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An approach to statistical estimation of cascading
failure propagation in blackouts

Kevin R. Wierzbicki Ian Dobson

Abstract— Load power is progressively shed as large, cascading
blackouts of electric power transmission systems evolve. We pro-
pose a statistical estimator to measure the extent to which the load
shedding is propagated. The estimator uses data from a series of
simulated blackouts. The estimator is derived from a continuous
state branching process that is a high level probabilistic model
of the cascading process. The estimator is tested on failure data
generated by a power system model of cascading line outages.
The estimates for propagation of load shed are consistent with
estimates for the propagation of line outages. Estimating the
initial load shed and the propagation of load shed leads to
estimates of the probability distribution of blackout size. This
work opens up possibilities of monitoring infrastructure failures
to quantify the vulnerability to cascading and the overall risk of
large cascading failures.

I. INTRODUCTION

Blackouts in electric power transmission systems become
widespread by a cascading process in which power system
components are progressively disconnected and customer load
power is progressively shed (disconnected). For example, the
August 2003 blackout spread to a sizable region of Northeast-
ern America by cascading [22].

We think of a cascading blackout as occuring in stages, with
an initial amount of load shed in the first stage and further
amounts of load shed in subsequent stages. We are particu-
larly interested in estimating from simulated blackout data a
quantity λ that describes the extent to which load shedding
propagates in the subsequent stages. If the initial load shed
is not very large and the load shedding propagates weakly (λ
small), then it is likely that the blackout will be small. On the
other hand, if load shedding propagates strongly (λ > 1), then
it is likely that the blackout can become large. Moreover, we
show how to estimate the probability distribution of blackout
size from λ and other estimated quantities.

The ability to efficiently compute the probability distribution
of blackout size from data is significant. Since risk is prob-
ability multiplied by cost, the blackout risk as a function of
blackout size can be obtained from the probability distribution
of blackout size and knowledge of the blackout cost. Efficient
estimation of overall risk of blackouts of all sizes from
simulated or real blackout data is an overall goal and this
paper advances towards this goal.

We illustrate and begin to test the estimators using blackout
data from the OPA model [3] of cascading failure blackouts.
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The estimators are tested by comparing the probability distri-
bution of blackout size predicted by the estimators with the
empirical probability distribution of blackout size produced by
exhaustively running the OPA model.

In related previous work [12], we proposed an efficient
estimator for propagation of transmission line outages in
blackouts and predicted the distribution of the total number
of lines outaged from this estimator and an estimate of the
initial number of line outages. For the case of line outages, the
cascading process was modeled by a Galton-Watson branching
process [16], [2]. In this paper, we similarly apply a branching
process model to the load power shed. The difference is that
numbers of line outages are nonnegative integers whereas load
power shed is a continuously varying nonnegative number.
Therefore for load power shed we use a continuous state
branching process model. The theory for continuous state
branching processes [17], [21], [14] closely parallels the theory
for Galton-Watson branching process, but the computation of
the probability distribution of blackout size is more compli-
cated.

We discuss reasons for using branching processes as high-
level models for cascading blackouts. Branching processes are
an obvious stochastic model to capture the gross features of
cascading blackouts because they have been applied to other
cascading processes such as genealogy, epidemics and cosmic
rays [16]. Our idealized probabilistic model of cascading
failure [13] describes a general cascading process in which
component failures weaken and further load the system so
that subsequent failures are more likely. We have shown that
this cascade model can be approximated by a Galton-Watson
branching process [10], [8]. Moreover, some features of this
cascade model are consistent with results from cascading
failure simulations [4], [9], [19]. All of these models can
show criticality and power law regions in the distribution
of failure sizes or blackout sizes consistent with NERC data
[6]. Initial work fitting branching process models to observed
blackout data is in [11]. The first suggestion to apply branching
processes to cascading blackouts appears to be in [10] and
subsequent applications to blackouts appear in [9], [11], [12].

In the continuous state branching process the load shed is
produced in stages. The propagation of the load shed is deter-
mined by the offspring distribution, which is the probability
distribution of load shed that would occur if there was one unit
of load shed in the previous stage. The mean of the offspring
distribution is λ. It is also the case that if the amount of load
shed in stage n is Xn, then the mean load shed in stage n+1
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is λXn.
The eventual behavior of the branching process is governed

by the parameter λ. In the subcritical case of λ < 1, the
failures will die out and the mean load shed in each stage
decreases exponentially. In the supercritical case of λ > 1,
although it possible for the process to die out, often the load
shed increases exponentially until the system size or saturation
effects are encountered. The estimator for λ proposed in
this paper is not restricted to subcritical λ, but the method
for computing the probability distribution of blackout size is
restricted to subcritical λ. We do not test the estimator for
supercritical or saturating cases.

One direct way to estimate the probability distribution of
load shed is simply to run the simulation or record real
blackout data until sufficient data is accumulated to estimate
the probability distribution of blackout sizes. This is straight-
forward but requires a large number of simulations or an
impractically long observation time. If the distribution of line
failures is near criticality and has a power law character,
the probability distribution requires many observations to
determine its form for the larger blackouts. For example, it
can take of the order of 1000 to 10000 real or simulated
blackouts to accurately estimate the probability distribution of
blackout size. The near critical case is pertinent because there
is some evidence and explanation indicating that the North
American power transmission system is designed and operated
near criticality [6], [5].

If one assumes the continuous state branching process
model, one can compute the probability distribution of the load
shed from the initial load shed distribution and the offspring
distribution. In practice we assume a form for the initial
and offspring distributions and estimate their parameters. This
approach for estimating the distribution of load shed is much
faster because the initial load shed distribution and the off-
spring distribution do not have heavy tails. That is, estimating
the offspring and initial distributions and then computing the
probability distribution of blackout size is much more efficient
than directly estimating the probability distribution of blackout
size.

II. CONTINUOUS STATE BRANCHING PROCESS

This section explains continuous state branching processes
informally and states formulas for application in the following
sections. See [17], [21] for a systematic account of continuous
state branching processes.

The branching process starts with an initial amount of load
shed X0 in stage 0 and proceeds to generate a sequence of load
shed amounts X1, X2, . . . in stages 1, 2, . . . respectively. The
offspring distribution H(x) is defined to be the probability
density function (pdf) of load shed in any stage if the load
shed in the preceding stage is 1. We write X for a random
variable with pdf H(x). The expected value of X is λ.

We will first assume that the initial load shed X0 is a
constant. The load X1 shed in stage 1 is a random variable
determined by the offspring distribution H(x) in the following
way: In the special case of X0 = 1, X1 has pdf H(x).
In general, X1 has pdf (H(x))∗X0 where (H(x))∗X0 is the

convolution of H(x) with itself X0 times and the pdf of the
sum of X0 independent copies of X . (The computation of
(H(x))∗X0 using Laplace transforms when X0 is a noninteger
positive real number is discussed below.) X1 is realized
by sampling from (H(x))∗X0 . Then the load X2 shed in
stage 2 has pdf (H(x))∗X1 that is the pdf of the sum of
X1 independent copies of X . X2 is realized by sampling
from (H(x))∗X1 . Then the load X3 shed in stage 3 has pdf
(H(x))∗X2 , and so on.

The computation of these pdfs is simplified by working in
terms of their cumulant generating functions (cgf’s). The cgf
h(s) of the offspring distribution is the negative logarithm of
the Laplace transform of H(x):

h(s) = − ln
∫ ∞

0

e−sxH(x)dx = − lnEe−sX

The Laplace transform of (H(x))∗X0 is the Laplace transform
of H(x) to the power X0:

Ee−sX1 = (Ee−sX)X0

Hence the cgf of the load X1 shed in stage 1 is

h1(s) = − lnEe−sX1 = − ln
(
(Ee−sX)X0

)
= X0h(s)

The cgf of the load X2 shed in stage 2 is

h2(s) = − lnEe−sX2

= − lnE[E[(e−sX)X1 |X1]]
= − lnE[e−h(s)X1 ]
= h1(h(s)) = X0h(h(s)) (1)

Similar reasoning shows that the cgf of X3 is X0h(h(h(s)))
and that the cgf of Xn is

hn(s) = − lnEe−sXn = X0h
(n)(s) (2)

where h(n) is the n-fold functional composition of h.
As the cascade proceeds, the load shed accumulates and the

running total of the shed at stage n is given by

Yn = X0 + X1 + . . . + Xn.

If λ < 1, the cascade will die out and Yn converges to the
total load shed or blackout size

Y = lim
n→∞

Yn.

Assuming the subcritical case λ < 1, the distribution of Y can
be computed from the offspring distribution. First consider the
case of X0 = 1 and let k•(s) be the cgf of Y when X0 = 1.
Then k•(s) satisfies the implicit equation

k•(s) = s + h(k•(s)). (3)

If we assume the subcritical case of λ < 1, (3) can be solved
by the Lagrange inversion method [23]:

k•(s) = s +
∞∑

a=1

1
a!

da−1

dsa−1
(h(s))a (4)

In practice we use 15 terms of the infinite sum in (4) to obtain
a good approximation for k•(s).
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Equation (3) can be understood as follows. Consider Y −1 =
Y − X0 = X1 + X2 + X3 + .... If X1 = 1, then the cgf of
Y − 1 is k•(s). If X1 were a constant, then the cgf of Y − 1
would be X1k•(s). This follows from the independence of
the branching process generated by different portions of X1.
For example, if X1 = 2, Y − 1 can be regarded as being
produced by the sum of two independent branching processes
with X1 = 1 so that the cgf of Y −1 is 2k•(s). If X1 has cgf
h(s), as it does when X0 = 1, then the cgf of Y − 1 is

− lnEe−s(Y −1) = − lnE[E[(e−s(Y −1)|X1]]
= − lnE[eX1k•(s)]
= h(k•(s)) (5)

Now (3) follows since the cgf of Y − 1 is also

− lnEe−s(Y −1) = − lnEe−sY − s = k•(s) − s. (6)

This section has so far assumed that the initial load shed
X0 is a constant whereas the branching process model of
this paper assumes that X0 is a random variable with cgf
m(s). That is, stage 0 of the branching process is generated
using m(s) and all subsequent stages are generated using h(s).
When X0 has cgf m(s), the cgf of Xn in (2) becomes

hn(s) = m(h(n)(s)) (7)

Let k(s) be the cgf of Y when X0 has cgf m(s). Then

k(s) = m(k•(s)) (8)

The expected value of X0 is θ and the expected value of the
offspring distribution X is λ. The expected value of load shed
in stage n can be evaluated by differentiating (7) and setting
s = 1 to obtain

EXn = θλn (9)

Once k(s) has been obtained as an explicit function of s
using (8), the pdf K(x) of the total load shed Y is obtained as
the inverse Laplace transform of e−k(s) using the Post-Widder
method [24]:

K(x) = lim
a→∞

(−1)a

a!

(a

x

)a+1
(

da

dsa
e−k(s)

∣∣∣∣
s=a/x

)
(10)

In practice we use a = 15 in (10) to obtain a good ap-
proximation for K(x). The cumulative distribution function
of Y is similarly obtained as the inverse Laplace transform of
e−k(s)/s.

In applying the branching process to a real power system,
the total load shed Y is of course limited by the total power
system load. Moreover, it is also conceivable that there could
be effects that may tend to inhibit the spread of the blackout
when the blackout reaches a certain size. We refer to both these
limitations as “saturation”. Saturation effects are considered in
applying a Galton-Watson branching process to transmission
line outages in [12], but we do not consider these effects in this
paper. Saturation is less likely in the subcritical case λ < 1.

III. ESTIMATING λ AND THE BLACKOUT SIZE PDF

This section details how the propagation λ and the pdf of
blackout size can be estimated from cascading blackout data.

A. Cascading Blackout Data

A cascading failure simulation is assumed to produce sam-
ples of cascading blackouts and for each blackout the size of
the blackout as well as the size at each intermediate stage
of the blackout is recorded. Specifically there are J separate
cascades, and Xi

n denotes the load shed at stage n of cascade
i. The accumulated blackout data then looks like this:

stage 0 stage 1 stage 2 · · ·
cascade 1 X

(1)
0 X

(1)
1 X

(1)
2 · · ·

cascade 2 X
(2)
0 X

(2)
1 X

(2)
2 · · ·

...
...

...
...

...

cascade J X
(J)
0 X

(J)
1 X

(J)
2 · · ·

.

Likewise, Y
(i)
n refers to the cumulative load shed

Y (i)
n = X

(i)
0 + X

(i)
1 + . . . + X(i)

n

at stage n of cascade i.
The data must be handled in such a way that each cascade

starts with a nonzero amount of shed. For example, cascades
with no load shed are discarded. One effect of this is that
the computed pdf of load shed is conditioned on the cascade
starting. Moreover, if the simulation produces some cascades
with no load shed in initial stages and load shed in subsequent
stages, then we choose to discard the initial stages with no load
shed so that stage 0 starts with a positive amount of load shed.
Then cascade i has N(i) stages. N(i) is determined either by
the maximum number of simulated stages being reached or
the amount of load shed in a stage being zero or negligible.

B. Estimating λ and θ

The estimator for the propagation λ is

λ̂ =

J∑
i=1

(
X

(i)
1 + X

(i)
2 + . . . + X

(i)
N(i)

)
J∑

i=1

(
X

(i)
0 + X

(i)
1 + . . . + X

(i)
N(i)−1

)

=

J∑
i=1

Y i
N(i) − X

(i)
0

J∑
i=1

Y
(i)
N(i)−1

.

This is a variant of the maximum likelihood estimator∑J
i=1 Y i

N − X
(i)
0∑J

i=1 Y
(i)
N−1

when each cascade has the same number of stages N . This
maximum likelihood estimator is consistent and asymptoti-
cally unbiased as J → ∞ [7], [14].

The mean initial load shed θ is estimated by the sample
mean

θ̂ =
1
J

J∑
i=1

Xi
0.
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C. Estimating blackout size pdf

The general procedure for estimating the blackout size pdf
K(x) is

1) Assume a parameterized form for the initial load shed
cgf m(s) and offspring cgf h(s).

2) Estimate the parameters of m(s) and h(s) from the data.
3) Compute the blackout size cgf k(s) from m(s) and h(s)

using (3) and (8)
4) Compute the inverse Laplace transform of e−k(s) to

obtain the blackout size pdf K(x) using (10).

The procedure estimates parameters of an explicit form of
m(s) and h(s) so that the computation of k(s) and the Laplace
inversion can be done using computer algebra.

We choose to assume gamma distributions for the initial
load shed and offspring distributions. Then the corresponding
cgf’s are

m(s) =
θ2

σ2
init

ln
(

1 + s
σ2

init

θ

)
(11)

and

h(s) =
λ2

σ2
off

ln
(

1 + s
σ2

off

λ

)
. (12)

The parameters of the initial load shed cgf are the mean θ and
the variance σ2

init. The parameters of the offspring cgf are the
mean λ and the variance σ2

off .
The means λ and θ are estimated from the data as described

in the previous subsection. The variance of the initial load shed
σ2

init is estimated using

σ̂2
init =

1
J

J∑
i=1

(X(i)
0 )2 − θ̂2.

The variance of the offspring distribution σ2
off is estimated by

applying the method of moments to X1. The second moment
of X1 is

EX2
1 =

d2

ds2
e−m(h(s))

∣∣
s=0

= λ2
(
θ2 + σ2

init

)
+ θσ2

off (13)

Then the estimator σ̂2
off may be found by solving:

1
J

J∑
i=1

(X(i)
1 )2 = λ̂2

init

(
θ̂2 + σ̂2

init

)
+ θ̂σ̂2

off

where

λ̂init =
1

θ̂

(
1
J

J∑
i=1

X
(i)
1

)
.

IV. RESULTS

The OPA model produces cascading transmission line out-
ages and load shed in stages resulting from a random initial
set of line failures. The power transmission system is modeled
using DC load flow and LP generator dispatch and cascading
line overloads and failures are represented. The power system
is assumed to be fixed with no transmission line upgrade
process. For details of the OPA model see [3].

The method is tested on the IEEE 118 bus system. J = 5000
cascades were simulated for each of the four loading levels
L = 0.85, L = 0.90, L = 0.95, and L = 1.0, where L is

the fraction of the base case loading. These loading levels are
chosen so as to avoid significant saturation effects.

Ten stages of each cascade are simulated. The number of
stages is reduced in some cases: For example, initial stages
with zero or negligible load shed are discarded (the threshold
for negligible load is 10−15). The load shed is measured as
a fraction of the total load so that the maximum load shed
possible is 1, or total blackout.

The estimated propagation λ̂ and blackout size pdf are
estimated for the OPA data according to the methods described
above.

A. Estimated propagation λ̂

The estimated propagation at each load level computed from
the load shed data is shown in the second column of Table I.
As expected, λ̂ increases with loading. Table I also compares,
using the same OPA cascades, λ̂ computed from the load shed
with λ̂ computed from the transmission lines outaged using
the methods of [12]. The λ̂ for load shed matches quite well
with the λ̂ for line outages. This match tends to support the
assertion that λ̂ for load shed quantifies the cascading process
in OPA.

TABLE I

ESTIMATED PROPAGATION λ̂ FROM LOAD SHED AND LINE OUTAGE DATA

loading factor load shed λ̂ line outages λ̂
0.85 0.128 0.115
0.9 0.159 0.188
0.95 0.264 0.288
1.0 0.429 0.430

B. Blackout size pdf

Table II shows the parameters of the initial load shed and
offspring distributions estimated from the load shed data. All
cases considered are subcritical (λ < 1) as required for the
Lagrange inversion (4).

Figure 1 compares the empirical and estimated pdfs for
loading level L = 0.85, and Figure 3 compares the empirical
and estimated pdfs for loading level L = 1.0. The blackout
size is plotted on a log scale over two decades, from a small
blackout Y = .01 (shedding of 1% of total load) to Y = 1
(shedding of 100% of total load and total blackout). The
corresponding cgfs are also plotted in Figure 2 and Figure 4
to give another view of how well the empirical and estimated
distributions match.

TABLE II

ESTIMATED INITIAL LOAD SHED AND OFFSPRING DISTRIBUTION

PARAMETERS

loading factor λ̂ θ̂ σ̂2
init σ̂2

off

0.85 0.128 0.0520 0.00198 0.00431
0.9 0.159 0.0482 0.00195 0.00568
0.95 0.264 0.0445 0.00182 0.00995
1.0 0.429 0.0383 0.00160 0.01230
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Fig. 1. Probability density function of blackout size Y on log-log plot.
Empirical pdf shown as dots, estimated pdf shown as dashed line. IEEE 118
bus system with loading L = 0.85.
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Fig. 2. Cumulative distribution function of blackout size Y . Empirical cdf
shown as solid line, estimated cdf shown as dashed line. IEEE 118 bus system
with loading L = 0.85.

C. Initial load shed and offspring distributions

We discuss the choices of the forms of initial load shed and
offspring distributions that are assumed in the computations.

The initial load shed gamma distribution parameters θ̂ and
σ̂2

init shown in Table 2 are relatively insensitive to loading
changes. For all these cases σ̂2

init ≈ θ̂2 and hence the initial
load shed is approximately exponentially distributed. Figure 5
shows estimated and empirical initial failure distributions for
loading L = 1.0.

Figure 6 shows the estimated offspring distribution pdf
for loading L = 1.0. This is a gamma distribution with
mean 0.0383 and variance 0.00160 that is approximately a
normal distribution. However, the offspring pdf becomes more
asymmetrical when the loading L is decreased. Any parame-
terized nonnegative distribution that is infinitely divisible is a
candidate to describe the offspring distribution and we have
not found general arguments supporting our specific choice of
the gamma distribution.

V. CONCLUSIONS

In this paper we show how load shed data from a subcritical
cascading failure blackout simulation can be processed to
estimate the extent λ to which load shed propagates and the
probability distribution of the total load shed. Total load shed
is a useful measure of blackout size. The simulation is assumed
to produce amounts of load shed in stages for each of a
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Fig. 3. Probability density function of blackout size Y on log-log plot.
Empirical pdf shown as dots, estimated pdf shown as dashed line. IEEE 118
bus system with loading L = 1.0.
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Fig. 4. Cumulative distribution function of blackout size Y . Empirical cdf
shown as solid line, estimated cdf shown as dashed line. IEEE 118 bus system
with loading L = 1.0.

series of cascades. A continuous state branching process model
described by an initial load shed distribution and an offspring
distribution is used as a high level probabilistic model of the
cascading. The method is illustrated using the OPA model of
cascading line outages on some subcritical cases on the IEEE
118 bus system.

The results for load shed propagation λ match well the
corresponding results for transmission line outage propagation
computed using the discrete state branching process method
of [12]. This suggests that the cascading process in the OPA
model can be thought of a single cascading process that can
be monitored by either line outages or load shed. If this
conclusion holds more generally, then it could make possible
the estimation of propagation of load shed by monitoring line
outages. Note that line outages are an “internal” measure of
blackout size of interest to the power industry and that load
shed is an “external” measure of blackout size of interest to
our entire society. Line outages may be easier to monitor and
may occur in precursor events in which no load is shed.

The estimated total load shed pdf is compared to the
empirical total load shed pdf obtained by exhaustively running
the OPA simulation and the results show some qualitative
agreement. This estimation of the blackout size pdf requires
the assumption of analytic forms for the initial and offspring
distributions and the estimation of the mean and variance of
these distributions. Although not addressed in this paper, we



6

0.01 0.02 0.05 0.1 0.2 0.5 1
Initial shed X0

0.1

0.5

1

5

10
P

r
o

b
a

b
i

l
i

t
y

Fig. 5. Probability density function of initial load shed X1 on log-log plot.
Empirical pdf shown as dots, estimated pdf shown as dashed line. IEEE 118
bus system with loading L = 1.0.
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Fig. 6. Probability density function H(x) of offspring distribution that is
a gamma distribution with mean λ = .429 and variance σ2

off = .0123.
Parameters computed from data on IEEE 118 bus system with loading L =
1.0.

expect similarly to [12] that this estimation via the initial and
offspring distributions is substantially more efficient in that
estimates may be obtained with far fewer simulated cascades.

The paper is initial work showing the possibility of the
computations of λ and the blackout size pdf. To fully establish
these methods, there is more work needed such as testing
on wider range of cases, testing on more detailed cascading
failure simulations (e.g. [18], [15]), optimizing the method,
and determining its accuracy. Supercritical cases and the issue
of blackout saturation are not yet addressed. While branching
process models do seem to be the most promising high-level
probabilistic models of cascading failure, their descriptive
power for cascading failure blackouts remains under scrutiny.
To extend the methods from simulated blackout data to real
power system data it is necessary either to group the real
blackout data in stages (for a first attempt see [11]) or to apply
branching process models that incorporate time.

Nevertheless, the possibility of estimating cascade prop-
agation λ and blackout size pdfs is significant in that it
opens up opportunities in quantifying overall blackout risk.
Quantifying blackout propagation with λ gives a measure of
system stress with respect to cascading. In particular, λ = 1
indicates criticality and power laws in the pdf of blackout
size. Quantifying the pdf of total load shed gives the pdf
of one measure of blackout size. If the total load shed can
be mapped to energy unserved, or if the blackout cost can

be expressed as a function of total load shed, then the pdf
of blackout risk can be estimated from the pdf of total load
shed. The ability to efficiently quantify the blackout risk pdf
from a modest number of simulated or observed cascading
blackouts could have several useful applications. The changes
in blackout risk due to transmission system upgrades and
particularly the change in the risk of larger blackouts could
be quickly estimated from cascading failure simulations. The
overall blackout risk could be estimated and monitored by
recording events on the real power system.

This paper develops methods to quantify cascading failure
blackouts of the electric power transmission system. However,
the electric power infrastructure interacts with other infrastruc-
tures and failures in one infrastructure can propagate to other
infrastructures [20]. The cascading can greatly magnify the
extent of damage to society and both accidental cascading
failures and those caused by sabotage or terrorism are of
concern. While progress has been made in describing and
simulating these interactions, it would also be valuable to
better quantify the extent to which failures propagate by
cascading both within and between infrastructures [25]. If the
size of the different sorts of failures can be measured in some
common way, such as cost, then it might be feasible to extend
the methods initiated in this paper to quantify these failure
propagations and the risks of large cascading failures.
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