corpus. In addition, if the particular source-code fragment is distinct,

and therefore important in characterising other files in the corpus, then these files will also

be retrieved indicated by a relatively high similarity value.

With regards to source-code fragments belonging to contribution level 1, described in

Section 8.3, because these are not particularly important in any specific files, it is usually

not expected that they will retrieve the files they originated from. This is especially the case

228

if the files contain other source-code fragments that are more important in distinguishing

the file from the rest of the files in the corpus.

The numbers shown in the boxplots correspond to the file identifier numbers, such that

9 corresponds to file 9, which is denoted as F9 in the analysis of the results.

10.2 Detection of Similar Source-Code Files using PGQT

This Section is a discussion of how the PGQT investigation tool can be used for detecting

files that are similar to a file that is given as a query.

10.2.1 Dataset A

From dataset A, files F82, F75, F86, F45 and F73 were used as queries in PGQT. Figure

10.1 shows the output from PGQT which shows the relative similarity between these files

and the rest of the files in the corpus.

Table 10.1 compares the similarity values by PGQT, and the human graders. Column

PGQT holds the sim(Fa, Fb) cosine similarity values for each pair containing files Fa, Fb ∈

C. Columns H1 SL and H2 SL show the similarity levels (SL) provided by human grader 1

(H1) and human grader 2 (H2) respectively.

Files F82, F75 and F86 were graded at similarity level 1 (suspicious) by the human

graders. Their corresponding boxplots show that these files also received a high similarity

value with their matching similar files. The files under investigation and their matching

229

Figure 10.1: Dataset A: Similar files under investigation are F82-F9, F75-F28, F86-F32,

F45-F97, F73-F39. Outliers simi ≥ 0.80: F9-9,82; F75-75,28; F86-86,32.

Table 10.1: Dataset A file pairs and their similarity values

Files under investigation in dataset A, n=106

File Pairs PGQT H1 LS H2 LS

F9-F82 0.96 1 1

F75-F28 0.99 1 1

F86-F32 0.99 1 1

F45-F97 0.77 0 0

F73-F39 0.37 0 0

files were returned as extreme outliers with a large separation from the rest of the files in

the corpus. These are indicators that files F82, F75 and F86 are suspicious. Table 10.2

contains the top five highest outliers for each of the files of dataset A.

Files F45 and F73 were graded at similarity level 0 (innocent) by the human graders.

The boxplots in Figure 10.1 and Table 10.2 show that files F45 and F73 were returned in

230

Table 10.2: Dataset A files - Five highest outliers and their values

F82 Value F75 Value F86 Value F45 Value F73 Value

1 F82 1.00 F75 1.00 F86 1.00 F45 1.00 F73 1.00

2 F9 0.96 F28 0.99 F32 0.99 F11 0.79 F74 0.79

3 F84 0.21 F12 0.20 F39 0.26 F97 0.77 F31 0.59

4 F4 0.21 F21 0.19 F102 0.19 F19 0.51 F97 0.49

5 F91 0.21 F14 0.12 F76 0.17 F20 0.35 F61 0.38

the top rank but without any other files receiving relatively close similarity values to them,

because they were used as the query files. In addition, without taking into consideration

outlier values, the data for F45 and F73 are spread out on a relatively large scale when com-

pared to the boxplots corresponding to files F82, F75 and F86, and without much separation

between the files under investigation and the remaining of the files in the corpus. These are

indicators that files F45 and F73 are innocent.

10.2.2 Dataset B

From dataset B, files F173, F113, and F162 were used as queries in PGQT. Figure 10.2

shows the output from PGQT, illustrating the relative similarity between these files and the

rest of the files in the corpus. Table 10.4 contains the top five highest outliers for each of

the files of dataset B.

Table 10.3: Dataset B File pairs and their similarity values

Files under investigation in Dataset B, n=176

File Pairs PlaGate H1 LS H2 LS

F173-F142 1.00 1 1

F113-F77 0.64 1 1

F162-F20 0.38 1 1

F162-F171 0.50 1 1

231

Figure 10.2: Dataset B: Similar files under investigation are F173-F142,F113-F77, F162-

F20-F171. Outliers simi ≥ 0.80: F173-173,142,156; F113-113,121,149,40,146

Table 10.4 shows that PlaGate detected file F142 as highly similar to file F173 and thus

file pair F173-F142 has received high similarity values. Both JPlag and PlaGate have also

detected this file pair as suspicious. The boxplot for F173 shows that the similarity values

are spread out with no great separation between files, which indicates that files F142 and

F173 are relatively not that unique in relation to the remaining files in the corpus. However

it is worth investigating those two files because they were detected as similar and there is a

bit of separation between them and the rest of the files. Comparing the source-code within

files F142 and F173 revealed that both of these files are relatively short, mainly contain-

ing skeleton code provided by academics, but they also share some distinct source-code

fragments (not shared by other files in the corpus) that are considered as belonging to the

232

contribution level 2 category. The boxplot observation matches the academic judjements.

The similar source-code fragments (at granularity level of Java methods) found in these

files are small, consisting of 3 to 4 small lines of code each and therefore investigation into

each of these using the PGQT investigation tool is not necessary. Files F173-F156 share

some similarity but it is clear from observing these files that the similarity was trivial and

unintentional, due to the programming language used and the problem been solved.

Table 10.3 shows that the human graders consider files F113 and F77 to be suspicious

(similarity level 1). The boxplot corresponding to file F113 shows that, excluding outliers,

the values are spread on a relatively small scale, the IQR is small, and there exists a large

separation between the suspicious and non-suspicious files. These are indicators that the

files are suspicious, and an investigation into the similarity between F113 and all extreme

outliers, i.e. F113, F121, F149, F40, F146, and F77, revealed that all those files are very

similar to file F113 and all contain matching similar source-code fragments.

Table 10.4: Dataset B files - Five highest outliers and their values

F173 Value F113 Value F162 Value

1 F173 1.00 F113 1.00 F162 1.00

2 F142 1.00 F121 0.99 F147 0.63

3 F156 0.87 F149 0.94 F82 0.60

4 F105 0.72 F40 0.93 F163 0.56

5 F24 0.66 F146 0.82 F80 0.56

Regarding the group containing suspicious files F162, F20, and F171, PlaGate has

failed to retrieve these, however, JPlag has detected these suspicious files.

Below is the source-code for files F113 and F121, extracted from corpus B. This file pair

233

was detected by PlaGate and failed to get detected by JPlag and Sherlock. We have added

extra comments within the files to indicate the source-code fragments and their contribution

level category that will be used passed into PlaGate for investigation (as described in Section

10.3 and the results are also illustrated in Figure 10.6).

234

File F113:

package student;

import wrabble.*;

public class Board implements IBoard

{

TileBagboard tileboard;

private Tile boardArray[][];

private Multiplier multipliers[][];

public Board()

{

setBoardSize(15);

}

%--

Method clearBoard() is a contribution level 1

source-code fragment

%--

public void clearBoard()

{

for(int i =0;i <boardArray.length;i++)

{

for(int n =0;n <boardArray.length;n++)

boardArray[i][n] = null;

}

}

public Tile getTile(int x,int y)

{

return boardArray[x][y];

}

public boolean setTile(int x,int y,Tile tile)

{

boardArray[x][y] = tile;

return true;

}

235

public Multiplier getMultiplier(int x,int y)

{

return multipliers[x][y];

}

public void setMultiplier(int x,int y,Multiplier multiplier)

{

multipliers[x][y] = multiplier;

}

public int getBoardSize()

{

return boardArray.length;

}

public void setBoardSize(int size)

{

boardArray = new Tile[size][size];

multipliers = new Multiplier[size][size];

}

%--

Method getWords() is a contribution level 2

source-code fragment

%--

public String[] getWords()

{

tileboard = new TileBagboard(1);

String string = "";

for(int i =0;i <getBoardSize();i++)

{

for(int n =0;n <getBoardSize();n++)

{

Tile tile = getTile(i,n);

if(tile != null)

{

string = string + tile.getLetter();

}

else

{

236

if(string.length() >= 2)

{

string=string.trim().toLowerCase();

tileboard.addElements(string);

}

string = "";

}

}

}

for(int a =0; a < getBoardSize(); a++)

{

for(int b = 0; b < getBoardSize(); b++)

{

Tile tile1 = getTile(b, a);

if(tile1 != null)

{

string = string + tile1.getLetter();

}

else

{

if(string.length() >= 2)

{

string=string.trim().toLowerCase();

tileboard.addElements(string);

}

string = "";

}

}

return tileboard.StringArray();

}

}

class TileBagboard

{

String wordboardlist1[];

int noofElements;

public TileBagboard(int capacity)

{

wordboardlist1 = new String[capacity];

237

noofElements = 0;

}

%--

Method addElements() is a contribution level 2

source-code fragment

%--

public void addElements(String str)

{

if (noofElements == wordboardlist1.length)

{

String[] wordboardlist2 = new String[wordboardlist1.length*2];

for (int i=0; i<wordboardlist1.length; i++)

{

wordboardlist2[i]=wordboardlist1[i];

}

wordboardlist1=wordboardlist2;

}

wordboardlist1[noofElements] = str;

noofElements++;

}

public String elementAt(int i)

{

return wordboardlist1[i];

}

public int size()

{

return noofElements;

}

%--

Method StringArray() is a contribution level 2

source-code fragment

%--

public String[] StringArray()

238

{

String[] newArray = new String[noofElements];

for(int i =0;i <noofElements;i++)

{

newArray[i]=elementAt(i);

}

return newArray;

}

}

239

File F121

package student;

import wrabble.*;

public class Board implements IBoard

{

TileBagboard tileboard;

private Tile tilearray[][];

private Multiplier multiply[][];

int Boardwidth=15;

public Board()

{

setBoardSize(Boardwidth);

}

%--

Method clearBoard() is a contribution level 1

source-code fragment

%--

public void clearBoard()

{

for(int y =0;y <tilearray.length;y++)

{

for(int x =0;x <tilearray.length;x++)

tilearray[y][x] = null;

}

}

public wrabble.Tile getTile(int x,int y)

{

if ((x > 0 && x<15) && (y >0 && y < 15)){

if(tilearray[x][y]!=null)

return tilearray[x][y];

else

return null;

}

else

return null;

240

}

public boolean setTile(int x,int y, wrabble.Tile tile)

{

if ((x >-0 && x <15) && (y > -0 && y <15)) {

tilearray[x][y] = tile;

return true;

}

else

return false;

}

public Multiplier getMultiplier(int x,int y)

{

return multiply[x][y];

}

public void setMultiplier(int x,int y,wrabble.Multiplier multiplier)

{

multiply[x][y] = multiplier;

}

public int getBoardSize()

{

return tilearray.length;

}

public void setBoardSize(int size)

{

tilearray = new Tile[size][size];

multiply = new Multiplier[size][size];

}

%--

Method getWords() is a contribution level 2

source-code fragment

%--

public String[] getWords()

{

tileboard = new TileBagboard(1);

String string = "";

241

for(int i =0;i <getBoardSize();i++)

{

for(int j =0;j < getBoardSize();j++)

{

Tile tile = getTile(i,j);

if(tile != null)

{

string = string + tile.getLetter();

}

else

{

if(string.length() >= 2)

{

string=string.trim().toLowerCase();

tileboard.addElements(string);

}

string = "";

}

}

}

for(int a =0; a < getBoardSize(); a++)

{

for(int b = 0; b < getBoardSize(); b++)

{

Tile tile1 = getTile(b, a);

if(tile1 != null)

{

string = string + tile1.getLetter();

}

else

{

if(string.length() >= 2)

{

string=string.trim().toLowerCase();

tileboard.addElements(string);

}

string = "";

}

}

}

return tileboard.StringArray();

242

}

}

class TileBagboard

{

String wordboardlist1[] = null;

int Elements;

public TileBagboard(int cap)

{

wordboardlist1 = new String[cap];

Elements = 0;

}

%--

Method addElements() is a contribution level 2

source-code fragment

%--

public void addElements(String str)

{

if (Elements == wordboardlist1.length)

{

String[] wordboardlist2 = new String[wordboardlist1.length*2];

for (int i=0; i<wordboardlist1.length; i++)

{

wordboardlist2[i]=wordboardlist1[i];

}

wordboardlist1=wordboardlist2;

}

wordboardlist1[Elements] = str;

Elements++;

}

public String elementAt(int i)

{

return wordboardlist1[i];

}

public int size()

{

243

return Elements;

}

%--

Method StringArray() is a contribution level 2

source-code fragment

%--

public String[] StringArray()

{

String[] newarray = new String[Elements];

for(int i =0;i <Elements;i++)

{

newarray[i]=elementAt(i);

}

return newarray;

}

}

244

10.3 Datasets A and B: Investigation of Source-code Fragments

using PGQT

After the similarity detection stage, similar source-code fragments in files F82, F75 and F86

of dataset A, and file F113 of dataset B were investigated. From these files, source-code

fragments from both contribution level 1 (low contribution) and contribution level 2 (high

contribution) categories were selected as described in the methodology in Section 10.1.

Each individual boxplot was placed in one of three sets of boxplot graphics, corresponding

to the file it originated from. The boxplots of source-code fragments corresponding to files

F82, F75, F86 and F113 are shown in Figures 10.3, 10.4, 10.5, and 10.6 respectively. Table

10.5 shows the contribution levels assigned to the source-code fragments by the human

graders.

In the case of the source-code fragments extracted from file F82 (Figure 10.3), the

boxplots corresponding to Q1, Q2, Q9 and Q10 all received very high similarity values

with both files F82 and F9. Source-code fragments Q1, Q2, Q9 and Q10 were classified

as belonging to the contribution level 2 category by the human graders (Table 10.5). The

boxplot of Q3 has many mild outliers but there is no great separation between the files in the

corpus, and no extreme outliers exist in the dataset. These are strong indicators that source-

code fragment Q3 is not particularly important within files F9 and F82 or any other files in

the corpus. Q5 has one mild outlier and no great separation exists between files. Excluding

outliers, the data for the contribution level 1 source-code fragments Q3, Q4, Q5, Q6, Q7,

245

Figure 10.3: F82 boxplot: Similar files under investigation are F82 and F9. Outliers simi ≥
0.80: Q1 - 82, 9; Q2 - 9, 82; Q3 - 91, 54, 23, 26, 104, 105, 94; Q5 - 22, 31; Q9 - 9, 82; Q10

- 9,82.

and Q8 is spread on a relatively wider scale than data of contribution level 2 source-code

fragments. The boxplots corresponding to contribution level 1 source-code fragments do

not provide any indications that they are important in any of the files. As shown in Table

10.5, the observations from boxplots match the academic judgements.

Figure 10.4 shows the data for the source-code fragments corresponding to file F75.

The boxplots show that Q2, Q4, and Q7 received very high similarity values with files F75

and F28. Table 10.5 shows that source-code fragments Q2, Q4, and Q7 were classified at

the contribution level 2 category. The remaining source-code fragments – Q1, Q3, Q5 and

Q6 – were graded at contribution level 1 by the human graders. Source-code fragment Q6

246

Figure 10.4: F75 boxplot: Similar files under investigation are F75 and F28. Outliers

simi ≥ 0.80: Q2 - 75, 28; Q3 - 22, 31; Q4 - 75, 28; Q7 - 75, 28.

has two mild outliers, files F75 and F28, which suggests that source-code fragment Q6 is

relatively more similar to those two files than others in the corpus, however there is no great

separation between the files in the corpus and hence it can not be considered as particularly

important fragment in files F75 and F28.

The boxplots corresponding to source-code fragments extracted from file F86 shown

in Figure 10.5 and from file F113 shown in Figure 10.6 follow a similar pattern. In Figure

10.6, the boxplots corresponding to source-code fragments Q1, Q2, and Q4, show files F113

and F77 as extreme outliers with a good separation from the rest of the files. In addition,

the remaining files presented as extreme outliers in Q1, Q2 and Q4 are very similar to files

F113 and F77 and all contain matching similar source-code fragments to Q1, Q2, and Q4.

247

Figure 10.5: F86 boxplot: Similar files under investigation are F86 and F32. Outliers

simi ≥ 0.80: Q1 - 86,32; Q2 - 39; Q3 - 86, 32; Q4 - 86, 85; Q5 - 86, 32; Q8 - 86, 32; Q12

- 86, 32; Q13 - 86, 32.

During the detection process JPlag only identified files F113 and F77 as similar and failed

to parse the remaining files in this group of similar files. Sherlock performed better than

JPlag and detected three files. PGDT outperformed JPlag and Sherlock and detected five of

those files. By using PGQT to investigate similar source-code fragments seven similar files

were detected and scrutinising these revealed that they all shared suspicious source-code

fragments. The suspicious source-code fragments are Q1, Q2, and Q4 shown in Figure

10.6.

In summary, the boxplots follow either Pattern 1 or Pattern 2. These are discussed as

follows:

248

Figure 10.6: F113 boxplot: Similar files under investigation are F113 and F77. Outliers

with simi ≥ 0.80: Q1 - 121, 149, 40, 113, 146, 134, 77; Q2 - 121, 149, 40, 113, 146, 134,

77; Q4 - 121, 149, 40, 113, 146, 134, 77. Q1, Q2 and Q4 are CL2 SCFs, Q3 is a CL1 SCF.

• Pattern 1: Source-code fragments belonging to contribution level 1 category

– The values in boxplots corresponding to source-code fragments categorized as

contribution level 1 by academics are spread out on the scale without any files

having great separation than others.

– The IQR of box plots corresponding to contribution level 1 source-code frag-

ments is relatively higher than those corresponding to contribution level 2 source-

code fragments.

• Pattern 2: Source-code fragments belonging to contribution level 2 category

249

– The boxplots for the contribution level 2 source-code fragments show the sus-

picious files marked as extreme outliers with a good separation from the rest of

the files in the corpus.

– The upper-quartile values for the source-code fragments belonging to the contri-

bution level 2 category are either equal or below the median of the source-code

fragments falling into the contribution level 1 category. That is, over three-

quarters of the values in the contribution level 2 datasets are lower than the

median values of the contribution level 1 datasets.

– Some of the boxplots of source-code fragments belonging to the contribution

level 1 category have whiskers extending to high on the scale and/or mild out-

liers. This suggests that in some cases the single pair-wise similarity values

between source-code fragments and files may not be sufficient indicators of the

source-code fragments’ contribution towards indicating plagiarism.

– Excluding the outliers, and therefore considering the IQR and difference be-

tween maximum and minimum adjacent values, data for source-code fragments

belonging to the contribution level 2 category are spread out on a smaller scale

compared to the data for contribution level 1 source-code fragments.

10.3.1 Comparing PGQT’s results against human judgements

This Section describes and explores hypotheses formed from analyzing the output of PGQT

in Section 10.3. Table 10.5 shows the source-code fragments and their similarity values to

250

files. Column sim1 = sim(Q,Fa) and sim2 = sim(Q,Fb) are the cosine similarity

values between each source-code fragment Q and files Fa and Fb where Fa corresponds

to the first file in a pair of files, and Fb corresponds to the second file, and Fa, Fb ∈ C.

Column m sim is the average of sim1 and sim2, column PGQT CL shows the contribution

level values based on the m sim values (contribution levels are described in Section 8.5.2),

column IQR shows the IQR values computed from the boxplot as described in Section 8.7,

and Human CL is the contribution level provided by the academics based on the criterion in

Section 8.3.

Table 10.5 shows the source-code fragments and their similarity values to files, and is

described in Section 10.3.1.

Observing the similarity values provided by LSA and comparing those to the similarity

levels provided by the human graders, revealed a pattern – classifying the similarity values

provided by LSA (thus creating LSA CL values) to reflect the categories used by human

graders (i.e. CL1 or CL2), revealed that LSA values matched those of humans when setting

threshold value φ (as described in Section 8.5.2) to 0.80. More detail on the relevant exper-

iments is described later on in this Chapter. Thus, in the discussion that follows, we will set

the value of φ to 0.80.

The hypotheses that will be tested are as follows:

Hypothesis 1:

• H0: There is no correlation between the PGQT similarity values (i.e., sim1, sim2,m sim)

251

Table 10.5: Similarity values for all source-code fragments and their suspicious file pairs

Case File/SCF name sim1 sim2 m sim PGQT CL IQR Human CL

1 F113/Q1∗ 0.96 0.88 0.92 2 0.16 2

2 F113/Q2∗ 0.99 0.83 0.91 2 0.15 2

3 F113/Q3∗ 0.23 0.03 0.13 1 0.42 1

4 F113/Q4∗ 0.97 0.93 0.95 2 0.09 2

5 F75/Q1 0.43 0.45 0.44 1 0.36 1

6 F75/Q2 0.99 0.99 0.99 2 0.10 2

7 F75/Q3 0.26 0.29 0.28 1 0.34 1

8 F75/Q4 0.94 0.93 0.94 2 0.14 2

9 F75/Q5 0.63 0.65 0.64 1 0.29 1

10 F75/Q6 0.66 0.67 0.67 1 0.26 1

11 F75/Q7 0.99 0.99 0.99 2 0.17 2

12 F82/Q1 0.99 0.97 0.98 2 0.20 2

13 F82/Q2 0.98 0.98 0.98 2 0.23 2

14 F82/Q3 0.33 0.33 0.33 1 0.30 1

15 F82/Q4 0.47 0.35 0.41 1 0.35 1

16 F82/Q5 0.40 0.29 0.35 1 0.33 1

17 F82/Q6 0.57 0.48 0.53 1 0.34 1

18 F82/Q7 0.39 0.33 0.36 1 0.32 1

19 F82/Q8 0.33 0.37 0.35 1 0.37 1

20 F82/Q9 0.97 0.94 0.96 2 0.23 2

21 F82/Q10 0.97 0.94 0.96 2 0.24 2

22 F86/Q1 0.99 0.97 0.98 2 0.18 2

23 F86/Q2 0.72 0.70 0.71 1 0.20 1

24 F86/Q3 0.97 0.96 0.97 2 0.19 2

25 F86/Q4 0.06 0.07 0.07 1 0.33 1

26 F86/Q5 0.98 0.98 0.98 2 0.17 2

27 F86/Q6 0.23 0.22 0.23 1 0.30 1

28 F86/Q7 0.44 0.47 0.46 1 0.37 1

29 F86/Q8 0.98 0.97 0.98 2 0.17 2

30 F86/Q9 0.05 0.06 0.06 1 0.33 1

31 F86/Q10 0.13 0.12 0.13 1 0.33 1

32 F86/Q11 0.62 0.62 0.62 1 0.35 1

33 F86/Q12 0.99 0.99 0.99 2 0.16 2

34 F86/Q13 0.94 0.92 0.93 2 0.16 2

* The F113 CL2 source-code fragments are found in more than two

files. Only the similarity values between F77 and F113 are shown in the

table.

252

and the contribution level values assigned by the human graders (human CL).

• H1: There is a correlation between the PGQT similarity values (i.e., sim1, sim2,m sim)

and contribution level values assigned by the human graders (human CL).

Hypothesis 2:

• H0: There is no correlation between the human CL and the PGQT CL variables.

• H1: There is a correlation between the human CL and the PGQT CL variables.

Hypothesis 3:

• H0: There is no correlation between the IQR and human CL variables.

• H1: The greater the human CL value the smaller the IQR. There is a correlation be-

tween these two variables. The relative spread of values (using the IQR) in each set of

source-code fragments can indicate the contribution level of source-code fragments.

Table 10.6: Spearman’s rho correlations for all source-code fragments

Spearman’s rho Correlations

sim1 sim2 m sim PGQT CL IQR

Human CL 0.87∗∗ 0.87∗∗ 0.87∗∗ 1.00∗∗ −0.85∗∗

Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00

N 34 34 34 34 34

**. Correlation is significant at the 0.01 level (2-tailed).

Regarding hypothesis 1, Table 10.6 shows that average correlations between PGQT vari-

ables (sim1, sim2, msim) and human CL are strong and highly significant r = 0.87,

253

p < 0.01. This suggests that PGQT performs well in identifying the contribution level

of source-code fragments.

Regarding hypothesis 2, Table 10.6 shows an increase in correlations between the hu-

man CL and the similarity values provided by PGQT (i.e. sim1, sim2,msim) when the

PGQT values are classified into categories (PGQT CL). The correlations were strong and

significant between the human CL and the PGQT CL variables with r = 1.00, p < 0.01.

Classifying the PGQT similarity values has improved correlations with human judgement,

i.e., a 0.13 increase in correlations, increasing from r = 0.87, p < 0.01 to r = 1.00, p <

0.01.

Regarding hypothesis 3, Table 10.6 shows that the correlations for variables IQR and

human CL are strong and highly significant r = −0.85, p < 0.01. These findings suggest

that taking into consideration the distribution of the similarity values between the source-

code fragment and all the files in the corpus can reveal important information about the

source-code fragment in question with regards to its contribution towards evidence gather-

ing.

Before accepting any of the hypotheses it is worth investigating the correlations be-

tween variables when source-code fragments are grouped by the files they originated from.

Table 10.7 shows the correlations.

Table 10.7 shows that the correlations are equal for the human CL and PGQT values

(i.e. sim1, sim2,msim) and for the human CL and IQR variables. Note that although the

254

Table 10.7: Spearman’s rho correlations for each file computed separately.

Spearman’s rho Correlations

sim1 sim2 m sim IQR PGQT CL

F113 Human CL 0.77 0.77 0.77 -0.77 1.00

Sig. (2-tailed) 0.23 0.23 0.23 0.23 0.00

N 4 4 4 4 4

F75 Human CL 0.87∗ 0.87∗ 0.87∗ −0.87∗ 1.00∗∗

Sig. (2-tailed) 0.01 0.01 0.01 0.01 0.00

N 7 7 7 7 7

F82 Human CL 0.86∗∗ 0.86∗∗ 0.86∗∗ −0.86∗∗ 1.00∗∗

Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00

N 10 10 10 10 10

F86 Human CL 0.87∗∗ 0.87∗∗ 0.87∗∗ −0.87∗∗ 1.00∗∗

Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00

N 13 13 13 13 13

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

significance of correlations for F113 is computed as statistically low (i.e. 0.23), for the

purposes of this research this correlation is still considered important because the aim is

to investigate whether PlaGate can identify the contribution levels of any number of given

source-code fragments when compared to human judgement. In conclusion, based on these

findings H1 of hypotheses 1, 2, and 3 can be accepted.

10.4 Conclusion

This Chapter presents an evaluation of the investigation component of PlaGate, i.e. Pla-

Gate’s Query Tool. The idea put into practice with the PlaGate’s Query Tool (PGQT) is that

plagiarised files can be identified by the distinct source-code fragments they contain, where

distinct source-code fragments are those belonging to the contribution level 2 category, and

255

it is these source-code fragments that these can be used as indicators of plagiarism. Pla-

Gate computes the relative importance of source-code fragments within all the files in a

corpus and indicates the source-code fragments that are likely to have been plagiarised. A

comparison of the results gathered from PGQT with human judgement, revealed high cor-

relations between the two. PGQT has shown to estimate well the importance of source-code

fragments with regards to characterising files.

On occasions, when given a source-code fragment, PGQT fails to detect its relative files

which results in the source-code fragment being misclassified as low contribution when it

is a high contribution source-code fragment. This was especially the case if the source-

code fragment is mostly comprised of single word terms and symbols (e.g. +, :, >). This

is because during pre-processing these are removed from the corpus. Future experiments

are planned to evaluate the performance of PlaGate when keeping these terms and charac-

ters during pre-processing. This was also one of the reasons PGDT failed to detect some

of the suspicious file pairs. This raises the questions of what is the impact of removing

symbols on the effectiveness of source-code plagiarism with LSA?, and would replacing

symbols by tokens (i.e such as those used by string matching algorithms) improve detection

performance?.

Plagiarism is a sensitive issue and supporting evidence that consists of more than a

similarity value can be helpful to academics with regards to gathering sound evidence of

plagiarism. The experiments with similarity values revealed that in some cases, the sin-

gle pair-wise similarity values between source-code fragments and files were not sufficient

256

indicators of the source-code fragments’ contribution towards proving plagiarism. This is

because relatively high similarity values were given to source-code fragments that were

graded as low contribution by human graders. This issue was dealt with by classifying the

similarity values provided by PGQT into previously identified contribution categories. Cor-

relations have shown an improvement in results, i.e., higher agreement between classified

similarity values and the values provided by human graders.

257

Chapter 11

Conclusions, Discussion and Future

work

In this work we have proposed a definition of source-code plagiarism based on academic

perspectives, and studied the application of LSA to detect similar source-code files and for

the task of investigating the relative similarity between source-code files. Our proposed

system is a model that allows the combination of LSA with external plagiarism detection

tools to enhance the source-code plagiarism detection and investigation process.

11.1 Conclusions and Discussion

The research presented in this thesis proposes a novel and detailed definition of what consti-

tutes source-code plagiarism from the academic perspective. We have conducted a survey

258

and based on academic responses we have created a definition of source-code plagiarism.

To our knowledge, this is the first definition that attempts to define source-code plagiarism.

The research also proposes a novel way to approach plagiarism detection and investi-

gation using the semantic information encapsulated by the information retrieval technique

LSA and existing plagiarism detection algorithms. We are not aware of any other work

that investigates the applicability of LSA as a technique for detecting similar source-code

files with a view to detecting plagiarism. The thesis proposes a novel model for combining

existing plagiarism detection tools with LSA for improving plagiarism detection. Through

this application of LSA, this research expands on the possible applications of LSA and cre-

ates a bridge between information retrieval and source-code file similarity detection and

investigation.

The performance of LSA is dependent on parameters driving its effectiveness. These

parameters are task dependent, corpus dependent and inter-dependent. We conducted an

analysis on the impact of parameters driving the effectiveness of source-code similarity de-

tection with LSA, and we are not aware of other such research. Conducting investigation

into parameters revealed the parameter combinations that appear optimal for our datasets,

and also revealed parameter combinations that look promising for source-code corpora. Us-

ing those parameters, we developed an LSA based tool, PlaGate, that can function alone or

be integrated with existing plagiarism detection tools for improving source-code similar-

ity detection and investigation. The experimental evaluations show that LSA alone is well

suited for the task of source-code similarity detection, and when combined with external

259

plagiarism detection tools further improves detection performance. In addition, we applied

PlaGate to the task of relative similarity detection and visualisation of source-code artifacts.

The PlaGate tool, has been developed that can function alone or be integrated with current

plagiarism detection tools. The main aims of PlaGate are:

• to detect source-code files missed by current plagiarism detection tools,

• to provide visualisation of the relative similarity between files, and

• to provide a facility for investigating similar source-code fragments and indicate the

ones that could be used as strong evidence for proving plagiarism.

The experimental findings revealed that PlaGate can complement plagiarism detection

tools by detecting similar source-code files missed by them. This integration resulted in

improved recall at the cost of precision, i.e. more true positives but also more false positives

in the list of detected files. In the context of source-code plagiarism detection, string-

matching based detection systems have shown to detect fewer false positives than an LSA

based system.

Choosing the optimal parameter settings for noise reduction can improve system perfor-

mance. Choice of dimensions is the most important parameter influencing the performance

of LSA. Furthermore, automatic dimensionality reduction is still a problem in information

retrieval. Techniques have been proposed for automating this process for the task of au-

tomatic essay grading by Kakkonen at al. [66]. For now, PlaGate uses parameters that

260

were found as giving good detection results from conducting previous experiments with

source-code datasets.

During experimental evaluations, we have considered the creation of artificial datasets

in order to investigate whether LSA would detect particular attacks. However, from the

perspective of whether a specific attack can be detected by LSA, the behaviour of LSA is

unpredictable – whether a particular file pair classified under a specific attack (i.e. change of

an if to a case statement) is detected does not depend on whether LSA can detect a particular

change as done in string matching algorithms. It depends on the semantic analysis of words

that make up each file and the mathematical analysis of the association between words.

In the context of source-code plagiarism detection the behavior of LSA is far less pre-

dictable than string-matching plagiarism detection tools. The behaviour of an LSA based

system depends heavily on the corpus itself and on the choice of parameters which are not

automatically adjustable. Furthermore as already mentioned, an LSA based system cannot

be evaluated by means of whether it can detect specific plagiarism attacks due to its depen-

dence on the corpus, and this makes it difficult to compare PlaGate with other plagiarism

detection tools which have a more predictable behavior.

The advantages of PlaGate are that it is language independent, and therefore there is

no need to develop any parsers or compilers in order for PlaGate to provide detection in

different programming languages. Furthermore, files do not need to parse or compile to be

included in the comparison process. In addition, most tools compute the similarity between

two files, whereas PlaGate computes the relative similarity between files. These are two

261

very different approaches which give different detection results.

String-based matching tools are expected to provide fewer false positives (i.e. better

precision) when compared to techniques based on information retrieval algorithms. How-

ever, the detection performance of string-matching tools tends to suffer from local confusion

and JPlag also has the disadvantage of not being able to include files that do not parse in the

comparison process. PlaGate and string matching tools are sensitive to different types of

attacks and this thesis proposes an algorithm for combining the two approaches to improve

detection of suspicious files.

One limitation to this study was concerned with the datasets used for conducting the

experiments. The only source-code datasets that were available to us for conducting the

experiments were those provided by academics in our department. It was also very time

demanding to devise an exhaustive list of similar file pairs for each dataset. Furthermore, we

had observed the behaviour of weighting schemes and dimensionality and found a pattern

of similar behaviour for the particular datasets we experimented with. However, this raises

the question,

• will particular pattern of behaviour change when using other source-code datasets

with different characteristics (e.g. different number of files and dictionary size)?

To answer the above question, one would need to conduct experiments using more

source-code corpora in order to investigate the behaviour of LSA’s parameter settings.

It would also be interesting to investigate which parameters work best by analysing the

262

corpora characteristics. For example, which parameters drive the effectiveness of source-

code similarity detection with LSA when using C++ corpora, or corpora written in other

programming languages? More open questions are discussed in Section 11.2 that follows.

11.2 Open Questions and Future Work

This Section brings together unanswered questions that were raised in previous chapters

and introduces new questions for future research.

Document pre-processing is a common procedure in information retrieval. The exper-

iments discussed in this thesis focus mainly on the impact of those pre-processing param-

eters specific to Java source-code, i.e. source-code comments, Java reserved terms (i.e.

keywords), and skeleton code. We have not performed stemming or stop-word removal on

the comments within the source-code files. This raises a question:

• what is the impact of applying stemming and/or stop-word removal to source-code

comments on the effectiveness of source-code similarity detection with LSA?

During pre-processing we have converted all uppercase letters to lower case, however,

we are aware that in programming languages such as Java, terms such as Book and book

may hold different semantic meanings, therefore semantics might be lost from converting

uppercase letters to lower case letters.

This leaves an open question:

263

• what is the impact of changing identifiers such as converting all upper-case to lower-

case letters on the retrieval performance of LSA?

Results from the small experiment described in Chapter 7 revealed that separating iden-

tifiers and keeping comments in the source-code increases noise in the data, and decreases

LSA performance. Performance of LSA is corpus dependent and also depends on choice of

parameters, and this raises two questions,

• what is the impact of separating identifiers comprising of multiple words, on the

effectiveness of source-code similarity detection with LSA, using large datasets? and

• what is the impact on computational efficiency for conducting such a task?.

In order to answer the above questions, one needs to perform detailed experiments and

statistical analysis investigating the performance of LSA when using different parameter

combinations.

Furthermore, symbols in source-code do carry meaning (e.g. y > 4 and y < 4), and by

removing those symbols during pre-processing, important meaning from files may also be

removed. This raises the question of,

• how to treat symbols in programming languages prior to applying LSA?

Possible ways of doing this would be to add the symbols to the term dictionary used to

create the term-by-file matrix. Another way of treating symbols would be to replace them

264

with words (e.g. replace symbol − with the word minus), or even to categorise symbols and

to replace each one with their category name (e.g. replace occurrences of the mathematical

symbols +,− with the word arithmetic).

Experiments with how to treat symbols, would be of greater importance when applying

LSA to languages such as Perl, which are heavily based on symbols. In addition to the

question of,

• how effective is LSA for detecting source-code plagiarism in languages other than

Java?

The following questions remain open,

• how effective is LSA for detecting source-code plagiarism in languages heavily based

on symbols (e.g. Perl)?

• what parameters drive the effectiveness of LSA for detecting source-code plagiarism

in symbol based languages?

• how can parameters be automatically optimised based on the corpus?

• what is the impact of changing identifiers such as correcting spelling mistakes, stem-

ming, etc. on the retrieval performance of LSA for source-code similarity detection?

The similarity measure applied to compute the distance between two vectors influences

the retrieval performance of LSA [143]. In the experiments described in this thesis, we

265

have used the cosine similarity measure to compute the distance between two vectors. This

leaves the open questions,

• how does the cosine measure compare to other distance measures for the task of

similar source-code file detection with LSA? and

• what is the impact of applying pivoted cosine document length normalisation [128]

on LSA effectiveness for similar source-code file detection?

With regards to dimensionality reduction in LSA, the number of dimensions impacts

on computational effort, and our results show that sometimes increasing the number of

dimensions can improve precision. This raises the question,

• how much precision should we compromise by adjusting dimensionality on improv-

ing computational effort?

To answer this question one would need to look at LSA’s precision and the computa-

tional effort of LSA when using various dimensionality settings. Both computational speed

and LSA performance (indicated by evaluation measures such as precision) are important,

and in the context of applying LSA to the task of source-code similarity detection, care

must be taken not to use too many dimensions if it means slightly improving performance.

PlaGate is in prototype mode and future work includes integrating the tool within Sher-

lock [62]. In addition, work is planned to investigate parameter settings for languages other

than Java, and to adjust PlaGate to support languages other than Java. Further future work

266

also includes research into the automatic adjustment of pre-processing parameters in order

to improve the detection performance of PlaGate.

267

Bibliography

[1] A. Ahtiainen, S. Surakka, and M. Rahikainen. Plaggie: Gnu-licensed source code

plagiarism detection engine for Java exercises. In Baltic Sea ’06: Proceedings of the

6th Baltic Sea Conference on Computing Education Research, pages 141–142, New

York, NY, USA, 2006. ACM.

[2] A. Aiken. Moss: A system for detecting software plagiarism. Software:

www.cs.berkeley.edu/ aiken/moss.html, accessed: July 2008.

[3] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized

matching. Information Processing Letters, 49(3):111–115, 1994.

[4] J. Aslam, E. Yilmaz, and V. Pavlu. A geometric interpretation of r-precision and its

correlation with average precision. In SIGIR ’05: Proceedings of the 28th Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 573–574, New York, NY, USA, 2005. ACM.

268

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press /

Addison-Wesley, 1999.

[6] B. Baker. On finding duplication and near-duplication in large software systems. In

WCRE ’95: Proceedings of the Second Working Conference on Reverse Engineering,

pages 86–95, Washington, DC, USA, 1995. IEEE Computer Society.

[7] B. Baker. Parameterized pattern matching by Boyer-Moore type algorithms. In

SODA ’95: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 541–550, Philadelphia, PA, USA, 1995. Society for Industrial and

Applied Mathematics.

[8] M. Bartlett. Tests of significance in factor analysis. British Journal of Psychology,

3:77–85, 1950.

[9] J. Beasley. The impact of technology on plagiarism prevention and detection: Re-

search process automation, a new approach for prevention. In Plagiarism: Preven-

tion, Practice and Policy Conference, pages 23–29, St James Park, Newcastle upon

Tyne, UK, 2004. Newcastle: Northumbria University Press.

[10] B. Belkhouche, A. Nix, and J. Hassell. Plagiarism detection in software designs. In

ACM-SE 42: Proceedings of the 42nd Annual Southeast Regional Conference, pages

207–211, New York, NY, USA, 2004. ACM.

[11] R. Bennett. Factors associated with student plagiarism in a post-1992 University.

Journal of Assessment and Evaluation in Higher Education, 30(2):137–162, 2005.

269

[12] H. Bergsten. JavaServer Pages. O’Reilly Media, 3rd edition edition, 2003.

[13] M. Berry. Large-scale sparse singular value computations. The International Journal

of Supercomputer Applications, 6(1):13–49, Spring 1992.

[14] M. Berry and M. Browne. Understanding Search Engines: Mathematical Modeling

and Text Retrieval (Software, Environments, Tools), Second Edition. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005.

[15] M. Berry, Z. Drmac, and E. Jessup. Matrices, vector spaces, and information re-

trieval. SIAM Review, 41(2):335–362, 1999.

[16] M. Berry, S. Dumais, and G. O’Brien. Using linear algebra for intelligent information

retrieval. Technical Report UT-CS-94-270, University of Tennessee Knoxville, TN,

USA, 1994.

[17] M. Bjorklund and C. Wenestam. Academic cheating: frequency, methods, and

causes. In European Conference on Educational Research, Lahti, Finland, 1999.

[18] S. Brin, J. Davis, and H. Garcı́a Molina. Copy detection mechanisms for digital

documents. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD International

conference on Management of Data, pages 398–409, New York, NY, USA, 1995.

ACM.

[19] A. Britt, P. Wiemer-Hastings, A. Larson, and C. Perfetti. Using intelligent feedback

to improve sourcing and integration in students’ essays. International Journal of

Artificial Intelligence in Education, 14:359–374, 2004.

270

[20] A. Broder. On the resemblance and containment of documents. Sequences, 00:21,

1997.

[21] A. Broder. Identifying and filtering near-duplicate documents. In CPM ’00: Pro-

ceedings of the 11th Annual Symposium on Combinatorial Pattern Matching, pages

1–10, London, UK, 2000. Springer-Verlag.

[22] J. Carroll and J. Appleton. Plagiarism: A good practice guide. World Wide Web

electronic publication: www.jisc.ac.uk, accessed: July 2001.

[23] R. Cattell. The scree test for the number of factors. Multivariate Behavioral Re-

search, 1:245–276, 1966.

[24] C. Chen, N. Stoffel, M. Post, C. Basu, D. Bassu, and C. Behrens. Telcordia LSI

engine: Implementation and scalability issues. In RIDE ’01: Proceedings of the

11th International Workshop on research Issues in Data Engineering, pages 51–58,

Washington, DC, USA, 2001. IEEE Computer Society.

[25] P. Clough. Plagiarism in natural and programming languages: An overview of cur-

rent tools and technologies. Technical Report CS-00-05, University of Sheffield,

2000.

[26] G. Cosma and M. Joy. Source-code plagiarism: A U.K academic perspective. Re-

search Report No. 422, Department of Computer Science, University of Warwick,

2006.

271

[27] G. Cosma and M. Joy. Source-code plagiarism: A U.K academic perspective. In

Proceedings of the 7th Annual Conference of the HEA Network for Information and

Computer Sciences, HEA Network for Information and Computer, 2006.

[28] G. Cosma and M. Joy. Towards a definition of source-code plagiarism. IEEE Trans-

actions On Education, 51:195–200, 2008.

[29] G. Cosma and M. Joy. PlaGate: An approach to automatically detecting and investi-

gating source-code plagiarism. IEEE Transactions On Computers, May 2008. Under

Review.

[30] F. Culwin, A. MacLeod, and T. Lancaster. Source code plagiarism in U.K H.E

computing schools, issues, attitudes and tools. Technical Report SBU-CISM-01-02,

South Bank University, London, September 2001.

[31] W. Decoo. Crisis on campus: Confronting academic misconduct. MIT Press Cam-

bridge, England, 2002.

[32] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman. Indexing by

latent semantic analysis. Journal of the American Society of Information Science,

41(6):391–407, 1990.

[33] G. Denhière and B. Lemaire. A computational model of children’s semantic mem-

ory. In Proceedings of the 26th Annual Meeting of the Cognitive Science Society

(CogSci’2004), pages 297–302. Lawrence Erlbaum Associates, 2004.

272

[34] S. Dey and A. Sobhan. Impact of unethical practices of plagiarism on learning,

teaching and research in higher education: Some combating strategies. In 7th Inter-

national Conference on Information Technology Based Higher Education and Train-

ing ITHET ’06, pages 388–393, 2006.

[35] M. Dick, J. Sheard, C. Bareiss, J. Carter, T. Harding D. Joyce, and C. Laxer. Ad-

dressing student cheating: definitions and solution. SIGCSE Bulletin, 35(2):172–184,

2003.

[36] C. Ding. A similarity-based probability model for latent semantic indexing. In Re-

search and Development in Information Retrieval, pages 58–65, 1999.

[37] J. Donaldson, A. Lancaster, and P. Sposato. A plagiarism detection system. SIGCSE

Bulletin, 13(1):21–25, 1981.

[38] S. Dumais. Improving the retrieval of information from external sources. Behavior

Research Methods, Instruments and Computers, 23(2):229–236, 1991.

[39] S. Dumais. LSI meets TREC: A status report. In Text REtrieval Conference, pages

137–152, 1992.

[40] S. Dumais, G. Furnas, T. Landauer, S. Deerwester, and R. Harshman. Using latent

semantic analysis to improve access to textual information. In CHI ’88: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, pages 281–285,

New York, NY, USA, 1988. ACM.

273

[41] L. Ferrè. Selection of components in principal component analysis: A comparison

of methods. Computational Statistics and Data Analysis, 19(6):669–682, 1995.

[42] A. Flint, S. Clegg, and R. Macdonald. Exploring staff perceptions of student plagia-

rism. Journal of Further and Higher Education, 30:145–156, 2006.

[43] P. Foltz. Using latent semantic indexing for information filtering. SIGOIS Bulletin,

11(2-3):40–47, 1990.

[44] K. Fredriksson and M. Mozgovoy. Efficient parameterized string matching. Infor-

mation Processing Letters, 100(3):91–96, 2006.

[45] G. Furnas, T. Landauer, L. Gomez, and S. Dumais. Statistical semantics: analysis

of the potential performance of keyword information systems. Human Factors in

Computer Systems, pages 187–242, 1984.

[46] D. Gitchell and N. Tran. Sim: a utility for detecting similarity in computer programs.

SIGCSE Bulletin, 31(1):266–270, 1999.

[47] R. Gravina, M. Yanagisawa, and K. Akahori. Development and evaluation of a visual

assesment asistant using latent semantic analysis and cluster analysis. In Proceedings

of International Conference on Computers in Education, pages 963–968, 2004.

[48] D. Grossman and O. Frieder. Information Retrieval: Algorithms and Heuristics (The

Information Retrieval Series)(2nd Edition). Springer, December 2004.

274

[49] M. Halstead. Natural laws controlling algorithm structure? ACM SIGPLAN Notices,

7(2):19–26, 1972.

[50] M. Halstead. Elements of Software Science (Operating and programming systems

series). Elsevier Science, New York, USA, 1977.

[51] S. Hannabuss. Contested texts: issues of plagiarism. Library Management,

22(6/7):311–318, 2001.

[52] D. Harman. An experimental study of factors important in document ranking. In

SIGIR ’86: Proceedings of the 9th Annual International ACM SIGIR conference on

Research and Development in Information Retrieval, pages 186–193, New York, NY,

USA, 1986. ACM.

[53] T. Hoad and J. Zobel. Methods for identifying versioned and plagiarized documents.

Journal of the American Society for Information Science and Technology, 54(3):203–

215, 2003.

[54] J. Horn. A rationale and test for the number of factors in factor analysis. Psychome-

trika, 30:179–185, 1965.

[55] R. Hubbard and S. Allen. An empirical comparison of alternative methods for prin-

cipal component extraction. Journal of Business Research, 15(2):173–190, 1987.

[56] R. Idury and A. Schaffer. Multiple matching of parameterized patterns. In CPM

’94: Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching,

pages 226–239, London, UK, 1994. Springer-Verlag.

275

[57] T. Jenkins and S. Helmore. Coursework for cash: the threat from on-line plagiarism.

In Proceedings of the 7th Annual Conference of the Higher Education Academy Net-

work for Information and Computer Sciences, pages 121–126, Dublin, Ireland, 29-31

August 2006.

[58] E. Jessup and J. Martin. Taking a new look at the latent semantic analysis approach

to information retrieval. Computational information retrieval, pages 121–144, 2001.

[59] E. Jones. Metrics based plagiarism monitoring. Journal of Computing Sciences in

Colleges, 16(4):253–261, 2001.

[60] K. Jones. A statistical interpretation of term specificity and its application in retrieval.

Document Retrieval Systems, pages 132–142, 1988.

[61] K. Joreskog. Some contributions to maximum likelihood in factor analysis. Psy-

chometrika, 32(4):433–482, 1967.

[62] M. Joy and M. Luck. Plagiarism in programming assignments. IEEE Transactions

on Education, 42(1):129–133, 1999.

[63] jspmaker. Jspmaker v1.0.1. Website: http://www.hkvstore.com/jspmaker/, accessed:

July 2008.

[64] H. Kaiser. The application of electronic computers to factor analysis. Educational

and Psychological Measurement, 20:141–151, 1960.

276

[65] T. Kakkonen, N. Myller, E. Sutinen, and J. Timonen. Automatic essay grading with

probabilistic latent semantic analysis. In Proceedings of the 2nd Workshop on Build-

ing Educational Applications Using Natural Language Processing at the 43rd An-

nual Meeting of the Association for Computational Linguistics, pages 29–36, Ann

Arbor, Michigan, USA, 2005.

[66] T. Kakkonen, N. Myller, E. Sutinen, and J. Timonen. Comparison of dimension

reduction methods for automated essay grading. Natural Language Engineering,

1:1–16, 2005.

[67] T. Kakkonen and E. Sutinen. Automatic assessment of the content of essays based

on course materials. In Proceedings of the International Conference on Information

Technology: Research and Education 2004 (ITRE 2004), pages 126–130, London,

UK, 2004.

[68] T. Kakkonen, E. Sutinen, and J. Timonen. Noise reduction in LSA-based essay as-

sessment. In Proceedings of the 5th WSEAS International Conference on Simulation,

Modeling and Optimization (SMO’05), pages 184–189, Corfu Island, Greece, 2005.

[69] J. Kasprzak and M. Nixon. Cheating in cyberspace: Maintaining quality in online

education. Association for the Advancement of Computing In Education, 12(1):85–

99, 2004.

[70] S. Kawaguchi, P. Garg, M. Matsushita, and K. Inoue. Automatic categorization algo-

rithm for evolvable software archive. In IWPSE ’03: Proceedings of the 6th Interna-

277

tional Workshop on Principles of Software Evolution, pages 195–200, Washington,

DC, USA, 2003. IEEE Computer Society.

[71] S. Kawaguchi, P. Garg, M. Matsushita, and K. Inoue. Mudablue: An automatic cat-

egorization system for open source repositories. In APSEC ’04: Proceedings of the

11th Asia-Pacific Software Engineering Conference, pages 184–193, Washington,

DC, USA, 2004. IEEE Computer Society.

[72] S. Kawaguchi, P. Garg, M. Matsushita, and K. Inoue. MUDABlue: An automatic

categorization system for open source repositories. In Proceedings of the 11th Asia

Pacific Software Engineering Conference (APSEC 2004), pages 184–193, November

2004.

[73] P. Keith-Spiegel, B. G. Tabachnick, B. E. Whitley, and J. Washburn. Why professors

ignore cheating: Opinions of a national sample of psychology instructors. Ethics and

Behavior, 8(3):215–227, 1998.

[74] E. Kintsch, D. Steinhart, G. Stahl, and the LSA Research Group. Developing sum-

marization skills through the use of LSA-based feedback. Interactive Learning En-

vironments, 8(2):87–109, 2000.

[75] A. Kontostathis. Essential dimensions of latent semantic indexing (lsi). In HICSS

’07: Proceedings of the 40th Annual Hawaii International Conference on System

Sciences, page 73, Washington, DC, USA, 2007. IEEE Computer Society.

278

[76] A. Kontostathis and W. Pottenger. A framework for understanding latent semantic

indexing (LSI) performance. Information Processing and Management, 42(1):56–

73, 2006.

[77] A. Kuhn, S. Ducasse, and T. Girba. Enriching reverse engineering with semantic

clustering. In WCRE ’05: Proceedings of the 12th Working Conference on Reverse

Engineering, pages 133–142, Washington, DC, USA, 2005. IEEE Computer Society.

[78] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic clustering: Identifying topics in source

code. Information and Software Technology, 49(3):230–243, 2007.

[79] T. Lancaster and F. Culwin. Classifications of plagiarism detection engines. Italics,

4(2), 2005.

[80] T. Landauer and S. Dumais. A solution to Plato’s problem: The latent semantic

analysis theory of the acquisition, induction, and representation of knowledge. Psy-

chological Review, 104(2):211–240, 1997.

[81] T. Landauer, P. Foltz, and D. Laham. Introduction to latent semantic analysis. Dis-

course Processes, 25:259–284, 1998.

[82] T. Landauer, D. Laham, and M. Derr. From paragraph to graph: Latent semantic

analysis for information visualization. In Proceedings of the National Academy of

Sciences of the United States of America, volume 101, pages 5214–5219, April 2004.

279

[83] T. Landauer, D. Laham, and P. Foltz. Learning human-like knowledge by singular

value decomposition: A progress report. In Advances in Neural Information Pro-

cessing Systems, volume 10. The MIT Press, 1998.

[84] T. Landauer, D. Laham, B. Rehder, and M. Schreiner. How well can passage meaning

be derived without using word order: A comparison of latent semantic analysis and

humans. In COGSCI-97, pages 412–417, Stanford, CA, 1997. Lawrence Erlbaum.

[85] S. Lappin. An introduction to formal semantics. In M. Aronoff and J. Rees-Miller,

editors, The Handbook of Linguistics, pages 369–393. Blackwell, Oxford, 2000.

[86] P. Larkham and S. Manns. Plagiarism and its treatment in higher education. Journal

of Further and Higher Education, 26(4):339–349, 2002.

[87] K. Lochbaum and L. Streeter. Comparing and combining the effectiveness of latent

semantic indexing and the ordinary vector space model for information retrieval.

Information Processing and Management: an International Journal, 25(6):665–676,

1989.

[88] C. Lundquist, D. Grossman, and O. Frieder. Improving relevance feedback in the

vector space model. In CIKM ’97: Proceedings of the Sixth International Conference

on Information and Knowledge Management, pages 16–23, New York, NY, USA,

1997. ACM.

280

[89] M. Lungu, A. Kuhn, T. Gı̂rba, and M. Lanza. Interactive exploration of semantic

clusters. In 3rd International Workshop on Visualizing Software for Understanding

and Analysis (VISSOFT 2005), pages 95–100, 2005.

[90] E. Tempero M. Lin, R. Amor. A Java reuse repository for eclipse using LSI. In

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC06).

IEEE, 2006.

[91] J. Maletic and A. Marcus. Supporting program comprehension using semantic and

structural information. In International Conference on Software Engineering, pages

103–112, 2001.

[92] J. Maletic and N. Valluri. Automatic software clustering via latent semantic analysis.

In ASE ’99: Proceedings of the 14th IEEE International Conference on Automated

Software Engineering, page 251, Washington, DC, USA, 1999. IEEE Computer So-

ciety.

[93] U. Manber. Finding similar files in a large file system. In Proceedings of the USENIX

Winter 1994 Technical Conference, pages 1–10, San Fransisco, CA, USA, 17–21

1994.

[94] A. Marcus. Semantic-driven program analysis. PhD thesis, Kent State University,

Kent, OH, USA, 2003.

[95] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An information retrieval ap-

proach to concept location in source code. In Proceedings of the 11th IEEE Working

281

Conference on Reverse Engineering (WCRE2004), Delft, The Netherlands, pages

214–223, November 9-12 2001.

[96] S. Marshall and M. Garry. How well do students really understand plagiarism? In

Balance, Fidelity, Mobility: Proceedings of the 2005 ASCILITE Conference, Bris-

bane, Australia, 2005.

[97] B. Martin. Plagiarism: a misplaced emphasis. Journal of Information Ethics,

3(2):36–47, 1994.

[98] D. McCabe, L. Trevino, and K. Butterfield. Cheating in academic institutions: A

decade of research. Ethics and Behavior, 11(3):219–232, 2001.

[99] L. Moussiades and A. Vakali. PDetect: A clustering approach for detecting plagia-

rism in source code datasets. The Computer Journal, 48(6):651–661, 2005.

[100] M. Mozgovoy. Desktop tools for offline plagiarism detection in computer programs.

Informatics in Education, 5(1):97–112, 2006.

[101] M. Mozgovoy. Enhancing Computer-Aided Plagiarism Detection. Dissertation, De-

partment of Computer Science, University of Joensuu, Department of Computer Sci-

ence, University of Joensuu, P.O.Box 111, FIN-80101 Joensuu, Finland, November

2007.

[102] M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen. Fast plagiarism

detection system. Lecture Notes in Computer Science, 3772/2005:267–270, 2005.

282

[103] M. Mozgovoy, S. Karakovskiy, and V. Klyuev. Fast and reliable plagiarism detection

system. In Frontiers in Education Conference - Global eEngineering: Knowledge

without Borders, pages S4H–11–S4H–14, 2007.

[104] S. Myers. Questioning author(ity): ESL/EFL, science, and teaching about plagia-

rism. Teaching English as a Second or Foreign Language (TESL-EJ), 3(2):11–20,

1998.

[105] S. Nadelson. Academic misconduct by university students: Faculty perceptions and

responses. Plagiary, 2(2):1–10, 2007.

[106] P. Nakov. Latent semantic analysis of textual data. In CompSysTech ’00: Proceedings

of the Conference on Computer systems and Technologies, pages 5031–5035, New

York, NY, USA, 2000. ACM.

[107] P. Nakov, A. Popova, and P. Mateev. Weight functions impact on LSA performance.

In Proceedings of the EuroConference Recent Advances in Natural Language Pro-

cessing (RANLP’01), pages 187–193, 2001.

[108] K. Ottenstein. An algorithmic approach to the detection and prevention of plagiarism.

ACM SIGCSE Bulletin, 8(4):30–41, 1976.

[109] K. Ottenstein. A program to count operators and operands for ansi fortran modules.

Computer Sciences Report TR 196, Purdue University, 1976.

[110] D. Perez, A. Gliozzo, C. Strapparava, E. Alfonseca, P. Rodrguez, and B. Magnini.

Automatic assessment of students’ free-text answers underpinned by the combina-

283

tion of a bleu-inspired algorithm and latent semantic analysis. In 18th International

Conference of the Florida Artificial Intelligence Research Society (FAIRS), pages

358–363, Florida, U.S.A., 2005. American Association for Artificial Intelligence

(AAAI).

[111] C. Perfetti. The limits of co-occurrence: tools and theories in language research.

Discourse Processes, 25:363–377, 1998.

[112] B. Pincombe. Comparison of human and LSA judgements of pairwise document

similarities for a news corpus. Research Report No. AR-013-177, Defence Science

and Technology Organisation - Australia, 2004.

[113] plagiarism. (n.d.). Dictionary.com unabridged v 1.1. Webpage:

http://dictionary.reference.com/browse/plagiarism, accessed: April 2008.

[114] G. Plotkin. A structural approach to operational semantics. Journal of Logic and

Algebraic Programming (JLAP), 60–61:17–139, 2004.

[115] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set of

programs with JPlag. Journal of Universal Computer Science, 8(11):1016–1038,

2002.

[116] G. Rambally and M. Sage. An inductive inference approach to plagiarism detection

in computer program. In In Proceedings of the National Educational Computing

Conference, pages 22–29, Nashville, Tennesse, 1990.

284

[117] B. Rehder, M. Schreiner, M. Wolfe, D. Lahaml, W. Kintsch, and T. Landauer. Us-

ing latent semantic analysis to assess knowledge: Some technical considerations.

Discourse Processes, 25:337–354, 1998.

[118] S. Robinson and M. Soffa. An instructional aid for student programs. In SIGCSE ’80:

Proceedings of the Eleventh SIGCSE Technical Symposium on Computer Science

Education, pages 118–129, New York, NY, USA, 1980. ACM.

[119] L. Salmela and J. Tarhio. Sublinear algorithms for parameterized matching. Lecture

Notes in Computer Science, 4009/2006:354–364, 2006.

[120] G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18(11):613–620, 1975.

[121] P. Scanlon and D. Neumann. Internet plagiarism among college students. Journal of

College Student Development, 43(3):374–85, 2002.

[122] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing: local algorithms for doc-

ument fingerprinting. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, pages 76–85, New York, NY,

USA, 2003. ACM.

[123] D. Schmidt. Denotational semantics: a methodology for language development.

William C. Brown Publishers, Dubuque, IA, USA, 1986.

285

[124] H. Schütze. Dimensions of meaning. In Supercomputing ’92: Proceedings of the

1992 ACM/IEEE conference on Supercomputing, pages 787–796, Los Alamitos, CA,

USA, 1992. IEEE Computer Society Press.

[125] J. Sheard, A. Carbone, and M. Dick. Determination of factors which impact on it

students’ propensity to cheat. In Proceedings of the Fifth Australasian Computing

Education Conference, pages 119–126, Adelaide, Australia, 2003.

[126] N. Shivakumar and H. Garcı́a Molina. Scam: A copy detection mechanism for digital

documents. In Proceedings of the Second Annual Conference on the Theory and

Practice of Digital Libraries, June 1995.

[127] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In

Research and Development in Information Retrieval, pages 21–29, 1996.

[128] A. Singhal, G. Salton, M. Mitra, and C. Buckley. Document length normalization.

Technical report, Cornell University, Ithaca, NY, USA, 1995.

[129] K. Slonneger and B. Kurtz. Formal Syntax and Semantics of Programming Lan-

guages: A Laboratory Based Approach. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1995.

[130] D. Steinhart. Summary street: An intelligent tutoring system for improving student

writing through the use of latent semantic analysis. Phd dissertation, Department of

Psychology, University of Colorado, Boulder, 2001.

286

[131] R. Story. An explanation of the effectiveness of latent semantic indexing by means of

a bayesian regression model. Information Processing and Management, 32(3):329–

344, 1996.

[132] S. Sudarsun, P. Venkatesh, and K. Sathish. Role of weighting on TDM in improvising

performance of LSA on text data. In Proceedings of the IEEE INDICON, 2006.

[133] W. Sutherland-Smith. Pandora’s box: academic perceptions of student plagiarism in

writing. Journal of English for Academic Purposes, 4(1):83–95, 2005.

[134] P. Thomas, D. Haley, A. De Roeck, and M. Petre. E-assessment using latent se-

mantic analysis in the computer science domain: A pilot study. In Erhard Hin-

richs Lothar Lemnitzer, Detmar Meurers, editor, COLING 2004 eLearning for Com-

putational Linguistics and Computational Linguistics for eLearning, pages 38–44,

Geneva, Switzerland, August 28 2004. COLING.

[135] J. Tukey. Exploratory Data Analysis (Addison-Wesley Series in Behavioral Science).

Addison Wesley, London, 1977.

[136] W. Velicer. Determining the number of components from the matrix of partial corre-

lations. Psychometrika, 41:321–327, 1976.

[137] K. Verco and M. Wise. Plagiarism à la mode: A comparison of automated systems

for detecting suspected plagiarism. The Computer Journal, 39(9):741–750, 1996.

[138] K. Verco and M. Wise. Software for detecting suspected plagiarism: Comparing

structure and attribute-counting systems. In John Rosenberg, editor, Proceedings

287

of the First Australian Conference on Computer Science Education, pages 81–88,

Sydney, Australia, July 3–5 1996. SIGCSE, ACM.

[139] G. Whale. Identification of program similarity in large populations. The Computer

Journal, 33(2):140–146, 1990.

[140] D. Whittington and H. Hunt. Approaches to the computerized assessment of free text

responses. In M. Danson and R. Sherrat, editors, Proceedings of the 3rd Annual CAA

Conference, pages 207–219, Loughborough, UK, 1999. Loughborough University.

[141] P. Wiemer-Hastings. How latent is latent semantic analysis? In Proceedings of the

Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, pages

932–941. Morgan Kaufmann, July 31–August 6 1999.

[142] P. Wiemer-Hastings, K. Wiemer-Hastings, and A. Graesser. Improving an intelligent

tutor’s comprehension of students with Latent Semantic Analysis. In S. Lajoie and

M. Vivet, editors, Artificial Intelligence in Education, pages 535–542, Amsterdam,

1999. IOS Press.

[143] F. Wild, C. Stahl, G. Stermsek, and G. Neumann. Parameters driving effectiveness

of automated essay scoring with LSA. In Myles Danson, editor, Proceedings of the

9th International Computer Assisted Assessment Conference (CAA), pages 485–494,

Loughborough, UK, July 2005. Professional Development.

[144] M. Wise. Yap3: improved detection of similarities in computer program and other

texts. SIGCSE Bulletin, 28(1):130–134, 1996.

288

[145] M. Wolfe, M. Schreiner, R. Rehder, D. Laham, P. Foltz, T. Landauer, and W. Kintsch.

Learning from text: Matching reader and text by latent semantic analysis. Discourse

Processes, 25:309–336, 1998.

[146] L. Yi, L. Haiming, L. Zengxiang, and W. Pu. A simplified latent semantic indexing

approach for multi-linguistic information retrieval. In In Proceedings of the 17th

Pacific Asia Conference on Language, Information and Computation (PACLIC17),

pages 69–79, Sentosa, Singapore, 2003. COLIPS Publications.

[147] D. Zeimpekis and E. Gallopoulos. Design of a MATLAB toolbox for term-document

matrix generation. Technical Report HPCLAB-SCG, Computer Engineering and

Informatics Department, University of Patras, Greece, February 2005.

[148] H. Zha and H. Simon. A subspace-based model for latent semantic indexing in in-

formation retrieval. In In Proceedings of the Thirteenth Symposium on the Interface,

pages 315–320, 1998.

[149] W. Zwick and W. Velicer. Factors influencing four rules for determining the number

of components to retain. Multivariate Behavioral Research, 17(2):253–269, 1982.

[150] W. Zwick and W. Velicer. Factors influencing five rules for determining the number

of components to retain. Psychologica Bulleti, 99:432–442, 1986.

289

