
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

An Approach to Support Automatic Generation of User Interfaces An Approach to Support Automatic Generation of User Interfaces

Prasun Dewan

Marvin Solomon

Report Number:
88-761

Dewan, Prasun and Solomon, Marvin, "An Approach to Support Automatic Generation of User Interfaces"
(1988). Department of Computer Science Technical Reports. Paper 653.
https://docs.lib.purdue.edu/cstech/653

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN APPROACH TO SUPPORT AUTOMATIC
GENERATION OF USER INTERFACES

Prasun Dewnn
Marvin Solomon

CSD TR-761
April 1988

An Approach to Support Automatic Generation of User Interfaces

PRASUN DEWAN
Purdue University
and
MARVIN SOLOMON
University of Wisconsin

In traditional interactive programming environment, each application individually manages its interaction with the
human user. The result is duplication of effort in implementing user interface code and non-uniform—hence
confusing—input conventions. This paper presents an approach to support automatic generation of user interfaces in
environments based on algebraic languages.
The approach supports the editing model of interaction, which allows a user to view all applications as data that can
be edited. An application interacts with a user by submitting variables (of arbitrary types) to a dialogue manager,
which displays their presentations to the user, and offers "type-directed editing" of these presentations. Applications
and dialogue manager communicate through a protocol that allows a presentation to be kept consistent with the vari-
able it displays.
A particular implementation of the approach, called Dost, has been constructed for the Xerox Development Environ-
ment and the Mesa programming language. Dost is used as a concrete example to describe the editing model, the
primitives to support it, and our preliminary experience with these primitives. The approach is compared with related
work, its shortcomings are discussed, and suggestions for future work are made.
Categories and Subject Descriptors: D.2.2 [Software Engineering): Tools and Techniques—user interfaces; D.2.6
[Software Engineering]: Programming Environments; D.3.3 [Programming Languages]: Language Constructs
General Terms: Design, Languages
Additional Key Words and Phrases: Editing, input/output, object-oriented systems, persistent data structures

1. INTRODUCTION

In traditional interactive programming environments, the responsibility of providing the user interface of an

interactive program is divided among the program itself, subroutine libraries, the programming language, and the

operating system. The interactive program, however, shoulders most of the burden of providing its user interface.

This allocation of responsibility has at least three drawbacks:

First, implementation of user interfaces is expensive. Typically, an interactive program is concerned with scan-

ning and parsing input, reporting errors, converting correct input into its internal representation, and displaying

This research was supported in part by the National Science Foundation under giwil MCS-81059Q4 and by the Defense Advanced Research Project!
Agency (DoD) under Naval Research Laboratory contract No. N00014-85-K-0788.
Authors' addresses: P. Dewan, Department of Computer Samce, Purdue University, W. Lafayette, IN 47907; M. Solomon, Computer Sciences
Department, University of Wisconsin—Madiscn, Madison, WI53706.

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 2

results. The code to perform these tasks can be the major portion of an interactive program. A survey of commercial

programs showed that display generation and management code constituted 40-60 percent of the source text of the

programs sampled [39],

Second, different user interfaces offer inconsistent modes of interaction. Different interactive programs usu-

ally offer different ways to enter operations, and often the same operation is called by different names. For example,

on a UNIX1 workstation, the 'delete' operation might be invoked in a variety of ways depending on context The user

might delete a window by pointing to it with a mouse and selecting an operation from a pop-up menu; delete a file by

typing 'rm' and the file name; delete a character from a file by invoking an editor, moving the cursor to the desired

location, and typing V ; delete a process by typing 'kill* and the process identifier; and so on.

Third, most of the interfaces are primitive because they do not offer several 'friendly' features that are hard to

implement Examples of these features are menus and templates for input data, incremental feedback, operations to

view information at various levels of detail, and operations to redo or undo other operations. Faced with the difficulty

of implementing such features, an application programmer might well decide that the effort is not worthwhile, and

settle for a more primitive interface.

These three problems can be corrected with automatic generation of user interfaces. This idea requires the

design of an application-independent model of interaction together with an environment that supports the model.

Rccent work in user interface design has suggested that editing can be used as a general model of interaction

[3,4,7,9,24,26,34], The model allows the user to view all applications as data that can be edited. We illustrate the

model through Fraser's example of a directory manager that allows the user to manipulate a directory by editing its

listing [7].

Figure 1 illustrates how a user may edit a UNix-style listing of a directory. Figure 1(a) shows an initial listing

of a directory containing two files. Changes to the directory listing are reflected in the directory itself. For instance,

editing a name field changes the name of a file (Figure 1(b)), editing an access field modifies access rights to a file

(Figure 1 (c)), and deletion of an entry causes the corresponding file to be destroyed (Figure 1(d))-

Interface presented by the directory manager to manipulate a directory is similar to the interface presented by a

text editor to edit a text file. There is, however, an important difference. The directory manager cannot allow the user

to make arbitrary changes to a directory listing. For instance, the user must not edit the date or she field of an entry,

insert the character 'q' in an access field, or change or delete an entry without appropriate authorization. The first of

these restrictions could be accommodated by an editor that supported "read-only" fields, but the second and third res-

trictions are intimately linked to the semantics of the the application (directory manipulation, in this case). In the fol-

lowing sections, we shall present a software environment that allows an application to delegate the mechanics of edit-

ing interactioA to a generic tool, while retaining control over application-specific restrictions.

'UNIX U a registered TRADEMARK of AT&T Bell Laboratories

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 3

Access Links Owner Size Date Name
d r w - r w - r — 1 j o e 512 Jun 23 1985 s r c
- r w - r w - r — 1 j o e 111 Oct 13 1984 t o d o

(a) Initial Listing

Access Links Owner Size Dale Name
d r w - r w - r — 1 j o e 512 Jun 23 1985 s r c
- r w - r w - r — 1 i o e 111 Oct 13 1984 done

(b) User Edits File Name

Access Links Owner Size Date Name
d r w - r w - r — 1 j o e 512 Jun 23 1985 s r c
- r w - r w - r w - 1 j o e 111 Oct 13 1984 done

(c) User Edits Access Field

Access Links Owner Size Date Name
d r w - r w - r — 1 j o e 512 J u n 23 1985 s r c

(d) User Deletes File

Figure 1
Editing a Directory

It is easy to see how other applications may present editing interfaces. A 'process manager' can allow a user to

edit a visual representation of the current processes to insert a process, delete it, or change its status. An interactive

debugger can allow a user to control the execution of a particular process by editing a representation of its state. A

'printer manager* can allow a user to edit a representation of the printer queue to submit or cancel a print request An

executive may allow a user to enter commands by editing a representation of the history of previous commands. In

general, any interactive application can present an editing interface by displaying a visual representation of its data,

allowing the user to edit the representation in a syntactically and semantically consistent fashion, and reacting

appropriately to a change in the representation.

The editing model is not only general, but also has the following pleasant properties:

• It has been successfully used by several applications such as text editors, spreadsheets, language-oriented edi-

tors [6,12,28,41,45,46], form editors [31,33], and document editors [19,37].

• It leads to uniformity since the different interfaces share a common set of editor commands. For instance a sin-

gle 'delete' command can be used to delete a file from a directory, a process from the list of active processes, a

file from a line printer queue, a window from the screen, or a user from the list of current users.

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 4

• It removes the traditional distinction between 'edit time' and 'run time'. In traditional environments, the

interaction with a typical application can be divided into two phases. During the first phase, a text editor is used

to compose the input of a program. Subsequently, during the 'run time' of the program, the input is checked for

errors, and output is produced. The editing model combines these two phases into a single phase. As a result

the user receives incremental feedback.

This paper describes an approach to extending conventional programming environments to support the editing model

of interaction. (By conventional, we mean an environment based on algebraic programming languages such as Pas-

cal, Modula, and Mesa.) A particular implementation of this approach, called Dost, has been constructed for the Xerox

Development Environment (XDE) operating system and the Mesa programming language [40]. We shall use Dost as

a concrete example to illustrate the main features of our approach. Later, we will discuss the features of XDE and

Mesa that are particularly good or bad for supporting the approach and speculate on the difficulty of applying it to

other environments.

The remainder of this paper is structured as follows. Section 2 contains an overview of Dost. We describe its

main components and present an example to illustrate how an interactive application looks to the end user and to the

application programmer. Section 3 is the major portion of the paper. We survey the main concepts of our approach

and show how a traditional environment such as XDE is extended to support the editing model of interaction. Section

4 describes the Dost implementation and reports on our experiences with i t Section 3 compares our approach with

form development systems, generators of language-oriented editors, and other related work. Section 6 discusses

potential directions for future work. Finally, section 7 summarizes our results.

A preliminary version of these results were presented previously [5]. More details may be found in the first

author's Ph.D. dissertation [4],

2. OVERVIEW

Dost differs from XDE and other traditional environments in several important ways. Application programmers

do not write programs; instead they create classes. (Dost is thus an example of an "object-oriented system."[13])

Users of Dost do not 'run' programs, instead they 'edit' objects. An object is an instance of a class. The class

describes the data encapsulated by the object and the methods to manipulate them. The methods of an object are

invoked in response to messages from other objects and users (through dialogue managers, discussed later).

An object is associated with one or more presentations that display the data encapsulated by the object.

Changes in the presentation cause corresponding changes in the object. Similarly, changes in the object due to inter-

nal changes or messages from other objects cause its presentations to be updated.

Between each object and a user is a dialogue manager. A dialogue manager handles user interaction on behalf

the object It offers the user a structure editor interface to modify the presentations of an object It announces user-

caused changes to a presentation in messages to the object Similarly, it updates a presentation for the user in

response to messages from the object

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 5

Thus from the point of view of objects, the user appears to be another object that can send and receive mes-

sages. From the point of view the user, the objects appear to be data that can be edited. The dialogue manager acts as

an intermediary between the object and the user, translating between the languages of object interaction and user

interaction.

A dialogue manager is provided automatically by the environment. As a result, an application programmer is

concerned only with the specification of the user interface of an object and not its implementation.

2.1. Example

We illustrate the main features of Dost through a sample class 'Bibliography', which defines bibliographic data-

bases . Each instance of the class manages a database, and allows a user to add, delete, and modify entries. We first

describe how an end user interacts with an instance, and then show the code that must be written by an application

programmer to define the desired behavior.

The User's View

To interact with an object, the user first loads its presentation® into a Dost window. A Dost window is like an

XDE text window except that it is managed by a dialogue manager instead of a text editor. The user then proceeds to

edit the presentation by executing a series of generic editing commands. In the following discussion, these commands

are indicated by words in boldface. In the actual Dost implementation, the commands can be executed by selecting

from a menu in the window's command pane. The most common commands are also bound to mouse buttons or

dedicated keys on the keyboard.

Figure 2 shows the structure of an empty Dost window. Let us assume the user wants to create a new instance

Class: Name: Load! Save! Reset] Empty!
Enlarge! Shrink! Elide! Expand! Insert-after Insert-before Deep! Lideni=2

Figure 2
An Empty Dost Window

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 6

of the class 'Bibliography'. He fills the class and instance ('myBib') names in the appropriate fields of the window

and executes the load command. Figure 3 shows the result of executing the command. A new object called 'myBib'

is created and its presentation is loaded in the window. Initially, the object contains no entries. Therefore its presen-

tation contains the placeholder

<ReferenceList>

which indicates that a new list of reference entries may be added to the presentation.

Figure 4 shows the sequence of actions a user may employ to replace this placeholder with a list of references.

Each box displays the current presentation of the object. (For brevity, only the bottom pane of the window is shown.)

An arrow indicates an editor command invoked by the user, and the shaded text in a box indicates the operand of the

editor command

The user can use the expand command to replace the initial placeholder with a template for a new reference.

The template contains placeholders for the fields of the entry. In our example, these may be replaced to enter the

author name, title, and the kind of entry desired. An entry may be a reference to a journal, book, or technical report

To enter an author name, the user chooses the 'author' field using the select command and then uses replace to

replace the placeholder with the appropriate name. The 'title' field may be entered in a similar fashion. The user may

use the menu command to request a list of valid choices for the 'referenceKind' field. In the example, the user selects

a 'Book'. In response, the dialogue manager replaces the field with fields appropriate to a book reference. In this

example, there is only one such field, which prompts the user for the publisher of the book. If the user were to select

'loumaT or "TechRepl1, the dialogue manager would prompt the user for a journal name or the name of an institution.

Figure 4 illustrates other commands available to the user. The user can select the whole entry by executing the

enlarge selection command, and then hide its details by executing the elide command The effects of these two

Class: Bibliography Name: myBib Load! Save! Resell Emptyl
Enlarge! Shrink! Elide! Expand! Insert-after Insert-before Deep! &idem=2

Figure 3
Creating a Bibliography

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 7

mmrnmm
>

expand
f

>
select

f

title: <STR1NG>
kind: <ReferenceKind>

>
replace

f

^ ^ ^ ^ S m i t K f l l
title: <STRING>
kind: <ReferenceKind>

\

select
t

author Joh
tide: <STR
ldnd?.<Ref

in Smith
JNG>
• M p i i
enmeeKjnd^; II

author John Smith
title: <STRING>

V
shrink

>
enlarge

f
aothon John Smith.
titter<^TRING> ' v
publisher:^S^HRiNd^ J

> <
expand

>
elide

t
(i l l

> <
delete

>
insert-afler

f

Journal

TechRept

similar commands

menu
1

> f
i R i a p

St-:.' .

u£te:potaputing ^

j l l l f U S S l -

accept

> r

Figure 4
Editing a Bibliography

commands may be reversed by executing the expand and shrink selection commands respectively. The insert after

command may be executed to insert a template for a new entry. (The template may be removed by executing the

delete command.) Hie user may now fill this entry, and add other entries using similar commands. After specifying

all the elements of the list, the user may execute the accept command. At this point, the new list of entries is sent to

the object

The Programmer's View

Figure 5 shows the text of the class B i b l i o g r a p h y , which is written by the application programmer to sup-

port the user interface we have just seen. The class declares the variable r e f L i s t , which stores the database of

reference entries. The variable is a pointer to a record containing a Mesa sequence of R e f e r e n c e records. (A

Mesa sequence is an array of variable size). A R e f e r e n c e is a variant record discriminated by the r e f e r e n c e -

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 8

Kind field. These declarations are used by the dialogue manager as a guide for the user interface of instances of the

class.

1 — Class name
2 Bibliography: CLASS =» {
3
4 — Type declarations
5 ReferenceKind: TYPE = { Journal, Book., TechRept };
6 Reference: TYPE =• RECORD [
I author, title: STRING;
8 info: SELECT referenceKind: ReferenceKind FROM
9 Journal: [journal: STRING],
ID Book: [publisher: STRING],
II TechRept: [institution: STRING]
12] ;
13 ReferenceList: TYPE = POINTER TO RECORD [
14 list: SEQUENCE length CARDINAL OF Reference];
15
is — Instance variables
17 refList: ReferenceList;
19
19 — Methods
20 EditMe: METHOD[dm: DialogueManager] = {
21 — method invoked when an instance is edited
22
23 — set default attributes for type STRING
24 dm.Alignment[attrGrp: STRING, val: vertical];
25 dm.Titled[attrGrp: STRING, val: TRUE];
26
27 — set default attribute for field referenceKind
28 dm.Titled[attrGrp: Reference.referenceKind, val: TRUE] ;
29
30 — declare update method for type ReferenceList
31 dm.SelfUpdate[attrGrp: ReferenceList, val: RefListUpdated];
32
33 — submit a value for editing
34 dm.Edit[var: refList];
35]; — end of EditMe method
36
37 RefListUpdated : METHOD[nevVal: ReferenceList] = {
36 — method invoked when a value of type ReferenceList is updated
39
40 refList <- newVal
41 };
42
43 —Body of class Bibliography
44 MakeEditable[load: EditMe]
45 }; — end of class Bibliography

Figure 5
Declaration of Class Bibliography

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 9

The body of the class (which is executed by each new object) consists of the call of the Dost function Make-
Editable (line 44), which expresses the caller's willingness to interact with users through dialogue managers.

MakeEditable has one parameter, load, which is a method defined by the programmer to be invoked when the

user asks a dialogue manager to load an instance into its window. In this case, the load method is EditMe, which is

defined on lines 20 to 33. EditMe has one parameter, dm, a reference to a dialogue manager. EditMe uses dm
to send messages regarding the presentation of the object.

The first two messages sent by EditMe ask the dialogue manager to associate certain display properties with

all variables of type STRING in the object. Line 24 asks the dialogue manager to align STRING variables verti-

cally, while line 25 asks it to title them. (If a variable is "tided," its name precedes its value. For instance, because

the author field is titled, it is displayed as "author John Smith" rather than simply "John Smith.") Similarly, line 28

informs the dialogue manager thai the referenceKind fields of Reference variables should also be tided.

Line 31 asks the dialogue manager to call the method ReferenceList Updated (which is defined on lines

37-41), whenever a variable of type ReferenceList is updated by the user. Finally, line 34 asks the dialogue

manager to display variable refList as part of the presentation of the object. The dialogue manager uses the infor-

mation in the type declarations of class Bibliography to generate a default representation of ref list, custom-

ized by the messages on lines 24,25, and 28, and displays ref list for the user to edit. Later, when the user exe-

cutes the accept command, the dialogue manager calls Ref erenceListUpdated, passing it the new list of refer-

ence entries in the newVal parameter. The object uses this value to update its version of the list stored in

refList.

Figure 5 demonstrates the degree of automation provided by Dost. The class declaration contains very little

code to handle interaction with the user Only the call M a k e E d i t a b l e and the method EditMe are specifically

related to user interaction. All other details are handled by dialogue managers for instances of the class, and these

objects are generated automatically from the class declaration. On the other hand, this example also illustrates how

the application programmer can override default behavior as necessary, with messages like Al ignment and

T i t l e d . We will present examples below that show how more elaborate tailoring of the user interface to the appli-

cation can be accommodated.

3. MAIN CONCEPTS

We now describe some of the basic concepts behind the design of Dost These include:

• Objects and Classes, which are the basic components of the environment, replacing processes and programs in

traditional systems.

• Dialogue managers, which replace I/O procedures provided by traditional systems and provide a much higher

level of automation.

• Presentations, which display visual representations of data.

• Attributes and attribute inheritance, which allow an application programmer to exert control over the interfaces

generated, replacing formatting constructs in traditional languages.

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 10

• Mechanisms for keeping ihe value of a variable consistent with its display.

• The user interface, available for interaction with all objects.

3.1. Objects and Classes

Dost objects are like a cross between processes and files in traditional systems. Like processes, objects can

communicate with each other. Like files, they are part of the permanent memory of the system. They have per-

manent names, and can activated and passivated. A Dost class is a Mesa program, extended with constructs to sup-

port inter-object communication and permanence.

Inter-Object Communication

An object communicates with another object my sending it a message, which invokes a method in the receiver.

Sending a message to an object is similar to invoking a procedure in a traditional module instance. The difference is

that procedures are used to communicate between instances of modules linked together in a program, while messages

are used to communicate between instances of classes, which, (like traditional programs, of which they are exten-

sions) are separately linked.

In Dost, a method declaration is identical to a procedure declaration, except that the keyword METHOD
replaces the keyword PROCEDURE. Figure 5 illustrates how methods are defined; it contains declarations of the

methods Load and RefListUpdated.

Similarly, sending a message to an object is similar to invoking a procedure in a module instance, except that a

message names an object instead of a module. For example, a message is sent to an instance of B i b l i o g r a p h y by

executing
I.RefListUpdated [newVal: s]

where s is an argument of type ReferenceList, and I names the instance. (Like Mesa procedure calls, mes-

sages can use either positional or keyword notation for parameters. In this paper we shall use keyword notation

exclusively.)

How should an object be named in a message? Clearly a static name such as a module name does not suffice,

since objects are created dynamically. Therefore objects are named by object pointers, whose values are bound at

runtime. In the above example, I is an variable that has been assigned a pointer to an instance of class B i b l i o g -

raphy .

Since the interactive user cannot refer to an object pointer directly, each object, like a file is given an character-

string name. A user may use this name to specify an object for editing. An object may use this name to get a pointer

to an object by calling a predefined procedure that 'opens' the object for communication. When the first object

decides that it no longer needs to communicate with the second object, it can call a predefined procedure to 'close' the

object pointer that references the object

Constructs for Permanence

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 11

The editing model supported by Dost allows each object to represent permanent data that can be saved between

editing sessions. Therefore, it is important that the environment provide support for permanence in objects.

One approach to supporting permanent objects, used in Smalltalk [14], is to divide a user's interaction with a

system into several sessions. At the end of a session, the user asks for a snapshot of the state of the entire system to

be saved.in secondary storage, from which it is reloaded at the start of the next session. The saving and restoring of

state is done by the system.

Our approach is different from Smalltalk in several respects. It is simpler to support, and allows each object to

be activated and passivated individually. However, it makes an object responsible for saving and restoring its state.

We have chosen this approach mainly for its simplicity.

A programmer may make a class of objects permanent by including the parameter d a t a F i l e (of type

STRING) in the declaration of its parameter list. The system associates each instance of such a class with a unique

file called its data file, which may be used by the object to store its permanent data structures. When an existing

instance is activated, or a new instance is created, the d a t a F i l e parameter contains the name of the data file of the

instance. The object can read its data structures from this file.

A passive object is activated when another object opens it for communication. When all object pointers to an

executing object are closed, the system decides to passivate the object. Before it actually unloads the object from

memory, it calls the passivate method of the object to give the object an opportunity to save its data structures in its

data file. An object introduces this method to Dost by calling the system procedure R e g i s t e r P a s s i v a t e -

Handler.

An example may clarify these ideas. The following class fragment shows how B i b l i o g r a p h y may be

extended to support permanent instances:

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 12

Bibliography: CLASS[dataFile: STRING] ~ {

— Type declarations
ReferenceKind: TYPE = { Journal, Book, TechRept };
Reference: TYPE = ...;
ReferenceList: TYPE = ...;

— Instance variables
refList: ReferenceList;

— Utility procedures
SaveState: METHOD[] = {

— save refList in file dataFile
} ;

RestoreState: PROCEDURE[] = {
— restore refList from file dataFile

I ;

— Methods
EditMe: METHOD[dm: DialogueManager] = J ... };

RefListUpdated : METHOD[newVal: ReferenceList] = { ...);

—Body of class Bibliography
RestoreState[];
RegisterPassivateHandler[passivate: SaveState];
MakeEditable[load: EditMe]

}; — end of class Bibliography

When an instance of the class is creatcd or activated, its main body is executed, which reads any saved data from the

data file, and registers its passivate and load methods. The object then executes methods in response to messages

from objects that have opened it for communication. When all object pointers to the executing object are closed, the

S a v e S t a t e method is invoked, which saves the state of the object in the data file.

3.2. Dialogue Manager

In a traditional system, a process calls input/output procedures to interact with a user. These procedures auto-

mate several aspects of the process* interaction with the user. They relieve a process from the task of echoing input,

providing simple editing commands such as 'erase character' and 'erase line', converting between simple values such

as integers and reals and their visual representation, and, in a window based system, multiplexing and demultiplexing

the input/output among the different windows.

In Dost, the set of input/output procedures are replaced by a dialogue manager, which manages an object's

interaction with the user and provides a much higher level of automation than the set of input/output procedures it

replaces. An object performs its I/O operations by sending messages to a dialogue manager and invoking methods in

response to messages from the dialogue manager.

Not all objects are connected to dialogue managers—only those thai are interacting with users. A connection

between an object and a dialogue manager is established and broken explicitly by a user. At any moment, one or

more dialogue managers may be active in Dost Each dialogue manager displays a window on the screen. Some of

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 13

these windows are busy; these correspond to dialogue managers connected to objects. Others are empty; they

correspond to dialogue managers thai are idle and can be connected to objects. New dialogue managers are created

when Ihe user creates empty windows. They are destroyed when the user deletes windows. To connect an idle dia-

logue manager to an object a user enters the class and object name in appropriate fields of the dialogue manager's

window and executes the load command. The connection is broken by the unload command.

When a user executes the load command, Dost invokes the object's load method, which is introduced to Dost

by the system procedure M a k e E d i t a b l e . An object may communicate with several dialogue managers simultane-

ously, each allowing a different user to interact with the object via a separate window. The load method is called each

time a user loads an object in a new window. An object may also define unload, save, and reset methods, to be

invoked when the user executes the corresponding commands. (The latter two commands have no other effect than

delivery of the corresponding messages. By convention, these methods are expected to checkpoint and restore the

object's permanent state.) These methods are optional and a dialogue manager attempts to invoke them only if they

have been defined.

Dialogue managers are themselves objects. However, they differ from other objects in two important ways:

First, they cannot themselves be edited by users. Therefore, they are not given character-string names. Second, mes-

sages sent to them need to be preprocessed, as described in § 4.

3.3. Presentations

An important concept in Dost is the idea of a presentation of an object, which is a visual representation of data

in the object. It is composed of the presentations of one or more of the object's variables. It is similar to output in a

traditional system, but it may also be edited by the user to effect a corresponding change to the data it displays. More-

over, it may also be modified by the object to show new values.

An object may have several presentations displayed simultaneously on the screen, each presentation displaying

a different 'view' of the object For instance, a spreadsheet manager might simultaneously create one presentation to

display the values of the spreadsheet and another to display the expressions thai define the relationships among them.

The different presentations of an object are displayed by a dialogue manager in different subwindows of a window.

The object specifies what data are displayed in each presentation. The dialogue manager uses this information to con-

struct the presentation.

An object specifies the data to be displayed in a presentation by sending edit messages to a dialogue manager.

Each such message names a variable to be displayed and a subwindow number indicating the presentation to which it

is to be appended. Thus the message
dm.Edit [var: values, pres: 2]

asks dialogue manager dm to append the presentation of v a l u e s to the contents of the subwindow 2. (Many

objects will have only one presentation at a time. Therefore, the presentation parameter of an edit message is optional

and defaults to 0.)

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 14

Edit messages may display not only variables of predefined types such as characters and integers but also vari-

ables of programmer-defined types such as records, arrays, sequences, and variant records. For instance in Figure 5,

the edit message
dm.Edit [var: refList]

asks a dialogue manager to display a sequence of variant records. Hie dialogue manager has information about the

types declared in the class of the object, and uses this information to construct a default representation for each type.

These defaults can be modified in a variety of ways as explained below.

A simple variable is displayed by displaying its value. Thus, a variable of type 'SampleEnum' described by the

declaration
SampleEnum: TYPE = { c h o i c e l , c h o i c e 2 , c h o i c e 3) ;

is displayed as c h o i c e l , c h o i c e 2 , or c h o i c e s , depending on its value. An array is displayed by displaying

all its elements. For instance, if SampleArray is defined by
E l e m e n t l n d e x : TYPE = {e l emen t1 , e l e m e n t 2 , e l e m e n t 3 | ;
SampleAr ray : TYPE = ARRAY E l e m e n t l n d e x OF SampleEnum;

a value of type SampleArray might be presented as
c h o i c e l
c h o i c e l
c h o i c e 3

The presentation of a sequence is similar to the presentation of an army; the only difference is that the number of ele-

ments displayed depends on the size of the sequence.

The presentation of a record displays its fields. Thus if SampleRecord

s defined by
SampleRecord : TYPE = RECORD [

f l : INTEGER,
f 2 : SampleEnum,
f 3 : STRING];

a value of this type might be displayed as
1
c h o i c e 2
a s ample s t r i n g

The default presentation of a variant record is the default presentation of its current variant Thus a variable of

type
S a m p l e V a r i a n t : TYPE = RECORD [

f l : INTEGER,
u n i o n F i e l d : SELECT d i s c : SampleEnum FROM

c h o i c e l : [f 2 , f 3 : INTEGER],
c h o i c e 2 : [f 4 , f 5 : STRING],
c h o i c e 3 : [f 5 , f 6 : CHARACTER]]

might have the presentation

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 15

1
another string
yet another string

if its d i s c field has the value c h o i c e 2 . The value of the discrimminam is not displayed in ihis presentation since

it is implied by the fields displayed in the variant part

Finally, the default presentation of a non-null pointer is simply the presentation of the value to which it points.

The default presentation of nil is the null string. Thus a pointer variable of the type
List: TXPE = POINTER TO RECORD [

contents: INTEGER;
next: List]

might be presented as
2
3
5

An object may use the presentation of pointers to display recursive structures. Our presentation scheme for pointers

would create an infinite presentation for cyclic structures. The dialogue manager uses an algorithm of 'lazy dere-

ferencing' to prevent itself fiom creating such a presentation. Normally, the presentation of a pointer is 'elided' (see

next section) and does not show the referanL An 'elided' presentation is dereferenced when the user invokes the

expand command on it.

Commands that alter the 'current selection' follow the hierarchical structure of presentations. The editing com-

mands enlarge selection, shrink selection, next, and previous move up, down, left or right in a tree-structured value.

(The 'current selection' is actually stored by the dialogue manager as a pair of nodes: a leaf, which represents the

current point of focus, and an ancestor of that leaf, which defines a region of text surrounding that point)

3.4. Attributes

Defining a default presentation for every data type is a great convenience, but it is clearly much too rigid.

Therefore, we associate with each displayed value a set of attributes, with default values determined by the type of

the value, which can be modified by the object or by the interactive user. The dialogue manager uses these attributes

to determine how the value should be displayed. These attributes have been chosen to allow a user or an object to

specify general characteristics of the presentation of a variable, while leaving details of the presentation to the dia-

logue manager. Some of the more important attributes currently defined by Dost are described in the next few para-

graphs.

The value of a variable is a special attribute that is maintained by the dialogue manager for each variable sub-

mitted to it via the edit message. This is the value displayed in the presentation of the variable, and may be different

from the actual value of the variable contained in the object (We discuss the mechanism for keeping these two con-

sistent in § 3.5).

The initialized attribute determines if the presentation of a variable is initialized or uninitialized. This attribute

is defined for simple variables and union fields of records. An initialized presentation of a simple variable displays its

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 16

value while an uninitialized presentation displays a placeholder that may be replaced to initialize the variable. Thus a
presentation of an integer variable may be

5

or the placeholder
<INTEGER>

depending on its initialized attribute. An initialized presentation of a union field of a record displays the appropriate
variant while an uninitialized presentation displays a placeholder for the discrimminant Thus the presentation of a
record of the type Sample v a r i a n t defined above may have the presentation

1
another string
yet another string

or
1
< S amp 1 e E num>

depending on the initialized attribute of the u n i o n F i e l d of the record. Displaying an uninitialized presentation of

a variable serves two purposes: First, it tells the user that an input value is expected for the variable. Second, it

describes the set of legal input values.

The elided Boolean attribute determines whether the presentation of a structure variable shows or hides the

presentations of its components. Thus the presentation of a variable of the type L i s t might be
2
3
5

or
<List.. .>

depending on the elided attribute of the variable.

The tilled attribute of a value determines whether its presentation should be preceded by a 'title.' The tide of a

variable is the variable name, the title of a field in a record is the field selector, and the title of an array element is its

subscript For example, a SampleRecord might be displayed as

£1 : 1
f 2 : c h o i c e 2
f 3 : a s ample s t r i n g

or
1
choicel
a sample string

depending on whether the fields are titled. Similarly, if the elements of a SampleArray are all titled, the array

might be displayed as

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 17

e l e m e n t l : c h o i c e l
e l e m e n t 2 : c h o i c e 2
e l e m e n t 3 : c h o i c e 2

The alignment attribute determines if the presentation of a variable is horizontal, vertical, or indented with

respect to the presentation of the preceding sibling. Thus the presentation of v2 may be aligned in one of the follow-

ing ways depending on its alignment attribute:

v l : 5 v 2 : 3

v l : 5
v2 : 3

v l : 5
v 2 : 3

The attributes of a displayed variable influence more than its presentation. They are a mechanism for specify-

ing to the dialogue manager general properties of the variable. An example of such a property is whether the value of

the variable is readonly or changeable by the user. We sLudy some of the other properties later.

3.4.1. Attribute Inheritance

Requiring the programmer to specify individual attributes of individual values, while providing great flexibility,

would be unbearably cumbersome. Therefore, Dost accepts messages that allow an object to change whole classes of

attributes at once.

Each object is associated with a tree of attribute groups. Different trees can be defined for different presenta-

tions, but the tree always has four levels, called the default, type, component, and variable levels. As an example,

consider an object that has the following declarations
S i m p R e f : TYPE = RECORD [

a u t h o r , t i t l e : STRING];
r e f V a r : SimpRef;

An attribute-group tree for this object is shown in Figure 6.

Figure 6
An Attribute-Group Tree

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 18

The root of the tree is the default group. Attributes in this group apply to all values that do not override [hem at

lower levels of ihe tree. For example, if the default group contains the attribute binding

t i t l e d = TRUE

then all values will be titled unless specified otherwise.

Children of the default groups are the type groups—one for each type defined in the object Attributes in this
group apply to all values of the type. For example, if the binding

alignment = vertical

appears in the type group for the STRING type, then all values of type STRING will be stacked vertically by

default

The third level contains the component groups, which are associated with field selectors and array subscripts. If
the component group S impRe f . t i t l e contains the binding

a l i g n m e n t = h o r i z o n t a l

then the t i t l e fields of SimpRef values will be displayed horizontally, overriding the alignment attribute in the

STRING type attribute group.

Finally, there is a variable attribute group associated with each variable.

Each attribute group begins with an initial value for each attribute, which may be changed or redefined dynami-

cally as a result of the object sending the dialogue manager a message or the user executing an editor command. The

new value is inherited by all children (and their children, and so on) in which the attribute has not been redefined.

Thus if an attribute is changed in the attribute group "DEFAULT", then the shaded nodes show a possible path along

which the changed value is inherited.

The method EditMe in Figure 5 illustrates how attributes are specified by an object It sets attributes of the

attribute group STRING and R e f e r e n c e . R e f e r e n c e K i n d . In §3.7, we explain how attributes can be

specified by users.

Together, attributes and attribute inheritance provide a balance between flexibility, which allows the interface of

an object to be tailored according to the specific needs of the object, and automation, which frees the programmer or

the user from the task of implementing the interface of an object Attributes provide the mechanism for flexibility,

while attribute inheritance provide the mechanism for automation.

In the rest of this discussion we shall not distinguish between type groups, component groups, and variable

groups, which are defined by a dialogue manager, and the corresponding types, components, and variables, which are

defined by an object and its class. For instance, we shall continue to talk about attributes 'of variables,' though,

strictly speaking, the attributes are associated with variable groups defined by a dialogue manager for these variables.

3.5. Keeping a Variable and its Display Consistent

Once a variable has been displayed as a result of an edit message, the value of the variable maintained by the

object and the value displayed by the dialogue manager can become inconsistent The value stored in the object may

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 19

change because of internal changes in the object or messages from other objects. The value displayed by the dialogue

manager may be changed by the user. Dost provides several primitives that can be used to restore consistency.

3.5.1. Changes in the Variable

First consider the case when an inconsistency arises because of a change in the value stored in the object. An

object can update the display by sending an update message to the dialogue manager informing it about the new value

of the variable. The dialogue manager responds to the message by changing the value attribute of the variable and

updating the presentation appropriately.

To illustrate update messages, let us consider the example of a record R of type SampIeRecord that is
displayed to the user as

1
c h o i c e 2
a sample s t r i n g

Assume that the object changes the value of field f 2 of of the record to c h o i c e l . It can inform the dialogue

manager about the change by sending the message
Upda te [a t t r G r p : R, newVal: [f l : 1 , f 2 : c h o i c e l , f 3 : "a sample s t r i n g "]]

to the dialogue manager. The first parameter names the attribute group whose value attribute is to be updated and the

second parameter gives the new value of the attribute. In the above example the value attribute of the variable group

corresponding to variable R is to be updated. (Update messages can also be used to change the value attribute of

attribute groups corresponding to types and components of structures, and the default group. The dialogue manager

responds to the message by propagating the new value to the appropriate attribute groups.)

In this example, the object sends the whole record to the dialogue manager when only one field is updated. It

may be preferable to send information about incremental changes to a structure, to decrease the amount of data

transmitted, and to simplify processing in the dialogue manager. Incremental updates to a structure are easily

achieved by changing the value attribute of a substructure that changed rather than the complete structure. Thus, in

the above example, an object can send the message
Upda te [a t t r G r p : R . f 2 , newVal: c h o i c e l]

to update the presentation of the field that changed. Elements of arrays and sequences can be updated in a similar

manner. Additional kinds of messages are defined to inform a dialogue manager about elements inserted into or

deleted from the middle of a sequence.

3.5.2. Changes in the Display

When the user edits a presentation, the value attribute of a variable may change. The object needs to be told

about the change so that it can update the variable. Continuing our previous example, suppose the object binds the

following method to the s e l f Upda te attribute of variable
RUpdated: METHOD [newVal: SampIeRecord] = { R < - newVal] ;

If the user edits the f 3 field to read

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 20

a n o t h e r s t r i n g

the dialogue manager calls RUpdated with the new value of R and the instance variable R is updated accordingly.

The value of s e l f U p d a t e must either be a method or nil. In the latter case, no method is invoked on update.

In this example, the object receives the whole record whenever any field is updated. Sending incremental

changes to a variable can cut down on the amount of data transmitted and relieve the object of the task of finding the

part that changed. An object will receive incremental changes to a structured variable if it has bound update methods

to components of the variable. In our example, the object could set the selfUpdate attribute of the attribute group

R . f 2 to the method
RDotF2Updated: METHOD [newVal: SampleEnum] - {

R . f 2 < - newVal};

if it wished to be informed of changes to that field.

Although the same technique can be used to trap updates to elements of arrays, it would be rather clumsy to

bind a separate method to each component of a 1000-element array. Therefore, arrays also have an elememUpdate

attribute which may be bound to a method that is to be called with the subscript and new value of a changed element.

For example, the array A could have its elememUpdate attributed bound to the method
AElementUpdated : METHOD [i n d e x : E l e m e n t I n d e x , newVal: SampleEnum] = (

A f i n d e x] < - newVal};

For sequences, insertUpdate and deleteUpdate attributes are defined, in addition to elememUpdate.

One more attribute controls the triggering of update methods. If the Boolean attribute incFeedback is TRUE,

then any change to the corresponding value causes update methods (if any are defined) to be invoked immediately. If

incFeedback is FALSE, the update methods will only be invoked when the user issues an accept command. Setting

incFeedback is useful if frequent changes requiring feedback (such as validation) are expected or if it is desired to cut

down on keystrokes. On the other hand, if users are expected to change several values "at once," it may be desirable

to disable i n c F e e d b a c k to prevent spurious error messages while values are inconsistent.

A single change can trigger several update methods. In such cases, the update methods are all called in order,

from most specific to most general. For example, if selfUpdate methods are defined for a record as well as one of its

fields and the field is changed, the method for the field is called immediately followed by the method for the whole

record Similarly, if a sequence has elementUpdate, insertUpadate, and selfUpdate methods, they will all be called

(in that order), when a new element is added. These routines can then process the new element, insert it into data

structures, and check the entire sequence for validity, respectively.

3.6. User Interface

We briefly presented a typical interactive session in § 2. In this section we discuss the user interface in more

detail.

At any instant, the screen is composed of one or more Dost windows, examples of which are shown in Figures

2,3, and S. A Dost window is like an XDH text window except that it is managed by a dialogue manager instead of a

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 21

text editor. As a result an object of an arbitrary class can be edited in such a window. A window has one or more

presentation subwindows as well as a message subwindow for error messages, a command window for entering certain

commands, and an error subwindow for error messages.

The user interacts with an object by loading its presentations into the window and issuing editing commands.

The most common commands are bound to menu items or dedicated buttons on the keyboard. Commands are divided

into six categories:

(1) window editing commands,

(2) object editing commands,

(3) text editing commands.

(4) structure editing commands,

(5) attribute editing commands, and

(6) the accept command.

Most window editing commands are supported directly by the XDE window manager. Dost provides the com-

mands to create and delete windows, since they result in activation and deactivation of dialogue managers.

The object editing commands are used to load and empty the presentations of an abject from the window, and

to save and reset user changes to the presentations of the object. They replace similar commands provided by the

XDE text editor to load and empty the contents of a text file into a window, and to save and reset user changes to the

file.

The text editing commands are supported by the XDE text editor, and allow a user to manipulate a presentation

of an object as text They include commands for selecting text, modifying the presentations of simple variables,

searching for patterns, scrolling, and so on.

The structure editing commands allow a user to manipulate a presentation as structured text. They include such

commands as enlarge selection, shrink selection, elide, and expand.

The attribute editing commands allow a user to change attributes interactively. Although most attributes would

normally be set by the object rather than the interactive user, these commands are occasionally useful to allow the

user to customize the interface according to personal preferences. More importantly, we have found them very useful

for the application designer who can quickly check the readability of various combinations of attributes. Attributes in

variable groups are changed by selecting the presentation of the appropriate variable and executing a command.

Attributes in component, type, or default groups are changed by changing the attributes of a variable of the appropri-

ate kind and then invoking the component, type, or default command.

Figure 7 illustrates the use of the component and type commands. In Figure 7 (a) the user sets the alignment

attributeofa k i n d f i e l d o f a Reference record to i n d e n t e d , and the titled attribute to FALSE, and exe-

cutes the component command. The appropriate values are propagated to all k i n d fields of all R e f e r e n c e

records. Similarly, in Figure 7 (b) the user sets the titled attribute of a variable of type STRING to TRUE, and then

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 22

mihcv: <STRING>
tido: «STRING>
* ""i rsscKkx̂

m2xr: <5TRINQ> uifaor ̂ rnuNc>
llxla: <5TRING>

mhar. ̂ TKING>
ciila <STWMG>

tidfl: T̂RXNO>
•mbwT<STWNO>
E&S <STRfffQ>

t>
Untttled inihor <STRINO>

tide: STRING?
Coo poo cut *mhnc <STRINQ>

tide: <£TRING>

(a) Setting Attributes of Components

i r ^ ?
<STRING> <STRINQ>

^ f l a L i u i u K b ^
ude;«3TRING>

<STRINQ>
^TRJNO>
4tB&tB3aK2ad>

Tilled <5TRINQ»
<STRCJO>

T r p - • m h s : ^7RENQ>

(b) Setting Attributes of Types

Figure 7
Changing Presentation Attributes

uses the type command to propagate the change to all STRING variables.

The accept command is used to send the new value of a variable to an object. The dialogue manager reacts to

the command by invoking appropriate update methods in the object, as discussed in § 3.7.

In the design of the user interface of Dost, we have made a distinction between the abstract command and the

mechanism provided to invoke it. For instance the abstract command replace, which changes the value of a sim-

ple variable, is invoked by selecting appropriate characters in the presentation of the variable with the aid of the

mouse, deleting them using the delete key, and inserting the new characters. The elide command is invoked by

selecting a variable with the aid of the mouse, and then clicking the mouse at the command item Elide in the com-

mand window. In general a user invokes a command with the aid of the mouse, keyboard, and menus.

3.6.1. Object-Specific Editor Commands

We have so far discussed the set of default commands provided by Dost. A dialogue manager implements these

commands, and decides which commands are available to edit a presentation of a variable. Delegating these tasks to

dialogue manager is a great convenience, but may be too rigid for some applications, Therefore, Dost allows an object

to tailor its user interface by restricting the use of current commands, changing their implementation, or defining new

commands.

For each command, a variable is associated with a Boolean command enable attribute that determines if the

command may be applied on the presentation of the variable. For instance, the expandEnable attribute of a variable

determines if an elided presentation of a variable may be expanded. An object may change the values of command

enable attributes to restrict the set of commands that may be applied to the presentation of a variable.

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 23

Each command also associates an override attribute with each variable, which may be assigned a method that

overrides the default implementation of the command. The value of an override attribute must either be a method or

nil. In the latter case, the default implementation of the command is used.

An objcct may provide a new command by sending a message to the dialogue manager that names the new

command, the attribute group (§3.4.1) to which the command applies, and a method that implements the command.

For example, an instance of B i b l i o g r a p h y may send a dialogue manager the message
AddCommand [attrGrp: ReferenceList, name: "sort", cmdMethod: SortRefs];

to define a command that sorts variables of type R e f e r e n c e L i s t .

An object-defined implementation of an editor command is often most conveniently implemented using the

default or current implementation of another command. Therefore Dost allows an abject to send messages to the dia-

logue manager asking for editor commands to be invoked. Each such message indicates the command to be invoked,

the attribute group to which the command applies, and whether the default or cunent implementation is to be used.

The following example illustrates the use of these messages.

Consider application of the insert after command to an element of a sequence. The default implementation

inserts a new element after the current element Assume that an object wishes to add a new command called append,

which, when applied to an element of a sequence, appends a new element to the list. The command method supplied

for the new command can invoke the current implementation of insert after command on the last node of the

sequence.

4. IMPLEMENTATION

We have implemented and tested the major components of Dost We have built a dialogue manager program,

which can be executed to run dialogue managers. We have also built an object manager, which supports objects.

Finally, we have designed a precompiler which translates Dost classes into Mesa programs. It performs the translation

by inserting procedures that allow an object to communicate with the dialogue and object managers. Since the

precompiler has not been implemented, we have tested the system by hand-translating Dost classes into the equivalent

Mesa programs.

We discuss below the salient parts of the three components.

4.1. Precompiler

The precompiler takes a Dost class and translates it into a Mesa Program, which is called its class program.

The class program contains code that handles the constructs in the class not available in Mesa programs.

The methods in the class are translated into procedures. The class is associated with a method record type,

which defines fields that can point at these procedures. An instance of the class is associated with a variable of the

type, called its method record. A pointer to the method record of an object is stored by the object manager. Other

objects can query the object manager for this pointer by making a call that opens the object for communication.

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 24

The declaration of an object pointer in a class is translated into the declaration of a pointer to the method record

of the object A message that names the pointer is convened into a call to the appropriate field of the method record.

A message to a dialogue manager is handled differently. Typically, it requires special processing of its parame-

ters, as illustrated by the following example. Consider the message:
SelfUpdate [attrGrp: ReferenceList, value: RefListUpdated]

sent by an instance of B i b l i o g r a p h y of Figure 5. It asks the dialogue manager to call the procedure R e f L i s t -

Upda ted when a variable of type R e f e r e n c e L i s t is updaied. This message cannot be simply convened to a

Mesa procedure call in the dialogue manager, for two reasons: First, the parameter a t t r G r p may be the name of a

variable, type, component of a structure, or the default group. No Mesa type describes such a parameter. The

precompiler needs to convert it into a parameter that encodes information about the attribute group. Second, the dia-

logue manager calls the method R e f L i s t U p d a t e d with the value of a variable of type R e f e r e n c e L i s t .

Therefore, the precompiler needs to check that the parameter newVal of the method R e f L i s t U p d a t e d is of type

R e f e r e n c e L i s t .

4.2. Object Manager

The object manager performs several functions. It activates and passivates objects and maintains the list of all

the objects that are created. For each object, it maintains the class name, the data file, the name of the class program,

a pointer to the method record, a pointer to the load method, and other information about the object. The information

is manipulated by R e g i s t e r P a s s i v a t e H a n d l e r , Make E d i t a b l e , and other system procedures called by

an object

4.3. Dialogue Manager Program

The dialogue manager program is a Mesa program that can be executed to create a dialogue manager. It main-

tains two main data structures to allow editing of an object The first is a table of attribute groups associated with the

presentation of an object. The second is the symbol table produced by the Mesa compiler after compiling the class

program of the object These two data tables are used by the dialogue manager to process editor commands executed

by the user and messages sent by the object

5. EXPERIENCE

We have used Dost to define several interactive applications including the class Form, which defines a form

with a variable number of fields, the class Spreadsheet, which defines a simple spreadsheet, the class Direc-
tory, which defines an editable directory, the class References which is an extension of Bibliography (it

defines more realistic fields for a reference entry), and the the class ASPLE which checks the static semantics of a toy

programming language called ASPLE [22].

Table 1 shows the sizes of the interaction code of these classes. For the purposes of these measurements, we

define the "interaction code" of a class to be the code required to drive the dialogue managers of an instance. It

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 25

Form 8
Spreadsheet* 14
Directory* 39
References 16
ASPLE 31

Table 1
Size Qn source lines) of the Interaction Code in Different Classes

includes any code in the class that interacts with a user via a dialogue manager. Thus, it includes the code required to

specify the attributes of attribute groups, submit variables for editing, and specify the load method. It does not include

the code required to define the data encapsulated by an instance, or the code required to manipulate them.

"Form", "ASPLE", and "References" were actually implemented. "Directory", and "Spreadsheet" could not be

implemented because some parts of the dialogue manager design were not implemented. Figure 8 displays sample

presentations of instances of "References" and "ASPLE".

Encr*• PlrnPifO > LutPifO

•IK idbnofl KnocMsipRaf L
BdIsxcI Startrid ElJdol HxpaaJf h

<c*d! Snot Am! Eoqxyr
•ai-efhs lcjat-bc Cora Deep! bJuirt

AnAs; Joo Doe
Tide; A Sn̂ ta Tldo
Îwmul %

Arnhm Join Smiih
OifaetAmbori; Pfnj Wdj
Talc 1 Tido
iwnimtwi- Uohmnily o£ Wtfconm
Due: AprQ 1986

(a) A Bibliographic Database

Em*** • Id fc hu ml bod ckdmid

• iipls Nrmrr DiTTpPrDj
Enlzigol Shritikl BUdol Baperi!

LwS! ScvbI Reset]
luuil'tAv hoot-bofin Deep!

Empty!
hxkat-2

reT im iJ
IF<Aiflxpr>THEK

WHILE <Ai>Expe> DO
INPUT 1

(b) A Simple Programming Language

Figure 8
Examples of Dost Windows

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 26

The sizes of the interaction codes of these classes illustrate the automation in the environment. The 8-39 lines

of interaction code in these classes replace thousands of lines of code that would be required to implement the inter-

faces manually. The dialogue manager program, which implements the interface available to all objects, is about

7000 lines of code.

6. RELATED WORK

The idea of generating user interfaces is not new. Previous approaches range in scope from form development

systems to environments that support the editing model of interaction. In this section we compare our work with these

approaches.

6.1. Form Development Systems

Several systems support a model of interaction based on forms [20,31-33]. An application interacts with a user

by displaying one or more forms to the user. Each form consists of one or more items, which a user fills with

appropriate values.

There is an important similarity between the form model of interaction and editing model supported by Dost: A

user can fill the items in any oider. Thus interaction is not constrained to be sequential.

However, the form model is not as general as the editing model. It imposes three main restrictions:

(1) The number of items in a form is static and not a function of input

(2) The values of items are restricted to simple types. Thus none of the structure editing commands are available

to interact with forms.

(3) An application does not receive incremental updates to the items on the screen. It receives the values of all

items together when the user executes the equivalent of the accept command in Dost.

As a consequence of these restrictions, the model is not sufficient to interact with a large number of applica-

tions. For instance, it cannot be jised to define user interfaces for any of the applications mentioned in § 5. Typically,

the use of forms is restricted to entering tuples in databases or setting initial parameters of an application.

6.2. EZ

Fraser and Hanson have built a software system called EZ [10,11] based on a high-level string-processing

language derived from SNOBOL4, SL5 [16], and Icon [15]. The language supports four basic types of values:

numerics, strings, procedures, and SNOBOL4-like tables. The system has 'persistent' memory much like an APL

workspace in which values exist until changed. As a result it integrates the traditionally distinct facilities of program-

ming languages and operating systems into a single system. Files are represented as strings, and directories are pro-

vided as tables.

EZ provides a screen editor that edits all EZ values using the same interface. As a result it can be used to edit

text files, directories, and relational data bases represented as tables. Moreover, procedure activations in EZ are just

EZ tables. Therefore the editor is automatically a debugger as well.

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 27

There are two striking similarities between EZ and DosL First, EZ's 'persistent' data corresponds to Dost's

'persistent' objects. Second, the EZ editor is similar to a Dost dialogue manager Both are capable of editing data

structures defined by a programming language.

There are, however, several important differences between Dost and EZ, arising because of the differences in

the goals of the two projects. Dost illustrates an approach to support generation of user interfaces in environments

based on Pascal-like languages, while EZ is an integrated operating system-debugger-editor based on a SNOBOL-like

language. Thus while the EZ editor manages only two types: strings, and tables (procedures and numerics are

automatically converted to strings by the language), a Dost dialogue manager allows editing of numerics, strings,

enumerations, arrays, records, variant records and other daia structures defined by Mesa types.

The editing commands presented by the EZ editor and a dialogue manager are also different, mainly because of

the differences in the data structures managed. The EZ editor provides only text editing commands. Thus it does not

provide equivalents of the structure editing and attribute editing commands provided by a dialogue manager. On the

other hand, it provides an enter command, which may be applied to a line displaying a key of a table. The command

recursively invokes the editor on the value associated with the key. The value may be another table, so the editor can

be used to 'walk' tables. An equivalent command cannot be straightforwardly supported in Dost

Finally, EZ does not provide an application programmer facilities to format data or check data for semantic

consistency. Thus it does not support customization of the editing interface.

6.3. Descartes

Descartes [35,36] is a framework for building user interfaces having several characteristics in common with

DosL It allows an application to input and output values of programmer-defined types. Moreover, an application's

interaction with the user is managed by an application-specific module called a compositor.

A compositor in Descartes corresponds to a dialogue manager in DosL However, there is an important differ-

ence between the two entities: A dialogue manager is provided automatically for each Dost object and is 'driven' by a

small amount of application-specific code. On the other hand, a compositor has to be developed manually for each

Descartes application using 'utility code' shared by all interfaces and provided by the system. Thus, Descartes pro-

vides less automation in generating a user interface, but gives an application programmer more flexibility in specify-

ing an interface.

The models of interaction offered by Descartes and Dost are also different Descartes supports only sequential

interaction. An application asks for values it needs in a particular order and the user is constrained to supply each

value as it is requested. Dost, on the other hand, offers a more sophisticated model of interaction that allows the vari-

ables displayed in a presentation to be edited in any order. Introduction of the editing model is planned in Descartes.

6.4. Smalltalk

Dost borrows two elements of the object-oriented paradigm supported in Smalltalk: permanent objects, and

interobject communication. Both properties are essential to our approach. Permanent objects are necessary to support

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 28

ihe editing model of interaction, which allows each application to act as an editor of permanent data that can saved

between editing sessions. Interobject communication is necessary for an object to interact with the user via the dia-

logue manager. It is also useful for keeping data in related objects consistent.

We left certain other object-oriented features out of Dost, however, to allow our appoach to be applied to more

conventional programming environments. Thus while Smalltalk treats every entity as an object, objects in Dost are

special entities that coexist with 'smaller' entities such as integers, reals, and other data described by Pascal-like type

declarations. Smalltalk classes share code through the mechanism of inheritance while Dost classes share code by

using Mesa constructs for importing and exporting declarations. The destination of a message is determined at execu-

tion time in Smalltalk, but is bound at compile time in Dost. Finally, unlike Smalltalk, Dost does not support meta-

classes.

An important difference between Dost and Smalltalk is in the way user interfaces are defined in the two sys-

tems. The user interface of a Smalltalk object has to be defined manually by the application programmer, while the

user interface of a Dost object is implemented automatically by its dialogue managers. The job of manually imple-

menting the user interface of an object is alleviated to some extent in Smalltalk by the mechanism of inheritance: The

methods of existing classes can be used to implement the user interface of a new object. However, an application pro-

grammer is still concerned with implementing the details of those aspects of the user interace that are specific to the

object. In particular, he is concerned with converting between the internal and visual representations of instance vari-

ables defined by the class of the object, and implementing editing of these variables. The Dost dialogue manager is

able to automate most of this work by using the type declarations presentation in the Mesa code for the object to select

default representations and editing commands.

Dost does not automate all aspects of the user interface. An object must specify the attributes of displayed vari-

ables and implement object-specific editor commands, but our experience suggests that these tasks are not code-

intensive. Attributes provide a high-level language for specifying display properties of variables, and attribute inheri-

tance provides reasonable default values. Moreover, an object needs to provide very few object-specific commands,

and they are Often easily defined in terms of other existing commands. Nonetheless, it would be useful if class inheri-

tance could be used to reuse methods and attribute values defined in other classes.

6.5. Language-Oriented Editor Generators

Dost is closely related to the Synthesizer Generator [30], POE [6], ALOE [23,25], sds [8], PECAN [28], PSG

[2] and other language-oriented editor (LOE) generators. An LOE generator provides a specification language, which

may be used to define the syntax and semantics of a target language. The definition of a target language is used by

the LOE generator to create an editor (LOE) for the language. Traditionally, LOEs have been used to edit programs

written in conventional programming languages. However, they have also been used to edit other structures such as

documents, a desk calculator, and the specification language itself.

There are several similarities between our approach and LOE generators. The target language description used

by an LOE generator corresponds to a Dost class, the syntax tree maintained by an LOE corresponds to a Dost object,

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 29

and the LOE generator corresponds to a dialogue manager. The main differences arise from differing goals: LOE

generators are designed to compose programs, while Dost is designed to interact with them. For example, LOE-based

environments tend to be mixtures of standard programs that manipulate unstructured text and structure editors that

manipulate syntax trees. Our approach, on the other hand, supports an environment in which all programs offer edit-

ing interfaces.

Moreover, our approach uses the type declarations and procedures of a Pascal-like language to describe the

structure and semantics of edited data. As a result, the editor description language is an extension of a conventional

general-purpose programming language. LOE specification languages, in contrast, are BNF grammar descriptions

embellished with constructs for describing semantics such as action routines [23], attributes [30], attributes and action

equations [18], and denotational definitions [2,27,38].

LOE generators based on attribute grammars [6,17,29,30] allow a programmer to specify the semantics of

user interaction declaratively. This feature is useful for specifying the static semantics of a target language, since it

relieves a programmer from the task of explicitly calling procedures that check related values for semantic con-

sistency. It may also be easier to verify certain properties of a specification that is declarative rather than procedural.

On the other hand, since editor descriptions under our approach are extensions of conventional programs, they

automatically include all features of the base language that aid the programming task. For instance, since a Dost class

an extension of a Mesa program, it is strongly typed, can be composed of several modules, can be divided into inter-

face and specification parts, can share code with other classes, and can define a large variety of data structures. LOE

generators have not evolved to the stage where they provide equivalent facilities in the specification languages they

support

The architectures of Dost and LOE generators also differ in significant ways. Dost supports the separation of

the syntax and semantics of an editor into an object and a dialogue manager, which communicate with each other

through messages. Thus an object and a dialogue manager can reside on different machines, such as a mainframe

host and a workstation. Moreover, an object can be connected simultaneously to several dialogue managers, allowing

several users to view and edit the object at the same time, with each instandy seeing changes made by the others.

Finally, Dost objects can exchange messages to maintain consistency among related objects. An equivalent

facility allowing sharing of information between different syntax trees is not currently provided by LOE generators.

6.6. AGAVE

Recently, Notion [24,26] has proposed an environment called AGAVE that replaces standard programs with

editor modules written in a language based on the ALOE specification language. He has "augmented the ALOE

specification language with primitives that allow sharing of code between different modules. He has also proposed

capability-based addressing to allow sharing of data between different syntax trees.

Dost and AGAVE are both environments in which all interaction is through structure editor interfaces. How-

ever, there are two significant differences between the two systems, which stem from the fact that AGAVE is derived

from ALOE. First, AGAVE offers a grammar-based specification language for describing editors, while Dost offers a

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 30

Mesa-based programming language.

Second, AGAVE replaces a traditional operating system kernel with an editor kernel, which implements the

editing interfaces. The kernel is (dynamically) linked to all the editor modules in the system and acts as the control-

ling module of a monolithic program. Dost, on the other hand distributes control over all the objects and dialogue

managers in the system. As a result, AGAVE can edit only one syntax tree at a time, while Dost allows multiple

objects to be edited simultaneously. Moreover, AGAVE cannot offer the advantages of object-dialogue manager

separation described in the previous section. On the other hand, the AGAVE kernel is responsible for activating and

passivating the syntax trees in the system. Dost supports the simpler approach of making each object responsible for

activating and passivating its data.

6.7. Voodoo

Voodoo [34] is a framework that supports the generation of editing interfaces in an object-oriented system. It is

perhaps the closest in spirit of any of these systems to DosL Both Dost and Voodoo (which were developed indepen-

dently and contemporaneously) support editor-oriented interaction.

Voodoo divides the objects in the system into emenands, images, and editors. Each emenand is associated with

with one or more images and one or more editors. An image consists of an abstract syntax tree, which describes the

external structure of the emenand. The image is used by an editor to allow the user to interact with the emenand. A

dialogue manager in Dost corresponds to an editor in Voodoo.

There are two main differences between the two systems: First, a dialogue manager in Dost is created automati-

cally, while an editor in Voodoo is created manually using the primitives for inheritance offered by the host object-

oriented system. Thus, while Dost offers more automation, Voodoo offers more flexibility, including support for

graphical presentations.

Second, an emenand in Voodoo is associated with both an internal structure and an external structure. As a

result, an emenand's internal structure can be changed without affecting the user's view of the object. However, the

implementor of a new application has to be concerned with creating two structures and keeping them consistent In

Dost, a single set of type declarations in an object's class defines both the structure and representation of the object

7. FUTURE WORK

We now discuss some useful features missing from Dost and outline possible ways to add them.

7.1. More Attributes

Attributes are used by an object to specify various characteristics of a displayed variable: the format, the com-

mands available to edit its presentation, the update methods, and so on. A dialogue manager uses the "high level"

description provided by these attributes to handle the "low level" details of user interaction.

One problem with using attributes is that a dialogue manager supports only a limited number of them, thus lim-

iting flexibility in specifying user interfaces. For instance, Dost currendy lacks a way to specify fonts and sizes of

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 31

characters, spacing between lines on the screen, or justification of text. Our hope is that a finite but large set of attri-

butes will provide sufficient flexibility for most applications. Further research is needed to determine this set. An

alternative would be to add a facility for defining new attributes, but it is not yet clear what such a facility should look

like.

7.2. More Commands

The generality of the Dost interaction model stems from the large number (currently 30) of editing commands,

including commands for editing windows, objects, text, structures, and attributes. Experience has shown that a typical

object can use most of these commands and needs to provide very few object-specific commands.

However, the current set of commands is by no means exhaustive. Two important commands missing in Dost

are undo and redo. Currendy, an object thai wishes to provide an "undo" facility must implement it itself. Further

research, perhaps using the ideas presented in [6,21,42], is needed to define a general-purpose undo/redo facility for

Dost.

Further work is also needed to determine other default commands that may be provided by a dialogue manager.

7.3. Specification of Attributes

Dost provides two ways to specify attributes: one for the applications programmer defining a class of objects,

and another for a user interacting with a specific object. The application programmer specifies attributes with pro-

cedural code that sends attirbute-update messages to a dialogue manager. The user specifies attributes interactively

with attribute-editing commands.

It would be useful if an application programmer could also specify attributes of attribute groups interactively.

The programmer could create a "dummy" instance of a class, use attribute editing commands as descibed in §3.6 to

experiment with different formatting attributes, and finally execute an accept command to "freeze" these attributes,

thereby creating a class description with appropriate initial defaults.

It would also be useful if Dost allowed attributes to be specified declaratively, thus supporting definition of ini-

tial or constant values for attributes. For instance, to specify that the a u t h o r fields of r e f e r e n c e s should be

horizontally aligned, the programmer might write
R e f e r e n c e : RECORD [

* a u t h o r : STRING ATTRIBUTES a l i g n m e n t = h o r i z o n t a l END,
- - -1 ;

Further research is needed to determine how procedural, declarative, and interactive specification of attributes

may be integrated.

7.4. Graphical Presentations

Dost supports only textual presentations of data structures. In many situations, it is useful to allow editing of

graphical presentations of variables. For example, it might be nice to display variables of type

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 32

Time: TYPE - RECORD [
h r : 0 . . 2 3 ,
min , s e c : 0 . . 5 9]

as the face of a clock, and let the user change the time by moving its hands. Another example is a scroll bar, a popu-

lar way of displaying and changing a scalar value.

This example also illustrates the problems associated with supporting graphical interfaces. How does a dia-

logue manager know that this data structure should be displayed as a clock? One approach would be to make the

application programmer explicitly specify the graphical presentation as a bit map. This approach, while adequate for

simple icons, would not allow the dialogue manager to support editing, since it would not know the structural compo-

sition of the presentation.

A better approach would be to define high-level graphical attributes that describe the structure of the image to

the dialogue manager. For instance a number could be associated with attributes that determine if it is to be described

by the length of a line segment, the angle between two line segments, the radius of a circle, and so on. Further work

is necessary to determine if it is possible to define a general set of graphical attributes that captures the rich variety in

graphical images.

7.5. Support of Pipe-Like Connections

The stream-based I/O of traditional systems allows programs to be joined together in pipelines. This idea has

been used extremely fruitfully in to build new applications out of existing building blocks. The idea of pipe-like con-

nections, however, seems inconsistent with the input/output model of our approach. A Dost application does not read

and write information sequentially from input and output streams, instead it displays information in one or more

presentations, and receives updates to changes in these presentation. Thus one-way communication between an appli-

cation and an input or output stream, essential to defining pipes, is replaced with two-way communication between an

application and its dialogue manager.

It would be possible to redirect messages meant for a dialogue manager to be delivered instead to another

object, which would then respond like a dialogue manager. But interaction with a human user seems to call for a very

different style of programming than exchanging messages with a program. Moreover, under our current approach

such redirection is not possible since messages to a dialogue manager are preprocessed (for reasons described in

§ 4.1). Further research is necessary to accommodate pipe-like connections in our approach.

7.6. Applicability to Other Programming Languages

Our approach is tailored to Pascal-like languages, and although some components support programming para-

digms common to most modem programming languages, others are more specifically tied to features of statically

typed, procedural languages like Pascal or Mesa. We discuss below both kinds of components, and outline ways to

extend our approach to a wider variety of languages.

The idea of associating formatting attributes with variables is fairly language-independent, as is support for

extending input/output from predefined types to programmer-defined types. Automatic input/output of values,

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 33

however, depends on language facilities for describing types. Any value whose type can be declaratively described

by the language can be formatted and parsed automatically by the dialogue manager, but data structures that must be

implemented procedurally require more application-specific code to support editing. For example, FORTRAN has no

support for defining record types, so a FORTRAN programmer might represent an array of records by a set of parallel

arrays, one for each field. If the program wished to display one "record" it would have to display each field individu-

ally. Similarly, a Dost-Iike environment for LISP might a provide default presentation for lists, whereas lists imple-

mented as linked lists in Pascal would require more specific code to support their display and editing. This problem

becomes pardularly severe for a typeless language such as BLISS [44],

The lack of a rich set of data structuring primitives in a language may be overcome to some extent by support-

ing attributes that determine structural properties of displayed variables. For instance, a BLISS variable may be asso-

ciated with the attribute treatAsArray to treat its 1-value (address) as a pointer to an array whose dimension is deter-

mined by the attribute dimension. Variables whose (reatAsArray attributes are t r u e are input/output as arrays.

Other similar attributes may be added to augment the set of data structures parsed/unparsed by a dialogue manager.

Naturally, these attributes would be poor substitutes for a richer set of type declarations.

A related problem occurs in dynamically typed languages such as SNOBOL, APL, or Smalltalk. Although such

languages are strongly typed, types are associated only with values, not variables. A dialogue manager for such a

language would have no trouble displaying values (indeed, a major attraction of such languages is the ease of display-

ing values). However, if the program were to display an uninitialized variable, with the intention that the user fill in

an appropriate value, the dialogue manager would have no information to guide the parsing of the value entered. For

simple built-in types, the syntax of value entered could guide the type determination (for example, if a decimal point

is included, the value is assumed to be real), but this approach does not extend naturally to programmer-defined types.

More importantly, the type of value expected is often an important visual cue to the user. In dynamically-typed tann-

ages, information about the type expected is only implicit in the program flow.

One approach to accommodate such languages is to associate each variable with the attribute type, which deter-

mines the type of the variable for input purposes. This attribute may be set by the object to restrict the set of values

input by the user. It may also be set by the user to declare his intention to input a value of a certain type. The dia-

logue manager can then use this attribute to provide "type-directed editing" of the value.

Our approach currently can only be used to edit data structures defined by Pascal-like types. We have not con-

sidered SNOBOL tables, abstract data types, polymorphic types, and other more complex data-structuring methods.

However, we see no conceptual difficulties with extending the set of type constructors supported.

Finally, the editing paradigm offered by our approach supports the concept of repeated user modifications of

variables. This concept appears to be at odds with with functional languages such as pure LISP or FP [1] that prohibit

side effects such as the modification of the value of a variable. This difficulty in dealing with functional languages is

not unique to our approach; the whole issue of input/output in functional languages is still an open problem being stu-

died by researchers [43]

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 34

Perhaps no single approach is suitable to support all programming language paradigms. An alternative is a set

of approaches, each tailored to a particular programming language paradigm. For instance, an approach supporting

functional languages may consider editing of a presentation as a "macro" change of state instead of "micro" changes

to individual variables. Further research is needed to study the augmentation or adaptation of our approach to support

different language paradigms.

8. SUMMARY

This paper presents a new approach to automatic generation of user interfaces. The approach organizes infor-

mation into objects, which communicate with each other through messages and with the user through editor-oriented

interfaces. Between each user and an object is a dialogue manager, which provides the user with a default interface to

edit the variables of the object. The default interface may be overridden by the object, using the mechanisms of attri-

butes and attribute inheritance.

We have tested our approach by building the major parts of DOSL Preliminary experience with the system

shows that the user interface code in an application is a very small part of the total code, and replaces thousands of

lines of code that would be required to implement the interface manually.

In comparison to previous approaches, our approach

• automates both input and output of values of programmer-defined types,

• supports the editing model of interaction,

• is based on conventional programming languages,

• allows a user to interact with several applications at the same time,

• offers the advantages of object/dialogue manager separation, and

• allows an implementor to use a single description of data structures for display, entry, modification, and seman-

tic processing.

Further research is needed to study general sets of attributes and default editing commands, interactive and

declarative specification of attributes, graphical presentations, support of pipelines in an editing environment, and

applicability of the basic elements of the approach to a diverse range of programming languages.

REFERENCES

1. John Backus, "Can Programming be Liberated from the von Neumann Style? A Functional Style and its Alge-
bra of Programs.,'* CACM 21(8)(August 1978).

2. Rolf Bahlke and Gregor Snelting, "The PSG - Programming System Generator," Proceedings of the ACM SIG-
PLAN 85 Symposium on Language Issues in Programming Languages, pp. 28-33 (June 1985).

3. Prasun Dewan and Marvin Solomon, "An Approach to Generalized Editing," Proceedings of the IEEE 1st Inter-
national Conference on Computer Workstations, pp. 52-60 (November 1985).

4. Prasun Dewan, "Automatic Generation of User Interfaces," Ph.D. Thesis and Computer Sciences Technical
Report #666, University of Wisconsin-Madison (September 1986).

5. Prasun Dewan and Marvin Solomon, "Dost: An Environment to Support Automatic Generation of User Inter-
faces," Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

I

P\ Dewan and M. Solomon Automatic Generation of User Interfaces • 35

Development Environments, SIGPLANNotices 22(1) pp. 150-159 (January 1987).
6. C. N. Fischer, Gregory F. Johnson, Jon Mauney, Anil Pal, and Daniel L. Stock, "The POE Language-Based

Editor Project," Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pp. 21-29 (April 1984).

7. Christopher W. Fraser, "A Generalized Text Editor," CACM 23(3) pp. 154-158 (March 1980).
8. Christopher W. Fraser, "Syntax Directed Editing of General Data Structures," Proceedings of the ACM SIG-

PLAN SIGOA Symposium on 7etf Manipulation, SIGPLAN Notices 16(6)(June 1981).
9. Christopher W. Fraser and A. A. Lopez, "Editing Data Structures," ACM Transactions on Programming

Languages and Systems 3(2) pp. 115-125 (April 1981).
10. C.W. Fraser and D i t Hanson, "A HIgh-Level Programming and Command Language," Sigplan Notices: Proc.

of the Sigplan '83 Symp. on Prog. Lang. Issues in Software Systems 18(6) pp. 212-219 (June 1983).
11. C.W. Fraser and D.R. Hanson, "High-Level Language Facilities for Low-Level Services," Conference Record

ofPOPL, pp. 217-224 (1984).
12. David B. Garlan and Philip L. Miller, "GNOME: An Introductory Programming Environment Based on a Fam-

ily of Structure Editors," Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pp. 65-72 (April 1984).

13. Adele Goldberg and David Robinson, Smalltalk-80: The Language and its Implementation, Addisan-Wesley,
Reading, Mass. (1983).

14. Adele Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-Wesley, Reading, Mass.
(1984).

15. R.E. Griswold and M.T. Griswold, The Icon Programming Language, Prentice Hall, Englewood Cliffs, NJ
(1983).

16. D.R. Hanson and R JE. Griswold, "The SL5 Procedure Mechanism," Comm. ACM, pp. 392-400 (May 1978).
17. Gregory F. Johnson, "An Approach to Incremental Semantics," Ph.D. Thesis, University of Wisconsin -

Madison (August 1983).
18. Gail E. Kaiser, "Generation of Run-Time Environments," Proceedings of the SIGPLAN '86 Symposium on

Compiler Construction, pp. 51-57 (June 1986).
19. G. D. Kimura, "A Structure Editor for Abstract Document Objects," IEEE Transactions on Software Engineer-

ing 12(3) pp. 417-436 (March 1986).
20. J.M. Lafuente and D. Gries, "Language Facilities for Programming User-Computer Dialogues," IBM J. Res.

Develop. 22(2) pp. 145-158 (March 1978).
21. George B. Leeman, Jr., "A Formal Approach to Undo Operations in Programming Languages," ACM Transac-

tions on Programming Languages and Systems 8(1) pp. 50-87 (January 1986).
22. Michael Marcotty, Henry F. Ledgard, and Gregor V. Bochmann, "A Sampler of Formal Definitions," Comput-

ing Surveys 8(2) pp. 194-275 (June 1976).
23. Raul Medina-Mora, "Syntax-Directed Editing: Towards Integrated Programming Environments," PhD Thesis,

Department of Computer Science, Carnegie-Mellon University (March 1982).
24. David Notion, "Interactive Structure-Oriented Computing," PhD Thesis and Technical Report, CMU-CS-84-

103, Department of Computer Science, Camegie-Mellon University (February 1984).
25. David Notkin, "The Gandalf Project," The Journal of Systems and Software 5(2)(April 1985).
26. David Notkin, "Sharing and Modularization in Structure Editing Environments," Proceedings of the I9th

Hawaii International Conference on Systems Sciences, (January 1986).
27. Anil Pal, "Generating Execution Facilities for Integrated Programming Languages," Ph.D. Thesis and Techni-

cal Report #676, University of Wisconsin-Madison (December 1986).
28. S. P. Reiss, 'TECAN: Program Development Systems that Support Multiple Views," IEEE Transactions on

Software Engineering SE-ll(3)(March 1985).
29. Thomas Reps, Tim Teitelbaum, and Alan Demers, "Incremental Context-Dependent Analysis for Language-

Based Editors." ACM Transactions on Programming Languages and Systems 5(3) pp. 440-477 (July 1983).

P. Dewan and M. Solomon Automatic Generation of User Interfaces • 36

30. Thomas Reps and Tim Teitelbaum, "The Synthesizer Generator," Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environments, pp. 42-48 (April 1984).

31. Lawrence A. Rowe and Kurt A. Shoens, "A Form Application Development System," Proceedings of the
ACM-SIGMOD International Conference on the Management of Data, pp. 28-38 (1982).

32. L. A. Rowe and K. A. Shoens, "Programming Language Constructs for Screen Definition," IEEE Transactions
on Software Engineering SE-9(1) pp. 31-39 (January 1983).

33. Lawrence A. Rowe, "'Fill-in-the-Form* Programming," Proceedings ofVLDB, pp. 394-404 (1985).
34. Jeffrey Scofield, '"Editing as a Paradigm for User Interaction," Ph.D. Thesis and Technical Report No. 85-08-

10, University of Washington, Department of Computer Science (August 1985).
35. M. Shaw, E. Borison, M. Horowitz, T. Lane, D. Nichols, and R. Pausch, "Descartes: A Programming-Language

Approach to Interactive Display Interfaces," Sigplan Notices : Proc. of the Sigplan '83 Symp. on Prog. Lang.
Issues in Software Systems 18(6) pp. 100-111 (June 1983).

36. M. Shaw, "An Input-Output Model for Interactive Systems," CHr86 Proceedings, pp. 261-273 (April 1986).
37. David Canfield Smith, Charles Irby, Ralph Kimball, Bill Verplank, and Eric Halsem, "Designing the Star User

Interface," BYTE 7(4)(April 1982).
38. Gregor Snelting, "Unification in Many-Sorted Algebras as a Device for Incremental Semantic Analysis,"

Conference Record of the Thirteenth Annual ACM Symposium on Principles of Programming Languages, pp.
229-235 (January 1986).

39. J. Sutlon and R. Sprague, "A Study of Display Generation and Management in Interactive Business Applica-
tions," Tech. RepL RJ2392(#31804), IBM San Jose Research Laboratory (November 1978).

40. Richard E. Sweet, "The Mesa Programming Environment," Proceedings of the ACM SIGPLAN Symposium on
Language Issues in Programming Environments, pp. 216-229 (June 1985).

41. Tim Teitelbaum, Thomas Reps, and Susan Horwitz, "The Why and Wherefore of the Cornell Program Syn-
thesizer," Sigplan Notices I6(6)(August 1981).

42. Jeffrey Scott Vitter, "USER: A New Framework for Redoing," Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environments, pp. 168-176 (April
1984).

43. John H. Williams and Edward L. Wimmers, "Sacrificing Simplicity for Convenience: Where Do You Draw the
Line?," Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pp. 169-179 (January 1988).

44. W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Geschke, The Design of an Optimizing
Compiler, American Elsevier, New York, N. Y. (1975).

45. Marvin V. Zelkowitz, "A Small Contribution to Editing with a Syntax Directed Editor," Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environ-
ments, pp. 1-6 (April 1984).

46. Marvin V. Zelkowitz, Jennifer Elgot, David Itkin, Bonnie Kowalchack, and Michael Maggio, "The Engineering
of an Environment on Small Machines," Proceedings of the IEEE 1st International Conference on Computer
Workstations, pp. 61-69 (November 1985).

	An Approach to Support Automatic Generation of User Interfaces
	Report Number:
	

	tmp.1307986960.pdf.uORtA

