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Abstract

Over the last decades computer based tools have been introduced to facil-

itate systems engineering processes. There are computer based tools for
assisting engineers in virtually every aspect of the systems engineering
process from requirement elicitation and analysis, over functional analy-

sis, synthesis, implementation and verification. It is not uncommon for a
tool to provide many services covering more than one aspect of systems
engineering. There exist numerous situations where information

exchanges across tool boundaries are valuable, e.g., exchange of specifi-
cations between organisations using heterogeneous tool sets, exchange of
specifications from legacy to modern tools, exchange of specifications to

tools that provide more advanced modelling or analysis capabilities than
the originating tool or storage of specification data in a neutral format such
that multiple tools can operate on the data.

The focus in this thesis is on the analysis, design and implementation of a
method and tool neutral information model for enabling systems engineer-
ing tool data exchange. The information model includes support for repre-

sentation of requirements, system functional architecture and physical
architecture, and verification and validation data. There is also support for
definition of multiple system viewpoints, representation of system archi-

tecture, traceability information and version and configuration manage-
ment. The applicability of the information model for data exchange has
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been validated through implementation of tool interfaces to COTS and

proprietary systems engineering tools, and exchange of real specifications
in different scenarios. The results obtained from the validation activities
indicate that systems engineering tool data exchange may decrease the

time spent for exchanging specifications between partners developing
complex systems and that the information model approach described in
the thesis is a compelling alternative to tool specific interfaces. 
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Foreword and
Acknowledgements

A lot of time has been allocated to the completion of this thesis. Still I have
come to the realisation that it will never be quite complete. There will
always be some aspect of the text that will be in urgent need for improve-

ment, or some detail of the work which is not adequately presented in the
last detail. Hence the quote below by Winston Churchill is very much
applicable to this thesis:

“Writing a book is like an adventure. To begin with it is a toy and an
amusement. Then it becomes a mistress, then it becomes a master,
then it becomes a tyrant. The last phase is that just as you are about

to be reconciled to your servitude, you kill the monster and fling
him to the public.”

In this case, “the public” is the people and organisations interested in tool

data exchange between systems engineering tools and systems engineer-
ing information models. 

This thesis is concerning tool integration in general and systems engineer-
ing tool data exchange through the use of a tool neutral information model

in particular. The information model is presented in detail as one part
objective with the thesis is that it shall document information model as the



FOREWORD AND ACKNOWLEDGEMENTS

IV

positive and negative experience generated by using it for tool data
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development would not have been possible without the colleagues and
friends participating in the projects. I would like to thank the following
people for their comments, support and criticism: Roland Almgren, Syl-
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questionable whether it would ever be completed. My friends Dr. Paul
Scerri and Dr. Asmus Pandikow provided a great help and guidance in the
deed that they did complete their thesis projects in the stipulated time —

an admirable achievement! Of course my thanks goes also to past and
present members of the Real-Time Systems laboratory with whom I
shared a lot of fun. Likewise my thanks goes to the management and staff

at Syntell AB and SAAB Training Systems for their generosity in allow-
ing me to complete this thesis despite a pressed project schedule.
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Chapter 1
Introduction

Over the last centuries the complexity of and expectations in terms of, e.g.,
quality and availability, on human made systems have increased enor-
mously. At the same time the prime engineering tool — the brain — has

evolved minimally or not at all. To cope with complexity the engineering
community have formalised methods and processes for describing sys-
tems in formats that facilitate unambiguous communication. One impor-

tant step in this process was the introduction of modern engineering
drawing principles by Gaspard Monge in 1801 [51]. Consequently, engi-
neering drawings became the accepted means for communication between

the design and manufacturing phase in the development process. 
As system complexity increase new process phases has been added

early in the process. Today it is common to describe a system in terms of

its life-cycles as outlined in Figure 1.1 [24]. The motivation for this is to
promote consideration of issues like system updates and phase out in the
early phases in the system development process. The objective is to

develop life-cycle-balanced systems. Factors beyond production cost such
as usability, upgradeability, maintainability, procedures for phase-out and
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disposability are important in this perspective and should be addressed
throughout the development process. 

A number of process standards for the development of complex systems
have been proposed, e.g., IEEE-1220 [67] and EIA-632 [102]. The stand-

ards define a number of activities that shall be undertaken to ensure that all
aspects of the system life-cycle is considered for a system. The activities
performed in a design or development life-cycle phase depend on the char-

acteristics of the system, the development organisation and the phase in
the cycle. At a very high level of abstraction all design oriented phases
share the structure proposed by Patterson [119] and presented in

Figure 1.2. Any number of requirements define the problem space for a
system, i.e., required capabilities for a system and the constraints identi-
fied. The format and structure of requirements for a phase depend on, e.g.,

life-cycle, system complexity, process — it may be textual definitions,
engineering drawing or formal specifications. 

The first task in each generic phase is to recognise and understand the

problem space. Once the problem space is understood analyses are per-
formed to investigate alternate solutions. Candidate solutions are synthe-
sized and evaluated against the original requirements. The selected

solution, a specification, will likely serve as input to the next phase in the
life-cycle and thus form part of the requirements for that phase. The proc-
ess is inherently iterative and communication between the owner of the

requirements can be expected to be intense. Analyses within a phase may

N
E
E
D

Conceptual & 
Preliminary 

Design

Detailed 
Design & 

Development

Production & 
Construction 

System operation, 
Phase-out & 

Disposal

Figure 1.1: The system life-cycle
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reveal that the requirements as stated are too strict. In such cases it is nec-

essary to adjust requirements to match what is possible to realise under the
constraints imposed. It can be expected that a specification produced in a
phase is in a subset of the solution space defined by the requirements. The

specification is usually more specific and detailed than the set of require-
ments that were guiding the work within a phase. It is not uncommon that
the output of a phase is in the form of multiple specifications for a number

of identified subsystems. 

1.1 Product Data in the Systems Engineering Process

Large amount of design data is created, generated, referenced and main-
tained over the complete life-cycle for any complex system. As noted
above, different engineering methods are used in the different phases in

the development process. Early in the process, in the conceptual and pre-
liminary design phases, the requirements captured are typically expressed
at a high level of abstraction and usually do not prescribe any specific real-

isation technology. As the process proceeds engineers interpret the origi-
nal requirements, and partition complex systems into more manageable
components. Design and implementation decisions are made until compo-

nent specifications reach a level of detail such that detailed engineering
domain analyses can be performed and it is a suitable foundation for pro-

Requirements

Issues

Specifications

Recognise

Analyse

Synthesize

Figure 1.2: Generic systems engineering process phase 

System engineering process phase
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duction. For mechanical parts this could be in the form of specifications

including manufacturing drawings and NC programs. For computer hard-
ware it could be a specification expressed in VHDL and for software it
could be source code expressed in a high level programming language. 

The information generated is not only restricted to the system parts to
be manufactured. System integration, verification and validation plans and
operational and maintenance specifications are vital for the engineering of

complex systems. The process is not linear. Several specification versions
and variants are usually considered in each phase. Moreover for traceabil-
ity it is important that trade-off, design decision and change information is

maintained throughout the system life-cycle. 

1.1.1 ENGINEERING SUPPORT TOOLS

The factors described above make efficient management of product data a
major challenge for industry despite the introduction of PDM (Product

Data Management) systems and the development of ever more advanced
computer based tools for engineering design, analysis and manufacturing
support. Today there are a large number of excellent engineering tools

available to support engineers in different domains and who are applicable
to specific tasks encountered in the development process. Without going
into details it can be assumed that the service offered by state of the art

tools are more than adequate for the domain of service they are designed to
cover. However, the situation is such that there are neither a single tool
which can effectively support all design activities for a complex system,

nor is the general situation such that a single tool has achieved total market
domination. Consequently, it can be expected that development informa-
tion for a complex systems is distributed over multiple engineering tools,

or more generally databases, e.g., requirements, manufacturing, engineer-
ing analysis, and maintenance databases. 

Complex systems are often developed in a multi-organisation context,

either in partner relationships or in contractor - subcontractor relation-
ships. It is common that the cooperating organisations use different sets of
engineering support databases. The prevailing situation has led to a

demand for mechanisms for enabling tool and database interoperability
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with the objective to support data exchange across tool boundaries and

also for linking product data produced in different phases of the system
life-cycle. 

1.1.2 DATA REPRESENTATION AND EXCHANGE

Data representation and exchange problems are not new. A number of

domain specific data exchange standards have been developed to improve
database interoperability for different engineering domains, see [116] for
an overview. The preferred approach in these standards is to define an

information model that captures the design elements of interest for the
domain of the standard and their logical interrelationships. One of the ear-
liest standards was IGES [51][69] that was initiated in the early 1980’ies

with support for geometrical CAD data. Later IGES was succeeded by the
STEP (ISO 10303) standard framework [6]. Individual STEP standards
(application protocols) provide data representation specifications for, e.g.,

Configuration Controlled Design 3D designs of mechanical parts and
assemblies (AP-203) [7], for Design-analysis of Composite Structures
(AP-209), Electronic Printed Circuit Assembly, Design and Manufacture

(AP-210), Electrotechnical Design and Installation (AP-212) and Core
data for automotive mechanical design process (AP-214) [105]. The men-
tioned standards are extensive and provide the means for enabling tool

data exchange capabilities in their respective domains. Related to the sys-
tem life-cycle presented in Figure 1.1 the reviewed standards provide data
coverage for the detail design and development, and construction and pro-

duction phases in their respective domain. But there is limited or no sup-
port for representation of system specification and system design data in
the conceptual and preliminary design phases. As a consequence there are

neither any standard means for data exchange for the engineering tools
used in conceptual and preliminary design nor does there exist a standard
framework that supports traceability through the phases in the systems

development process. 
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1.2 Research Problem

The aim of the work reported is to investigate and propose an information
model for reliable Systems Engineering tool data exchange and capabili-
ties. 

More specifically the following items were investigated:

 • What data representations are used in tools and methods used by sys-
tems engineers?

 • How shall a tool neutral information model be structured to accommo-
date data from multiple stakeholders, and captured in multiple tools?

 • How do Systems Engineering data relate to data representations used

in later phases of the life-cycle?

The main objectives were:

 • To enable data exchange between engineering tools used in the con-

ceptual and preliminary design phases of the system life-cycle. The
explicit objective is to support data representation requirements for
existing methods and tools rather than to define new methods. 

 • To provide for constructs for integration and traceability between con-
ceptual and preliminary design data created in multiple tool environ-
ments.

 • To provide the structure for enabling traceability between engineering
data represented in the conceptual and preliminary design phases and
the detail design and development phases. 

The information model shall be seen as a complement to existing STEP
application protocols. The scope of the information model has been
selected to avoid areas where there is a significant overlap with existing

STEP application protocols. 

1.3 Research Method

The results presented in this thesis originate from work performed in the

EU funded SEDRES1 (Esprit 20496, 1996 - 1999) and SEDRES-2 (IST
11953, 2000 - 2001) projects where the department of Computer and
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Information Science at Linköpings Universitet cooperated with Systems

Engineering experts from the European aerospace industry: Aleniaab

(Italy), BAE SYSTEMSab (UK), EADS Germanyab (Germany), EADS
Launch Vehiclesab (France), SAABab (Sweden) and SIAb (Italy) together

with the Institut für Maschinenwesen of Technische Universität Clausthalb

(Germany), the Australian Centre for Test and Evaluationa (Australia), the
department of Computer Science at Loughborough Universityab (UK) and

EuroSTEPb (UK). In the later stages of the project there was also signifi-
cant interactions with the ISO working group TC184/SC4/WG3/T8/AP-
233 and from the International Council on Systems Engineering

(INCOSE). In these projects and activities the author has been responsible
for modelling architecture and information model development of the AP-
233 standard. Part of the research activities has also been performed with

support from NUTEK under the COHSY and SEDEX projects. These
projects were also performed in cooperation with SAAB.

At the set out of the project the understanding of requirements on data rep-
resentation for were relatively limited both in academia and in industry.

Consequently an “Industry-as-laboratory” [122] approach was selected to
allow for frequent exchange of information from the problem domain
(industry) to the academic domain and back. 

1.3.1 ROLES AND RESPONSIBILITIES

The author’s primary role in the projects was to harmonise industrial
requirements, develop and document the AP-233 information model
based on data exchange requirements identified in industry. The industrial

partners in the projects have used the information model for tool interface
development and there have been validation activities in the form of real
data exchanges. The effectiveness of the data exchanges was evaluated by

representatives from academia (LUCHI and the Australian Centre for Test
and Evaluation). 

1. SEDRES is an acronym for Systems Engineering Data Representation and 
Exchange Standardisation.

a indicates that the organisation was participating in the SEDRES project.
b indicates that the organisation was participating in the SEDRES-2 project.
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The roles identified do not imply that the author was responsible for all

aspects of the information model implementation in the projects. Substan-
tial parts of the AP-233 information models, i.e., the areas covering data
types and object oriented Systems Engineering support were developed by

Michael Giblin at BAE SYSTEMS and Asmus Pandikow at Linköping
University respectively. The contributions made by these very skilled col-
leagues are not included in the information model documented in this the-

sis. 

1.3.2 RESEARCH PROCESS

Five information model revisions had been implemented to meet gradu-
ally more extensive industrial requirements. For each revision industrial

feedback has been collected, analysed and where appropriate included in
the succeeding revision. For the first, second, fourth and fifth revision

there have been extra validation activities in the form of tool interface
implementation and real data exchanges to ensure that the concepts mod-
elled were relevant in the problem domain. The process is illustrated in

Figure 1.3 and outlined below. 

Industrial
requirements

Requirement
harmonisation

Information 
modeling

Review

Requirements 

Harmonized 
requirements

Questions and 
proposals

Interface 
implementation 
and information 

exchanges

Validation

Evaluation feedback

Figure 1.3: Research process
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The first activity in the cycle was to allow industrial experts to express

their data exchange requirements. This was followed by a requirements
analysis and harmonisation activity performed jointly by industry and the
information modellers. This activity was necessary to make sure the har-

monised requirements were well understood and acceptable to all part-
ners. The harmonised requirements were then used for information model
developed. Reviews with industrial specialists were held during the devel-

opment phase. This early review step provided industry representatives
with an opportunity to comment on the solutions proposed in the informa-
tion model and also provided an opportunity for motivating decisions

taken. The review cycle was iterated multiple times for each information
model revision. For the validation activities data exchange interfaces was
developed for a set of tools in use in the Systems Engineering process in

industry. Data exchange of real system specifications was then used to val-
idate the interfaces and the concepts included in the information model.
The feedback captured in this activity have had an impact on both the

information model and on requirements as it provided new insights in the
data exchange problem valid for the succeeding revision of the informa-
tion model.

1.4 Contributions

The main contributions in this thesis are:

 • A set of general guidelines for information modelling for data
exchange. The guidelines have been applied consistently to data
exchange information model.

 • A tool independent information model for Systems Engineering data
exchange.

The contributions in each area are outlined further below:
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1.4.1 MODELLING GUIDELINES

The identified set of modelling guidelines describes philosophy applied
for the development of the Systems Engineering data exchange informa-

tion model. The rules emphasize, e.g., the importance of a data exchange
information model to be process and method independent. The guidelines
have been applied consistently to the information model and have moti-

vated many important design decisions. 

1.4.2 SYSTEMS ENGINEERING DATA EXCHANGE INFORMATION MODEL

An information model for Systems Engineering data exchange has been

developed. The main purpose of the information model is to enable data
exchange and design data traceability for data stored and manipulated in
multiple tools. The information model contains structures for defining

what a system shall perform and other non-functional characteristics, for
how the specification evolves over time and for capturing the process the
system was developed within.

The main parts on the information model allow representation of:

1. A system from multiple viewpoints and in the context of a system
composition hierarchy. 

2. Requirements on a system stated in text or models

3. Functional architecture of a system. There is support for representing
data in accordance with the modelling methods commonly used within
Systems Engineering.

4. A representation of high level architecture of the physical or logical
components of a system

5. Information for verifying the correctness of a system

6. Activities carried out in the engineering process and the relationship to
data referenced and produced in the process.

Substantial parts of the information model have been validated through
tool interface development and real data exchanges in the SEDRES and

SEDRES-2 projects.
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It may be argued that there is little new in the information model scope

presented above. This is true, but the objective with the research is not to
define new methods but to support the integration of data created using
existing methods. The novel aspects with the information models pre-

sented is precisely this integration or tool independent aspect.

1.5 Disclaimer

The work presented herein has in part been performed in the European

research projects SEDRES-1 and SEDRES-2, in the ISO working group
TC184/SC4/WG3/T8/AP-233 and in the Swedish research projects
COHSY and SEDEX. Although the thesis is based on material produced

for standardisation purposes its content does neither completely reflect the
contents of any standard document nor does the information model frag-
ments presented herein completely represent the structure of past or future

versions of the ISO 10303-233 standard.

1.6 Thesis Overview

This thesis is divided into four parts.

Part I - Preliminaries

Contains an introduction to product data modelling and Systems Engi-
neering. The scope of the work presented in the thesis is defined and con-

straints are justified. Part I consists of chapter 1 to 3 of the thesis.

Part II - Information modelling

In this part the information modelling guidelines applied in the implemen-
tation of the information model is presented in chapter 4, followed by an

overview of the information model in chapter 5. These chapter present the
principles that guide and constrain the implementation of the information
model. 
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Part III - Information model presentation

This part constituting chapters 6 to 11 contain detailed presentations of the

information model capabilities including examples indicating how the
information model is intended to be used. Each chapter starts with a sec-
tion presenting identified requirements and constraints governing the

scope of the model, followed by a presentation of the information model
and sample instantiations. The information model presentations are neces-
sary very detailed. The thesis as a whole can be read and understood with-

out reading and understanding of every detail of the information model. 

Part IV - Evaluation

Chapter 12 presents the evaluation activities undertaken to verify the
appropriateness of the information model. Evaluation has been performed

by peer reviews with participants from INCOSE and ISO 10303, by tool
interface development and tool data exchange in small controlled evalua-
tion scenarios as well as in an industrial context. Evaluation results from

tool interface implementation and data exchange activities has mainly
been obtained from the SEDRES-2 project, but non SEDRES-2 evaluation
results are also presented.

Finally the thesis is concluded with chapter 13 containing a summary,
overall conclusions prompted by the work presented and an outline of
potential future work. 
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Chapter 2
Framework

Efficient data exchange between computer based engineering tools, or
more generally — databases, require an agreement on format and seman-
tics of the data exchanged. This chapter introduces basic terminology and

methods for information modelling and reviews background information
on methods for the integration of multiple heterogeneous databases. Two
database integration architectures, tightly and loosely coupled schema

integration is introduced and compared for the their applicability for tool
data exchange. 

Finally the ISO 10303 (STEP) standard framework is introduced and

compared with other existing data exchange frameworks. The special
focus on STEP is due to the fact that it is the framework used for the work
presented in this thesis.

2.1 Product Data

A large amount of information is generated in the development process for

any non trivial product. This information covers multiple aspects of a
product in all its life-cycles [1]. For complex products it is common that
substantial parts of the generated information is captured and maintained

using computer based tools. The range of tools employed vary and may
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include word processors, CAD and CAM systems, project management or

requirement management tools. With the exceptions of word processors
the type of tools mentioned above are all specialised for a particular set of
tasks. In this thesis we refer to this set of tools as engineering tools. The

data captured in an engineering tool is a representation of information
related to a facet of a product at a certain level of abstraction suitable for
communication, interpretation or processing. We use the term product

data [6] to refer to this kind of data. The scope of product data is very
wide. It can be in the range from a set of high-level requirements on a
complex systems to very detailed specifications of discrete components

including geometry data. 

There are multiple factors that make management and exchange of prod-
uct data non-trivial [115] [145] [149]:

 • Data heterogeneity: There is a large number of data types used for
capturing product data ranging from textual documents, over require-
ments management data over CAD and CAM models to product main-

tenance data. 
 • Product complexity: For a single product there may be multiple views

that define the product from different perspectives or in different life-

cycle phases. 
 • Product structure complexity: A product may be included in multiple

product structures and for each structure there may be temporal con-

straints applied such that the product may only be valid for inclusion a
limited time period. 

 • Design process complexity: This kind of complexity is due to the iter-

ative nature of the product development process. A high frequency of
updates and changes can be expected. It is crucial that all members of
a product development project have a coherent view of the product

under development. Moreover, for projects with stakeholders from
multiple domains there may be cases where different terminology are
used to refer to shared product properties. 
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The listed factors have contributed to the development of dedicated sup-

port systems for product data management (PDM). More information on
PDM systems are presented in [1] [23] [144].

2.2 Product Data Representation

This section presents some basic assumptions on how product data is rep-
resented, managed and organised. We assume that product data is man-
aged in a database or repository in a logical structure defined by a schema.

In this thesis no assumptions is made on the complexity and the services
offered by a database system. It may be a simple tool operating on a
sequential file structure or an advanced database management system. A

schema may be defined with the intention to be implemented in a particu-
lar database system, in this case it is called a data model. An information

model or conceptual model is a schema that is independent of any particu-

lar implementation [79] [133]. 

The structure of a schema or data model is defined in a set of rules defined
using a data modelling or information modelling language. A large

number of graphical modelling methods and textual modelling languages
have been proposed. 

Graphical methods include the Entity-Relationship method proposed by

Chen [31], the OMT method [129] and the UML static structure diagram
[130]. In these methods the domain of the world of interest is described in
terms of entities or objects, relationships between entities and attributes of

individual entities. Some of the more recent methods allow for declaration
of specialisation relationships between entities. 

Textual modelling languages generally allow for representation of more

detail than graphical one, but interpretation of a textual model is perceived
to be more time consuming compared to interpretation of a graphical
model. Textual modelling languages proposed include the functional lan-

guage Daplex [138] and the extended entity relationship language GEM
[157]. The EXPRESS language [8] is preferred within STEP and is used in
the work presented herein. It is a hybrid as it is a textual language, but
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there is also a graphical component, EXPRESS-G, that can express a sub-

set of the language.

2.3 Schema Heterogeneity

In this section an analysis of sources of schema1 heterogeneity is pre-

sented. An information model or a conceptual schema formalises informa-
tion about a domain in an unambiguous way at a selected level of
abstraction. Schenk and Wilson [133] propose the following definition for

information models:

“An information model is a formal description of types of ideas,
facts and processes which together form a portion of interest of the

real world and which provides an explicit set of interpretation
rules” 

However, it is important to note that information models capturing similar

portions of the real world, but developed by different stakeholders may
have fundamentally different structures. This is due to many factors,
including the choice of modelling language, the modelling style applied,

the purpose of the model and the abstraction selected when a specific con-
cept is captured. For instance, if a concept is at the centre of interest in one
model and in the periphery of another then the concepts are likely to be

captured at different levels of abstraction in the two models. Even in cases
where modelling language, domain, purpose and the selected level of
abstraction coincide for multiple schemas it can be expected that there will

exist structural differences in the schemas. Even in trivial cases there are
multiple modelling alternatives for capturing the same information. For
instance, if representing facts about people is in scope of a schema then the

gender of a person may be captured using an attribute or by using subtypes
as illustrated in Figure 2.1. 

1. In this section the term schema is used as a synonym for information model as this 
is the term preferred in the database community. 
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In the database community there is a long tradition of research in schema

integration, identification and resolution of schema heterogeneity for
multi-database integration, e.g., [65] [77] [135]. Multi-database research
is largely focused on methods for enabling inter-database communication

for enabling updates and, in particular, queries spanning over multiple
databases. Analyses of the spectrum of database heterogeneity encoun-
tered are presented by, e.g., Fang et al. [46] and Kim and Seo [82]. In the

work by Fang et al. five aspects of database heterogeneity is considered.

 • Meta-data language heterogeneity: The component databases may use
different classes of languages for structuring data. For instance, one

database may utilise the relational data model and another may use
object relational model. Heterogeneity in this aspect also includes dif-
ferences in techniques for capturing model rules and constraints.

 • Meta-data specification or conceptual schema heterogeneity: Compo-
nent databases may use independently developed schemas with differ-
ent scopes, abstractions or implemented using different structures.

 • Object comparability heterogeneity: Component databases may agree
to a common conceptual schema, but there are differences in how spe-
cific facets of information are represented between the components.

Also the interpretation of atomic data values may differ across data-
bases.

Person

gender

{m, f} Person

Woman Man

IS AIS A

Figure 2.1: Two alternative models for a trivial domain
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 • Data form/format heterogeneity: Component databases may agree on

the language, schema and object level, but may use different low-level
representations for representing atomic data values.

 • Tool heterogeneity: Component databases may use different tools to

manage and provide an interface to their data. This kind of heteroge-
neity may exist with or without the aspects described above.

Goh et al. [50] use a different classification and extend on the definition of

object comparability and data format heterogeneity as defined above by
considering:

 • Schematic heterogeneity

 • Semantic heterogeneity

The definition nature of schematic and semantic heterogeneity is pre-
sented in Figure 2.2:

attribute name conflicts

structure conflicts

value representation conflicts

measurement conflicts

computational conflicts

granularity conflicts

confounding conflicts

Schematic heterogeneity

Semantic heterogeneity

Figure 2.2: Schematic and semantic heterogeneity
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2.3.1 SCHEMATIC HETEROGENEITY

Schematic heterogeneity includes attribute name conflicts and schema
structure conflicts. Attribute name conflicts include cases where different

names are used to capture the same concept in different schemas (syno-
nyms) and the cases where the same name captures different concepts in
different schemas (homonyms).

Structure conflicts are a result of the same piece of information being
captured in different conceptual structures. A concept in one schema may
be captured by a set of entity attributes, while being captured by a relation-

ship in another. Figure 2.1 illustrates a structural conflict. Methods for
analysis and resolution of structural conflicts have been proposed by, e.g.,
Johannesson [72] and Batini et al. [21]. The transformation rules proposed

in the cited work are not only applicable for resolution of structural con-
flicts but also serve as a guideline for good information modelling prac-
tise. 

2.3.2 SEMANTIC HETEROGENEITY

Semantic heterogeneity originates from multiple interpretations of
attribute values. As with schematic heterogeneity there may be represen-

tation conflicts in attribute values. These occur when synonyms or homo-
nyms are used to represent the value range of an attribute. For instance, the
priority of a requirement may be captured on the binary scale high, low in

one system and while the values important and normal may be used to
capture the same semantics in another system. 

Measurement conflicts occur when different units of measurements or

scales are used in different schemas to represent common information. For
an example of measurement conflicts consider two schemas designed for
capturing the weight of some objects of interest where one assumes the

weight is given kilograms and the other assumes imperial pounds. An
illustrating example of the impact of measurement conflicts is given in
[40]. In the cited example measurement data for a product was assumed to

be given in inches when they in fact where given in millimetres. As a
result the product was realised 25 times larger than intended!
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Representation conflicts arise when different syntactical representations

are used to capture the same attribute value. For instance some representa-
tions may encode numeric values using fractions, e.g.,  or real values
may be used, e.g., 5.3125. Similarly, in some countries, e.g., Sweden, a

comma (,) is used as decimal delimiter while other countries, e.g., the UK,
use the decimal point (.) as delimiter. 

Confounding conflicts are due to assignment of different meanings to a

common concept. For instance, the weight of a system may be the weight
as specified or the weight as realised. 

Computational conflicts are due to the use of different methods or algo-

rithms to compute a value. Finally granularity conflicts occur when data
are managed at different levels of abstraction in different databases. 

Detection of semantic heterogeneity may appear trivial, but is complicated
by the fact that contextual information is frequently implicit or assumed to

be unambiguous in the context of a single schema. Problems materialise
when the implicit or explicit assumptions made in one schema is not taken
into account when data is be transformed from one schema representation

to another. 

2.4 Schema Mapping

This section presents a framework for reasoning about the consequences
of the mapping concepts from an arbitrary source schema A to a sink
schema B. 

A mapping function  defines how concepts in two schemas relate
semantically and schematically [39] [73] [87]. If a pair of schemas (A, B)
is considered then a mapping function can be defined to capture how a

specific concept in schema A shall be represented in schema B. Thus a
mapping function may include the resolution of schematic and semantic
heterogeneity. A general mapping function for a finite, non-empty set of

elements (entities, relationships and/or attributes) in a schema A to a set of
elements in schema B can be defined as:

5
5
16
------

fmap
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where

The empty set of elements is included in the value domain of a general

mapping function to illustrate the case where there exists no correspond-
ing concept in the sink schema. Even though a mapping function is
defined to operate on sets of elements, it is important to keep in mind that

it operates on a subset of a schema. It is expected that several mapping
functions will be required to completely define the relationships between a
pair of schemas. Two mapping functions are illustrated in Figure 2.3.

Mapping function f2 illustrates the case when a concept is represented
using a single entity in the source schema and several entities are required
in the sink schema. Similarly, mapping function f1 is an example of the

case where several entities in the source schema are represented by a sin-
gle entity in the sink schema. The fact that a mapping function may

b f
map

a( )=

a a1 a2 … a
n

,,,{ } schema∈= A

b

∧
b1 b2 … b

m
,,,{ } schema∈= B ∅

m

∧
n 0>,

∨

A

B

C
D
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Y

Z

{x,y}=f2({a})

{z}=f1({b,c})

Schema A Schema B

Figure 2.3: Schema mapping function example
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resolve schematic heterogeneity, e.g., multiple elements in a source

schema may map to a single element in a sink schema or vice versa, does
not in itself imply information modification through the application of the
mapping function. 

2.4.1 IDENTIFYING SEMANTIC HETEROGENEITY

Mapping function quality is not just a matter of comparing entities, rela-
tionships and attributes of the involved schemas. Mapping functions must
also be analysed with regard to semantic heterogeneity. It may be the case

that there exists a natural mapping from elements in schema A to elements
in schema B, but the resulting representation in schema B may have a dif-
ferent semantics compared with the original one. Four cases can be iden-

tified:

Figure 2.4: Mapping function classes

source schema sink schema

Case 1: Source and sink schema 
semantics are equivalent

Case 2: Sink schema semantics is a 
subset of the source schema 

Case 3: Sink schema semantics is a 
superset of the source schema 

Case 4: Sink schema semantics is a 
subset of the source schema and 
additional semantics are implied in 
the sink schema
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1. The application of a mapping function results in a representation with

equivalent semantics in the sink schema. 
2. The application of a mapping function results in a representation

whose semantics is less specific than the original one. Semantic heter-

ogeneity between the schemas results in the loss one or more proper-
ties when the mapping function is applied. In extreme cases no infor-
mation at all is conveyed by the mapping function.

3. The application of a mapping function results in a representation
whose semantics is more specific than the original one. Semantic het-
erogeneity result in the addition of one or more properties when the

mapping function is applied.
4. The application of the mapping function results in a representation

whose semantics is in part less specific than the original and in other

aspects more specific than the original one. This is a combination of
the second and third alternative above.

The Venn diagrams in Figure 2.4 illustrate the properties of the four
classes. The characterisation of mapping functions presented above is

similar to that of attribute equivalence for databases presented by Larson
et al. [87] with the difference that mapping to and from more than one
object or attributes are considered in the work presented herein. 

The following trivial examples illustrate how the application of a mapping
function modifies a specification. Assume that a source schema has the
static capability to represent two classes of requirements - functional and

non-functional requirements. In the representation selected in the source
schema, a requirement is either functional or non-functional. If the sink
schema also supports the definition of two requirement classes with equal

definitions as for the sources schema then case 1 above applies. No infor-
mation will be lost or added in the mapping of classification information
from schema A to schema B. It is important to note that the requirement

classes defined in schema B need not carry the same names as the ones in
schema A. It is sufficient that the underlying definitions are equivalent. 
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If the same source schema A, and the mapping to a schema where there is

no provision for requirement classification, is considered then this infor-
mation will be lost in the transfer. This corresponds to case 2 above. 

Case 3 above is illustrated by the following example. If the same source

schema A is considered but with a mapping to a schema with four require-
ment classes, e.g., functional, performance, physical and constraints. The
definition of a functional requirement may be common to both schemas,

but the mapping of a non-functional requirement to any of the classes
defined is a mapping from a general to a specific concept. If mapping is
performed automatically then a non-functional requirements in the source

schema will receive a more specific (and possibly incorrect) classification
in the sink schema. 

2.4.2 SEMANTIC HETEROGENEITY ANALYSIS

In the preceding paragraphs, schema overlap has been discussed in terms

of the semantics of individual mapping functions. It can be expected that a
large set of mapping functions must be applied if two schemas with sub-
stantial overlap are considered. The five classes defined in Table 2.1 can

be used to facilitate analysis of the overlap between two schemas. Note
that a fifth class, the Inequality class, has been added compared to the pre-
vious enumeration above to explicitly represent the set of mapping func-

tions that do not carry any information.

Table 2.1:  Mapping function classes

Name Description

Equality A class for the mapping functions whose 
application results in equivalent semantic in 
the source and sink schema.

Restriction A class for the mapping functions whose 
application results in a semantic in the sink 
schema that is more specific than the origi-
nal semantics.
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Whenever a mapping function that does not belong to the Equality class is
applied the result will be a modification, however slight, to the original

specification semantics. The effect of a mapping function modification
may not be visible in the sink environment. The data in the sink environ-
ment may be semantically correct but not semantically equivalent with the

original. The extent of a modification can only be established through an
analysis of the mapping function and the schemas involved.

The analysis would be significantly simplified if all mapping functions

either belonged to the Equality or the Inequality classes as the extension of
the modification imposed by mapping functions belonging to these classes
are bounded. Either there is no modification or no data is carried over by

the mapping function. For the other three mapping function classes the
extent of the modification imposed cannot be bounded without a detailed
study of the characteristics of each individual function. 

2.4.3 SCHEMA MAPPING — SUMMARY

The value of mapping specifications from one schema representation to
another must be evaluated against the impact of mapping function related

modifications incurred in the process. The extent of modification that can
be accepted is situation dependent. In some cases minor semantic modifi-
cations may be sufficient to nullify the value of data exchange. In other

cases there may be a high level of tolerance for semantic modifications.

Generalisation A class for the mapping functions whose 
application results in a semantic in a sink 
schema that is more general than the origi-
nal semantics.

Distortion A class for the mapping functions that 
exhibit characteristics of both the Restric-
tion and Generalisation classes.

Inequality A class for the mapping functions for which 
no representation exist in the sink schema.

Table 2.1:  Mapping function classes

Name Description
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Regardless of the case, the extent of modifications incurred in the map-

ping process must be understood by the users utilising the data exchange
environment or there is a substantial risk that critical modifications is not
considered at all.

2.5 Database Integration Architectures

In the database community there have been multiple proposals for archi-
tectures for integrating multiple autonomous database systems. A survey

of different approaches and systems are presented in [48]. Two classes of
architectures can be identified based on the point in time when integration
is performed.

 • In tightly coupled integration the focus is on resolution of schema het-
erogeneity through the development of shared schemas that hides het-

erogeneity from the user. Sometimes a distinction is made between
global and federated schema architectures [77]. The approach in a glo-
bal schema system is to create a single schema for all component data-

bases while there may be multiple views (schemas) defined in a
federated schema system [86]. Database queries are performed against
the global schema or a federated schema. 2n schema mappings have to

be performed to integrate n schemas. This approach is based on the
assumption that schema heterogeneity can be identified and resolved
in a global schema or a set of federated schemas through analysis of

component databases schemas. There is an implicit assumption that
the component databases are stable and that changes that impact on
the structure on the global or federated schema(s) are infrequent. An

additional reservation made against this approach is that the global
schema may become very complex if there is substantial inter-schema
heterogeneity. An example of a tightly coupled integration architec-

ture is presented in [93].
 • Proponents for loosely coupled integration emphasise the difficulty in

constructing and maintaining a common schema for a large number of

autonomous databases. Instead the focus is on the definition of power-
ful data manipulation languages that allow queries of multiple data
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sources. In a loosely coupled architecture the user is responsible for
detection and reconciliation of schematic and semantic conflicts [49].
No global schema is developed, instead mappings are developed on a

schema pair basis. Thus, in an environment with n component data-
bases there may be up to n(n-1) schema mapping alternatives to be
considered, but in each alternative heterogeneity need only be ana-

lysed and resolved against a schema pair. In cases where semantic or
schematic heterogeneity exist the database integrator may select a sin-
gle data source as the reference. An example on a loosely coupled

integration architecture is presented in [92].

Selection of integration architecture depends on the characteristics of the
constituent databases. A tightly coupled integration approach appears

advantageous in cases where the heterogeneity of the component data-
bases is well understood and bounded. Furthermore component schemas

Figure 2.5: Combining tightly and loosely coupled 
integration

Loosely coupled 
integration imple-
mented in a data-
base, querying a set 
of tightly integrated 
databases.

Global schema for a set of component databases
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must be assumed to be stable over time. On the other hand, a loosely cou-

pled integration solution appears appropriate in cases where component
databases are subject to frequent changes, where there is substantial heter-
ogeneity in component schemas and where there exist a limited number of

data sources where the data can be retrieved. 

Finally it must be noted that architectures selection is not mutually exclu-
sive. Groups of tightly coupled integrated databases may be loosely inte-
grated with each other as illustrated in Figure 2.5, and a schema that

implements loosely coupled integration may be a component schema in a
tightly coupled integration architecture. 

2.6 Engineering Tool Data Exchange

The preceding sections introduced and discussed database heterogeneity,
schema integration and schema heterogeneity as they have been presented

in the database community. 
In the terminology introduced by Fang et al. [46] (presented in Section

2.3) data exchange between a pair of tools may be of value if conceptual

schema heterogeneity is bounded, i.e., there is a substantial overlap in tool
domain support. There may be substantial heterogeneity in the meta-data

language, in object comparability and data formats classes. All heteroge-

neities must be identified and understood before specification elements
exchanged can be used. 

The integration architectures identified in Section 2.5 are applicable to
tool data exchange as well. Loosely coupled schema integration corre-

sponds to developing mapping functions directly between the constructs
used in a source schema and the constructs in the sink schema. The data
exchange mechanisms may be implemented via direct queries or via file

based data exchange. In directed file based data exchange from tool i to
tool j this can be implemented through the use of the native file format of
either tool as the common data format as in Figure 2.6 (top). A set of map-

ping functions (A in Figure 2.6) resolve heterogeneities and present data in
a format suitable for tool j. The set of mapping functions are specific for
the exchange from tool i to tool j. 
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Tightly coupled schema integration corresponds to the development of
an exchange schema rich enough to resolve conceptual schema heteroge-
neity for engineering data relevant for a domain and the selection of a

common data format for representing instances of the information defined
in the schema. The architecture is illustrated in Figure 2.6 (bottom). Two
sets of mapping functions (B and C in Figure 2.6) resolve heterogeneities

from a tool specific source schema to the exchange schema and from the
exchange schema to a tool specific sink schema. 

Advantages and disadvantages of respective approach for generic data-
bases have been discussed in Section 2.5. For well-established and homo-

geneous engineering domains the tightly coupled schema integration
approach appears advantageous. If there exist a common view on the
information managed by a specific class of tools then schema harmonisa-

tion can be expected to be relatively straightforward and schematic and
semantic heterogeneity issues are likely to be minor. 

Common 
format

Tooli Toolj

Figure 2.6: Approaches to data exchange

B C

Exchange 
schema

Tooli 
schema

Toolj 
schema

Tooli
A

Tooli 
schema

Toolj

Toolj 
schema
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The tightly coupled schema integration architecture is also attractive in

cases where domain information exhibits a high degree of complexity,
e.g., for engineering information [115] [28]. In such cases the cost of
developing and maintaining multiple tool interfaces become prohibitive.

The total development cost for a global schema may be substantially lower
than for maintaining multiple loosely integrated tools, especially if the
global schema architecture is coupled with a common data exchange for-

mat. 

A comparison of the two integration architectures for engineering data
exchange yields the following results.

1. 2n interfaces are required to enable data exchange capabilities among

n tools if a tightly coupled integration architecture is used compared
with up to n(n-1) interfaces with a loosely coupled integration archi-
tecture. 

2. An agreement on a common exchange schema coupled with a formal
mapping to a data exchange file formats and access primitives allows
for automation of large parts of the interface development process.

File readers/writers and temporary and permanent repository struc-
tures with standard access functions can be generated. Those parts that
are not easily automated, i.e., the mapping from entities in the ex-

change schema to the corresponding entities in a tool schema, are sup-
ported by the definitions available in the exchange schema. This shall
be compared with the manual process of mapping between two tool

specific formats that has to be used if a loosely coupled integration ar-
chitecture is employed.

3. A tightly coupled integration approach allows domain experts to ex-

press their views on important domain information. In this sense the
approach not only facilitates information exchange across tool bound-
aries — it also allow users to express requirements on future tools. 

4. A tightly coupled integration architecture is less efficient than a loose-
ly coupled integration architecture as two sets of mapping functions
must be applied in order to complete a data exchange. The risk for

mapping function introduced modifications is thus doubled. 
5. A tightly coupled integration approach is less specific and less flexible
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than a loosely coupled one as the global schema cannot incorporate all

concept of all tools and modifications cannot easily be introduced in
the common schema [116].

Despite the known drawbacks of tightly coupled integration it has proved
very successful for enabling data exchange across engineering tool bound-

aries. The STEP framework reviewed in next section has proved espe-
cially successful mainly in the mechanical engineering domain, and is also
the framework selected for the work presented later in the thesis.

2.7 STEP

This section introduces the STEP1 (ISO 10303) [6] standard framework,

its background, objectives and constituent parts. The overview is neces-
sarily brief, in depth information on STEP and its components are availa-
ble in [81] [116] [133]. 

The objective of STEP is to provide the framework for the unambiguous

representation and exchange of computer-interpretable product data
throughout the life of a product [6]. The framework is independent of any
particular computer system and is partitioned into a large number of parts.

The STEP framework is evolving constantly. In this section the original
architecture is presented first, followed by an analysis of the approach,
descriptions of additions and modifications applied to overcome identified

problems. 

STEP parts belong to one of the following content dependent classes:

Description methods The description methods are used in the defini-
tion of integrated resource and application protocol classes described

below. The description method preferred within STEP is the language
Express [8]. An overview of EXPRESS is provided in Section 2.8.

Implementation methods An implementation method defines a stand-

ard data representation format and the mapping from a description method

to the data representation. There are implementation methods defined for

1. STEP is the abbreviation for STandard for the Exchange of Product data.
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file based exchange [ISO10303-21] and generic application programming

interfaces SDAI (Standard Data Access Interface) [123] for repositories
including programming language bindings for C++ [104], C [94] and
XML [124]. 

Conformance testing methodology and framework Defines the pro-

cedures for validating STEP data exchange implementations. The exist-
ence of a published testing methodology is a prerequisite for independent
evaluation of the quality of tool interfaces.

Integrated resources The integrated resources are a set of generic
product data model fragments that are potentially common to multiple
application protocols. Integrated resources are used as a basis for applica-

tion protocol development and are not intended for direct implementation.
They define reusable components intended to be combined and refined to
meet a specific need. The existence of a common baseline of integrated

resources is the corner stone for application protocol interoperability and
also defines an information modelling style common to all STEP applica-
tion protocols. There are two sets of integrated resources: Generic

resources (part 4X) which are application and context independent, and
application resources (part 10X) which are developed for a specific appli-
cation areas common to many domains. Examples of the first category

include 10303-41 Integrated generic resources: Fundamentals of product
description and support [9] The data architecture defined by the integrated
resources is further discussed in Section • in this chapter. 

Application protocols The application protocols provide the definition

of data representation requirements identified for an engineering domain,
e.g. AP-203, Configuration Controlled Design [7]. The vast majority of
application protocols produced up to date are focused on different aspects

of mechanical engineering. Notable exceptions are AP-210, Electronic
printed circuit assembly, design and manufacture, and AP-212, Electro-
technical plants. 

An application protocols is a substantial document. It is not uncommon
with documents larger than 2000 pages. The structure of an application
protocol is outlined in Figure 2.7. 
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Abstract test suites Along with each application protocol there shall be

set of test cases including definition of example data files defined so that
implementers can validate their implementations against the application
protocol requirements. 

AAM - Application 
Activity Model

ARM - Application 
Reference Model

AIM - Application 
Interpreted Model

IR - Integrated 
resources

Figure 2.7: Application protocol structure

The AAM is an informative definition of 
the process an Application protocol is 
expected to be used within. The purpose is 
twofold:
1. To define the bounds of the AP for the 
development team.
2. To inform users of the assumptions 
made
The AAM is expressed in IDEF0 notation 
and text.

The ARM defines the information 
requirements and constraints for an appli-
cation protocol. The terminology used in 
the ARM is domain dependent. An ARM 
is typically expressed in EXPRESS.

The relationship between concepts in the ARM, 
integrated resources and the AIM is defined in a 
mapping table.

+

CC - Conformance 
classesThe AIM is the realisation of the 

requirements expressed in the ARM 
using data structures defined in the 
IRs. The terminology used in the 
AIM is domain independent.

Conformance Classes defines sensible 
sub-sets of an AIM for which meaning-
ful data exchanges are possible.

Defines 
context for
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The relationships among the six classes outlined above are illustrated in

Figure 2.8.  

2.8 The EXPRESS Language

This section presents the capabilities of the information modelling lan-
guage EXPRESS [8] and its graphical format EXPRESS-G. EXPRESS is
based on an extended entity relationship formalism. EXPRESS supports

the definition of:

 • Schemas: The mechanism for grouping related model concepts. Inter-
schema referencing is possible that allows for a common resource to

be defined independently and then used from several other schemas.
Each schema has its own unique name space.

 • Entities: The representation of a concept of interest within the scope of

a schema.

defined for

support Description
methods

Integrated
resources

Application
protocols

Implementation
methods
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test suites

Conformance testing
methodology and
framework

defined in
defined in

framework for

defines 
structure for

Engineering

domain

defined for

Design tools 

validates
interface of
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interface of

Figure 2.8: STEP classes and their relationships
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 • Basic types: Elementary types that cannot be further subdivided.

STEP supports the normal set of basic types found in standard impera-
tive programming languages, e.g., the integer and string type. 

EXPRESS offers multiple capabilities for defining entity and type proper-
ties. From an information modelling viewpoint a property may be

expressed using combinations of the constructs below.

 • Attribute: represents an aspect of an entity. EXPRESS provides the

capability to define mandatory, optional and derived (attribute value is
calculated using a formal expression) attributes. 

 • Inheritance relationships: The specialisation/generalisation relation-

ship between entities. There are three basic constraints that can be
defined for an inheritance relationship: Under the One of constraint an
instantiation of a supertype entity is exactly one of the subtypes. The

And constraint defines that an instantiation of a supertype has the
combined properties of all of its subtypes. Finally the AndOr con-
straint defines that an instantiation of a supertype possess the proper-

ties of any combination of the subtypes of the entity. Inheritance
constraints may be combined using regular expressions. EXPRESS
also support the definition of multiple inheritance, i.e., a subtype may

inherit the properties of multiple supertypes. 
 • Aggregates: attributes may be defined to be an aggregate of a basic

type or entity. Aggregates may be ordered or unordered, closed or

open-ended. 
 • Textual constraints: EXPRESS supports the definition of formal con-

straints on entities, relationships, attributes and other modelling con-

structs. Uniqueness constraints can be defined such that only a single
instance of an entity with a given attribute value or value combination
is allowed in database. Textual constraints can be applied to basic

types and to entities. In addition it is possible to define global rules
that are not associated with any specific element. The expressive
power of EXPRESS is comparable to the combination of UML and

OCL as used in [109].
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The graphical view of EXPRESS, EXPRESS-G is a subset of the textual

view in that it does provide representations for entities, relationships and
attributes, but there is no representation of, e.g., textual constraints or
advanced inheritance relationship information. 

2.8.1 EXPRESS MODEL EXAMPLE

This section introduces the EXPRESS language through a trivial, and not
necessarily realistic, example. The portion of the world of interest for the
example concern vehicles and audio systems. The following statements

define the scope of the model.

 • An audio system may be installed in at most one vehicle.
 • An audio system has either support for a cassette or a CD. 

 • For each vehicle there exist an upper limit of audio systems that may
be installed. 

 • Each vehicle and audio system can be identified through a serial

number

An information model in EXPRESS-G meeting the statements above is
presented in Figure 2.9. The syntax in EXPRESS-G is explained below:

 • Entities are depicted as rectangles enclosed in solid lines. Two of the
entities in Figure 2.9 are vehicle and audio_system.

 • Entities may be defined as being abstract, indicating that objects of an

entity may not be instantiated without the instantiation of one of its
subtypes. Abstract entities are identified by the keyword (ABS). In
Figure 2.9 audio_system is an abstract entity.

 • Basic data types are depicted using solid rectangles with an extra ver-
tical bar close to the right side of the rectangle. In Figure 2.9 the string

and integer data types are used.

 • User defined data types are depicted using dashed rectangles. Select
types have a vertical bar close the left-hand side and enumeration
types a vertical bar close to the right-hand side. The natural_number

type in Figure 2.9 is a user defined type.
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 • Attributes are depicted as a line from the source to the destination
object. A ring indicates the destination object. Optional attributes are
depicted with a dashed line and mandatory with a solid line. Attributes

can also be defined as sets, arrays and bags. In EXPRESS-G the
labels, S, A, and B are used to indicate sets, arrays and bags of objects.
Cardinality constraints may be defined on both forward and inverse

attributes. Inverse relationships are identified by the keyword (INV).
 • Thick lines are used to represent inheritance relationships among enti-

ties. A ring is used to indicate the subtype in the relationship. In

Figure 2.9 the entity CD_system is a sub-type of the entity audio_sys-

tem.

EXPRESS-G can only represent a sub-set of the EXPRESS language. In

Figure 2.10 the model presented in Figure 2.9 is extended to illustrate
some additional features of EXPRESS. 

In the textual representation a model can be extended to include:

 • Derived attributes, attributes that can be calculated from other ele-
ments in a model. In Figure 2.10 the value of the attribute installed_

audio_system of the entity vehicle is determined by the audio_system_

in_vehicle objects assigned to each vehicle.

Figure 2.9: EXPRESS-G model capturing the relationship 
between vehicles and audio systems

vehicle (ABS)audio_system

audio_system_
in_vehicle

cassette_system cd_system

natural_number

STRING

INTEGER

vehicle

(INV)audio_system_

in_vehicle S[0:?]

audio_system

(INV)installed_in_vehicle S[0:1]

serial_number serial_number

max_number_of_

audio_systems 1
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 • Uniqueness constraints, defines that a specific attribute value (or a

combination of attribute values) for an entity type shall be unique in a
database. In Figure 2.10 the attribute serial_number shall be unique

for all vehicles.
 • Rules, declarative rules can be defined to constrain the number of

valid instantiations of a model. Rules may either be local to a specific

Figure 2.10: EXPRESS representation of Figure 2.9

SCHEMA example;

TYPE natural_number = INTEGER;
WHERE

SELF >= 0;
END_TYPE;

ENTITY vehicle;
serial_number : STRING;
max_number_of_audio_systems : natural_number;

DERIVE
installed_audio_system : natural_number := hiindex (audio_system_in_vehicle);

INVERSE
audio_system_in_vehicle : SET [0:?] OF audio_system_in_vehicle FOR vehicle;

UNIQUE
serial_number;

WHERE
wr1 : installed_audio_system <= max_number_of_audio_systems;

END_ENTITY;

ENTITY audio_system
ABSTRACT SUPERTYPE OF ( ONEOF(cassette_system,cd_system) );
serial_number : STRING;

INVERSE
installed_in_vehicle : SET [0:1] OF audio_system_in_vehicle FOR audio_system;

END_ENTITY;

ENTITY audio_system_in_vehicle;
vehicle : vehicle;
audio_system : audio_system;

END_ENTITY;

ENTITY cassette_system
SUBTYPE OF (audio_system );

END_ENTITY;

ENTITY cd_system
SUBTYPE OF ( audio_system);

END_ENTITY;

END_SCHEMA;
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entity or type, or global. In Figure 2.10 a rule is defined for the vehicle

entity that ensures that the number of audio systems installed shall be
less or equal to the maximum allowed number. 

 • Specialisation of inheritance relationships, the EXPRESS for the

audio_system specifies that an audio system is either a CD system or a
cassette system. This is stipulated by the oneof constraint defined for
the entity audio_system. Alternatively inheritance relationships may

be constrained with andor or and constraints. If the andor constraint
were used for the audio_system entity in Figure 2.10 then an audio_

system would be either a cassette system, a CD system or a combina-

tion thereof. Under the and constraint an audio_system would be the
combination of a CD system and a cassette system.

2.9 Product Data Modelling in STEP

This section presents the basic data structure defined in the integrated
resources in STEP. Since the structure is defined in the integrated
resources it is common to all application protocols. This does not imply

that the same information is handled the same way in two application pro-
tocols. In fact, one of the fundamental problems encountered in applica-
tion protocol development is to ensure that similar requirements are

captured in compatible structures in different application protocols. The
problem is that application protocols currently in development may have
more extensive requirements than those already standardised. For back-

ward compatibility new application protocols are strongly encouraged to
build on the previously accepted structures.

In Figure 2.11 the five basic elements of the STEP data architecture is pre-

sented [47]. The main notion is that of a product, which may represent
anything in the range from utterly complex to exceedingly simple. The
product concept is central as it provides the basis version management. 

Any number of formations (versions) may be defined for a product and
relationships between formations may be captured. 
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For each formation there may exist any number of life-cycle definitions.

This allows for capturing different views on the same product, e.g., a pro-
duction oriented view and an analysis oriented view. 

A product life cycle definition may be characterised by the association

of properties, where each property is expressed in a defined representa-

tion. Example of representations are 3D-shape, textual and maths expres-
sions.

2.9.1 CHARACTERISTICS OF A PRODUCT

The notion of product is very important to STEP as it defines the class of
elements for which configuration and version management is applicable.
The definition of what can be encompassed by the product concept has

expanded over time. In the original definition product was specific and
tied to manufacturability. In ISO 10303-41 [9] a product is defined as:

Product

Life cycle 
definition

Properties

Representation

Aircraft: A380
Component: radar system 
mechanical component: M3 bolt 

Version of a product

As-designed definition, As-produced definition 
As-maintained definition

Shape, material, design requirement, functional 
characteristic

Geometric model, chemical composition, textual 
description, measurements, numbers

Formation

Figure 2.11: The STEP data architecture
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A product is the identification and description, in an application

context, of physically realizable object that is produced by a proc-
ess.

As STEP has expanded in scope the definition of a product has become
less rigid. In ISO 10303-1017, [107] a product is defined as:

A product is something that an organisation has identified for some
purpose.

In the same document five distinct classes of products are identified:

Part 

A part is an item that is intended to be produced or employed in a produc-
tion process. The item refers not only to the finished part but also to any
physical constituent or in-process configuration that makes up the finished

part. 

Document 

A document is a form of information that is controlled and communicated
as one single unit. A document may be a physically bound book, collec-

tion of pages or may exist only in electronic form as one or more files on
some electronic medium. More generally a document is a product of the
documentation process and records information about some subject. 

Function 

The characteristic actions, operations, or kind of work a person or thing is
supposed to perform; e.g., the engineering function or the material-han-
dling function. 

Raw material 

A crude or processed material that can be converted by manufacture,
processing, or combination with other raw materials and products into a
new and useful product or raw material. 
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Requirement 

A requirement is a statement identifying a capability, physical characteris-

tic or quality factor that bounds a product or process need for which a solu-
tion will be pursued.

2.10 STEP Discussion

Since its initial release in 1994 there have been many proposals for
extending the scope of STEP and changing the architecture of STEP parts.

Many proposals have been related to the following issues:

1. How to ensure application protocol interoperability in an environment
where multiple overlapping protocols are developed concurrently.

2. Definition of mechanisms for application protocol extensibility. In the

original architecture there is no mechanism for incremental extensions
to an application protocol or to combine independently developed ap-
plication protocols. 

3. Shortening application protocol development time. The sheer size of
an application protocol make it very time consuming to develop and
validate.

The STEP framework allows application protocols to be developed inde-
pendently and to be added to the catalogue of existing standards one at a
time. There are many cases where there exist significant overlaps in scope

of application protocols. For instance, AP-214 [105] is effectively a super-
set of AP-203 [7]. The rule is that overlaps shall be modelled consistently
in all affected application protocols, e.g., there shall only be one represen-

tation for 3-D geometry. 
There are several implications to this rule. In some cases determining

the existence of an overlap may be straightforward. This is especially the

case if the terminology used and abstractions made are common for the
overlapping parts in the ARM of an application protocol. In cases where
multiple application protocols share the same requirements the architec-

ture presents no problems as the least mature protocol can reuse all mate-
rial produced in more mature protocols. The Integrated Resources
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available in STEP in this case preserve a common modelling style that is

acceptable to all stakeholders in the Application Protocol development
process. In this perspective STEP defines a tightly coupled schema archi-
tecture as defined in Section 2.5.

There are also cases where common concepts are captured at different
levels of abstractions in different application protocols. The challenge is to
support a detailed view using the same basic data structures used to define

a more abstract view while adhering to the structures available in the inte-
grated resources. There is no easy solution to this problem if single repre-
sentations of common concepts are preferred. 

An alternate architecture known as Implementable or Fully attributed

ARMs [154] was proposed to complement the traditional AIM based
approach to allow for more flexibility. Under the proposed approach appli-
cation protocols without AIM would be accepted, thus allowing data

exchange models completely based on domain views on data. The main
arguments put forward for the change was shorter development cycles and
consequently lower development cost, higher implementation freedom

and easier extensibility into new domains. Overlaps between Application
Protocols would be resolved in a loosely coupling approach as defined in
Section 2.5. 

The concept of standardised Implementable ARMs were dropped and
replaced by the Application Integrated Constructs (AIC) [12] intended to
define how requirements common to multiple application protocols

should be represented. An AIC defines how a set of integrated resource
entities shall be used to fulfil a set of requirements. The intention was to
create large reusable building blocks that could be used shared across

many application protocols. While conceptually sound the fact that AICs
are based on integrated resources meant that overlaps with existing appli-
cation protocols was often not discovered until late in the development

process. Consequently costly harmonisation activities had to be launched
late in the development process of some application protocols [12]. 

The next approach in STEP was to develop a modularised approach where

the modules are defined in both ARM and AIM. This approach forces an
application protocol developer to consider the set of available modules
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before formalising domain specific requirements thus facilitate reuse of

existing modules [125]. At the time of writing this thesis application mod-
ules are the preferred approach to develop application protocols within
STEP. Compared with earlier approaches the advantage of the modules is

a forced early harmonisation with existing STEP models. This is certainly
beneficial for application protocol developers as the set of available mod-
ules highlights the rich set of models available in STEP. 

However there is still an underlying clairvoyance assumption — all
future data representation requirements can be met through the extension
of currently available structures. Extending the scope of STEP to domains

not currently covered could cause significant interoperability and harmo-
nisation activities.

2.11 Alternatives to STEP

STEP is not the only framework for information modelling for product
data exchange. A number of similar frameworks have been proposed and
some have achieved high acceptance levels in industry and academia. The

EDIF (Electronic Design Interchange Format) [78] and CDIF (Case Data
Interface Format) [29] are frameworks defined for data exchange in spe-
cific domains. Of the two EDIF have won commercial acceptance as a

data exchange format between engineering design tools. Later versions are
implemented in EXPRESS. EDIF is, however, not a STEP application
protocol. 

CDIF has not been successful commercially but have had a large impact
on the Meta-Object Facility (MOF) [13] used as a meta-modelling lan-
guage for the Unified Modelling Language (UML) [130]. The latter

framework has received a lot of interest recently, undoubtedly fuelled by
the success of UML as the de-facto standard for specification of software
systems. As with EXPRESS the MOF also incorporates support for defin-

ing textual constraints on modelling elements. UML and MOF is utilising
XMI, a XML DTD, for exchange of UML specifications and provide a
CORBA mapping for repository access. In addition OMG also provide the

means for model standardisation. In these respects it is a compelling alter-
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native to STEP especially for domains with close relations to UML and

software engineering. 

2.12 Summary

In this chapter an introduction to information modelling has been pre-

sented with emphasis on modelling for exchange of data. The risk of mod-
ifications to data due to mapping from one schema to another has been
discussed and an analysis framework based on the quality of individual

mapping functions presented. 
The STEP framework and the EXPRESS language have been intro-

duced as it is the modelling language used for the information model pre-

sented in this thesis. Some alternatives to STEP have also been discussed. 
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Chapter 3
Systems Engineering Data

Representation

Systems Engineering is an engineering discipline for the development of
complex systems. In this chapter an introduction to Systems Engineering

is presented to provide an understanding of the scope of the discipline and
restrictions made to the scope of the information model. 

The introduction is necessarily short. Readers interested in more in

depth information on Systems Engineering are referred to [24] [32] [57]
[101] [139].

3.1 System — a Definition

At a first glance the word ‘system’ is anonymous. It seems to give little
guidance in defining what is a system. However the word system in itself

provides a good definition of the engineering domain. According to the
Oxford English dictionary [141] a system is:

“A group, set, or aggregate of things, natural or artificial, forming a

connected or complex whole”1
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The definition is very general, it encompasses natural systems and human-

made systems of arbitrary size. Examples of natural systems range from
immense as the universe in which we live in — to diminutive atoms. 

The definition can be applied to the elements (components) of a system as
well — systems are often composed of other systems. In a system hierar-

chy view the components of a system are called subsystems. 
A characteristic of most natural systems is the high degree of order and

equilibrium. The evolution of natural systems has been long and individ-

ual systems have had plenty of time to adapt to the changes in the environ-
ment. Material and energy flows are cyclic. There are no dead-ends and
waste is recycled. 

3.1.1 HUMAN-MADE SYSTEMS

Human-made systems are, when compared with natural systems, a rela-
tively new phenomenon, but they have already had a fundamental and in
many cases negative impact on the natural systems they are embedded in.

In fact the impact of human-made systems today is so massive that the
environmental equilibrium of the planet we inhabit is threatened. 

3.2 Systems Engineering

This section presents a concise definition of Systems Engineering and the
motivation for applying Systems Engineering concepts to development

projects. There have been several attempts to define what Systems Engi-
neering is in a single sentence, for instance in [32] [85] [57] [131]. The
problem with finding a specific definition is that the heterogeneity of the

systems being engineered today makes it virtually impossible to come up
with a definition that satisfies all systems engineers. The very abstract def-
inition in IEEE-P1220, Trial-Use Standard for Application and Manage-

1. Despite the definition, the word system is often paired with words like complex 
and heterogeneous to stress the problems associated with the development of sys-
tems.
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ment of the Systems Engineering Process [67] focus on the analysis
aspects of Systems Engineering while failing to mention the factors con-

straining the realisation alternatives for system, i.e., time and resources. 

“An interdisciplinary collaborative approach to derive, evolve, and
verify a life-cycle balanced system solution which satisfies cus-

tomer expectations and meets public acceptability”

One of the central notions from the definition is that of system ‘life-
cycles’. The life-cycle of a system begins with the identification of a need

for a system and extends over the design, development, production,
deployment, support, operations and finally disposal of the system [101].

Factors influencing 
Systems design

Supportability

Constructability

Suitability

Disposability

Safety

Economic 
feasibility

Political, social and 
technological feasibility

Functionality

Producibility

Quality

Reliability

Maintainability

Human factors
(ergonomics)

Environmental 
compatibility

Manufacturability
(dismantle)

Other 
characteristics

Flexibility

Figure 3.1: Factors influencing systems design (from [24]).
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The objective to define a life-cycle balanced system implies that solutions

with excellent characteristics for some life-cycles or aspects thereof shall
be dropped if they display inadequate characteristics in other life-cycles. 

The need for an interdisciplinary collaborative approach can be under-
stood by the trend towards more and more complex systems. Many

human-made systems are of such a high level of complexity and heteroge-
neity they cannot be effectively developed within a single design team or
using methods from a single engineering discipline. Interdisciplinary anal-

ysis must be introduced to increase the understanding of what a system
shall perform in its different life-cycles and how it shall be realised in the
most efficient way, e.g., in terms of life-cycle cost, adverse environment

impact or development time. Figure 3.1 illustrates an excerpt of the wide
variety of factors influencing system design and underlines the importance
of involving domain experts early in the system life-cycle. 

Four issues characteristic for Systems Engineering can be identified (the
structure of the list is adopted from [24]): 

1. A top-down analysis approach that focus on the whole system as op-
posed to placing focus on its parts. The objective is to develop a bal-

anced system that meets the stated requirements given constraints in
terms of available resources and time constraints. This does not imply
that the systems shall be built top-down. There may be constraints on

the use of existing components which governs the capabilities of the
overall system.

2. Life cycle orientation — Systems Engineering shall address all phases

of a systems life cycle, from analysis and design though development,
production, operation, maintenance and support to retirement, phase-
out and disposal. 

3. A focus on understanding and analysing the initial requirements on a
system and relating requirements to design criteria and the follow-on
analysis effort to validate the effectiveness of early decisions. By thor-

ough analysis of the system a baseline, the set of relevant require-
ments, can be formed to guide the individual design teams involved in
developing a system. 
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4. An emphasis on the interdisciplinary approach. A thorough under-

standing of all aspects of the system is required to ensure that all de-
sign objectives are met. One key practise to attain this objective is to
involve specialists with different backgrounds early in the system life-

cycle. 

Systems Engineering is not tied to a specific engineering discipline as
electrical or mechanical engineering. Instead Systems Engineering is
applied to increase the effectiveness and quality of traditional engineering

tasks. The objective is to analyse, define requirements for a system and
partition the system into well-defined components whose functionality
and performance are optimal with regard to the requirements on the over-

all system. Requirements in this context include all factors concerning a
system such as function, performance, risk and budget. In many cases this
implies components that can be easily integrated, upgraded or replaced

within an evolving system. The output of this part of the Systems Engi-
neering process is not in the form of production specifications (CAD
drawings, program code) for physical or logical products, but specifica-

tions of systems and their components for all of its life-cycle phases. 

validation

verification

Figure 3.2: Part of the system life-cycle presented as a V-model

User 
requirements

System 
requirements

Architectural
design

Component
development
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System 
tests

Integration
tests

Component
tests

verification
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The partitioning of requirements on a complex system into more man-
ageable parts implies a future task to integrate the realised components
into a system whose capabilities shall comply with the initial require-

ments. The definition of verification and validation criteria for a system is
also important Systems Engineering activities. These aspects of Systems
Engineering are often illustrated using a V-model as presented in

Figure 3.2.t

In many cases the identified components of a system are so complex that
they need to be treated as systems of their own right. In such cases the
components are called subsystems of their parent system and the engineer-

ing process is applied to the subsystem as well, with the important con-
straint that the design space for a subsystem shall not violate that defined
for the parent system. 

Systems Engineering shall not only consider he end products of a sys-
tem, i.e., its subsystems or components, but also the set of enabling prod-
ucts that support the system through its life-cycles, i.e., the development,

production, test, training, deployment, support and disposition subsystems

Figure 3.3: System specification for multiple life-cycles [101]
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as indicated in Figure 3.3. Systems Engineering principles and process

shall be applied to all subsystems identified for a system. 

3.2.1 SYSTEMS ENGINEERING, A MOTIVATION

Systems are difficult to realise. Delays and increase in system cost are
commonplace. One reason for this is that technical problems, like subsys-

tem incompatibility are often discovered at a late stage in the development
process. These problems require substantial extra effort to correct. Sys-
tems Engineering cannot prevent the appearance of these kind of prob-

lems. However, with the emphasis on a thorough interdisciplinary analysis
of a system early in the development process it can be expected that prob-
lems will be fewer and less severe. 

Figure 3.4 illustrates a number of important facts complicating engineer-

ing of complex systems. It is estimated that 50 - 75% of the projected sys-
tem life cycle cost is already committed based on engineering design and
management decisions made during the conceptual and preliminary

design phase [24]. In these phases relatively little is known about the sys-
tem. Later in the process, when more is known about a system it is rela-
tively difficult to introduce modifications. A change in one component

may have consequences to many other components with expensive modi-
fications as a consequence. For optimal system development it is thus crit-
ical to attain a good understanding of the system already at the early stages

of the development process.

3.2.2 APPLICATIONS OF SYSTEMS ENGINEERING

In the literature there are a number of suggestions on situations where Sys-

tems Engineering shall be applied. Systems Engineering is recommended
if any of the following applies [24] [101]:

1. The system is complex.
2. The system is not available off the shelf.

3. The system requires special materials, services, techniques, or equip-
ment for development, production, deployment, test, training, support,
or disposal.
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4. The system cannot be designed entirely within one engineering disci-
pline (e.g., mechanical design).

5. There are several suppliers involved in the design and development

process.

Originally, Systems Engineering was developed and employed in large,
mainly military, projects, e.g., the ‘Manhattan project’ and the US nuclear
missile projects in the 1950’ies — Atlas, Titan and Minuteman [45]. Since

then, Systems Engineering have been adopted by many other domains
where system complexity is becoming a major concern, e.g., aerospace,
telecommunication and automotive industries.

Detailed design 
& development

Conceptual & 
Preliminary 
Design
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N
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D
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phase-out and 
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Commitment to technology, con-
figuration, performance, cost etc.

Ease of 
change

cost 
incurred

Figure 3.4: Commitment and ease of change (from [24])
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3.3 Systems Engineering Processes

This section provides a short overview on work on Systems Engineering

processes. A large number of specialists contribute to the development of
a complex system. In order to manage the contribution of individual spe-
cialists a coherent process shall be established. At its most minimal level

the Systems Engineering process consist of the following activities [100]:

Requirement 
analysis

Requirements 
baseline validation

Functional 
analysis

Functional 
verification

Synthesis

Physical 
verification

Control

Requirement 
trade studies & 

assessments

Functional 
trade studies & 

assessments

Design 
trade studies & 

assessments

Process 
inputs

Requirements 
baseline

Validated requirements baseline

Functional 
architecture

Verified functional 
architecture

Physical architecture

Verified physical 
architecture

System

Analysis

Requirement & 
constraint conflicts

Requirement trade-offs & 

Decomposition 
& requirement 
allocation 
alternatives

Decomposition/allocation 
trade-offs & impacts

Design solution 
requirements & 
alternatives

Design solution
trade-offs & impacts

Process output

Figure 3.5: The IEEE-1220 systems engineering process
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 • Attain an understanding the problem before attempting to solve it.

 • Examine many alternatives prior to selecting a solution.
 • Check the work performed before advancing to new problems.

The items presented above are not specific to Systems Engineering, but
basic characteristics of good engineering practice. They are emphasised in

Systems Engineering as the complexity and heterogeneity of modern sys-
tems makes the problem of understanding, exploration of the problem and
solution space as well as verification especially difficult. 

Comprehensive Systems Engineering standards have been developed to
guide Systems Engineering efforts. These documents contain definitions
of activities that shall be undertaken to ensure that high quality systems

are engineered. Examples of such standards include IEEE-1220 [126],
EIA-632 [102] and ISO/IEC 15288 [14]. The value of these standards and
other process definitions shall not be underestimated as they provide guid-

ance to individual Systems Engineering organisations. In co-operation
projects the application of a common process model could improve com-
munication significantly. 

Figure 3.5 illustrates the top-level activities of the IEEE-1220 process.

The rigidity of the process depends on factors like system complexity and
criticality, customer requirements and project organisation. The process is
inherently iterative, several iterations are typically required to capture the

complete system specification. 

3.4 Systems Engineering Tool Data Exchange

Scenarios for Systems Engineering data exchange are identified by Carls-
son [27] and by Schier et al. [134]. The seven scenarios identified by Sch-
ier et al. are presented below. 

1. Tool migration, one time exchange from an old tool environment to a

new.
2. Parent/child integration with different tools, data is entered in the par-

ent tool, exchanged and refined in the child tool, then returned to the

parent tool.
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3. Peer to peer integration with different tools, data maintained at the

same level of abstraction in multiple tool formats. The objective is to
maintain specification consistency in multiple tools over time.

4. Tool to tool traceability with data from a tool managed in a second

one for recording of traceability relationships and other information.
5. Data transformation/views, selection of a subset of the information

stored in a tool for exchange to another tool. 

6. Integrated CM process across tools. Configuration management infor-
mation for design data is maintained independent of the tools where
design data is created. This corresponds to a PDM system for manage-

ment of product data.
7. Navigation of Systems Engineering database to user desired data, in

this approach a systems engineer access a restricted set of data in a re-

pository. 

The scenarios listed indicate the diverse nature on tool data exchange. The
only common denominator for all scenarios is the requirement for a com-
mon data representation for the exchange. 

3.5 Identifying Systems Engineering Data

The objectives of and process for performing Systems Engineering has

been presented in previous sections of this chapter. However, there is little
guidance in the Systems Engineering literature on how to identify a finite
set of concepts that Systems Engineering organisation wish to exchange. 

3.5.1 PROCESS FOR DEFINING INFORMATION MODEL SCOPE

Three approaches have been followed in this research to answer the ques-
tion: What data representations are in use in Systems Engineering in the
Systems Engineering process? 

1. Investigation of Systems Engineering data representation require-

ments in the European aerospace industry. The result of this investiga-
tion is presented in Section 3.5.3.

2. Investigation of methods recommended in Systems Engineering proc-



CHAPTER 3

60

ess standards and other literature. The result of this investigation is
presented in Section 3.6 and Section 3.7.

3. Investigation of typical professional roles (and the associated data set)
performed by systems engineers.

The first two items was the primary and early source for identifying scope

of the information model given the projects the research was carried out
in.

As outside interest in the AP-233 work grew stronger and more organi-

sations became involved it became apparent that individual stakeholders
had mutually conflicting views on the activities and tasks of a systems
engineer and consequently the associated data representations that should

be supported by the information model. As a consequence item three was
investigated to better understand the appropriateness of the restrictions
made when the wide range of roles performed by systems engineers

became apparent. 

3.5.2 THE PMTE PARADIGM

The problem of identifying the scope of Systems Engineering data is illus-
trated by the PMTE paradigm [101] illustrated in Figure 3.6. A Process

defines a logical sequence of tasks to be performed to achieve a particular
objective. The process defines what task shall be performed, not how it
shall be done. A Method consists of techniques that define how a task shall

Figure 3.6: The PMTE paradigm pyramid
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be performed. Tools are employed with the intention to enhance effective-

ness of methods and the Environment is the set of factors that influence an
engineer in his work. 

A process is essentially independent of method. Two organisations may
agree on the engineering process they employ, but use completely differ-

ent methods to carry out the tasks in the process. Likewise organisations
may agree on a common set of tools, but use them to carry out different
tasks in the process. Consequently people from different organisations

may agree on the activities performed in the process, but not on the data
representations associated with each activity.

3.5.3 SYSTEMS ENGINEERING DATA REPRESENTATION REQUIREMENTS

An analysis identifying the initial set of requirements for the information

model scope was performed in the SEDRES project by Barbeau et al. [19].
According to this document a suitable scope for a Systems Engineering
data exchange information model is restricted to representations for cap-

turing:

1. System identification — elements for identifying a system under spec-
ification, its life-cycles and composition structures.

2. Specification elements — defining what a system shall conform to us-
ing abstract, technology independent representations. 

3. Process reference — capturing the set of activities that a specification

was developed in and why specific alternatives where selected. The
intention is not capture an idealised process, but the actual process as
occurred in the development of a system.

4. Configuration management — capturing how the definition of indi-
vidual specification and system elements evolve over time and its rela-
tionship to other elements. 

5. Administrative information — capturing the person and organisation
involved in activities and authorship, as well as element approval in-
formation

Items 4 and 5 above represent support information that can be applied to

items 1 - 3. 
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Specification elements (item 2 above) can be further classified into state-

ments of what a system shall comply with in the form of:

 • Requirement, constraint and verification statements.
 • System functional architecture definition.

 • System physical architecture definition.
 • Verification and validation definitions at the same level of abstraction

as the requirements.

Figure 3.7: Information model scope
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In addition the information model shall contain elements for establishing

relationship between different specification elements such that:

 • Requirements can be traced to and from functional and physical ele-
ments to indicate that a requirement statement is related to that ele-

ment, 
 • Verification and validation definition can be traced to requirements,

functional architecture elements and physical architecture elements,

and
 • Functional elements can be allocated to physical elements.

The information model scope identified for the SEDRES project is illus-

trated in Figure 3.7.

3.5.4 CONFIGURATION MANAGEMENT INFORMATION

Representation of version and configuration management information is
given a high priority within the information model. It is anticipated that a

specification will go through a number of configurations in its life-cycle
and it is the objective that it shall be possible to capture each individual
configuration within the information model. Moreover it is anticipated

that there will be a large degree of commonality between individual con-
figurations of any specification. Storage of redundant data elements shall
be avoided in order to facilitate the identification of a degree of common-

ality between configurations.

3.6 Information Model Scope vs. Systems Engineering 
Literature

The selected scope for the information model appears realistic as it is in
line with the understanding of Systems Engineering data presented in

information models by Buede [25], Mar [100] and Jackson [71]. A slightly
wider scope is presented by Oliver [114] who also includes project man-
agement and planning information. 
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Recently, object oriented techniques have been proposed as an alternative
to system functional architecture models [15] [34] [111]. While we

acknowledge the qualities of object oriented modelling techniques, espe-
cially for software intensive systems, we have not included these tech-
niques in the scope of the information model presented in this thesis. A

study on the prospects for integrating functional and object-oriented sys-
tems modelling is presented by Pandikow [117].

Figure 3.8: Requirement relationships in the system design process 
according to EIA-632
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3.7 Information Model Scope vs. Systems Engineering 
Process Standards

When the structure of the IEEE-1220 (presented in Figure 3.5) is com-

pared with that of the information model there is close correspondence.
There is also a strong correlation to the requirement relationship view
identified for the system design processes in EIA-632 [102] in Figure 3.8. 

In the terminology used in EIA-632 the logical solution representation

correspond the system functional architecture and the physical solution

representation correspond to the system physical architecture. 

However, the process standards do not give detailed recommendations on

how the work shall be performed or which methods shall be employed and
how the information generated in the process shall be represented. The

complexity and heterogeneity of a system and the knowledge and experi-
ence of the development organisation and its organisational culture decide
the methods and tools used in the development process. An activity can be

performed to different levels of granularity depending on the complexity
of the system and the selected development strategy. In some cases a
requirement identified early in the Systems Engineering process may be

recorded in plain text, while later in the development process requirements
may be captured in a detailed CAD model. 

Consequently, a process description is decoupled from the representation
of data generated in the process. Likewise, it is not realistic to deduce the

suitability of the selected scope of the information model representations
from any process model.

3.8 Systems Engineering Roles and Information Model 
Scope

In this section the selected information model scope is compared against
identified Systems Engineering roles. Later in this section information
model scope is mapped onto the identified roles to illustrate the extent of

the information model.
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3.8.1 SYSTEMS ENGINEERING ROLES

Sheard [137] and Mar [100] identifies the widely different tasks, which
may be assigned to systems engineers in different organisations. One

motivation for these papers was to identify the tasks and responsibilities
held by people with Systems Engineering in their job title, which fall in the
scope and interest of the International Council on Systems Engineering

(INCOSE). As with any abstractions the result is a grossly simplified view
of the tasks of a systems engineer, but it is still a valid illustration of the
wide span of activities performed by systems engineers. The twelve roles

identified by Sheard are introduced below and in Figure 3.9. 

Requirements owner: Identifies system and subsystem requirements
from customer needs. The tasks include translating customer needs into

specific well-written requirements on systems and components. The focus
is on understanding system interfaces and that the system functional archi-
tecture correctly captures the need of the customer.

Figure 3.9: Systems engineering roles identified by Sheard [137]

Requirements owner System designer System analyst Verification & Validation
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System designer: An engineer in this role creates a high-level system

architecture and design and select major components. Possible solutions
are compared against requirements. Requirements for the subsystems are
described in detail and subsystem specifications are verified. Because of

system complexity the emphasis is mostly on architecture, high-level
design integration and verification. There is a substantial overlap with the
roles of the requirement owner role.

System analyst: Confirms that the system design will meet the require-

ments. Analyses typically include system properties like weight, power,
throughput, availability and reliability. Analyses may be performed at a
conceptual or product data level depending on the complexity of the sys-

tem, the development process phase and the desired analysis fidelity.

Validation/Verification engineer: Implements the system verification
and validation programme to ensure that the system developed is compli-

ant with the requirements and customer expectations. Verification and val-
idation engineers may also develop the detailed system test plan and
procedures. Engineers in this group need to have a good understanding of

the requirements on the system and its intended behaviour.

Logistics & Operations engineers: An engineer in this role captures
the back end of the system life cycle. It includes on-call answers to ques-
tions and resolution of anomalies. In addition engineers in this role is usu-

ally expected to bring maintenance, operations, logistics and disposal
concerns to the early phases in the system life-cycle.

Glue engineer: In this role a systems engineer serves as a proactive

trouble-shooter, looking for problems and taking measures from prevent-
ing them from happening. Much of the focus of this role is on system
interfaces and on making sure that systems do not interfere with each

other. The problems faced by systems engineers in this role range from
conceptual and domain independent to very detailed and domain specific.
To fulfil this role an engineer need wide experience and continuous learn-

ing to keep ahead of the problems.

Customer interface: In this role a systems engineer may be tasked to
represent the point of view of a customer to ensure that it is properly



CHAPTER 3

68

respected throughout a project. Another task is to interact with the cus-

tomer to ensure that the right system is built. From a data representation
perspective there is a substantial overlap with the requirements owner and
system designer roles.

Technical manager: This role emphasizes the management aspects of

Systems Engineering. The responsibilities include project planning, con-
trolling cost, resource allocation and scheduling, maintenance of support
groups like configuration management and computer support.

Information manager: As information and support systems become
more complex and more pervasive it becomes more important for some-
one to identify the overall information needs of a system, and even of busi-

ness. This role may include data (configuration) management and process
asset management. 

Process engineer: A Systems Engineering role which emphasize the
importance of system documentation, engineering and organisational

process improvement issues for future projects. Another task in this role is
the definition of metrics against which evaluations of process effective-
ness are performed. 

Co-ordinator: Because of their broad view systems engineers are
sometimes asked to coordinate development groups and resolve system
issues to seek consensus or to make recommendations. Skills in facilitat-

ing discussions and maintaining a good discussion climate are essential in
this role. 

Classified Ads systems engineer: This role is included to capture all
definitions of Systems Engineering that is not related to the design, analy-

sis and development of complex heterogeneous systems. In this role sys-
tems engineers may have applied software engineering tasks or computer
maintenance and administration tasks, e.g., computer network system

administrators. 
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3.8.2 SYSTEMS ENGINEERING ROLES VS. INFORMATION MODEL SCOPE

The roles presented in the previous section illustrate the highly heteroge-
neous world of Systems Engineering. The information model presented in

this thesis only covers a small subset of the data representation require-
ments associated with the roles. 

The scope of the information model correspond roughly to the following

four Systems Engineering roles: 

 • Requirements owner
 • System designer

 • System analyst
 • Validation and verification

The extent of support for each role varies. System analysis and validation

and verification are only supported for the early phases of the Systems
Engineering process. Detailed, domain specific, representations are not
supported. The scope of the information model related to all Systems

Engineering roles is illustrated in Figure 3.10. 

Motivations for not specifically including support in the information
model for the remaining eight roles defined by Sheard are presented
below. Note, that though many of the roles are not explicitly in scope of

the information model they are supported in part by the fact that systems
engineers in these roles may use information common to the four roles
identified to be the prime focus of the information model. For some roles

there is also explicit support in existing STEP applications protocols. 

 • Logistics and operations: Sheard defines two tasks in this role. The

contribution to the requirements owner, system design and system
analyst roles are using the same information representation as in those
roles. The aspect of the role contributing to the operation and mainte-

nance phase of a system is in itself very complex and the subject of the
PLCS (Product Life Cycle Support) project within STEP. The scope of
the PLCS project is described in [43].

 • Glue engineers: This role is a core Systems Engineering role but not
included in the information model scope as a glue engineering is pri-
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marily operating on domain specific representations. There is exten-
sive support for engineering domain data in existing STEP application
protocols. 

 • Customer interface: From a data representation perspective there are
no unique data representation requirements. The interaction with a
customer will use the representation appropriate for the problem at

hand. This may be the representations used by the requirements
owner, system designer, system analyst or validation and verification
roles or any domain information representation. 

 • Technical manager: Management and resource planning is a key ele-
ment of Systems Engineering. But it is not a problem that is unique to
Systems Engineering. Rather it is a domain shared with all engineer-

ing disciplines. Moreover, project management aspects are identified
being outside the scope of STEP in the official STEP framework defi-
nition document [70]. Consequently, this aspect of Systems Engineer-

Figure 3.10: Scope of a systems engineering information model
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ing was not actively considered in the information model development

process.
 • Information manager: As with the glue engineer role this role may cre-

ate and communicate information in any representation, including the

representations found in scope of the information model or any
domain model within the STEP framework. 

 • Co-ordinator: Systems engineers in this role are likely to handle

diverse information. Some may be in scope of the information model,
some may be in domain information models.

 • Process engineer: Systems engineers in this role need to consider all

design data produced and referenced in the engineering process. How-
ever, there is no specific data associated with the role.

 • Classified ads engineer: In this role a systems engineer is operating on

engineering domain specific data. Hence the same motivation as for
the Glue Systems Engineering role applies. For engineering domain
data there is plenty of support in existing STEP application protocols.

3.9 Systems Engineering Methods and Tools

A wide variety of tools that support systems engineers in different phases
of the Systems Engineering process are in use in industry [35]. From the

perspective of this thesis the tools of interest are computer based specifi-
cation, analysis and verification tools. In this category two classes of tools
can be identified:

 • General Systems Engineering tools, supporting a large number of
activities of the Systems Engineering process.

 • Specialist tools, supporting specific activities in the Systems Engi-
neering process. 

Examples of the first category are tools like RDD-100 by Holagent [64]
and Core by Vitech Corporation [151]. In the second category there are

tools like Statemate by I-logix [66]. Typically tools in the first category
pay special attention to supporting the process but may be less detailed
than in individual areas compared with specialised stand-alone tools. 
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3.10 Method Selection Criteria

Deciding whether a method or tool is a relevant Systems Engineering
method or tool is highly subjective. From an organisations point of view a
method may be a core Systems Engineering method, while from the point

of view of other organisations the same method may be irrelevant. No
matter how much the scope of the information model is extended there
will always be methods, considered to be relevant to Systems Engineering

by some organisations that is not adequately supported. 
The approach selected to determine the whether a method is relevant to

Systems Engineering was to consult a reference group of practitioners

within the organisations involved in review and validation of the model as
well as literature studies. Initially the members from this reference group
came from partners in the SEDRES projects, but were later complemented

with representatives from INCOSE and the ISO AP-233 working group. It
is hoped that the opinions collected in this process are sufficiently com-
plete to satisfy a reasonable number of systems engineers. 

In many cases the decisions for determining the scope of the model are
arbitrary. For instance, the Extended Functional Flow Block Diagram
modelling language [95] was considered a core Systems Engineering lan-

guage by the reference group, while related languages such as Lotos and
SDL [148] were not. 

3.11 Summary

Systems Engineering as a domain encompasses many activities and there
are many roles for systems engineers. In this chapter we have presented a
broad overview of Systems Engineering, the process for selecting the

scope of the information model and have outlined the scope of the infor-
mation model. The impact of the restrictions made has been presented and
been related to the scope and structure of STEP and existing STEP appli-

cation protocols. 
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Chapter 4
Information Modelling

Principles

This chapter presents the modelling philosophy applied for the informa-
tion model. The information modelling requirements, and the principles

that guided the development of the information model is presented.
Detailed information on the constructs of the information model is pre-
sented in chapters 6 to 11.

4.1 Context

Information modelling is about formalizing information in an unambigu-

ous way, or as put in [133]:

“An information model is a formal description of types of ideas,
facts and processes which together form a portion of interest of the

real world and which provides an explicit set of interpretation
rules” 

In this thesis the portion of the real world of interest is the product data

captured in system specifications as outlined in Chapter 3. More specifi-
cally the focus is product data as captured by Systems Engineering tools. 
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The relationship between earlier chapters of the thesis and the content of
this and later chapters are illustrated in Figure 4.1 and presented further

below. Methods for and issues in information modelling and tool data
exchange has been presented in Chapter 2 and the scope of the domain
have been introduced and discussed in Chapter 3. This chapter introduces

the non-functional requirements, representing the development philoso-
phy, that have driven the development of the information model. Further
on in the thesis there are detailed presentations on key aspects of the infor-

mation model, its structure and semantics including comparisons with
methods defined in literature or as instantiated in Systems Engineering
tools. 

4.2 Terminology

This section presents a terminology framework for definition of the infor-

mation model requirements presented in Section 4.3. The relationship
between the terms are presented in EXPRESS-G notation in Figure 4.2.

A computer based Systems Engineering tool support an identified method.
Each method is supporting one or more concepts that each has a defined

semantics. Concept semantics may be explicitly defined or be implicit

Figure 4.1: Thesis organisation
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(inferred through a tool implementation). It is not uncommon that multiple
methods use homonyms and synonyms for concept identification, c.f., the
discussion schema and semantic heterogeneity in Section 2.4. 

A tool uses a specific notation to present a concept to a user. The nota-
tion may be graphic, symbolic or textual. A representation is a subset of a
data storage schema defined to capture a concept within a tool database.

For each tool there exist an unambiguous mapping between the tool nota-
tion and the tool representation. 

4.3 Information Modelling Requirements

This section presents seven basic non-functional requirements that have
guided the development of the information model.

The task of defining an information model for data exchange for a domain

where so many heterogeneous methods are in use as in Systems Engineer-
ing is fundamentally different from defining a data model for representing
engineering method specific data. The aim with the information model has
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Figure 4.2: terminology framework 

tool notation
for concept

tool representation
for concept

tool tool

notation representation

concept

method
concept S[1:?]

method
support



CHAPTER 4

78

been to avoid defining new Systems Engineering and analysis methods.

Instead the model shall allow the exchange of specifications captured by
Systems Engineering tools currently in use. 

The order in which the requirements are presented in below does not
imply importance. 

4.3.1 PROCESS AND METHOD INDEPENDENCE

In such a diverse domain as Systems Engineering it is important to avoid
encoding specific process and method constraints in the information
model. 

Requirement 1: The information model shall be method and proc-
ess independent. 

The rationale for this requirement is that the information model shall not

dictate what is a good Systems Engineering process or method. There
shall neither be any preference for specific processes or method concepts.
In cases where multiple relevant method concepts are identified then the

information model shall be fair in the support for all. 

4.3.2 COMPLETENESS ASSUMPTION

Just as the information model shall be fair in process, method and tool sup-
port there shall be no assumed threshold for specification completeness

encoded. 

Requirement 2: No assumption on the level of completeness of a
specification involved in a data exchange shall be encoded in the

information model.

It shall be possible to map tool data to the information model regardless
whether the specification is complete or not from a engineering point of

view. This requirement is justified by the fact that it is not meaningful to
make any prior definition on the structure and content of a ‘complete’
specification both for individual elements in the specification and for the

complete specification. The concepts employed to represent parts of a
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specification differ with organisation and methods used. Moreover, simi-

lar concepts may be captured at different levels of granularity in tools.
Mandatory concepts in one tool may not be applicable in another. From a
data exchange point of view it is not possible to judge a certain system

specification structure as being more complete or better than another. The
specification structure and content is simply a result of the processes,
methods and tools in use at a particular organisation. Specification com-

pleteness can only be determined through analysis where organisation and
project specific criteria are taken into account.

There are also cases where data exchange or storage of known incom-

plete models is beneficial. For instance, an incomplete specification may
be exchanged in order to generate early feedback. 

Specification ambiguity is another aspect of completeness. In its final ver-
sion a specification can be expected to be without known ambiguities. But

intermediate revisions may well contain conscious, undetected or not yet
corrected ambiguities. For instance, it may be the case that in a revision of
a system specification the weight of a component may not be equal to the

sum of the weights of its immediate child components. While this may be
suspicious it may have been made on purpose to indicate a known problem
with overweight, or in case of underweight to allow for a safety margin in

the case that some component may come out heavier than specified. Con-
sequently the presence of ambiguities shall not prevent the mapping of a
specification onto the constructs defined in the information model. How-

ever, the information model representation shall be formal enough to
allow for consistency checking to be performed on the structures defined
by the information model.

4.3.3 CONTEXT INDEPENDENCE

The Systems Engineering process typically generates multiple alternate
designs. It is desirable to keep track of how elements in the specification
evolve over time. This includes both elements that change and elements

that stay the same in different versions of a system specification. 
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Requirement 3: The information model representation shall be

such that key concepts can be used independently in multiple sys-
tem specifications.

For Systems Engineering specification elements this implies that an object
representing a requirement may be included in multiple systems specifica-

tions and in each specification it may be handled differently, e.g., be
assigned to different object or be assigned different properties. 

The required capability can be used for answering queries like: “Which

systems share a particular functionality”, “Which versions of a system
share a specific requirement” or “How was this particular requirement
handled in systems X and Y“. Similar requirements are expressed in [41]

[99]. This requirement is significant when data representation of multiple
versions of a system specification and/or multiple systems is considered. 

4.3.4 INFORMATION MODEL DETAIL

The semantics of the concepts supported by the information model and the

underlying representations shall be unambiguous, or there is substantial
risk that specifications exchanged are modified in the exchange process. If
such modifications are not detected the consequences for a development

project may be catastrophic. 
Obviously, tool data exchange may introduce additional risk for speci-

fication misinterpretations, as there is a risk that information is lost or

modified when data is transformed from one representation to another.
Modifications to a specification may occur both in the mapping from tool
specific concepts to the entities in the information model (data export) and

from information model back to tool specific concepts (data import). In
Figure 4.3 f(s) illustrate the data export and g(s) represent data import. See
Section 2.4 for a detailed discussion on mapping function characterisation.

Modifications to exchanged data always occur when a specification is
imported into a tool whose method does not support the same concepts as
the method of the original tool. This kind of tool capability induced mod-

ifications can be accepted as long as the data exchange mechanism is
detailed enough for detecting the extent of the modifications and there are
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means for informing stakeholders in the data exchange process about the
modifications.

This leads to the following two requirements on the information model:

Requirement 4: The semantics of individual information model
entities shall be detailed enough to determine whether the seman-
tics of a method specific concept is maintained in the information

model.

Requirement 5: The information model shall be detailed enough to

allow for identification of specification concepts not correctly con-
veyed from a source to a destination tool via the representation in
the information model.

Meeting these requirements are essential if the information model shall be

effective and reliable for data exchange. 

Identification of modifications incurred to a specification in a data
exchange is simplified if there is a common basic representation for each

family of related concepts with modifiers that extend the semantics of
each basic concept. This approach removes redundant representations for
similar concepts and simplifies the traversal and interpretation of data

mapped on to the representational elements of the information model. 

Information 
model

Tooli Toolj

fi s( ) gj s( )

gi s( ) fj s( )

Figure 4.3: Information model mapping functions
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For each individual concept it is sufficient that there exist unambiguous

forward and inverse mapping functions that maintain concept semantics.
This may result in the definition of complex mapping functions between a
tool and the information model representation. Yet, we believe that a com-

mon core for each concept is preferable over a situation where each tool
exports data in their proprietary representations. 

4.3.5 PRESERVATION OF SPECIFICATION STRUCTURE

It is not sufficient just to preserve the semantics of a specification when

exchanging data between tools. For traceability and human interpretation
purposes it is important to preserve the structure of the original specifica-
tion. For instance, it is not acceptable that a Mealy finite state machine is

represented as an equivalent Moore finite state machine in the information
model as the original machine cannot be recreated from the representation. 

Requirement 6: The information model shall be constructed such

that the representations in the information model shall rich enough
to maintain the structure of a specification. 

The requirement is not in conflict with requirements 4 and 5 above.
Method specific constructs are only accepted iff they are necessary to

maintain the structure of the original specification. 
In Figure 4.3 fi(s) and gi(s) define the set of mapping functions from a

tool specific representation to the information model and vice versa. fi(s)

is the set of mapping functions for a specification s expressed in a tool rep-
resentation i to the information model, gi(s) is the set of mapping function
for a specification s from the information model to tool representation i.

The structure preservation requirement can be expressed for a specifica-
tion S can be formalised as: 

Where =s denotes semantically and structurally equivalent representa-

tions. In other words, mapping a specification from a Tooli onto the infor-
mation model and back to Tooli shall result in a specification whose
semantics and structure is equivalent to the original one. 

S gi fi S( )( )=
S
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4.3.6 PRESERVATION OF SPECIFICATION LAYOUT

Specification layout is important for the readability of a Systems Engi-
neering model. A well thought out model layout simplifies interpretation

of a model significantly. Preservation of layout information is of high
importance when complex specifications are transferred between organi-
sations. If layout is not preserved in a data exchange it will be very diffi-

cult for engineers at different locations to discuss the content of a
specification, unless time consuming layout restoration activities are
undertaken.

Requirement 7: The information model shall provide the capabil-
ity to represent the layout of a specification. 

Layout information shall neither convey any semantics nor be notation

specific. The sole purpose is to allow for recreation of the general layout
information from the original tool. 

At the same time the existence of layout information in a data exchange

is not mandated. Specification correctness does not depend on the availa-
bility of layout information.

4.4 What can be Standardised?

After analysing the information modelling requirements it is important to
ask the question:

What can be standardised in a data exchange information model?

In the context of this thesis an answer can be derived through an analysis
of requirements 1, 2, 4, 5 and 6. Requirement 1 states that the information
model shall be process and method independent. Requirement 2 states that

there shall be no completeness threshold for storing data onto the structure
defined in the model, i.e., a user shall never be prompted to fill in addi-
tional information on an object — information that may not be possible to

specify in the particular tool used. Requirements 4 and 5 emphasize detail
and semantics for all relevant concepts and requirement 6 implies the
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existence of forward and inverse mapping functions for tool specific rep-
resentations to the information model that preserve the structure of the
specification. 

If the information model shall support the concepts found in multiple
Systems Engineering methods then there must exist a common set of enti-
ties with a well-defined semantics that is agreed upon in all methods. It is

assumed that this core set is finite for the Systems Engineering domain —
under the restrictions made when the model scope was defined. 

The next question is whether a finite set of attributes could be defined for
each core entity identified. A potential approach to defining a model

would be to try to enumerate all potential variants or properties of an entity
and harmonise this set. This approach is feasible in cases where a small
number of variants acceptable to all stakeholders can be identified. How-

ever, the problems associated with this approach is illustrated by the small
information model fragment presented in Figure 4.4 taken from the book
Requirements Engineering by Kotonya and Sommerville [84] 

The example is trivial, but holds for entities of any complexity. The
model in Figure 4.4 specifies that a requirement is characterised by an
identifier, a source definition identifying the owner of the requirement, a

descriptive text, a classification according to type of requirement, a defi-
nition of priority and the actual specification of what is required. The
model prescribes a comprehensive data set for representing requirements.

However, if used for data exchange under the requirement identified ear-

Figure 4.4: Information model structure for requirement

Requirement

Identifier Source Description Type

Priority

Specification
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lier in this chapter some severe problems can be identified based on the

following two questions:

1. Does the set of attributes adequately cover the data representational
needs of an advanced requirements management method? The answer
is no — additional attributes can always be added to capture organisa-

tion, method and process specific aspects. If more attributes are added
to the model then there is the risk there may be attribute ambiguities. 

2. Does the set of defined attributes support the minimal data representa-

tional needs of a basic requirements management method? Again the
answer is no, a basic tool may not provide data for the identified at-
tributes. In the example above it should be noted that there are basic

tools where requirements classification or prioritisation are not con-
sidered. 

Items 1 and 2 above are obviously in conflict with each other. A coarse

granularity view prescribed under item 2 cannot effectively be combined
with a fine granularity view prescribed by item 1 as long as the approach is
based on explicit identification of entity attributes.

The approach selected for the information model is to define a minimal

number of attributes for each core entity in the model and provide support
for assignment of any number of method and process specific properties,
e.g., authorship and ownership information, comments, prioritisation, sta-

tus, the representation of physical and functional characteristics. 
No constraints are defined and there are no explicit guidelines that

define the set of properties a well-specified specification element shall

possess. Consequently, the information model is not normative in the
sense it defines a fixed set of attributes for each entity. Instead, method and
process harmonisation is a prerequisite for organisations involved in Sys-

tems Engineering tool data exchange. This is in line with requirement 2
presented above. Likewise, à priori determination of the appropriateness
of a particular property of an entity is not possible. Determination of com-

pleteness and soundness of a specification must be performed on a case by
case basis under the constraints defined by individual projects. 
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4.5 Alternate Approaches

The view on specification completeness taken in this thesis coincide with
that taken for STEP application protocols but is in contrast with that taken
in, e.g., the RQML data exchange information model for textual require-

ments [56]. In RQML complete (complete with regard to requirement
engineering best practise) and fixed set of attributes are defined for each
entity. Default values are defined for each attribute in case no value is sup-

plied from a tool. 
While this approach guarantees that a specification is complete with

regard to attributes defined in the information model the result does not

necessary reflect the intention of a user. For instance, in RQML a require-
ment is assigned a specific priority level if the user supplies no priority
value. However, it is not necessarily the case that the assigned priority cor-

responds with the intention of the user in charge of entering the require-
ments. Such subtle modifications to a specification may convey an
incorrect view of the intent behind the specification.

4.6 Summary

In this chapter the guidelines applied in the information model develop-

ment process has been presented. These guidelines were identified and
used in order to allow for flexible, yet well-defined instantiation combina-
tions for the information model. The chapter also discusses consequences

of different approaches to standardisation and highlights the potential
risks with the addition of data beyond what is captured in a source tool in
the exchanged data. 
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Chapter 5
Information Model Overview &

Structure

This chapter presents an overview of the scope and structure of the infor-
mation model. The purpose is to present an overall picture of the model

architecture before the detailed presentation of model elements in chapters
6-11. The chapter also contains an analysis on how the basic structures in
the STEP data architecture can be adapted to comply with Systems Engi-

neering data representation requirements. The consequences of each alter-
native on the overall capabilities of the information model are discussed
and the selected architecture is presented. 

5.1 Information Model Overview and Scope

The information model presented in this thesis corresponds to an Applica-

tion Reference Model (ARM) in the STEP terminology. This implies that
representation structures are captured using terminology used in the
domain and no mapping to the STEP integrated resources has been per-

formed. 
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The scope of the information model is illustrated in Figure 5.1 using UML
syntax. In the figure each UML class symbol represents a group of related
entities. The classes enclosed in the dashed rectangle represent the sup-

ported core Systems Engineering data and those outside represent generic
support concepts that in many cases are shared with other STEP Applica-
tion protocols. Transparent class symbols represent generalisations

inserted to improve the presentation of the model. These classes do not
have a counterpart in the information model. 

The main groups of the model are:

 • System architecture, representing the building blocks for grouping all
information valid for a system, a stakeholder or life-cycle view on a
system or system interface. There is also support for representing sys-

support information

Engineering process

+uses

+provides

generic model constructs

System architecture

+system architecture

+records process

+uses

+provides

generic model
 constructs

Specification elements

+uses

+provides

generic model constructs

+system specification elements
process 
reference

+defined by

+assigned to

Presentation information Configuration management Administration information Data types

Requirement allocation Functional allocation

Requirements representation Physical architecture

requirement allocation

Functional architecture

requirement allocation functional allocation

PropertiesExternal document Classification

+records process

Figure 5.1: Information model conceptual view
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tem composition structures. 

 • Specification elements, an abstraction introduced to cover common
specification techniques, including requirements, functional architec-
ture and physical architecture as well as verification and validation

data. The specification element group of the information model is out-
lined in more detail in Section 5.1.1.

 • Requirement and functional allocation, defining the mechanisms for

maintaining traceability within and across views on a system. There is
support for tracing requirements to individual elements in the func-
tional and physical architecture and for allocating functional architec-

ture elements to physical architecture elements respectively.
Additionally there is support for relating verification and validation
data to the elements they relate applied to. 

 • Engineering process, defining the building blocks for representing
activities in the Systems Engineering process and associating specifi-
cation information to the activities they originate/relate to. The entities

for capturing engineering process can be used for capture of design
and analysis activities, as well as design and trade-off decision. Enti-
ties for representing change proposals, change impact analyses and

change orders are also included in this group. 
 • Support information, representing the building blocks for representing

supplemental information. This large group is an abstraction of groups

for representing configuration management information, visual layout
information, and mechanisms for referencing physical or electronic
documents or other artefacts of relevance to a system specification,

administrative information (e.g., element ownership and specification
element approval), structures for classification of specification ele-
ments, data types for simulation purposes and properties for specifica-

tion elements.
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The relationships between the groups are as follows. 

 • Specification elements objects define the content of System architec-

ture objects. 
 • Engineering process objects captures the process in which Specifica-

tion elements and System architecture objects are created and refer-
enced in. 

 • The Support information group includes entities that provides general

information that can be related to a large set of elements is applicable
to entities in the other groups.

5.1.1 SPECIFICATION ELEMENTS

The group of entities for representing requirements, functional and physi-

cal architecture of a system is at the heart of the information model. The
capabilities of individual groups are outlined in below:

Requirements representation

The requirements representation group contains entities for representing

requirements (individual statements of capabilities a system shall conform
with) in text, in structured formats or in functional, physical architecture
models or external documents. There is support for representing require-

ment composition structures, requirement classification and for capturing
relationships between individual requirements. There are also entities in
the requirement representation group for capturing system verification and

validation data and the fulfilment and results of activities carried out. 

Functional architecture

The functional architecture group contain entities for representing a func-
tion composition structure, and different semantic variants of functional

interaction. There is support for representing continuous and sampled sys-
tems. Functional behaviour may be expressed in, e.g., data flow [5], struc-
tured analysis [61] or behaviour diagram [95] notations. 
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Physical architecture

The physical architecture group contain entities for representing an

abstract view on the physical components of a system. Individual compo-
nents may be related to each other and the interface of each component is
defined. Detailed component properties such as geometry is not sup-

ported. The relationship between the physical architecture group of the
information model and existing STEP application protocols supporting
mechanical engineering data is elaborated in Chapter 9.

5.1.2 INFORMATION MODEL STRUCTURE

This section discusses five aspects of the information model structure and
how different elements of the model relate. The aspects considered are:

 • Specification completeness
 • Process and specification relationship
 • Structure to capture method specific attributes

 • Structure for context independent representation
 • Specification elements and system architecture elements

A brief introduction is presented in this section. Detailed information is
presented later in the thesis.

Specification completeness

The information model supports three tiers of specification elements for a
system specification: a requirements tier, a functional, a physical architec-
ture tier. In addition it is possible to include verification and validation

data, and requirement and function allocation data. However, the informa-
tion model does not mandate that all tiers are populated in an individual
specification. In fact, a system architecture element without any require-

ment, functional or physical architecture data assigned is a complete spec-
ification according to the information model. This is in accordance with
requirements 1 and 2 presented in Section 4.3.
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Engineering process and specification relationship

The support for representing the Systems Engineering process is inde-

pendent to the specification elements and the system architecture support.
Consequently, a database defined by the information model may be popu-
lated with specification element data, engineering process data or a com-

bination thereof. 

Capturing method specific specification element attributes

For each specification element only a minimal set of attributes are defined.
Additional information on elements is captured through the assignment of

property data. This structure allows basic and advanced tools to share
basic data structures. The rationale for this structure discussed in Section
4.4 and the correspond information model representations are introduced

in Section 5.3.

Context independent representation

It is possible that the same specification element, e.g., a requirement or a
function is common to two or more systems, versions on the same system

specification or views on a system. For traceability and data management
it is beneficial if a common specification element is stored once only to
avoid redundant information. At the same time it is important to capture

context specific properties of a specification element shared by multiple
views. For example consider a requirement statement that is applicable to
multiple systems, but the priority of the requirement may be set differently

in each system. Consequently a separation is made between the represen-
tation of system invariant (e.g., a requirement statement) and system vari-
ant information (e.g., system specific requirement properties). This

approach is in accordance with requirement 3 defined in Section 4.3.
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Specification elements and system architecture elements

Specification elements are essentially independent of the system architec-
ture elements in the sense a specification element may be assigned to zero,
one or more system specifications and a system architecture element may

have zero or more specification elements assigned. System specific prop-
erties are captured for each assignment of a specification element to a sys-
tem architecture element. The relationship between specification elements

Figure 5.2: Relationship between specification elements and sys-
tem architecture elements
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and system architecture elements can be illustrated using two planes, one

for specification elements and one for system architecture elements.
Explicit assignments are required to relate elements on the planes. This is
illustrated in Figure 5.2, where a number of requirements are assigned to

three different systems. 

5.2 Discussion

The information model does not contain any fixed definitions of what the

contents of a system specification shall be. Instead it offers the capability
to define multiple views on the system under specification (in line with the
requirements presented in Chapter 4). These may capture requirements for

a specific system life-cycle or at a selected abstraction level using any of
the notations supported by the information model. A view may also cap-
ture the system from a specific stakeholder perspective, for instance from

the perspective of a system safety specialist. Life-cycle and stakeholder
views are potentially independent. A stakeholder view may, for instance,
be valid for multiple life-cycle views or a version of the specification.

The scope and structure of the information model is similar to with the one
proposed by Oliver [114], Jackson [71] and Compatangelo [36]. Also the
structure with three kinds of specification elements corresponds to the

structure prescribed by the IEEE-1220 standard (illustrated in Figure 3.5).
Moreover the system architecture and requirement representation parts of
the information model correspond to the scope of the RQML data

exchange information model for textual requirements [56]. 

5.3 Systems Engineering Data and STEP Data 
Architecture 

The STEP data architecture also influences the structure of the informa-
tion model. Every STEP application protocol depend on the information

model fragments defined in the STEP Integrated Resources. Consequently
the basic data architecture is largely similar in all application protocols.
The architecture defining product structure is outlined in Section 2.9, is
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defined in part 41 [9], [10] and [11] of the STEP framework. For refer-
ence, Figure 5.3 outlines how the STEP data structures are instantiated in

the Application Reference Model (ARM) of AP-214 [105]. The figure
only illustrates an small excerpt of the AP-214 ARM. There are multiple
entities and relationship not depicted. Note that the terminology used is

somewhat different compared to the overview structure presented in
Figure 2.11. This is explicitly allowed in an ARM as it captures concepts
using the terminology used within an engineering domain. A comparison

between the terminologies used in AP-214 and by Barnard Feeney [47] as
presented in Figure 2.11 is presented in Table 5.1.

Figure 5.3: STEP data architecture as instantiated in AP-214
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The following comments on the architecture are of importance:

 • The attribute associated_item from item_version to item shall be inter-

preted as an item_version object is associated to exactly one item and
that an item can have any number of item_version objects associated. 

 • The entity item_version_relationship allow the definition of directed

graphs of item_version objects. Cycles are not allowed in the graph.
 • The relationship between design_discipline_item_definition and item_

version objects is similar to that of item_version and item. Each

design_discipline_item_definition is associated to exactly one item_

version object via the associated_item_version attribute, and there
may be any number of design_discipline_item_definition objects asso-

ciated to an item_version object. Each design_discipline_item_defini-

tion is applicable to one or more life-cycle or application domains as
captured by the application_context entity. 

 • Any number of properties, in different representations can be associ-
ated to a design_discipline_item_definition through the item_

property_association entity. In the mechanical engineering domain

typical property specify the mass, cost or quality data on a design_

discipline_item_definition. 

In addition to the model elements presented in Figure 5.3 there are also a
large set of entities defined for representing composition or assembly-

component structures between design_discipline_item_definition objects.
There are also entities defined for relating property_value and property

objects respectively. It is thus possible to capture that a specific property

object is a property of another property object. 

Table 5.1: Terminology comparison

Barnard Feeney AP-214

product item

formation item_version

product_view_definition design_discipline_item_

definition
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The described structures lend itself naturally to mechanical product
design. Any number of versions can be maintained capturing old or alter-
nate design approaches for a product. Life-cycle views, for instance, the

number of steps in a production process a parts goes through is captured
by design_discipline_item_definition objects. The same construct can also
be used to capture different analysis models, e.g., for finite element analy-

sis. Figure 5.4 illustrates a sample instantiation pattern with multiple prod-
uct views associated to a single item_version object.

5.4 Usage of the STEP Data Architecture

The main initial design decision is the identification of Systems Engineer-
ing concepts that shall be represented as products/items in the STEP data

architecture, i.e., the set of entities for which version and configuration
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application_context

design_discipline_
item_definition

item_version

associated_item

associated_item_version

is_relevant_for

item_version

associated_item

application_context

design_discipline_
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Figure 5.4: STEP data architecture instantiated example
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control will be supported. There are at least two alternative approaches to

representing Systems Engineering data within the architecture as outlined
below. 

related

requirement function

Figure 5.5: Alternative architecture for systems engineering data 
data representation 
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5.4.1 SPECIFICATION ELEMENTS AS PROPERTIES

The most straightforward approach would be to model the entity capturing
the system under development corresponding to an item in AP-214, then

each version of the system would be represented in analogy with the item_

version in AP-214. Likewise the life-cycle definitions would correspond
nicely with the design_discipline_item_definition concept. Following this

approach specific property entities should be defined to represent specifi-
cation elements such as requirements, functionality or system components
or verification and validation data. Traceability from requirements to

functions could be established by relating a requirement property to a
function property or to physical component property. The structure of such
an architecture is outlined in Figure 5.5.

The architecture in Figure 5.5 fits nicely with the data representation
requirements presented in Section 3.5 with the exception that only the ver-
sion history of a system is maintained over time and not the individual ele-

ments of a specification. There is no mechanism to capture how individual
requirements and other specification elements evolve in time. 

5.4.2 SPECIFICATION ELEMENTS REPRESENTED AS ITEM

The second alternative is to model individual specification elements using

the same structure as for item, item_version and design_discipline_item_

definition as presented in Figure 5.3. In this approach the resulting model
structure for system, requirement and function data is presented in

Figure 5.6. In the architecture presented in Figure 5.6 there is support for
representation of version history information for individual requirements
and functions as well as for complete systems specifications. In addition,

any number of properties may be captured for each of the ‘_definition’
objects in Figure 5.6. This is in line with the requirements presented in
Section 3.5 and the architecture selected for the information model. 

In Figure 5.6 unique entities are used for capture of identification and
version management information for requirements, functions and systems.
A large number of entities with similar definition will have to be defined if

this schema is adopted for all elements requiring version management
support in the information model.
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Figure 5.6: Preferred architecture for systems engineering data 
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Alternatively the formal constraint capability in EXPRESS can be used to
reduce the number of entities in the model to the structure illustrated in

Figure 5.7. A single common structure defined by the entities
configuration_element, configuration_element_version and
configuration_element_version_relationship can be used to identify sys-

tems, functions, requirements and their respective versions and version
relationship. 

The attribute configuration_element_type of the entity configuration_

element is introduced to distinguish between different types of
configuration_element objects. For system_view_definition type objects
the attribute shall be set to the string ‘system’ and for function_definition

type objects the attribute shall be set to the string ‘function’. The rule WR3
in Figure 5.7 of the system_view_definition entity enforces the constraint.
Similar rules are defined for the function_definition and the requirement_

definition entities. 
The rule WR1 constrain the use of the entity configuration_element_

version_relationship such that the pair of configuration_element_version

related

relating

configuration_
element

configuration_
element_version

system_view_
definition

configuration_element_
version_relationship

requirement_
definition

function_
definition

string

configuration_
element_type

version_of

Figure 5.7: Information model architecture outline
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objects related must be versions of the same configuration_element

object, Finally the rule WR2 specifies that the pair of configuration_

element_version objects related by a configuration_element_version_

relationship object shall be two distinct objects. More complex rules are

defined in the STEP integrated resources. Rules defining that the graph
defined by version and version relationship objects contain no cycles are
available in ISO 10303-41 [9] and not duplicated in the information

model. 

5.5 Representation of Composition Structures

This section presents the structure for representing composition of speci-

fication elements in the information model. Composition structures are
common for systems and specifications elements. System — subsystem,
requirement, functional and physical architecture composition are com-

monly used in Systems Engineering methods. In the information model
the structure for representing composition structures is similar to that in
the ARM models of, e.g., AP-214 [105]. Three entities are employed to

capture composition as outlined for composition of systems in Figure 5.8.
A system may be composed of instances of other systems. Each instance
of a system within a system composition structure is represented by the

system_instance entity. The system_view_definition entity provides the
definition for any number system_instance objects. Composition is repre-
sented by the entity system_composition_relationship that relate a parent

system_view_definition object to one of its immediate subsystem repre-
sented by a system_instance object. 

Composition structures built by system_instance, system_view_defini-

tion and system_composition_relationship type objects shall not contain
any cycles. The selected structure for representing composition is not only
used within STEP. Equivalent structures can also be found in the CDIF

data flow model subject area [30].

The appeal with the selected structure is a separation between the usage
(as represented by the system_instance entity) of an element and how it is

defined (as represented by the system_view_definition entity). A definition
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object is self-contained and may be referred to by any number of instance
type objects. Instance objects from multiple composition structures may

reference shared a definition object. This could occur for specification ele-
ments for systems or for system versions with high degrees of commonal-
ity. 

Also a definition object may be referenced by multiple instance objects
from the same composition structure. This would be the case if there are
multiple instances of an element in a composition structure. For a system

composition structure this would happen in cases where there are multiple
identical subsystems. Figure 5.9 illustrates a system composition structure
for a control and supervision system with three subsystems. There is a pri-

mary and secondary control system with identical specifications indicated
by the two system_instance objects (at label 1 in Figure 5.9) referring to
the same system_view_definition object.
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A consequence of the selected structure for representing compositions
is that a child element in a composition can only be uniquely identified
through its parent. Usage or context specific properties for elements in a

composition structure must be assigned with an unambiguous reference to
the root element in the composition. This issue is further discussed in Sec-
tion 5.6.
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5.5.1 ALTERNATE STRUCTURE FOR REPRESENTING COMPOSITION

A more elaborate structure for representing composition is presented for
the Mascot method [140]. An instance type object in Mascot may refer to
multiple definition type objects, indicating multiple feasible realisation

alternatives or configurations for an element_instance object. The struc-
ture of the Mascot information model, encoded in EXPRESS-G, is pre-
sented in Figure 5.10. 

The Mascot model structure were considered in the information model,
but was not selected on the ground of added information model complex-
ity and caution whether it would be possible to map the Mascot primitives

onto STEP integrated resources. As a consequence any method supporting
the structure presented in Figure 5.10 cannot be adequately represented in
the information model. 

5.5.2 COMPOSITION STRUCTURE CONSTRAINTS

Composition structures are constrained such that all elements on the com-
position must be of the same basic type, e.g., a requirement may only be
composed of other requirements. However, the representation for individ-

Figure 5.10: Mascot model for representing composition in 
EXPRESS-G
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ual requirements may be different. Traceability (allocation) relationships

are used to capture relationship between elements of different types. These
structures are further outlined in Chapter 11.

5.6 System Variant and Invariant Information

The information model supports multiple composition structures for a sys-
tem specification, e.g., for requirements and functions. As noted in the
previous section these structures are general and may be used in multiple

system specifications. In this sense a composition structure is system
invariant. 

Another important view supported by the information model is represen-

tation of traceability links capturing allocation of requirement, functional
and verification plan elements. In contrast with the composition structures
allocation is local to the context of a single system. This is illustrated by

example 1 below:

Example 1: Two systems may share a common functionality, but the 
requirements for selecting the functionality in the respective system 
may not be identical. Hence a common functional solution is derived 

from non-identical requirements

Likewise there are cases where properties captured for a specification ele-
ment is local for a specific system as illustrated by example 2 below:

Example 2: A requirement statement may apply to multiple systems, 
or versions there of, but the priority set for the requirement is decided 
locally within the context of each individual system. 

The examples above indicate the need for a system variant view on speci-
fication elements. The information model shall be structured such that it
shall be possible to make a system specific reference to any element in a

composition structure to support property assignment and allocation of a
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specification element to another in the scope of a specific system. The
objective is to support combination system invariant and system variant
representations within a single specification. 

5.7 Property Representation

Only a very small set of attributes is defined for each core entity in the

information model. This is the consequence of the requirements for the
information model to be tool and method independent and the requirement
on absence of completeness criteria presented in Chapter 4. 

A property is a piece of data that apply to one or more design elements.
It does not have a meaning on its own, but adds information to the
assigned object. 

In the information model there are several structures defined to capture
and assign properties to other information model elements. The space of
possible properties and property representations are method dependent

and essentially infinite. Consequently the structures for capturing property
information in the information model are generic and applicable to multi-
ple entities. 

Figure 5.11: Generic property representation structure
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Figure 5.11 illustrates the generic property representation structure

selected. The structure is similar to that defined for AP-214 [105]. The
type of a property, e.g., weight, is captured by the property_definition

entity. The intention is that only one property_definition object for each

basic property shall be instantiated. 
The property_value entity provides the capability to capture a value for

the property via the attribute specificed_value. The attribute type,

property_value_select defines multiple value representations, e.g., textual
or numeric representations. The value may be captured by a single item or
by an aggregate. Numeric representations include open and closed inter-

vals, tolerances and capture of property value distributions functions. 
The property_assignment entity is the mechanism for associating a

property to another entity in the information model via the attribute

assigned_to of type property_assignment_select. 
All three entities capturing property information have a name attribute

that captures the usage of the respective entity:

 • property_definition, attribute property_type captures the type of the
property, e.g., weight or cost.

 • property_value, attribute property_value_name combines the speci-

fied value with a usage definition for the value, e.g., empty weight or
development cost

 • property_assignment, attribute property_name define the role for the

property in the scope of the assigned object, e.g., desirable empty
weight or estimated development cost.

In addition to the representation presented above there are property repre-

sentations similar in structure defined to capture:

 • Person and organisation information of a stakeholder in a specification
element.

 • Specification element approval information.
 • Effectivity, a time period for which a specification element or property

is valid for association with another specification element or property.

 • General comments and assessments to a specification element.
 • Prioritisation or ranking of multiple alternatives.
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A property type may be assigned to a specification element with multiple

roles. There may be multiple prioritisation criteria and multiple stakehold-
ers performing each prioritisation. Property roles are not defined norma-
tively in the information model. The reason for this is that all cases of

organisation and method specific use of properties cannot be foreseen.
Instead the information model documentation propose a set of roles that a
property may be used in, but a user of the information model may define

organisation specific roles for each property. For successful data
exchanges it is important that property definition and property representa-
tion harmonisation is performed between all involved parties. This may be

done on a partner to partner or project to project basis, or through the def-
inition of a set of public recommended usage documents for the informa-
tion model.

5.8 Summary

The chapter has presented a conceptual overview of the information
model, provided an high level motivation for the structure selected and

illustrated alternatives for representing Systems Engineering data in struc-
tures conformant with the structures defined in STEP integrated resources.
The overview provided is important for understanding of the next chapters

where parts on the information model are presented in detail and in rela-
tive isolation from other parts. 
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Chapter 6
System Architecture

This chapter presents the information model support for capturing the
structure of a system specification and for representing relationships
between systems. Key concepts are illustrated through sample information

model instantiations. 

6.1 System Architecture

In the Systems Engineering literature the term system architecture is used
to describe slightly different concepts. Rechtin [127] defines system archi-
tecture as a combination of system requirements and system composition

structure. In IEEE-1220 [67] the term is used as a synonym for the physi-
cal architecture of a system and Lewis [90] defines system architecture as
a combination of the functional and physical architecture of a system and

also explicitly include the notion of life-cycles in the definition. 

In the information model a system is the identifier and entry point for all
data related to a system specification. In this thesis two architectural views
are considered with the term system architecture:

 • The internal architecture, referring to the internal structure of a speci-
fication, including system life-cycles and domain specific viewpoints.
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This purpose of this view is to allow grouping of all information rele-
vant to a system under a single object.

 • The external structure, referring to the relationships between systems,

for instance a system composition structure where each node in the
structure corresponds to a specific system. 

Each architectural view is described in the next two sections. 

6.2 Internal System Architecture

It can be expected that a number of stakeholders contribute to the defini-
tion of a system specification. The nature of each contribution, and the

notation the data is captured in, depend on the role of individual stakehold-
ers and the maturity of the specification.  

Figure 6.1: System specification structure including end products 
and enabling systems [101]
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In literature there are multiple proposals for capturing and storing sys-

tem architecture information. A common partition is to separate user (or
stakeholder) requirements, specifying the expectations the user have on a
system under specification, and system requirements, a transformation of

user requirements into more precise, technical statements [142]. 
More elaborate partitions have been proposed. Wymore [156] identifies

seven life-cycle oriented partitions. Figure 6.1 illustrates the partitioning

of a system into end products and the enabling systems that are required
for the realisation and support of the end products. This partition is defined
in, e.g., EIA-632 [101]. Each enabling system can be viewed as a life-

cycle partition of the overall system specification. 

Likewise there are methods that propose the use of system viewpoints,
profiles or scenarios for analysis of a particular aspect of a complex sys-
tem [24]. Methods have been proposed both in a Systems Engineering [3]

[38] [91] and in a software engineering context [83] [110]. For example,
use cases are a fundamental part of the UML language [130]. 

In this thesis we use the term viewpoint to relate to cases where a knowl-

edge source and/or perspective is used to create a logical partitioning of a
system under specification. Individual viewpoints may be captured using
different methods and thus make use of different notations and representa-

tions. 
In environments where multiple tools are used it could also be benefi-

cial to store the view on the system held in individual tool representation

as viewpoints. Such an approach would allow the special characteristics
supported by individual tools to be maintained. If there exist a substantial
overlap in concepts supported by a pair of tools (A, B) as indicated by fig-

ure Figure 6.2 and each tool is used such that all concepts supported are
employed then any attempt to manage the complete system specification
in one of the tools will lead to the loss of information as soon as data is

exchanged. Information that do not belong to the intersection of the data
coverage of the tools will be lost. The preferred approach in the outlined
scenario would be to manage the data in two separate viewpoints and

exchange data supported by both tools. 
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6.2.1 VIEWPOINTS AND SPECIFICATION CONSISTENCY

The definition of multiple viewpoints offers advantages in the sense that it

facilities for a structured analysis of a system. However there is also the
risk of introducing extra-viewpoint inconsistencies. If a viewpoints is

updated then there is a risk it will no longer be consistent with other view-
points. I.e., a modification in one viewpoint may have a subtle impact on
other viewpoints. These risks have been acknowledged and resolution

strategies have been proposed in [42] [52] [110]. One of the conclusions in
the cited work is that specification inconsistencies can and probable must
be tolerated in some phases of the development process if multiple view-

points are introduced. 

6.2.2 VIEWPOINTS AND DATA EXCHANGE

There appear to be multiple advantages with introducing support for mul-
tiple viewpoints in the information model despite the risks associated with

introducing inconsistencies. Viewpoints are of special interest in a data
exchange environment as they allow for: 

 • Maintenance of tool specific views on a system under development.

 • Capture of relationships between tool views on a system. 
 • Management of information originating from multiple stakeholders.

Figure 6.2: Tool concept overlap

Tool A concept 
support

Tool B concept 
support
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6.2.3 VIEWPOINT DEFINITION

As with identification of system life-cycles there appears to be no consen-
sus on a standard set of viewpoints. Consequently, the system architecture

model shall provide a flexible framework capable of adapting to industrial
practise rather than a predefined fixed structure presented as solution to all
system specifications. Process and method harmonisation, i.e., definition

of and agreement on life-cycles to be considered and on the perspective
taken in each individual viewpoint, is a prerequisite for effective use of the
information model for data exchange.

6.2.4 INTERNAL ARCHITECTURE INFORMATION MODEL

The part of the developed information model supporting representation of
the system internal architecture is presented in Figure 6.3. It is based on

the structure outlined in Figure 5.7, with extensions to allow for capturing
life-cycle oriented views, represented by the system_definition entity, and
viewpoints represented by the partial_system_view entity. The entity

system_view_definition is a common abstract supertype for both concepts
and is introduced to define a common entry point to the set of entities that
may be associated with a life-cycle view or viewpoint. The following

types of specification elements may be associated with a system_view_

definition type object:

 • Requirements.

 • Verification and validation data.
 • The top-level node of the system functional architecture.
 • The top-level node of the system physical architecture.

 • Documents, i.e., files with an arbitrary content. 

The mechanisms for assigning individual specification elements to a
system_view_definition type objects are presented in detail in chapters 7 -

10.

For any version of a system specification there may be any number of life-
cycle views (represented by the system_definition entity). Each life-cycle
view is valid for zero or more defined life-cycle contexts. The model does

not contain any directives or definitions of acceptable life-cycle contexts.
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If desirable more than one system_definition object can be defined to be
relevant to a specific life-cycle (represented by the system_context entity).

This enables the creation of clusters of specifications for related life-
cycles as illustrated in example 3 below:

Example 3: Two system_definition objects defined for the same ver-
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Figure 6.3: System architecture, life-cycles and viewpoints
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sion of a system may both capture system requirements, one for an 

operational life-cycle and one for a maintenance life-cycle.

System specific viewpoints are captured by the partial_system_view

entity. Each viewpoint is valid for zero or more contexts, captured by the

entity system_view_context. A system_view_context defines both the
scope and analysis fidelity selected for the viewpoint. 

partial_system_view and system_definition type objects must not be
assigned to the same configuration_element_version structure, i.e., a sys-

tem configuration element is either representing a life cycle view or a
viewpoint. This is enforced by the EXPRESS rules presented in
Figure 6.4.

Two relationship entities are defined to relate system_view_definition

objects. The entity system_view_assignment relates a partial_system_view

object to a system_definition object indicating that the partial_system_

view defines a viewpoint on the system. A partial_system_view may be
assigned to any number of system_definition objects indicating that the
viewpoint is valid for multiple systems, system version or system life-

cycles. However it may only be assigned once to a specific system_defini-

tion object. This constraint realised through a uniqueness clause in the
EXPRESS specification requiring the combination of the values of the

attributes system_specification and assigned_view to be unique in the data
exchange database. Moreover, only one version of a viewpoint (partial_

system_view) may be assigned to a specific life-cycle view (represented

by a system_definition object).
The entity partial_system_view_relationship captures a relationship

between a pair of partial_system_view objects that is valid in the context

of a defined system_definition object. The entity may only relate partial_

system_view objects that are assigned to the same system_definition object
via system_view_assignment objects. The semantics of the relationship is

captured by a textual attribute intended to clarify to an engineer how the
relationship shall be interpreted. Further textual information on the nature
of the relationship may be captured in the entity’s description attribute.
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The information model does not include any formal language to define
the nature of a relationship between two viewpoints. Thus there is no built-

in support for automated reasoning about inter-viewpoint relationships.
This lack of formality may be criticised but is motivated by the fact that
there exist no consensus within the Systems Engineering community on

how different system viewpoints shall be related. Realistically, any
attempt to formally define a fixed number of relationships would fail as
individual stakeholder have different definitions for the same concept and

attempts to enumerate all potential relationship likely to result in a sub-
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Figure 6.4: Rules enforcing separation of life-cycle and viewpoint 
version management structures 

WR1 : SELF\system_view_definition.
associated_version.version_of.
configuration_element_type =
‘system’;

WR1 : SELF\system_view_definition.
associated_version.version_of.
configuration_element_type =
‘system viewpoint’;
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stantial, and likely incomplete list. The selected approach does not pre-
clude formal methods from using the framework, but the formal definition
of individual relationships is not maintained in the information model rep-

resentation. 

6.2.5 EXAMPLE

A system specification will go through several versions as it gradually
becomes more mature. The example in Figure 6.5 illustrates how the inter-

nal architecture of a system can be captured across multiple specification
versions using life-cycle views and viewpoints. 

System A 

Version 1

life-cycle view 1

Viewpoint A

Version 1

End version 1

Version 2

life-cycle view 1

Viewpoint A 

Version 2

Viewpoint B

Version 1

End version 2

Version 3

life-cycle view 1

Viewpoint A 

Version 2

Viewpoint B

Version 2

End version 3

End system A

Figure 6.5: Example viewpoint — life-cycle view configuration for 

specification versions
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The corresponding information model instantiation is presented in
Figure 6.6. In the upper half the three specification versions (labelled one
to three) are instantiated. Note that the relationships defining the version

graphs have been omitted. In the lower half of Figure 6.6 the two system
viewpoints, each instantiated in two versions are presented. System_view_

assignment objects are used to relate individual viewpoints to the system

specification life cycle view they apply to. Note how a single partial_

system_view object can be assigned to multiple system_definition objects.
Using this approach the commonality between two versions of the same

system specification can be established through an analysis of the partial_

system_view objects common to both versions. This is of importance as it
allows a stakeholder to quickly assess the extent of modification made

between two versions of a specification. 

Figure 6.6: Combining viewpoints for versions of a system specifi-
cation
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6.3 External System Architecture

The external system architecture defines how individual systems are
related logically to each other. Martin [103] identifies two practices in rep-
resenting the external systems architecture: 

 • Tightly coupled systems architecture
 • Loosely coupled systems architecture

The characteristics of each architecture view are discussed in the next two

sections. 

6.4 Tightly Coupled System Architecture

For a class of systems it is possible to identify a tightly coupled tree struc-
ture where the root is the top-level system under consideration and each of
its immediate children nodes are the subsystems. Individual subsystems

may be further composed. Recommended Systems Engineering practise,
Stevens et al. [142], is that no further decomposition is necessary when a
system is scoped such that it can be realised by a group of domain experts.

This approach to describe the external system architecture lends itself nat-
urally to complex non-distributed systems where there is a well-defined
system boundary. 

Example 4: In the development of a fighter aircraft the following 

subsystems may be considered: the avionics system, the propulsion 
system, and airframe system. 

In Example 4 the number of individual subsystems are fixed for each life-

cycle view on the system. There is typically one avionics system, one or
two engines in the propulsion system and one airframe system per aircraft
system.
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6.4.1 SYSTEM CONFIGURATIONS

In the tightly coupled architectural view it can be expected that the subsys-

tems of a system shall collectively fulfil the requirements stated on the
system. The requirements stated on a subsystem shall, according to theory,
be directly or indirectly traceable to requirements stated on the parent sys-

tem. These relationships may be implicit or captured explicitly. 
Figure 6.7 illustrates the structure for a trivial system architecture

where requirement traceability is explicitly implemented. System A is

composed of two subsystems, System B and System C. For System A, six
requirements, A1..A6, have been identified, illustrated by the grey lines in
Figure 6.7. Likewise five requirements, B1..B5, are identified for System

B and three requirements, C1..C3, are identified for System C. The dashed
lines in Figure 6.7 indicate how requirements for System A are traced to
requirements for System B and System C. For instance, requirement A1

on System A is traced to requirements B1 and B2. 

6.4.2 REPRESENTATION OF TOP-DOWN CONFIGURATION MODIFICATIONS

Management of the system architecture is complicated by the fact that
both system and subsystem specifications may evolve independently of

each other. Modifications may be introduced at system level or at subsys-
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Figure 6.7: Requirement traceability in a tightly coupled system 
composition structure
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tem level. If a modification is introduced in the parent system then the nat-
ural process is to create a new version of the parent specification and to
analyse how the modification affect individual subsystems. In cases where

the modification impacts on a subsystem requirement then a new version
of the subsystem specification is created and linked to the parent system.
This analysis is repeated until the leaf nodes in the system composition

structure are reached. 
Top down configuration modifications is illustrated in Figure 6.8. The

shaded rectangle in the left side of the figure contains the system architec-

ture from Figure 6.7 extended to include version management informa-
tion. In the initial configuration System A, version 1 is composed of
System B, version 1 and System C, version 1. 

If a requirement on System A, (requirement A5 modified to A5’) is
modified then a new version of System A is created. Under the assumption
that the modification from A5 to A5’ neither created new nor broke any

Figure 6.8: Top-down update of the system architecture illustrated 

by a modification of requirement A5 to A5’
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traceability relationships then only requirements C1 and C2 of system C

are potentially affected. If the modification had any impact to any of the
traced requirements then a new version of system C must be created with
requirements C1 and C2 updated to C1’ and C2’ respectively to comply

with the change of A5. Since System B is not affected by the update there
is no need to create a new version of the specification. 

6.4.3 REPRESENTATION OF BOTTOM-UP CONFIGURATION 
MODIFICATIONS

Modifications to an element of a subsystem cannot be effectively handled
in the same ways as a top-down modification as presented in Section 6.4.2.
A modification to a subsystem specification that would result in the iden-

tification of a new version of the specification would force the creation of
a new version of its parent system specification to identify the new config-
uration. The number of versions to manage for deep system composition

structures would explode as illustrated by Dick and Jackson [41]. 

Figure 6.9: Consequences of bottom-up modifications to the sys-
tem architecture 
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Example 5: Consider a system composition structure four level deep. 
Then an update to a leaf node in the architecture would force three 
additional updates, one at each level in the architecture as illustrated in 

Figure 6.9. 

The approach in STEP for solving the described problem is to indicate that
an individual subsystem is a candidate for replacement by another subsys-

tem and qualify the replacement through the use of objects capturing the
approval and the temporal validity of the substitution. In the STEP frame-
work this structure is described in ISO 10303-44 [11]. 

Figure 6.10 illustrates the preferred mechanism for handling updates to a
subsystem specification that does not include a modification to the speci-
fication of its parent system. A new version of the specification for System

C is created when requirement C1 of System C is modified to C1’. Instead

Figure 6.10: Mechanism for controlled bottom-up modification to 
a system composition structure
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of creating a new version of the specification for System A, the new ver-
sion of System C is marked as being a potential substitute to the original
version. This is indicated by the system substitution relationship in

Figure 6.10. Only one of the alternatives shall be considered. 
If the update of requirement C1 is accepted then an approval (with

appropriate authority) and effectivity objects are assigned to the substitu-

tion relationship to indicate that the subsystem version has been substi-
tuted. If the substitution is not approved then an approval object with the
value ‘not approved’ is used to indicate that there shall be no change to the

specification.

Substitution of subsystems in the in the system composition structure is
not limited to system versions. The same concept can be applied to indi-
cate that a pair of systems has been found to be interchangeable subsys-

tems of a system. 

6.5 Loosely Coupled System Architecture

For some system architectures there may be no obvious top-level system
or system composition structure. Martin [103] describes how this loosely
coupled architecture is common in telecommunication systems. A trivial

example is the relationship between handsets and base stations of a cellu-
lar telephone system as illustrated in Figure 6.11. There are multiple
autonomous nodes in the system and no obvious hierarchy relationship

between the system components. Moreover, the exact system configura-
tion may not be fixed but differ over time. For instance, the configuration
of telephone handsets to a base station varies over time.

Figure 6.11: ER model for a loosely coupled system architecture

Telephone handset Basestationconnects to
N 1
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6.5.1 EXTERNAL ARCHITECTURE INFORMATION MODEL 

The information model for representing the external system architecture is
presented in Figure 6.12. The entities system_instance, system_

composition_relationship and system_substitution_relationship provide
the capability to define a tightly coupled system architecture and the enti-
ties system_instance, system_instance_relationship_end and system_

instance_relationship provide the capabilities to represent a loosely cou-
pled system architecture. Entity definitions are presented below1:

 • System_instance, represents a specific instance of a particular system
life-cycle view. The instance concept is introduced to capture informa-
tion specific to a particular usage of a system specification in the con-

text of other systems. For instance, the decision to use a system as a
subsystem in the scope of another system. Each occurrence of a sys-
tem in a system architecture is represented by a system_instance

object. 
 • System_composition_relationship, defines the parent-child relation-

ship between a system and one of its immediate subsystems. In this

respect the entity defines a tightly coupled system architecture. The
attribute relationship_type defines whether the subsystem is manda-
tory or optional in the context of the parent system. Additional detail

on the relationship may be captured in text. The system architecture
graph defined by system_definition, system_composition_relationship

and system_instance objects must not contain any cycles.

 • System_substitution_relationship, defines that a subsystem has been
identified as a candidate for replacement by another system with the
scope of the system. The alternatives are mutually exclusive. In case

multiple alternatives exist in the external architecture then approval
and effectivity concepts define the valid configurations. The relation-
ship is transitive, i.e., if system C can substitute system D and system

D can substitute system C then system D can also substitute system B. 

1. The definition of the entity system_definition is presented in Section 6.2.4
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 • System_instance_relationship, defines an arbitrary relationship
involving two or more system_instance objects. The semantics of the

relationship is not predefined but defined upon instantiation. 
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Figure 6.12: Tightly and loosely coupled system external architec-
ture
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 • System_instance_relationship_end, defines the cardinality of a
system_instance object in a system_instance_relationship. Cardinality
may be expressed as open or closed intervals of natural numbers. 

The information model structure for more than one life-cycle view on a
particular system is especially suitable for capturing a system external
architecture that change according to life-cycle. For instance, if two life-

cycles, operational and maintenance, are identified for a system then there
may be a tightly or loosely coupled architecture defined for each life-
cycle. 

6.6 Examples

The following examples illustrate aspects of tightly and loosely coupled

system external architecture. The first example presents a tightly coupled
system architecture where the top-level system A is composed of subsys-
tems B and C. Two life-cycle views are identified for each system. An

informal view of the example is presented in Figure 6.13. The correspond-
ing information model representation is presented in Figure 6.14. The
labels (1 and 2) inserted identify the two life-cycles views in the example. 

In this case there is an exact correspondence between the system and its
subsystems for each life-cycle view, but in general this need not hold.
Each life-cycle view may introduce its unique set of subsystems. Likewise

the identification of system life-cycles and subsystems are independent of
versions of a system specification.

Figure 6.13: Tightly coupled system architecture with multiple 

life-cycle views

System A
life-cycle1

System B
life-cycle1

System C
life-cycle1

System A
life-cycle2

System B
life-cycle2

System C
life-cycle2

is composed of is composed of 
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The example presented in Figure 6.15 is the information model instantia-

tion of the system architecture example presented in Figure 6.10. In the
figure, the single life-cycle view identified for System A is composed of
three subsystems views: one view on System B and 2 views on two differ-

ent versions of System C. The system_substitution_relationship object at
label one in the figure indicates that the two versions of system C represent
mutually exclusive alternatives (at labels two and three in the figure).

Selection of the substitute over the base alternative is indicated through
assignment of approval and effectivity information on the system_

substitution_relationship object.

Figure 6.14: Information model representation of architecture pre-
sented in Figure 6.13
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The structure for creating a loosely coupled system architecture is pre-
sented in Figure 6.16. The example illustrates a trivial architecture where

a cellular telephony base station provides service to 0...2000 handsets, and
each handset is serviced by zero or one base station. 

For each system in Figure 6.16 there may be more than one life-cycle

view defined and for each life-cycle view there may be more than one
system_instance object identified. This allow for representation of more
than one Loosely coupled system architecture for a system, or a tightly

coupled system architecture definition complementing the architecture
presented in Figure 6.16.

Figure 6.15: Bottom-up modification of a system architecture cor-
responding to the example in Figure 6.10
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6.7 Summary

This chapter has presented the system architecture portion of the informa-
tion model. The focus has been on illustrating the flexibility in the infor-

mation model for representing system internal and system external
architecture. The system internal architecture supports structuring of data
for a system under specification in the form of:

 • System life-cycle views
 • System specific viewpoints

Figure 6.16: Information model instantiation of the loosely cou-
pled system architecture example in Figure 6.11
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The representation for capturing the external system architecture in terms

of:

 • Tightly coupled system architecture
 • Loosely coupled system architecture

have also been introduced.

The structures for relating system life-cycle views and system viewpoints
to individual specification elements are introduced in chapters 7 - 11. 
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Chapter 7
Requirements Representation

This chapter introduces and motivates the selected representation for
requirement statements and associated properties in the information
model. The mechanism for associating requirement properties and the

assignment mechanism for requirements to system life cycle views and
viewpoints is also introduced. 

7.1 Requirement — Definitions

The term requirement is used in many contexts. Earlier in this thesis the
term requirements has been used to refer to the set of information provided

as input to an activity in the engineering process. In this usage the term
refer to the collection of information used to guide the development of a
system. 

The term requirement is also used to refer to individual statements on
the capabilities a system shall conform to. In this usage the term require-
ment refers to individual elements of a specification that are potentially

independent of the engineering process. Requirements may be part of the
input to an engineering process activity and the output may be a set of par-
tially modified set of requirements for a system. In this usage a require-

ment is an element carrying information about an aspect of a system.
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However, the exact nature of a requirement is not easy to define. Three

useful definitions are:

1. A requirement is an expression of need, demand or obligation [142].
2. A requirement is a statement identifying a capability, physical charac-

teristic, or quality factor that bounds a product or process need for

which a solution will be pursued [67].
3. A requirement is something that governs what, how well and under

what conditions a product will achieve a given purpose [102].

For data representation purposes the first definition above is the most
appropriate, as it does not automatically couple the term to a system prod-
uct. The identification or recording of a requirement does not automati-

cally imply that a system that shall comply with the requirement. A
requirement statement may be recorded, but never associated with a sys-
tem. Strictly speaking, the statement recorded need not carry any informa-

tion related to expectations on a planned or existing system.

Traditionally it has been common to equate the term requirement with a
textual expression defining capabilities or constraints on what a system
shall accomplish. However, it is our view that a requirement can be

expressed in any notation. 

7.2 Requirement Quality Attributes

Lists of recommendations for high quality requirements have been pub-
lished. According to the IEEE-1233 standard “Guide for Developing Sys-
tem Requirements Specifications” [68] the set of requirements on a

system shall have the following characteristics:

1. Unique Set: Each requirement should be stated only once. 
2. Normalized: Requirements should not overlap. 
3. Linked Set: Explicit relationships should be defined among individual

requirements. 
4. Complete: Should include all the requirements identified by the cus-

tomer, as well as those needed for the definition of the system. 

5. Consistent: Should be non-contradictory in the level of detail, style of
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requirement statements, and in the presentation material. 

6. Bounded: The boundaries, scope, and context for the set of require-
ments should be identified. 

7. Modifiable: It should be possible to modify individual requirements

without having to update multiple other statements
8. Configurable: Version information should be maintained 
9. Granular: The level of abstraction selected for capturing requirements

should be consistent.

An additional desirable characteristic is that a requirement shall state what

a system shall comply with, not how it shall be done [16] [101].

The majority of the items above discuss characteristics unrelated to stor-

age structures. Only items only numbers 3 and 8 contain the most abstract
guidance on how requirements should be represented. Identified require-
ments related to requirements representation is discussed in next section.

7.3 Requirements on the Representation of 
Requirements

This section covers identified requirements for representation of require-
ments. To facilitate analysis the requirements are presented in five sec-
tions below.

7.3.1 REQUIREMENT REPRESENTATIONS

None of the characteristics identified in Section 7.2 consider suitable rep-
resentations for capturing individual requirements. Examples of require-
ments expressed in natural language are common in literature, but any

representation can be used to capture a requirement, for instance:

 • Requirements expressed in natural language, e.g., The system shall

weight less than 300 kg. 
 • Requirements expressed in natural language complemented with prop-

erties defined to ease the translation of the requirement into other lan-

guage representations, e.g., methods supporting the identification of
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parts of a functional model from the textual requirement statement as

supported by the Medisys process [17]. 
 • Requirements expressed in a formal mathematical notation [118].
 • Requirements expressed as a structured expression capturing a prop-

erty, with value (optionally an open or closed interval, possible with
defined tolerances and distribution functions) and unit, e.g., 
property: weight,

limit qualifier: less than,

value: 300.00,

unit: kilogram.

 • Requirements expressed in models in a representation supported by
the information model, e.g., a functional hierarchy model, CORE
Extended Functional Flow Block Diagram [95], or a complete system

specification.
 • Requirements expressed in digital documents with widely varying

internal structures, e.g., a line drawing, a 3D CAD representation, a

word processor or multimedia document.
 • Requirements given a physical manifestation, e.g., a physical proto-

type of a system. 

Selection of a suitable representation for a requirement is method and

process dependent. Natural language may be an appropriate representation
early in the development process. Later in the process more specific rep-
resentations may be preferable. 

7.3.2 CONFIGURATION MANAGEMENT

The importance of the configuration management for requirements high-
lighted in item 8 in Section 7.2 is not disputed in this thesis. In fact config-
uration management support of individual requirements and other

specification elements is one of the most important requirements on the
information model. We assume that: 

 • A version of a requirement may apply to multiple systems, system
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versions or viewpoints. 

 • A requirement version may be part of multiple composition structures.
For instance, a basic requirement statement can be inferred from more
than one complex requirement statements. In fact, a statement that is

considered to be a root in one requirement composition structure may
well be a child node in a another composition structure.

7.3.3 REQUIREMENT LINKS

With capturing links across requirements as expressed in item 3 in Section

7.2 above we understand two kinds of links. 

 • Requirement composition establishes relationships from complex
requirements to basic ones.

 • Requirement relationships indicating logical dependencies between
requirements, e.g., that a set of requirements are derived from another
set of requirement, or to indicate the existence of alternate (mutually

exclusive or redundant) statements. 

The next two sections presents definitions for requirement link structures:

Requirement composition 

Requirement composition is characterised by a directed acyclic graph

Gcomposition = (R, C) [54] where each node ( ) in the graph repre-
sent a requirement statement and each edge ( ) the composition
relationship from a complex parent requirement to a more basic child

requirement. A parent requirement has at least one outgoing edge and a
child requirement at least one incoming edge. A requirement may be both
a parent and a child requirement simultaneously. The root requirement in a

requirement composition structure is a requirement that has no parent
requirement, i.e., no incoming edge.

When requirement composition is used it is assumed that it shall be pos-

sible to directly infer a statement of a child requirement from the parent’s
statement. 

Example 6: Requirement composition is illustrated in the graph in 
Figure 7.1 (top) where R = {r.1, r.1.1, r.1.2} and C = {c1, c2}. Require-

r r R∈,
c c C∈,
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ment R1 is the root requirement and requirements R.1.1 and R.1.2 are 
child requirements of R1 and at the same time requirement R1 is the 
parent of requirements R.1.1 and R.1.2.

We assume that requirement composition is static and essentially system
independent. If a requirement r is the root requirement in a composition
structure then the composition is valid for assignment to any system. 

Requirement relationships 

Requirement relationships are independent of the requirement composi-
tion structure and may involve any number of requirements. Requirement
relationships and related requirement objects can be characterised by a

bipartite directed acyclic graph Grelationship = (Vr, Er) where Vr consist of

Figure 7.1: Requirement composition (top) and derived require-

ment relationships (bottom)

r1: The system shall 
perform X and Y

r1.2: The system shall 
perform Y

r1.1: The system shall 
perform X

c1 c2

r3: The system shall 
perform B

r2: The system shall 
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r4: The system shall 
perform C

d1: Requirement relationship:
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ments R2 and R3
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two distinct sets of nodes and where Er consist of two distinct sets of edges

between the nodes. The two sets of vertices are the requirements (R) and
requirement relationships (D). Edges are either relationship input edges

(I) or relationship output edges (O):

Requirement relationships typically involve more than one relationship

input edges and thus involve more than one requirement and is system

dependent, i.e., a relationship can only exist if all involved requirements
are assigned to the same system. Figure 7.1 (bottom) illustrate an example
of a requirement relationship graph where Vr = {r2, r3, r4, d1} and Er =

{i1, i2, o1}.

7.3.4 REQUIREMENT PROPERTIES

In addition to capturing an expression of need or demand there is supple-
mental information that may be associated with a requirement, e.g.,

administrative information such as authorship, ownership of a require-
ment, or evaluation or trade-off data such as requirement priority, or com-
ments on and feasibility or risk assessments of a requirement. This is

information that may be required in some methods, but not considered at
all in others. Consequently it would be inappropriate to mandate a fixed
set of attributes for a requirement. Instead the information model man-

dates a small set of attributes for a requirement and allow for the assign-
ment of any number of properties. For instance, the minimal attribute set
for a textual requirement may be:

 • Description, a textual definition of what is required
 • Id, a unique identifier for identification of requirements stored in mul-

tiple databases
 • Presentation identifier, an identifier for user identification of a require-

ment. For instance, the presentation identifier of a requirement may be

The elements in I corresponds to the edges from require-
ments to requirement relationships. 

I R D×⊆

The elements in O corresponds to the edges from require-
ment relationships to requirements, indicating the require-
ments where created or modified as a result of the 
relationship

O D R×⊆
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7.2.3, indicating it is the third child requirement of the second child of

the seventh root requirement for a system.
 • Name, a short string that identifies the requirement

Additional information is captured using general or requirement specific
representations for properties that is assigned to individual requirements.

The information model structure is a consequence of the requirements pre-
sented in Chapter 4. The range of potential requirement properties include:

 • Requirement prioritisation data with regard to a specific criterion,
absolute or relative to other requirements.

 • Requirement rationale and motivation data.

 • Selected method for requirement verification. 
 • Requirement source, ownership and list of interested stakeholders.
 • Assessment of requirement stability, completeness and risk.

 • Requirement approval status.
 • Requirement comments and queries.
 • Costs associated with implementing a requirement.

Any number of specific properties types listed above may be mandated or

supported in specific requirement engineering methods, but it is unlikely
that all properties will be mandated by a single method. Moreover, in
many cases there are multiple variants to a property to consider. For

instance, a method may allow capture of multiple priorities for a require-
ment, e.g., multiple stakeholder specific priorities. 

7.3.5 REQUIREMENT PROPERTY VOLATILITY

The values of requirement properties are assumed to be more volatile than

the actual requirement statement. The requirement statement, or a require-
ment composition structure may be fixed and agreed upon, but, e.g., the
perceived importance of an individual requirement to a system in terms of

priority may vary over time. This is especially the case when a single
requirement statement is common to multiple system specifications. Con-
sequently a separation is made between the representation the static

requirement structure and the representation of system specific properties. 
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7.3.6 REQUIREMENTS CLASSIFICATION

Requirement classification or categorisation is often considered in
requirements and Systems Engineering literature as a mean for providing

a better overview of the requirements on a system [16]. A large number of
classification schemes have been proposed. The IEEE-1220 standard
identifies four classes of requirements (Functional, Operational, Physical

and Constraints) [67], Wymore identifies six distinct classes [155], while
Grady [55] and Oliver [114] identifies five mutually inconsistent classes.
The absence of consensus in the Systems Engineering community implies

that an open framework for requirement classification is preferable for
data exchange to a single set of predefined classes. This is also the
assumption in this thesis

7.4 Presentation of the Requirements Representation 
Information Model 

Two requirements representation structures can be identified. First of all
there is the requirement product structure defining the decomposition of

complex requirements to more basic ones. This structure is assumed to be
reasonable static and system independent. Moreover, the static structure
may be common to multiple systems/projects or versions thereof. 

The second facet of requirement representation is related to how a
requirement is represented within the scope of a single system or a compa-
rable small set of versions of a system. This facet encompasses relation-

ships to other requirements, properties local to a system or a small set of
systems. 

The requirement information model is implemented in two layers to cap-
ture both the static requirement product structure such that it may be

shared across multiple system specifications and the placeholder for vola-
tile system specific requirement properties. The layers are illustrated in
Figure 7.21 and presented further below. 

1. Actually the figure contains three layers to indicate that requirements are assigned 
to systems.
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 • The requirement static structure layer captures individual require-
ments, the requirement composition structure and provides structures
for version management of individual requirements. The entities for

defining the requirement static structure layer are defined such that an
individual requirement statement can be part of multiple requirement
composition structures while maintaining a local composition struc-

Figure 7.2: Layered approach to representing requirements and 

systems in the information model
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ture for each composition. 

 • The system specific requirement layer support the identification of
requirement nodes that identifies a specific requirement. Multiple
nodes may be assigned to a single requirement to support capture of

properties that are local to a limited set of systems. 

The representation of versions is supported for requirements and system
architecture objects. The system specific requirement layer defines the
requirement configuration for each system. A number of possible config-

uration alternatives are illustrated in Figure 7.2. 

The information model for the requirement static structure layer is pre-
sented first followed by the model for the system specific requirement

layer and the mechanism for associating a requirement to the system archi-
tecture element (presented in Chapter 6). 

7.5 The Requirement Static Structure Information 
Model

This section presents the selected representation for capture the require-

ment static structure layer in the information model. 

The basic representation structure for the requirements product structure is
similar to that for representing system life-cycle views as presented in

Figure 6.3. The configuration_element and configuration_element_ver-

sion entities are shared with all other concepts modelled with version man-
agement support. The attribute configuration_element_type of the entity

configuration_element shall be set to ‘requirement’ for a requirement con-
figuration element. The entities for defining the requirement product
structure is presented in Figure 7.3 and presented below.

 • Requirement_definition, abstract supertype that captures the actual
requirement statement. Representation specific requirement state-
ments is captured in the three subtypes textual_requirement_definition

— for textual requirements, structured_requirement_definition — for
requirements expressed as a value interval and measurement unit com-
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bination and model_defined_requirement_definition — for require-
ments expressed in models or documents whose format is supported

by the information model. 

Figure 7.3: Requirement product structure
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 • Requirement_occurence, represents the use of a particular requirement

in a requirement composition structure. This entity is motivated by a
desire to unambiguously identify the parent requirement in the case a
requirement_definition object is a child in multiple requirement com-

position structures. 
 • Requirement_composition_relationship, defines the parent child rela-

tionship between a requirement and an immediate child requirement.

In addition the index attribute captures a section of the presentation
identifier of the child requirement in the context of the parent require-
ment. Requirement composition structures shall not contain any

cycles. 
 • Requirement_class, provides the mechanism for classifying a require-

ment according to content. The information model does not define a

predefined classification schema as there is no consensus in the Sys-
tems Engineering community in the issue [16]. Instead the framework
allows user defined sets of requirement classes. Harmonisation of

classes used is a prerequisite for effective exchange of this class of
data. 

 • Requirement_requirement_class_assignment, defines that a particular

requirement_definition object is assigned as member to a
requirement_class object. A requirement may be assigned to many
requirement_class objects, but may only be assigned once to a specific

requirement_class.
 • Requirement_class_relationship, captures a relationship between a

pair of requirement_class objects. The motivation for including the

entity is to capture relationships between heterogeneous requirement
classification schemes. Two relationship types are predefined. The
equivalence relationship indicates that the definitions of the

requirement_class objects related are considered equal and the spe-

cialisation relationship indicates that the definition of related_class

requirement_class object is more restricted than the definition of the

relating_class requirement_class object. 
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Example 7: Consider a schema where requirements are classified as 

being either functional or non-functional and another schema with 
four requirement classes: functional, operational, performance, and 
constraints. In this example the requirement_class_relationship could 

be used to indicate that the performance requirement class in the sec-
ond schema is a specialisation of the non-functional requirement class 
in the first schema. 

Note, the entities defined in Figure 7.3 captures requirement statements,
composition structure and classification but do not associate a requirement
to a particular system.

7.5.1 REQUIREMENTS COMPOSITION

This section provides examples on how the requirement composition
structure is realised using the entities defined in the information model.
The model extends on the definition of requirement composition pre-

sented in Section 7.3.3. A requirement statement as captured by the
requirement_definition entity is self-sufficient and may be inferred from
more than one complex requirement statement, i.e., a requirement state-

ment may be derived from multiple sources. A requirement X may be part
of the decomposition of the complex requirement ZX as well as the com-
plex requirement YX. Moreover, the requirement X may also be consid-

ered a root requirement in the context of one system. 

In the information model requirement composition structure is built using
the three entities: requirement_definition, requirement_occurrence and

requirement_composition_relationship. The selected structure allows
each requirement composition structure to be expressed independently,
even if the same requirement_definition object occurs in multiple compo-

sition structures. Two instantiation patterns are presented in Figure 7.4 and
Figure 7.5 to illustrate the use of the information model.
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Figure 7.4 illustrates the instantiated data structures for the requirement
composition example presented in Figure 7.1 (top). A complex textual
requirement is broken down into a pair of more specific ones. Version 1 of

requirement XY presented in Figure 7.4 is statistically composed of ver-
sion 1 of requirement X and version 2 of requirement Y. 

The index attribute of requirement_composition_relationship objects

defines the identifier of each child requirement in the context of the parent
requirement definition. The index attribute of the left hand requirement in
Figure 7.4 is set to 1 in the composition. The global presentation identifier

for an individual requirement is computed through a top-down traversal of
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Figure 7.4: Requirement composition example



CHAPTER 7

152

the requirement composition structure until the requirement is reached.

For instance, if top level requirement in Figure 7.4 is the 7th for a particu-
lar system life-cycle view or viewpoint then the global presentation iden-
tifiers of the child requirements are 7.1 and 7.2 respectively.

The example presented in Figure 7.5 illustrates three requirement compo-
sition structures sharing a common requirement_definition object, i.e., the
same requirement statement is common to three composition structures.

This could occur in cases where there exist an overlap between require-
ments on the same system or the case could be that the requirement struc-
ture are shared through the individual requirements that apply to different

systems. The requirement structure indicated by label 1 in Figure 7.5 state
that requirement XZ is composed of requirements X and Z. The structure
indicated by label 2 state that requirement XY is composed of require-

ments X and Y. The structure indicated by label 3 state that requirement X
is a top-level requirement in a particular context. 
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The requirement_occurrence entity provides a placeholder for system spe-

cific views on requirement composition structures. Requirement X is a
root requirement from the perspective of label 3 in Figure 7.5. At the same
time requirement X is a child requirement from the perspective of the

textual_requrement_definition objects at labels 1 and 2 in Figure 7.5. The
use of different requirement_occurrence objects to reach requirement X in
each composition structure allow for a structure where requirement X is

seen as being used in isolation in respective composition structure. Prop-
erties, such as a motivation for inclusion in respective structure could be
captured on each individual requirement_occurrence object. 

7.5.2 MANAGEMENT OF REQUIREMENTS FOR MULTIPLE SYSTEM LIFE-
CYCLES

The model for version management of requirements is identical to that of
systems with the exception that only one requirement_definition object
(life-cycle view) per configuration_element_version of a requirement is

allowed, i.e., only one requirement statement is allowed per requirement
version. The motivation for this restriction is that no reference in the liter-
ature or in industrial practice was found where multiple requirement life-

cycles are associated with each requirement version. Multiple
configuration_element objects shall be instantiated when there are multi-
ple related requirement statements that applies to different system life-

Figure 7.6: Representation of requirements for the same domain 
but for different system life-cycles

Requirement X 
for life-cycle A

v.1 v.2

Requirement X 
for life-cycle B

v.1 v.2 v.3

requirement_definition objects
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cycles as indicated in Figure 7.6. This restriction is included to ensure
consistent usage of version management structures for all requirement

objects. 

7.5.3 REQUIREMENT REPRESENTATION VS. THE REQUIREMENT 
COMPOSITION STRUCTURE

No implicit assumption is made on the suitability of a requirement cap-
tured using a particular requirement representation and its position in a

requirement composition structure. For instance, a complex requirement
could be expressed in a document and its immediate children requirements
could be expressed in natural language, or vice versa. 

7.5.4 REQUIREMENT CLASSIFICATION

The requirement classification part of the information model support clas-
sification of requirements for grouping of requirements with common

characteristics. Classification is subject to a users interpretation of indi-
vidual requirement statements and is not mandated. A requirement state-
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description The system shall

perform X and Y

requirement_composition
relationship

requirement_composition
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parent_definition parent_definition

child_requirement child_requirement

textual_requirement_
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index
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requirement_requirement_
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class
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class
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Figure 7.7: Requirement classification example
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ment may be assigned to multiple requirement classes. Requirement

classification is related to the requirement_definition entity. This is based
on the assumption that classification for a particular classification schema,
once performed, will remain stable over the life of a version of a require-

ment. 
The use of the requirement classification structure is illustrated in

Figure 7.7. Two requirement classes are identified in the figure: functional

and non-functional requirements and the three textual_requirement_defi-

nition objects in Figure 7.7 are classified. Note that the model does not
mandate classification information and that a single requirement may be

classified to multiple classes. The assignment of a requirement to multiple
classes may reflect the situation where unambiguous classification could
not be made. 

7.6 System Specific Requirement Information Model

This section introduces the information model structures for associating a
requirement to a system and for capturing requirement relationships and

properties local to a system. The entities presented in this section define
the interface between the system architecture model presented in Chapter
6 and the static requirement structure introduced in Section 7.5.

The system specific requirement information model serves three purposes:

1. It provides the mechanism for assigning a requirement to a system
specification

2. It provides the structure for capturing properties that are valid for a re-

quirement when associated to a specific system or a set of systems.
3. It provides the structure for capturing relationships across require-

ments. 

The information model portion is presented in Figure 7.8. The entities
requirement_instance, requirement_system_view_assignment, child_

requirement_system_view_assignment and root_requirement_system_

view_assignment defines the mechanism for relating an individual
requirement statement to a system. The requirement_instance entity cap-
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tures system specific requirement properties, and the entities requirement_

relationship, requirement_relationship_input_assignment, requirement_

relationship_resulting_relationship and requirement_relationship_

context_assignment provide the structures for relating requirements to
each other within the scope of a system life-cycle view or viewpoint. 

1index

resulting_
requirement

Figure 7.8: System specific requirement information model
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The definitions of individual entities are presented below followed by a

detailed discussion on how entities may be instantiated to represent real
requirement data.

 • Requirement_instance is the placeholder for capture of system spe-

cific requirement properties. 
 • Requirement_system_view_assignment is the abstract supertype for

assigning a requirement_instance object to a system_view object. A

requirement may only be assigned to a system_view object once. The
subtypes root_requirement_system_view_assignment and child_

requirement_system_view_assignment perform the assignment for

root requirements and child requirements respectively. The definition
and motivation for these two entities are presented further in Section
7.6.2. 

 • Requirement_relationship captures the existence a relationships
between two or more requirements. The semantics of a requirement_

relationship is defined by its type and description attributes. All

requirements in the relationship must be assigned to the same system_

view object. 
 • Requirement_relationship_input_assignment indicates that a

requirement_instance object is somehow related to other requirement
statements. Any number of requirement_relationship_input_assign-

ment objects may be related to a requirement_instance object, but any

requirement_instance object may only be assigned once to specific
requirement_relationship_input_assignment object.

 • Requirement_relationship_resulting_relationship indicates that a

requirement_instance object is implied by a requirement_relationship

object. Any number of requirement_relationship_resulting_relation-

ship objects may be related to a requirement_relationship object, but a

requirement_instance object may only be related once by a
requirement_relationship_resulting_relationship object.

 • Requirement_relationship_context_assignment relates a requirement_

relationship object to a system_view object such that the requirement_

relationship is valid in the system_view. If the assignment is not
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present for a particular system_view object then the relationship shall

not be considered within that view.

7.6.1 SYSTEM SPECIFIC REQUIREMENT REPRESENTATION

The purpose of the requirement_instance entity is to provide a placeholder
where system specific properties for a requirement can be captured. In this

sense the requirement_instance is the interface to the static requirement
structure via its definition attribute to the requirement_occurrence entity
and from there to the requirement_definition entity that captures the actual

requirement statement. Any number of requirement_instance objects may
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perform X and Y

requirement_composition
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requirement_composition
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parent_definition parent_definition
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Figure 7.9: Requirement_instance objects relating a single 
requirement_occurrence object
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relate to a requirement_occurrence object as illustrated in Figure 7.9. The

requirement_instance objects labelled 1 and 2 in Figure 7.9 both refer to
the same requirement_occurrence object. System specific properties may
be assigned to each of these objects. For instance, the requirement_

instance labelled 1 may be assigned properties indicating high priority and
low risk, while the requirement_instance labelled 2 may be assigned a
property indicating that the requirements is considered to be of low impor-

tance. Label 3 illustrates that requirement_instance objects may be
assigned to any requiremet_occurrence object regardless of its position in
a requirement composition structure.

7.6.2 ASSIGNMENT OF REQUIREMENTS TO SYSTEMS

The requirement_system_view_assignment provides the mechanism for
assigning a requirement_instance object to a system_view object. The
entity is abstract with two sub-types. 

 • Root_requirement_system_view_assignment, assigns a requirement_

instance object that refers to a requirement which is the root of a
requirement composition structure to a system_view. All properties of

the requirement_instance object referenced and all of its child require-
ments are implicitly assigned as well. However, for composite
requirements no requirement properties, except for those recorded on

the top-level requirement are captured. The root_requirement_system_

view_assignment also defines the top-level element in the presentation
identifier of the requirement within the scope of the system_view via

its index attribute. 
 • Child_requirement_system_view_assignment, assigns a requirement_

instance object that refers to a requirement_occurrence object which

is a child requirement in an arbitrary deep composition structure to a
system_view object. The child_requirement_system_view_assignment

is motivated as any requirement in a composition structure may have

system specific properties assigned. 
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Figure 7.10: Requirement assignment to system specifications
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The entity child_requirement_system_view_assignment may only be used

in cases where the root requirement of the composition structure is already
assigned to the same system_view object via a root_requirement_system_

view_assignment object. 

The usage of the entities is further illustrated in Figure 7.10 that is an

extension of Figure 7.9. Objects representing the system architecture part
of the information model are present in the lower part of Figure 7.10. The
root_requirement_system_view_assignment object at Label 1 in

Figure 7.10 indicate that Requirement XY is assigned as top-level require-
ment number 5 to the system_definition object in the lower right hand cor-
ner. 

The root_requirement_system_view_assignment object at label 2 in
Figure 7.10 indicate that Requirement XY is also captured as requirement
number 3 for a life-cycle view of version 1 of system A. If the properties

for Requirement XY in the scope of the two systems are different then
they are captured at different requirement_instance objects as in
Figure 7.10. If the properties are identical for the two systems then they

could be captured at a single requirment_instance object. 
The child_requirement_system_view_assignment object at label 3 in

Figure 7.10 illustrates how properties local to a requirement_instance

object representing a requirement which is a child in a requirement com-
position structure are associated with a system. The child_requirement_

system_view_assignment can only be used in cases where the top-level

requirement of the requirement in the composition structure is already
assigned to the same system_view object as the identified by the system_

view attribute of the child_requirement_system_view_assignment object.

For instance, if the root_requirement_system_view_assignment at label 2
did not exist then the child_requirement_system_view_assignment object
at label 3 would not be valid.

In case the properties captured by the requirement_instance referred by
the child_requirement_system_view_assignment at label 3 also applies to
the system_definition at label 1 then this could be indicated by assigning a

second child_requirement_system_view_assignment object to the
requirement_instance object. 
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A further example on requirement assignment to system_view objects is
presented in Figure 7.11. Two requirements are assigned via the root_

requirement_system_view_assignment objects indicated by labels 1 and 2.

The textual_requirement_deifinition object at label 3 in the figure is
assigned to both systems. However, composition specific views can be
defined with requirement_occurrence objects. A top-down traversal of

from label 2 will not indicate that the requirement at label 3 is part of mul-
tiple composition structures. 
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associated_version
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Figure 7.11: Assignment of a requirement as child requirement to the 
system_view indicated by label 1, and as parent requirement to the 

system_view indicated by label 2
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7.6.3 REQUIREMENT RELATIONSHIP

A requirement relationship could indicate any kind of relationship
between requirements. In the information model the attribute

relationship_type of the requirement_relationship entity define the seman-
tics of the relationship. Any textual string could be used to define the rela-
tionship. However, two types of requirement relationships were identified

in the AP-233 working group and defined in the standard documentation:

1. Alternate: The requirements associated via Requirement_

relationship_input_assignment objects to the Requirement_relation-

ship are mutually exclusive or equivalent; 
2. Derived: The requirements associated via requirement_relationship_

input_assignment objects are used to derive additional requirement_

instance objects. Requirements identified through the relationship are
indicated using resulting_relationship objects.

The definitions of the above two relationships are proposed within the
information model documentation. However, any other term could be used

for identifying relationship type. The motivation for not defining more
relationships is that consensus could not be reached for any more relation-
ship types. Still agreement on the definition of a limited set of relationship

terms appears appealing for effective data exchange between organisa-
tions. However, this must be agreed for each project where data exchange
is considered.

7.6.4 REQUIREMENT RELATIONSHIP EXAMPLE

The information model Figure 7.12 illustrate how requirement relation-
ships are captured in the information model. Two requirements_instance

objects (labelled 3 and 4) are both assigned to a pair of system_definition

objects (labelled 1 and 2). The requirement_relationship (label 5) of rela-
tionship type alternative indicate that the requirements are found to be

mutually exclusive or equivalent. This relationship can be assumed to hold
for all systems where both requirements are assigned. However, in a con-
figuration managed environment it is important to capture for which sys-

tems the requirement relationship is valid. A relationship may be valid for
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a single or limited number version of a specification only — indicating
that a relationship was not initially identified, or incorrectly captured. In
Figure 7.12 the requirement_relationship_context_assignment object

(label 6) indicate that the requirement_relationship is only valid in the
context of the system_definition object at label 2. A second requirement_

relationship_context_assignment object would be required to make the

requirement_relationship valid for the system_definition object at label 1
in Figure 7.12. 
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Figure 7.12: Alternate Requirement relationship example
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7.7 Summary

In this chapter the information model structures for representing require-
ments and requirements assignment to system life-cycle views and view-
points has been described and motivated. The structures are flexible such

that a requirement statement may be part of multiple composition struc-
tures and requirement properties are captured independent of the actual
requirement statement. 

Requirements are not isolated from other specification elements of the
information model. Chapter 11 introduces the model elements for estab-
lishing traceability relationships between requirements and other specifi-

cation elements. 
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Chapter 8
Functional Architecture

This chapter presents the information model for representing system func-
tional architecture and the methods considered when implementing the
information model. The interface between the system architecture and the

functional architecture parts of the information model is also presented. 

8.1 Introduction

In IEEE-1220 [126] the term functional architecture is defined as:

An arrangement of functions and their subfunctions and interfaces
(internal and external) that defines the execution sequencing, con-

ditions for control or data flows, and the performance requirements
to satisfy the requirements baseline. 

Note that the definition of function does not conform to the strict mathe-
matical definition. Instead the word function shall be interpreted as an ele-

ment of the overall the functionality that a system shall exhibit. The
system functional architecture is considered to be an integral part of the
system specification in IEEE-1220 and other Systems Engineering litera-

ture, e.g., [24] [101] [114] [139]. 
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The functional architecture for a system is a result of an analysis of the

functionality a system shall exhibit in each life-cycle phase. Traceability
links between requirement statements and the elements of the functional
architecture and from elements in the functional architecture to the physi-

cal items the functionality is allocated to may be captured. The informa-
tion model elements for capturing relationships between the functional
architecture model and other model elements is presented in Chapter 11. 

A number of alternate terms have been proposed to functional architec-

ture. Hatley and Pirbhai [62] uses the term ‘Process model’, in Oliver et al.
[114] the term ‘Behaviour’ is used, ‘Parallel composition’ is used by Nis-
sanke [108], and Harel and Politi [61] use the term ‘Conceptual model’.

8.1.1 METHOD OVERVIEW

A large number of diagrammatic methods have been proposed to capture
the functional architecture of a system. Some of these have been intro-
duced as Systems Engineering methods from the outset while others been

adapted from other domains. 
Methods from the first category include work by Alford [2] [4] and

Long [95] that led to the definition of Functional Flow Block Diagrams

(FFBD) and Extended Functional Flow Block Diagrams (EFFBD) as
implemented in tools like Holagent RDD-100 and Vitech CORE. The tool
CORE described in [38] also implement similar capabilities. 

Methods from the second category include Real-Time Structured Anal-
ysis methods defined by Hatley and Pirbhai [62] [63] and the related meth-
ods by Ward and Mellor [152] [153], approaches using activity charts and

Statecharts by Harel [58] and Harel and Politi [61], Blanchard and Fabry-
cky [24], and Lewis and Wagenhals [91] promote the use of the IDEF0
method [5]. In addition, flowchart approaches originating from automatic

control, e.g., as instantiated in the Simulink software package, are also in
use by systems engineers. 

The listed methods all share a number of high-level concepts but there

is substantial heterogeneity in the detailed semantics. The aim when cap-
turing different semantic concepts in the information model is to be fair in
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support for all methods identified as being relevant as outlined in Section

4.3. 

The reviewed methods have been defined to different levels of formality.
For instance, the semantics of Statecharts and activity charts as imple-
mented in the Statemate Magnum tool has been defined in detail in, e.g.,

[60] [120]. For most other methods, e.g., Real-Time structured analysis
[62] there exist only informal textual definitions of the methods and the
semantics of their constituting elements. 

Recently there has been a lot of interest in using object-oriented methods
for capturing the functional architecture of a system [34] [97]. The inclu-
sion of these in the information model falls outside the scope of the work

presented in this thesis. This is, however, not an indication that we find
object-oriented methods unsuitable for use in the Systems Engineering
process. 

8.2 Overview of Method Concepts

This section presents the criteria selected to compare engineering methods
for capturing system functional architecture. The basic characterisation

aspects are taken from Buede [25] where four aspects of functional archi-
tecture models are considered. 

1. The functional hierarchy view describing the functions composition

structure for a system and the external functions the system is interact-
ing with. 

2. The function interaction view describing the flow of data or items be-

tween individual functions. 
3. The processing or function instruction view describing the algorithm

for transformation function input to output, activation and termination

conditions for individual functions and capture of system variant func-
tion properties.

4. The control flow or behaviour view describing valid sequences of

function activation.
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Note that individual methods need not support all functional architecture

aspects listed. 

In the following sections the four criteria are used to describe different
semantic definitions of elements in a functional architecture specification.

8.3 Functional Hierarchy

The functional hierarchy aspect considers how functionality is represented
and the mechanism for functional composition. Two types of functional

elements can be identified in methods defined to capture functional archi-
tecture:

1. Functions represent decomposable nodes in the functional architec-
ture. A function represents some kind of action or transformation per-

formed by a system. A function may be composed of other functions
or be a terminal node in the hierarchy. Alternate terms used to define
the decomposable elements on the functional architecture include ‘ac-

tivity’ [58] and ‘process’ [62].
2. A set of nodes representing auxiliary functionality. These are terminal

nodes in the functional architecture with a defined semantics. Each

method defines its own set of auxiliary functionality. 

Formally a generic functional hierarchy model, discounting any functional
interaction is a tree defined by the triplet:

where:

 • F is non-empty, finite set of functions
 • α is the finite set of auxiliary functionality

 • r is the environment or context function in the functional architecture,
i.e., the function that includes the system function and any functions
or auxiliary functionality external to the system function. 

The symbol W denotes the functional elements and is union of functions

and auxiliary functionality. W = F ∪ α and F ∩ α = ∅. 

FH F α r, ,( )=
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Some method specific examples for auxiliary functionality is presented

below:

 • In IDEF0, FFBD, EFFBD, CORE and behaviour diagrams the only
functional element supported is functions [5] [38] [95], hence α = ∅. 

 • In the definition of a data and control flow diagrams in [62] the types
of functional elements include processes (functions), context proc-
esses (cp), data stores (ds) and cspec bars (cb), hence α = cp ∪ ds ∪
cb. The set of auxiliary functionality is pairwise disjoint.

 • In the Statemate implementation of activity charts [61] there types of
functional elements include activities (functions), external activities

(ea), data stores (ds), control activities (ca) and flow junction connec-
tors (jc), hence α = ea ∪ ds ∪ ca ∪ jc. The set of auxiliary functional-
ity is pairwise disjoint.

8.3.1 DEFINING THE SET OF AUXILIARY FUNCTIONAL ELEMENTS

The definition method specific functional elements are not homogeneous.
A data store as defined by Hatley and Pirbhai [62] may only contain a sin-
gle element at any time while a data store in Statemate [61] may contain

multiple elements and the elements may be accessed as stacks or queues.
Likewise the semantics of a cspec bar as defined by Hatley and Pirbhai is
more restricted compared with that of a control activity in Statemate. 

The non-functional requirements for the information model presented
in Section 4.3 states that there shall exist representations in the informa-
tion model that captures method specific concepts such that they can be

recreated in the original method representation. 

Following the guidelines defined in Chapter 4 for the methods identified
as being of interest for the work presented in this thesis the set of auxiliary

functional elements, α, supported in the information model shall be:

 • Data stores 
 • External functions (terminators)

 • Control activities (cspec bars)
 • Flow junction connectors
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8.3.2 FUNCTIONAL HIERARCHY DEFINED

This section presents a set of functions operating on elements in a func-
tional hierarchy (FH). The functions are used later in this chapter to define

rules for function composition and function interaction in the information
model.

The function children: F → 2W defines for each function its set of chil-

dren (immediate subfunctions and auxiliary functionality). A function f, f
∈ F is a leaf function if children (f) = ∅, otherwise the function is a com-

posite function. The function children*: F → 2W computes the reflexive-

transitive closure of children. 

The function parent: W → F defines the immediate parent function for a
functional element. A function f is a parent of a functional element w if f =

parent (w). If f = parent (w) then w ∈ children (f). 
For each functional hierarchy model there exist a unique function r ∈ F

which has no parent, i.e., . This func-

tion r is the environment function or context view of the functional archi-
tecture model. Every functional element, except the environment function
has exactly one parent.

Two more functions are defined for determining the set of parents for a

functional element. The function parent+: W → 2F computes the transitive
closure of the parent function for a functional element, i.e. it recursively
traverses the parent functions of a functional element until the environ-

ment function is reached. There may not be any cycles in a functional hier-
archy model, i.e., f ∉ parent+ (f). A function f is an ancestor of the
functional element w if f ∈ parent+ (w).

The function parent*: F → 2W computes the reflexive-transitive closure
of parent for a functional element.

For a set of functional elements  the least common ancestor func-

tion of X, denoted lca(X) is defined to be the function x, x ∈ W such that 

 •
 • for every other , , it follows that

f F r F r,∈∃ children f( )∉,∈∀

X W⊆

X children∗ x( )⊆
f W∈ X children∗ f( )⊆

x children∗ f( )∈



FUNCTIONAL ARCHITECTURE

173

Example 8: The functional hierarchy model in Figure 8.1 is defined 
by  where: 

 • F = {fn1, fn1.1, fn1.2, fn1.3, fn1.2.1, fn1.2.2}

 • α = {∅}
 • r = fn1

The hierarchy structure is defined by the children function. 

 • {fn1.1, fn1.2, fn1.3} = children (fn1)

 • {fn1.2.1, fn1.2.2} = children (fn1.2)

The following also applies for the example:

 • {fn1, fn1.2} = parent+ (fn1.2.1,)

 • {fn1, fn1.2, fn1.2.1} = parent* (fn1.2.1)

 • fn1 = lca (fn1.2.1, fn1.3)

8.4 Functional Hierarchy Information Model

The model for capturing the functional hierarchy structure is presented in
Figure 8.2 and similar to the requirement static structure representation. In
the model a distinction between the definition, the use of a function is

Figure 8.1: Functional hierarchy example

fn1

fn1.1 fn1.2 fn1.3

fn1.2.1 fn1.2.2

FH F α r, ,( )=
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made with the entities general_function_definition and function_instance.

A comparison with programming language structure gives that a general_

function_definition object corresponds to the definition of a function,
process or task body and a function_instance object corresponds to a func-

tion call.

The following entities are introduced to represent the functional hierarchy
aspect of a functional architecture model. 

 • General_function_definition, the abstract supertype of composite_

function_definition and leaf_function_definition. The general_

function_definition captures version management and identification

information common to the two subtypes. A general_function_defini-

tion may be referenced by any number of function_instance objects.
Consequently a general_function_definition type object may be used

in multiple functional hierarchy models and multiple function_

instance objects may refer to a single general_function_definition

object within the same functional hierarchy model.

 • Composite_function_definition, defines a function which is composed
of other functional elements. This is the only entity in the functional
architecture model that can be broken down into further elements. 

 • Leaf_function_definition, defines a function definition which is a ter-
minal node in the functional hierarchy structure. The leaf_function_

definition may be tagged as a predefined function definition from a

function library or a general function whose behaviour (algorithm) is
described in text. The language used to capture the algorithm may be
captured as well.

 • General_functionality_instance, the abstract supertype of function_

instance, persistent_storage, fsm_model and io_split_join. The
general_functionality_instance captures attributes common to all its

sub-types and is also important for the part of the model capturing
functional interaction presented in Section 8.8. A general_

functionality_instance object has at most one parent composite_

function_definition object, i.e., it is referred to as child_functionality

by at most one function_composition_relationship object. 
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 • Function_instance, represent the use of a general_function_definition

object within a functional hierarchy structure. A function_instance is
related to exactly one general_function_definition via its definition

attribute. 
 • Persistent_storage, represent a place where functional interaction

items accumulate. It is a passive object as it can neither be activated

(ABS) general_
functionality_

instance

(ABS) general_
function_
definition

composite_
function_
definition

leaf_function_
definition

functional_
composition_
relationship

function_
instance

persistent_
storage

fsm_
model

io_split_join

1

1

definition

configuration_
element

configuration_
element_versionrelated

configuration_element_
version_relationship

relating

string

configuration_
element_type

version_of

version_id

child_
functionality

parent_
function

associated_
version

Figure 8.2: Functional hierarchy information model
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nor have its own thread of execution. A persistent_storage is a termi-

nal in the function hierarchy structure. There are attributes for defin-
ing access method and the storage capacity. If known, the access
method for accessing items from a persistent_storage can be defined

to be a stack, queue or random access. In the first two cases reading an
item from the persistent_storage is assumed to remove the item from
the store. The definition of the persistent_storage entity is the same as

that for a store in Statemate [61]. Hatley and Pirbhai [62] have a more
restrictive definition as a store may only contain a single item. The
storage capacity attribute shall be set to 1 when a data store with the

Hatley and Pirbhai semantics is mapped onto a persistent storage
object.

 • FSM_model, is the entry point to a finite state machine. The FSM_

model is a terminal in the functional hierarchy structure. A FSM_

model may be used to define activation and deactivation conditions for
functional elements and may also produce output based on some algo-

rithm as any other function object. The definition of the FSM_model

entity correspond to that of a control activity in Statemate [61], but
also support the more restrictive definition for a cspec bar by Hatley

and Pirbhai [62] and control function by Ward and Mellor [152]. 
 • Io_split_join, is a support mechanism (function) for merging or split-

ting functional connections, see Section 8.6. The io_split_join entity is

included in the information model to allow for correct recreation of
the flow junction concept in the Statemate tool [61]. An io_split_join

is always a terminal node in functional hierarchy structure. The io_

split_join is not modelled as a general_function_definition type entity
as that would have forced representation of configuration management
information for each usage of the entity.

 • Functional_composition_relationship, is the mechanism for assigning
a general_functionality_instance type object as a child in a
composite_function_definition object. A general_functionality_

instance object may be referred to as child_functionality by at most
one Functional_composition_relationship object.
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8.4.1 FUNCTIONAL HIERARCHY EXAMPLE

Figure 8.3 illustrates a simple functional hierarchy structure in the graph-
ical notation defined by the tool Statemate [61]. In the figure the activity

(function) named composite is composed of three functional elements: the
activities named function1 and function2 and the data store named store.
The corresponding representation for capturing the structure of the speci-

fication fragment in the information model is presented in Figure 8.4. 

8.4.2 FUNCTIONAL HIERARCHY STRUCTURE

Intuitively a functional hierarchy structure as outlined in Section 8.3 form
a tree, i.e., for each node in the functional architecture there is at most one

parent function. With the introduction of function_instance and general_

function_definition objects it is possible that a single general_function_

definition object is providing the definition for multiple function_instance

objects within the same or across different functional hierarchy structures.
Conversely a general_function_definition object can be a child in multiple
function hierarchy structures. Consequently, a function hierarchy model as

captured in the information model is not a tree but a directed acyclic
graph.

COMPOSITE

FUNCTION1
STORE FUNCTION2

Figure 8.3: Statemate function hierarchy example
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In Figure 8.5 there are excerpts of three functional hierarchy structures
instantiated. The three environment (root) functions are indicated by

labels 1 - 3. The function_instance objects at labels 1 and 2 indicate envi-
ronment functions for two separate functional hierarchy model sharing the
same structure. The function_instance object at label 3 indicate the envi-

ronment function for a functional hierarchy model which is sharing a sub-
set of the functional structures from the function_instance objects at labels
1 and 2. 

The leaf_function_definition object at label 4 in Figure 8.5 provide the
definition for function_instance objects named leaf2 and leaf3. 

Figure 8.4: Information model representation of the model frag-
ment presented in Figure 8.3
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Note that version management information for function_defini-

tion objects are suppressed in the figure
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8.4.3 FUNCTIONAL HIERARCHY ELEMENTS — DISCUSSION

The choice of entities for capturing the functional hierarchy model has

been heavily debated. Oliver [113] argues that there is no place for con-
cepts like persistent_storage as it represents abstractions suitable for soft-
ware specification only. The position held by Oliver is due to a more

restricted view on methods relevant for Systems Engineering compared
with the one taken for the creation of the information model. The motiva-

Figure 8.5: Complex function hierarchy examples
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tion for including the persistent storage entity and thus include support for
methods such as Statemate [61] and Hatley and Pirbhai [62] is that there

are clear indications that these methods are used by systems engineers
despite the fact they were not initially conceived as Systems Engineering
methods. Support for these method in the information model is included in

line with the information modelling requirements identified in Section 4.3. 

8.5 Functional Context Information Model

This section describes the portion of the information model for represent-
ing the root function of a function hierarchy. The root function is repre-
sented by the system_view entity presented in Chapter 6 of the thesis. 

The information model portion presented in Section 8.4 provides the
capability to create functional hierarchy structure of arbitrary depth. When
combined with the entities presented in this section a functional hierarchy

model may be associated with a specific system life-cycle view or view-
point. A function may either be assigned to a system as an external func-
tion (part of the environment) or a system function (part of the system

Figure 8.6: Functional context information model
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under specification). The information model for capture functional con-
text data is presented in Figure 8.6.

 • The entity context_function_relationship assign a function_instance

object to a system_view_definition object either as an ‘external func-
tion’ or as a ‘system function’. The function_instance object related

may not be a child function in any composition. For any system_view_

definition object there may be at most one ‘system function’ and any
number of ‘external element’ objects assigned. 

The construct allows for representation of external functions as composite

structures, i.e., the auxiliary functionality external functions identified in
Section 8.3.1 are represented in the same way as normal functions. This is
less restrictive than what is allowed in Statemate [61], Hatley and Pirbhai

[62] and Ward and Mellor [152] where external activities and terminators
are leaves in the functional hierarchy structure. 

Figure 8.7: Functional context example instantiations
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The selected structure allow for representation of multiple perspectives

on a function. A function_instance object may be the ‘system function’ for
a particular system and an ‘external function’ for a number of other sys-
tems. Moreover, it allow for the association of the same instance of a func-

tional hierarchy model to multiple versions of a system specification.

8.5.1 FUNCTIONAL CONTEXT EXAMPLE

An example instantiation of the functional context model is presented in
Figure 8.7. In the figure the composite_function_definition object at label

1 represent the system function for the system named system A and the
composite_function_definition object at label 2 is representing functional-
ity external to the system. The situation is reversed for the system named

system B in the figure. 

8.6 Functional Interaction

The functional interaction aspect considers the semantics for the interac-

tion between functional elements (W) in a functional architecture model.
Functional interaction allows for representation of items (e.g., data, infor-
mation, material or energy) communicated or exchanged between func-

tional elements. The multiplicity of definitions for functional interaction
semantics is illustrated by the functional interaction model proposed by
Richter and Maffeo [128], Harel and Politi [61] and by Oliver et al. [114].

The three aspects of functional interaction illustrated in Figure 8.8 are
considered in this thesis: 

 • The function connection aspect concerns the mechanisms for intercon-
nection of individual functional elements indicating valid paths for
communication and exchange of items. 

 • The item representation aspect concerns the representation of the
items conveyed by the interaction are within the tool, i.e., by the use
of data types. 

 • The item temporal characteristic aspect concerns the rules for item
production and consumption. 
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Each aspect is outlined in more detail below.

8.6.1 FUNCTION CONNECTIONS

A connection is a directed relation between a functional element produc-
ing an item, the source, and the functional element consuming the item,

the destination. Multiple connections conveying the same item is used for
cases where the functional interaction is bi-directional or there are multi-
ple sources or destinations of the interaction. 

8.6.2 TEMPORAL CHARACTERISTICS

Functional interaction is either causal or non-causal. Causal functional
interaction from function A to function B imposes a partial activation order

such that the activation of function A is a pre-condition for activation of
function B. The item sent from function A to function B is a prerequisite
for activating function B. Causal interaction is assumed in some formali-

sations of data flow diagrams, e.g., by Tau and Kung [147], and by Lee
and Tang [88]. No specific activation order is defined under non-causal
functional interaction. 

function connection

item temporal 
characteristic

item representation

Figure 8.8: Three aspects of functional interaction



CHAPTER 8

184

8.6.3 ITEM REPRESENTATION

Functional interaction can also be classified according to the information
content carried. A non-value bearing connection has no value content. In

other words, each instance of a connection always conveys the same item.
Non-value bearing items either represent general-purpose signals whose
purpose is defined by the user or a prompt (command) that has a standard

interpretation, e.g., ‘start function’. 

A value bearing connection carries an item that have a value content that
represents, e.g., information, data, material or energy. The representation

of Value bearing items may be further specialised in accordance with what
is done in ordinary imperative programming languages, i.e., support for
representing structured data types. 

8.6.4 METHOD OVERVIEW

Several abstractions models are used to capture functional interaction
information as illustrated below.

 • EFFBD define two classes for capturing the temporal aspects of func-
tional interaction: triggering (causal) or non-triggering (non-causal).
Some data value is always assumed to be present for non-causal inter-

action. There is no support for specifying how the items exchanged
are represented. 

 • The Hatley and Pirbhai method [62] [22] define two temporal charac-

teristics for functional interaction: time continuous (non causal) and
time transient (causal). There is limited support for representation of
data types.

 • Statemate [61] support a wide range of data types. Interaction is per
default non-causal, i.e., the value of an item can always be read.

 • In IDEF0 [5] there is no concept of data types and all interactions are

defined to be causal.

The lack of standard definitions for functional interaction across methods
means that loss of information is in many cases inevitable when a specifi-
cation is moved from one tool to another. For instance, a specification cap-

tured with a rich set of data types cannot be maintained in an tool
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environment which does not support data types. There is also an impact on

the information model in the sense that method specific semantics must be
supported explicitly or modifications to a functional architecture model
will not be detected when data is mapped to or from information model

structures.

8.6.5 SPECIFICATION AND REAL WORLD ITEM REPRESENTATION

The selection of specific representations of for an item within the informa-
tion model a may indicate a software oriented bias, i.e., assumptions can

be made that there exist a direct correspondence between the representa-
tion of an item in a functional model and how the item is represented in the
real world. Such assumptions are not implicit in the information model. 

The item representation (type) selected for an item shall be viewed as an
abstraction made in the context of a functional model. The nature of the
abstraction depends on the purpose of the model and the capabilities of the

tool used to capture the functional architecture of the system. Conse-
quently specific representations are not being labelled as being suitable or
unsuitable for Systems Engineering purposes. 

8.7 Functional Interface and Abstraction

The basic functional hierarchy model from Section 8.3 is extended to rep-
resent functional interaction with elements for capturing connections

between functions.

Where F, α and r are defined as in Section 8.3 and

 • C is the set of connections

Each connection carries an item specified with a specific item representa-

tion. As before the symbol W is used to denote the set of functional ele-
ments. 

FHI F α C r, , ,( )=
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A connection  has one source and one destination functionality

identified by the functions 
source: C → W
destination: C → W

The item conveyed by the connection is communicated from the source

object to the destination object. The set of input connections to a function-
ality w, w ∈ W is denoted i(w) and the set of output connections o(w).

The rules for routing individual connections and the definition of the

inputs and outputs of a function depend on method. Three relevant alter-
native semantics for functional connections has been identified:

 • Explicit functional interfaces

 • Implicit functional interfaces with data abstraction
 • Implicit functional interface without data abstraction

The properties of each alternative are discussed below.

8.7.1 EXPLICIT FUNCTIONAL INTERFACES

Under this semantic the interfaces to composite and leaf functions are
explicit. This means that functional interaction between functional ele-
ments not sharing the same parent will have to be routed through the inter-

face of their parent functions until the least common ancestor function for
the source and destination functional elements is reached. The following
constraints apply for connection routing in methods supporting explicit

interfaces: 

Let , f1,f2 ∈ W, and f1 = source (c) and f2 = destination (c), where:
f1 = parent (f2) ∨ f2 = parent (f1) ∨ f1 ∈ children(parent(f2)) 

Multiple connection objects are required to capture functional interaction

where the functional elements do not share a common parent function, as
illustrated in Figure 8.9. Consequently there shall be a mechanism for
relating inputs to outputs at different level of decomposition in a func-

tional model. In many methods this is solved through the use of globally

c c, C∈

c C∈
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unique identifiers, e.g., via the connection name attribute that is common

for all connections routing an item. An alternate approach is to identify
related connection objects via explicit connection binding objects. 

Data abstraction is enforced under this semantic — the input and output
connections to a functionality w is defined by: 

Explicit functional interfaces for connection routing are, e.g., enforced by
the structured analysis methods defined by Hatley and Pirbhai [62], Ward

and Mellor [152], IDEF0 [5], Lotos [148] and by the research system
POOSL by van der Putten and Voeten [150].

Figure 8.9: Functional interaction under explicit functional inter-
faces from fn1.2.1 to fn1.3
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i w( ) c∀ c C destination c( ),∈, w={ }=

o w( ) c∀ c C source c( ),∈, w={ }=
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8.7.2 IMPLICIT INTERFACES WITH DATA ABSTRACTION

Under this semantics connections between functions at different levels in
the function hierarchy are allowed without passing through the interface

of any parent function. 

Let  and source (c) = f1 and destination (c) = f2, f1,f2 ∈ W, then f1
and f2 shall satisfy the following constraint:

parent+(f1) ∩ parent+(f2) ≠ ∅.

I.e., f1 and f2 shall have at least one common ancestor for the connection to
be valid. Figure 8.10 illustrates functional interaction functional under
implicit functional interfaces. An item produced in function fn1.2.1 is con-

sumed in fn1.3 without passing through the interface of fn1.2. Had fn1.2.1 or
fn1.3 had any child functions then they would not have been able to access
the item conveyed by the connection.

The set of input and output connections for a functionality w is the same as
defined for the explicit functional interface class, i.e., defined by  

Implicit interfaces for connection routing is enforced by the EFFBD

method [95].

8.7.3 IMPLICIT INTERFACES WITHOUT DATA ABSTRACTION

Under this semantics connections between functions at different levels of

decomposition are allowed without passing through the interface of any
parent functions. Data abstraction is not enforced. A connection with its
source or destination in a composite function f is accessible for reading

and writing for all child functions of f.
For this class of functional interaction semantics the same routing rule

applies for the Implicit interfaces with data abstraction class presented

above. 

c c, C∈

i w( ) c∀ c C destination c( ),∈, w={ }=

o w( ) c∀ c C source c( ),∈, w={ }=
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For a functional element w the set of inputs and outputs is calculated using
the following formulas:

 

Figure 8.11 illustrate functional interaction under implicit functional inter-

faces without data abstraction. Implicit interfaces are, for instance, sup-
ported by Statemate activity charts [61].

8.7.4 FUNCTIONAL INTERFACES IN THE INFORMATION MODEL

Maintaining the three models for functional interface in the information

model representation is not ideal. It would require any tool interface based
on the information model to include support for three different algorithms

Figure 8.10: Functional interaction under implicit functional 
interfaces from fn1.2.1 to fn1.3
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i w( ) c∀ c C destination c( ),∈, parent∗ w( )={ }=

o w( ) c∀ c C source c( ),∈, parent∗ w( )={ }=
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for interpreting functional interaction. Instead the explicit functional inter-
faces semantics as presented in Section 8.7.1 are used exclusively in the
information model. 

The motivation for selecting the explicit functional interface representa-
tion as the single representation in the information model is that: 

 • The interface to each functional element is explicitly defined which is

important in cases where a function can be used in multiple contexts.
The only way to define interaction with a functional element is
through its interface. 

 • Splitting and joining connections is performed explicitly at the inter-
face of functions.

The selection of a single semantics for functional interaction within the

information model lead to the introduction of complex mapping functions
for methods supporting implicit interfaces as defined below.

source

Figure 8.11: Functional interaction under implicit functional inter-
faces without data abstraction from fn1.2 or any of its children to 

fn1.3

fn1
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Implicit interfaces with data abstraction

When a model containing a connection, c, with source(c) = f1 and destina-

tion (c) = f2 is exported onto the data model representation then connec-
tion fragments must be instantiated between all functions f up to the least
common ancestor function of f1 and f2.

Conversely, when data is imported from the information model represen-
tation then the ultimate source and destination of an interaction must be
established by a top down traversal of the set of connections. All connec-

tion objects traversed, but the ultimate source and destination function, are
discarded in the tool internal representation.

Implicit interfaces without data abstraction

The same rules as for the implicit interfaces with data abstraction seman-

tics apply. Depending on tool capability it may be possible to uniquely
identify the set of functions producing or consuming a specific item when
data is exported. In such cases connection objects may be created to iden-

tify those functions explicitly. However, this transformation cannot be
reversed when data is imported from the information model representa-
tion. 

8.8 Functional Interaction Information Model

The entities for the functional interaction part of the information model are
presented in Figure 8.12. The entities introduced are documented below.

 • io_port, is the abstract supertype for all entities that represent ele-
ments of the interface of a functional element. An io_port is one of the

following actual_io_port, formal_io_port, control_io_port or io_

composition_port. Interaction via an io_port element is uni-direc-
tional, i.e., an io_port is either an input or an output of a functional

element. The representation of the item conveyed via the io_port is
captured by the data_instance object identified by the data attribute.
An io_port is said to be a producing port if can produce information to

a functional_link object and a consuming port if it can consume infor-
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mation from a functional_link object. A port is either a consuming

port or a producing port.
 • functional_link, represent a connection between a pair of io_port

objects. The connection is directed from the io_port object indicated

by the source_port attribute to the io_port object indicated by the

port_of
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Figure 8.12: Functional interaction information model
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destination_port attribute. The connection is valid iff the same data_

instance object is referenced by the pair io_port objects references by
the functional_link object. The connection established by a
functional_link object is ideal. There are no delays or energy losses.

By default a functional_link object realises non-causal interaction.
The semantic can be modified by the use of io_buffer objects as out-
lined in Section 8.8.4.

 • actual_io_port, represent an actual parameter to a functional element.
As such the actual_io_port is associated to a general_functionality_

instance object.

 • formal_io_port, represent a formal parameter to a functional element
and thus associated to a general_function_definition type object. 

 • io_port_binding, associates a actual_io_port object of a function_

instance object with a compatible formal_io_port object of a general_

function_definition object. At most one io_port_binding object may
be applied to any actual_io_port object. 

 • control_io_port, is an io_port with a defined threshold for data driven
function activation for the function_instance object the control_io_

port object is assigned to. A control_io_port may define the condition

for function activation only, or for function activation and deactiva-
tion. 

 • io_composition_port, is the mechanism for accessing a specific data

element of a composite data type for reading or updating. 
 • bi_directional_port_indicator, relate a pair of io_port objects to indi-

cate that they support bi-directional interaction for an item. 

 • io_buffer is a modifier to associate a first in first out buffer of unlim-
ited size for items with an io_port object. The io_buffer modifies the
semantics of the connection such items will be consumed when read,

i.e., a connection becomes causal by the addition of an io_buffer

object to the producing or consuming io_port object. 
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8.8.1 IO_PORT AND FUNCTION_LINK

In the information model the io_port entity is a supertype of formal_io_

port and actual_io_port. io_port support unidirectional interaction only

— a port is either an input indicating that items are entering the assigned
functional element or an output indicating that items are exiting the func-
tional element. There are no restrictions on how many functional_link

objects that may have their source or destination in a producing or con-
suming io_port object. 

An actual_io_port has the role as producer of items if it is an output port

and the role as consumer of items if it is an input port. Conversely a
formal_io_port has the role as consumer of items if it is an output port and
has the role as producer of items if it is an input port. The classification for

formal ports may appear counterintuitive but is due to the fact that an out-
put formal_io_port object consumes items for distribution outside the
assigned general_function_definition object and an input formal_io_port

produces items for distribution to the children functional elements of a
general_function_definition type object.

Rules for correct connection of function_link objects are formed based on

the definition of producer and consumer io_ports. A functional_link

object realises a unidirectional connection from a producing io_port

object to a consuming io_port object. In this sense a functional_link can be

compared with an ideal diode. The constraints for connection routing out-
lined in Section 8.7.1 apply for functional_link objects.

8.8.2 FUNCTIONAL INTERACTION EXAMPLE

An instantiated information model fragment illustrating the connection

routing principles in the information is presented in Figure 8.13. The
instantiation include a composite_function_definition object with a single
child function_instance object. There is one input and one output to the

composite_function_definition object, labels 1 and 4 in the figure. Like-
wise there are two inputs to the child function_instance object in the fig-
ure. These are represented by the actual_io_port objects at label 2 and 3 in
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the figure. Two functional_link objects are used to establish the connec-
tion between the io_port objects. Both functional_link objects are valid as

they each form a connection from a producing port to a consuming port. 

8.8.3 PARAMETER BINDING

Each functional element in the information has an explicit interface
defined by the assigned io_port objects. For a function_instance object it

is in the form of actual_io_port objects and formal_io_port objects for a
general_function_definition type object. The entity io_port_binding pro-
vide the mechanism for the association of an actual_io_port object of a

functional_instance to a formal_io_port object of a general_function_def-

inition. 

The following prerequisites shall be fulfilled for a valid parameter bind-
ing:

1. The role attribute of the two port objects bound shall not have the
same value, i.e., one of the ports shall be a producer of items and other
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Figure 8.13: Functional interaction example
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shall be a consumer.
2. The function_instance and general_function_definition type objects

the io_port object involved in the parameter binding are connected to

shall be related such that the general_function_definition object is
identified by the definition attribute of the function_instance object.

3. The items carried by the bound io_port objects shall be of the same

basic data type. 

Figure 8.14 illustrates a valid parameter binding example. 

8.8.4 CAUSAL INTERACTION AND FUNCTION ACTIVATION

The default behaviour of any combination of functional_link and io_port

objects is that an item carrying some (may be undefined) value is available
in the consuming io_port, i.e., the connection is non-causal. A connection
may be modified to become causal by the association of an io_buffer

object to an io_port producing or consuming data in a connection. 

 • If the io_buffer object is assigned to an io_port object producing items

then the items will be buffered at the producing port. If more than one
functional_link objects is connected to the port then any item pro-
duced on the port will be consumed by one of the functions connected

Figure 8.14: Parameter binding example
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to the function_link. 

 • If the io_buffer object is assigned to an io_port object consuming
items then the items will be buffered in the consuming port allowing
each consumer a local copy of the items produced.

Any number of items may accumulate in an io_buffer object. The seman-

tics of the case where a functional_link object connections to two buffered
io_ports is not defined and explicitly forbidden in the information model.

The information model support for representing activation conditions for a

function is further specified in Section 8.9.

8.9 Function Instruction 

The function instruction aspect defines how an individual function gener-

ates output from its inputs and the termination condition for a function. In
[120] the internal behaviour of a function is characterised as follows:

1. Wait for activation and take input from the interface.

2. Internal processing, depending on tool support the processing algo-
rithm may be expressed in a formal or informal language.

3. Output delay δ time units, where δ is a real number in the interval 0 ≤
δ ≤ ∞. δ is a temporal property of the function that is dependent on the
system the function is associated with. 

4. Produce output to the environment.

In the sequence above steps 1 and 4 are performed in conformance with

the functional interaction semantics defined for each input and output to a
function. Presence of input items, for all causal connections to a function
is a prerequisite for function activation. Additional activation condition

may be enforced by the introduction of clocks activating a function at reg-
ular intervals or activation may be controlled by an explicit behaviour
component as outlined in Section 8.11. The association of a clock to a

function makes the function time-discrete. If no clocks are assigned a
function is assumed to be time-continuous. 

The function instruction aspect also encompasses the function termination

semantics. Here three alternatives can be distinguished. 
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1. A function is continuously active.

2. The activation of a function is controlled from an external source. Ter-
mination depends solely on the internal state of the function.

3. The activation and termination of a function is controlled from an ex-

ternal source.

External activation or deactivation conditions may be defined by the
reception of a prompt. Alternatively function activation could be coupled
to the item value of a value bearing connection as defined for the control_

io_port entity in Section 8.8. 

8.9.1 SYSTEM SPECIFIC FUNCTION PROPERTIES

The information model needs to handle the case where a single functional
architecture model is used in multiple contexts. This is analogous to the

system specific requirement information model presented in Section 7.6. 
For instance, a supplier may provide a range of systems that provide the

same functionality, but with different temporal performance. In this aspect

it is important that functional properties such as output delay can be cap-
tured in the context of each individual system. Likewise the specified
properties, but not the overall functionality of a system may change in the

development process. This is in line for the design guideline for reuse of
model fragments captured in Section 4.3.

8.10 Function Instruction Information Model

The function instruction information model contains entities for associat-
ing system variant information, e.g., temporal properties and requirement

allocations, to individual functions and entities for capture of function spe-
cific properties. System variant information can be represented for each
system viewpoint a functional architecture model is associated with. The

entities in the model are presented in Figure 8.15 and documented below.
The presentation is split into two parts. One for the realisation of the sys-
tem variant structure of the functional architecture model and one for asso-
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ciating functional properties to model elements. Note that the entity for

capture function algorithm (leaf_function_definition) is presented in Sec-
tion 8.4.

8.10.1 SYSTEM VARIANT INFORMATION MODEL

The system variant functional model is based on the identification of dis-

tinct configurations of objects for capturing functional properties for a
functional hierarchy model assigned to a specific system life-cycle view
or system viewpoint. System variant properties of a functional architec-

ture model are captured by the use of a placeholder entity —
functionality_instance_reference — that is associated with a general_

functionality_instance object. The entity functionality_reference_configu-

ration defines the set of general_functionality_instance objects applicable
for a functional architecture model when associated to a specific system
view. Association of a functionality_instance_reference object to a

functionality_reference_configuration is made via the entity
functionality_reference_configuration_relationship that relates a parent
and a child functionality_instance_reference object to a reference config-

uration. 

The definition of the entities in the model is further presented below.

 • functionality_instance_reference, is the placeholder for allocation of

system variant information to individual elements of the functional
architecture. Multiple functionality_instance_reference objects may
be assigned to a single general_functionality_instance object. How-

ever, only one of them may be valid for any given system view.
 • functionality_reference_composition_relationship defines a parent-

child relationship between a pair of functionality_instance_reference

objects. The parent - child relationship captured must match that
formed for the functional hierarchy structure. The entity also identifies
a functionality_reference_configuration for which the parent-child

relationship is valid.
 • functionality_reference_configuration acts as a collector of place-

holder objects valid for a specific system view. 



CHAPTER 8

200

 • system_functional_configuration is the association of a reference con-

figuration to a specific system view. Multiple system_functional_con-

figuration objects may be used to assign a reference configuration to
multiple system life-cycle views or viewpoints sharing the same func-

tional architecture. 
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Figure 8.15: Function instruction information model
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8.10.2 FUNCTIONAL PROPERTIES INFORMATION MODEL

Two kinds of specific system variant functional properties are supported in
addition to the general property assignment part of the information model

outlined in Section 5.7: 

 • Clocks for periodic activation of functions.

 • Capture of estimated function execution time.

The information model entities are presented in Figure 8.15.

Allocation of clocks for the periodic activation of a function within a func-
tional architecture. The allocation of a clock to a function changes the

function temporal characteristics from time-continuous to time-discrete. 

 • The entity clock represents a device that emits pulses at periodic inter-
vals. A clock may be associated with one or more control_io_port

objects by the use of clock_assignment_relationship objects. The
clock association is also made to one or more functionality_reference_

instance objects via clock_reference_context_relationship objects to

indicate the configurations a specific clock assignment is valid for.
 • The execution_time entity support capture of function execution time

for a function in the functional architecture. Execution time may be

captured for three cases, normal, worst and best case execution time.

8.11 Functional Behaviour 

The behaviour aspect of functional architecture concerns the control flow
that defines the valid sequence of function activation and termination. In
many methods the behaviour model is implicitly defined by the causality

relationships defined by functional connections while other include an
explicit behaviour component. 

Finite state machines in different forms have been proposed and used for
capturing the behaviour aspect of the functional architecture, e.g., [61]

[62] as have languages where the causality between functions is captured
by explicit relationships as in Functional Flow Block Diagrams (FFBD)
and Extended Functional Flow Block Diagrams (EFFBD) [4] [95] [96]. In
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the first case the output language of a finite state machine is used to con-

trol the status of individual functions. The control language may be formal
or informal. Methods and languages using finite state machines for captur-
ing the behaviour of a functional model have been proposed and studied in

detail in, e.g., [58] [59] [60] [61] [120]. No detailed presentation of state
based specification languages is made within this thesis. 

In contrast with the large number of publications related to the use of finite
state machines for capturing functional behaviour relatively little is pub-

lished on methods using the second approach to capturing functional
behaviour. 

The introduction of a dedicated representation for capturing functional

behaviour changes the assumption on function activation. In a model with-
out a dedicated behaviour component a function is assumed to be active as
soon as data is available to its inputs. When a functional behaviour repre-

sentation is introduced an explicit activation via this representation is
required to activate a function. This difference in model semantics must be
maintained in the information model.

8.11.1 CAUSAL CHAIN BASED FUNCTIONAL BEHAVIOUR

Causality based functional behaviour methods are characterised by the
arrangement of identified functions to threads. For each function in a
thread there exist a finite set of functions that will have to be activated and

terminated immediately before the activation of the function. Similarly
there exist a finite set of functions that will be activated upon the termina-
tion of the function. Consequently ordering of functions in time is sup-

ported. Control structures, such as selection (if) statements and loops, are
often introduced in causality based functional behaviour methods to
increase model clarity. Methods and tools that support causality based

functional behaviour includes 

 • Functional flow block diagrams (FFBD), as supported by the tools
ViTech CORE, RDD-100 and documented in, e.g., [24] [95] [96]

[112]. 
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 • Extended functional flow block diagrams (EFFDB), as supported by

the tool ViTech CORE.
 • Behaviour diagrams as supported by the tool RDD-100.
 • The (BAE SYSTEMS) method CORE and supporting tools docu-

mented in [38].

The first three methods in the list above are related as they support the
same set of control structures. Behaviour diagrams and EFFDB include
notations for functional interaction, while FFBD does not. The difference

between behaviour diagrams and EFFBD lies mainly in the fact that
threads are arranged vertically in the first and horizontally in the second
tool. 

In contrast the BAE SYSTEMS method CORE is somewhat different in
its support of control structures. An overview of the control structures sup-
ported by BAE SYSTEMS CORE and the FFBD family of methods are

presented in Table 8.1 below.

Table 8.1: Control structure support per method

id Control structure

BAE-
Systems 

CORE FFBD

1 Thread selection based on 

function result (value)

√ √

2 Thread selection based on 

probability

√

3 Iteration based on constant √ √

4 Iteration based on value eval-

uation

√ √

5 Iteration completion (loop exit 

conditions)

√

6 Concurrent execution √ √

7 Forced termination of concur-

rent threads

√



CHAPTER 8

204

The control structures in Table 8.1 is described in more detail below:

1. Thread selection based on function result. One thread out of n, n>2 is

selected based on a predefined fixed probability function. In FFBD
terminology this structure is called “multi exit function”. 

2. Thread selection based on probability. One thread out of n, n>2 is se-

lected based on a predefined fixed probability function. 
3. Iteration based on constant. All functions enclosed by the iteration

construct will be iterated a fixed number of times.

4. Iteration based on value evaluation. All functions enclosed by the iter-
ation construct will be iterated until a fixed iteration condition evalu-
ates to false.

5. Iteration completion. A special control instruction that immediately
exits an iteration structure.

6. Concurrent execution. Defines n threads, where n > 2, which will exe-

cute in parallel and independent of each other. By default, all constitu-
ent threads in the control structure must terminate prior to the comple-
tion of the structure. Explicit synchronisation points precede and suc-

ceed concurrent execution structures.
7. Forced termination of a concurrent thread. A modifier that can be ap-

plied to any thread in a Concurrent execution structure. When the last

function in a forced termination thread is executed all other threads in
the concurrent execution are forced to terminate regardless of the state
of the thread.

8. The replication construct defines that n instances of the enclosed func-
tions will be executed. A dedicated control thread is provided for ini-
tialisation and termination of the replicated functions.

8 Replication (multiple inde-

pendent activation of a func-

tion)

√

9 Termination node √

Table 8.1: Control structure support per method

id Control structure

BAE-

Systems 

CORE FFBD
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9. A termination node forces the instant termination of a function. Exe-
cution will continue in accordance with the control structure definition
for the parent function of the function enclosing the termination node.

In FFBD notation a termination node may be used in conjunction with
thread selection based on function result to select a specific alternative
based on the result of function.

A FFBD diagram illustrating the constructs in Table 8.1 is presented in
Figure 8.16. The labels in the figure refer to the id column in Table 8.1. 

8.11.2 CAUSAL CHAIN REPRESENTATION

There are multiple methods using causal chains to define functional

behaviour. Each method use slightly different control structures. In order
to provide a method independent representation the approach illustrated in
Figure 8.17 and presented below is selected.

 • The definition of a basic model for capturing causality, including
selection, concurrency and replication. The similarity between Petri-
nets [121] [106] and causal chain methods is exploited for the basic

model.

Figure 8.16: Illustration of FFBD control constructs
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 • Definition of model elements to capture method specific constructs.
The method specific model elements extend on the basic model to

capture method specific constructs. Using this approach data
exchange of common causal chain information is possible between
tools (indirectly methods) supporting different causal chain methods.

8.11.3 PETRI-NET DEFINITION

Formally a Petri-net [108] is a sextuple  where

 • P, commonly called places, is the set of potential conditions in a sys-
tem. A place is drawn as a circle in graphical Petri-net notation. 

 • T, commonly called transitions, is the set of potential events in a sys-
tem. A transition is drawn as a bar drawn at any inclination in graphi-
cal Petri-net notation.

 • i, commonly called input arcs relates an condition (place) to an event
(transition) such that the condition is a pre-condition to the event.

 • o, commonly called output arcs relates an event (transition) to the post

condition of that event.
 • W, the weight of individual arcs. Arc weight is an alternative to having

multiple input or output arcs between a place and a transition. The

weight is represented by a natural number.
 • M, is the time-variant marking function which associates a set of

tokens with each place in the net. 

The set of tokens allocated to places collectively capture the state in the
Petri-net. Each change to the net state of the Petri-net is brought about by
the firing of a transition. In order for a transition to fire it must be enabled.

Figure 8.17: Layers for representing functional behaviour
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A transition is enabled iff for there are at least W((p,t)) tokens in each

place p connected via an input arc to the transition, where W((p,t)) is the
weight of each input arc. 

Firing of a transition alters the value of the marking function and obeys

the following rules

1. Only enabled transitions may fire.
2. As a transition t fires W((pi, t)) tokens are removed from each input

place pi of the transition t, and W((po, t)) are deposited at each output

place po of the transition t. The value of the marking function else-

where in the net is not affected by the transition.

3. Firing of a transition is normally assumed to be instantaneous.

An example Petri-net is presented in Figure 8.18. The net in the figure
consist of 9 places (P1..P9), 8 transitions (T1..T8), 8 input arcs and 8 output
arcs. The weight of individual arcs is not specified, which using the

adopted norm implies the weight is 1, i.e., each arrow represents one input
or output arc. No marking function is presented in the figure. 

8.11.4 PETRI-NET FOR REPRESENTING CAUSAL CHAINS

In a causal chain all children functions of a function are ordered in threads

in the chain. A Petri-net allow for capture the causality among functions
by associating an individual function f with a place p such that the function
f is activated when a token moved to place p. In a causal chain all children

functions f1..fn of a function f0 are associated to at least on place p, but a
place need not be associated with a function. 

Figure 8.18: Example petri-net
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The transition firing rules for a transition is modified such that in addition
of items 1..3 in Section 8.11.3 the following conditions applies:

 • A transition t cannot fire as long as any one function associated with
one of its input places pi is active. The function must terminate prior to
transition firing.

 • A transition t will fire immediately when the number of tokens in each
of its input places pi exceeds the weight of the respective input arc
(W(pi,t))) and no functions associated to any of the input places are

active.

In a causal chain model a function will terminate when none of its children
functions are active. In the Petri-net representation this corresponds to a

marking function where all tokens are in a single place pi with no input
arcs to any transition. In addition, this place pi shall not be associated with
any function.

Figure 8.19: Petri-net representation of FFBD example in 
Figure 8.16
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8.11.5 EXAMPLE USE OF PETRI-NET FOR CAUSAL CHAIN 
REPRESENTATION

Figure 8.19 captures the Petri-net representation of the FFBD model in

Figure 8.16. The labels in inserted in the places in the figure relates to the
function associated with the place. The label 1.2 indicates that function 1.2
in Figure 8.16 will be activated when a token is in the place. Labels start-

ing with A are auxiliary places inserted to maintain the correctness of the
causal chain. Labels A.1, A2 are inserted to correctly represent the cases
where:

 • Function 1.1 terminates before function 1.2, in this case the token in
place 1.1 will move to place A.1.

 • Alternatively, if function 1.2 terminates before function 1.1 the token

in place 1.2 will move to place A.2. 

Note that transition T3 in the Figure 8.19 will not fire until there is a token
in places A.1 and A.2. 

The following elements in Figure 8.19 are also of interest for the Petri-net

representation of FFBD structures.

 • Place A.3 defines the initial branch in the thread selection based on

probability structure (The selection structure terminates in place A.6).
One of the transitions T4, T5 or T6 will fire when a token enters A.3.

 • Transition T6 is the initial transition in the replication structure in

Figure 8.16. 
 • The output arc from the transition to place 1.6 has weight n, indicating

that n tokens with be deposited in place 1.6. Each token will start an

instance of function 1.6. The functions will be deactivated one by one
for each firing of transition T13.

8.11.6 RESTRICTIONS IN PETRI-NET SUPPORT

Petri-net allows for capture of basic causal chain control constructs such

as selection, iterations in the graph, iteration completion, concurrency,
replication and termination nodes. There is however no support for the fol-
lowing control constructs presented in Table 8.1:
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 • Distinguishing between iteration based on condition and on fixed

value
 • Identification of loop exit conditions
 • Forced termination of concurrent threads

Explicit support for these constructs needs to be included in the informa-

tion model if method specific notations shall be maintained in data
exchange. Moreover the information model needs to support mapping
between a composite function having multiple exits and the internal exit

conditions within the function as outlined in the FFBD in Figure 8.20

8.12 Constraints in Support of Functional Behaviour

Some of the methods identified as being of interest for use with the infor-
mation model support languages for capturing the behaviour of functions
and other components of a functional architecture model. This allow for

simulation and in some cases for formal verification of a model captured
in a tool.

Parent F

Exit A

Exit B

Child B

Child C

Or

Exit CC

Exit BB

Parent function

Child functions

Figure 8.20: Mapping for multi exit functions

The information model need to be able to unambigu-
ously map exit condition to exits in the parent func-
tion. E.g., from Exit BB to either Exit A or Exit B

Potential ex
mappings
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The information model does not include any definition of formally
defined languages for capturing the algorithms of individual functions.
Algorithms are represented as plain text. There are no facilities for facili-

tating machine analysis of the semantics of individual text elements
beyond an attribute for capturing the language used in a specific textual
element. 

This design decision restricts the benefits of using the information
model between tools with support for formal languages. The structure of
the models will be carried over in the exchange, but automatic translation

of algorithms is not supported. The motivation for making this restriction
is primarily the amount of work required to define a formal language and
the cost to include support in tool interfaces.

8.13 Behaviour Model Information Model

The introduction of an explicit behaviour component for a function f0

changes the default behaviour for its children functions f1 to fn such that
an explicit activation is required to activate each child function. This is
discussed in Section 8.11. In the information model this change of activa-

tion semantics is captured by the entity functional_behaviour_model. 

Figure 8.21: Behaviour model information model elements
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The association of a functional_behaviour_model object to a

composite_function_definition object is made by an object of type
functional_behaviour_model_assignment. A behaviour model can be
assigned to exactly one composite_function_defintion object, and a

composite_function_defintion object may have at most one behaviour
model assigned. Two kinds of functional_behaviour_model are defined:

 • cb_functional_behaviour_model: defining that the functional behav-

iour of the associated function is defined by a causal chain as outlined
in Section 8.11.1. The model_type attribute allows tools to identify the
original causal chain model representation, e.g., FFBD, Behaviour

diagram, to facilitate interpretation of the data.
 • state_machine_functional_behaviour_model: defining that the func-

tional behaviour of the associated function is defined by state

machines, either in Moore, Mealy or Statechart notation.

The behaviour model EXPRESS-G information model elements are pre-
sented in Figure 8.21.

8.14 State-Based Functional Behaviour

The state-based functional behaviour information model contains entities
for representing states, aggregation of states and state transitions. This

model is designed to support the representation of Mealy and Moore state
machines as well as Statecharts. 

8.14.1 STATE MACHINE INFORMATION MODEL

The state machine information model is presented in Figure 8.22. The

main entities in the model are:

 • Functional_state_context, provides an enclosure for the state

machines. The attribute state_machine_type allow for capture the type
of the enclosed state machine: Mealy, Moore, Mealy and Moore

(Combination of Mealy and Moore state machine), or Statechart. The

original_representation attribute allow for capture of the presentation
format in the original tool, i.e., graphical or tabular. This attribute is
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essential for recreation of the original presentation format of a state
machine after data exchange.

Multiple entities are used to define state types

 • An FSM_generic_state is an abstract entities representing one of an
FSM_state or an FSM_transient_state. An FSM_generic_state type

object may be an element of a functional_state_context. An FSM_

Figure 8.22: State machine information model
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generic_state type object may be the initial state in a state machine.

 • An FSM_State is an abstract entity representing one of FSM_or_state

and FSM_and_state. An FSM_state can be decompositioned and be
the source or destination of any number of FSM_state_transition

objects.
 • An FSM_or_state is an FSM_state, potentially composed of other

FSM_state objects, with the discriminator that when entered via a

state transition then the state and all of its parent states, but none of its
sibling states are entered

 • An FSM_and_state is a state decomposed into at least two FSM_state

objects with the discriminators that when entered via a state transition
then all of its parent states and all immediate children states are
entered.

 • An FSM_transient_state is an FSM_generic_state with the discrimi-
nator that performs a predefined activity terminates instantaneously
when entered. An FSM_transient_state cannot be decomposed. Tran-

sient states are supported by, e.g., the Statemate implementation of
Statecharts [59] and the value of the state_type attribute of a
transient_state is one of: history, deep history, condition and selec-

tion. The semantic of each value is defined in [60].

Transitions between states may be of two types:

 • FSM_initial_state_transition identifies the state that will be entered

when a state machine is first activated. An FSM_initial_state_transi-

tion has no source state, and one destination state. At most one FSM_

initial_state_transition objects may be assigned for each composite

state.
 • FSM_state_transition defines a state-transition between two FSM_

generic_state objects. An FSM_state_transition may be guarded by an

arbitrary condition that must be fulfilled prior to the execution of the
state-transition.

Both types of state-transitions may have actions associated that executes
when the transition fires. The actions associated with a transition are cap-

tured as text with an associated attribute indicating the encoding language. 
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8.15 Causality-Based Functional Behaviour Information 
Model

The principle for the representation of causal chain models in the informa-

tion model has been outlined in sections 8.11.1 to 8.11.6. The information
model for a basic causal chain is presented first followed by presentation
of information model elements defined to support representation of

method specific concepts.

Figure 8.23: Basic causal chain information model

cb_output_
relationship

cb_functional_
behaviour_model

cb_place

behaviour_model

controls_
function

cb_transition

cb_initial_marking

cb_input_
relationship

natural_
number

cb_place_function_
association

function_instance

destination_
transition

source_
place

cb_place

destination_
place

source_
transition

behaviour_model

weight

weight

marked_
place



CHAPTER 8

216

8.15.1 BASIC CAUSAL CHAIN INFORMATION MODEL

The basic causal chain information model is very similar to the one out-
lined in Section 8.11.5. The Petri-net building blocks are represented in

the information model as defined in Table 8.1 and the information model
is presented in Figure 8.23.

All cb_place and cb_transition objects shall reference to exactly one

behaviour model with their behaviour_model attribute. A cb_place and a
cb_transition object may only be related if they reference the same behav-
iour model. 

Table 8.1: Information model mapping to example in Section 8.11.5

Petri-net 

element

Information 

model entity Comment

Place cb_place

Transition cb_transition A textual attribute allow for 

capture of any logical condi-

tion that shall be fulfilled prior 

to the firing of the transition. 

Input arc cb_input_

relationship

-

Output arc cb_output_

relationship

-

Multiplicity - Captured with attribute weight 

for entities cb_input_relation-

ship and cb_output_relation-

ship

Initial mark-

ing

cb_initial_

marking

Captured for each place which 

shall have a tokens assigned.

- cb_place_

function_

association

Relates a place in the causal 

chain model with the function_

instance object whose activa-

tion is controlled by the place.
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8.15.2 METHOD SPECIFIC CAUSAL CHAIN MODEL

Four cases where additional information is required to adequately repre-
sent method specific constructs in causal chain models were identified in

Section 8.11.6. For each of these cases the basic Petri-net model need to be
extended with additional entities. 

Definition of iteration type

The problem with iteration types is that the Petri-net representation for

iteration based on constant and iteration based on condition is identical. A
specific tag is required to separate the two cases. The tag cannot be cap-
tured directly in the cb_transition entity as not all transitions are part of the

bounds of a control structure. Instead the entities cb_transition_type and
causal_block_bounds are introduced as presented in Figure 8.24. 

 • The entity cb_transition_type allow for tagging one or more cb_tran-

sition object being a initial — or final — node in, e.g., an iteration.
The transition_type attribute captures the type of the tag, e.g, iteration

based on constant or iteration based on condition. The range of tags

can be extended to include all control structures identified for causal

Figure 8.24: Identification of loop type
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transition S[1:?]
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chains such that the identification of the initial and final element in a

control structure is simplified. 
 • The entity causal_block_bounds relates the initial and final elements

in a control structure as captured by cb_transition_type objects. The

value of the transition_type attribute of the related cb_transition_rela-

tionship objects must be identical for valid usage of a causal_block_

bounds object, i.e., the initial element of a loop may only be related to

the final element of a loop.

Thread termination

The FFBD thread termination concept cannot be captured directly in a
Petri-net. The arrival of a token to a place cannot influence the behaviour

of any other token. Consequently the thread termination concept must be
represented outside the Petri-net such that a tool can build the causal chain
structure including concurrent threads and then add a modifier that cou-

ples the completion of the thread with the immediate termination of all
threads in the concurrent execution structure. 

Loop exit

Representing a loop exit control is not possible directly in the Petri-net

representation as the loop exit will be represented by a normal transition
followed by a normal place. Additional information is required to indicate
that a particular place object in the Petri-net representation represents the

exit from an iteration control structure.

Information model representation for thread termination and loop exit

The solution to the loop exit and thread termination issues can be solved
using a common extension to the basic Petri-net model. The solution is to

associate a specific tag to a cb_place object to indicate that there is addi-
tional method specific information related to the object. The information
model solution is presented in Figure 8.25.
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The entity cb_place_reference is used to provide an indication that method
specific information is associated with a cb_place object. The semantics
of the modification is captured by the reference_type attribute. The

attribute value may be one of:

 • Loop exit: indicating that the cb_place represents an exit from an iter-
ation control structure.

 • Thread termination: indicating that when a token is placed in the cb_

place all other threads concurrently executing threads shall terminate.
The thread termination value may only be used in the last cb_place

object in a thread. 

A cb_place_reference object may not be associated with a cb_place object
that controls the activation of a function, i.e., a cb_place may not both be a

control structure and control the activation of a function.

Function exit condition mapping

Function exit condition mapping as outlined in Section 8.11.6 is not pri-
marily related to limitations in the Petri-nets representation but to the fact

that exit conditions at decomposition level n in the functional hierarchy
must be correctly mapped to completion alternatives at level n-1. The
problem is similar to that of functional interaction parameter mapping —

Figure 8.25: Information model excerpt for thread termination and 
loop exit

cb_place_
reference

cb_place

reference_
type

place_
reference
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an actual_io_port object must be explicitly mapped to a formal_io_port

object. Similarly, a cb_place object representing the end of a causal chain
within a composite_function_definition at composition level n must be
explicitly mapped to a cb_transition object which define the correct exe-

cution alternative that shall be selected at level n-1 (the immediate parent
level). Entities from both the functional hierarchy and causal behaviour
parts of the information model are involved to capture the correct mapping

alternative as indicated in Figure 8.26. The definition of the entities
related to exit condition mapping in the figure are presented below:

 • cb_completion_alternative defines that a cb_place object is a exit con-

dition for a causal chain model identified by a cb_functional_

behaviour_model. The cb_completion_alternative will execute when

Figure 8.26: Information model excerpt for exit condition mapping 
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a token is placed in the cb_place object referenced by the final_place

attribute.

 • cb_completion_alternative_mapping defines the mapping from a cb_

completion_alternative to the appropriate output cb_transition object
for the parent function. This is done by identifying the cb_transition

object that shall fire when the cb_completion_alternative is executed. 

Example

The FFBD model fragment in Figure 8.27 is used to illustrate how exit
condition mapping is represented in the information model. The equiva-

lent information model instantiation for Figure 8.27 is presented in
Figure 8.28. It shall be noted that no less than 43 objects are required to
represent what appears to be only 8 distinct elements in the diagram in

Figure 8.27. The difference in the number of objects instantiated is prima-
rily due to the fact that the instantiated objects in Figure 8.28 represents
the elements required to represent a model in a storage format as com-

pared to the user level presentation in Figure 8.27. Still, it is expected that
any tool proprietary representation of the model fragment could be sub-
stantially smaller as the storage representation can be tailored to the actual

semantics of the tool. 

Parent F

Exit A

Exit B

Child B

Child C

Or

Exit CC

Exit BB

Parent function

Child functions

Figure 8.27: Exit condition mapping example

FFBD excerpt where exit BB shall be mapped to Exit 

B and Exit CC shall be mapped to Exit A
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Figure 8.28: Information model instantiation of the FFBD in 
Figure 8.27
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8.16 Summary

The information model support for representing functional architectures
has been presented in this chapter. Four aspects of functional architecture
is supported:

 • Functional hierarchy
 • Functional interaction

 • Function instruction
 • Functional behaviour

Each aspect contain support for representing relevant semantic variants
identified. Method specific semantics is representing through a combina-

tion of the capabilities offered in each aspect. As a result it is possible to
map design data from multiple methods to the information model, without
loss of any information. The application of complex mapping functions is

required in certain cases. 
The diversity of semantics in methods in use for capture system func-

tional architecture suggests that data exchange between tools supporting

different methods may result in large parts of the data being modified or
lost in the receiving tool. This suggests that the capabilities of functional
architecture specification tools used in a data exchange environment must

be well understood, and functional architecture models adapted to identi-
fied constraints prior to any data exchanges. 
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Chapter 9
Physical Architecture

This chapter outlines the scope for the system physical architecture model
part of the information model and presents the corresponding representa-
tions in the information model. 

9.1 Physical Architecture

In this thesis the term system physical architecture is used to refer to a high

level logical view on the overall products, services or processes that com-
prise a system. The usage of the term in this thesis corresponds to that of
Sage and Rouse [132], Lewis [90] and Buede [25]. 

An element or component in the physical architecture does not repre-
sent specifications at an abstraction suitable for product realisation, but
represent a requirement view for the realisation or implementation process

phase. Moreover, a physical architecture component need not be a manu-
facturable product, but could be a human operator that needs to be prop-
erly trained to interact with the system. 
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9.1.1 PHYSICAL ARCHITECTURE MODEL SCOPE

The physical architecture part of the information model captures the phys-
ical or logical components of a system at a high level of abstraction. Com-

ponents in the physical architecture represent a requirements view on a
system and do not need to completely mirror the set of products and serv-
ices later selected for realising the requirements expressed. The purpose of

the physical architecture is to allow identification of key characteristics of
the components, component interaction and interfaces. Two kinds of com-
ponents are identified:

 • Components whose main characteristic is the processing of things
(e.g., information, data, material, energy). 

 • Components whose main characteristic are the transfer of things (e.g.,
information, data, material, energy). Transfer may not be ideal, i.e.,
delays or loss of energy may be a characteristic of the component.

The level of abstraction selected for representation of physical compo-

nents correspond to that of module charts in Statemate [61] and system
component entity type in the Core tool [89].

No attempts are made to identify sets of prescriptive properties for a phys-

ical component. This is due to the wide range of potential properties that
may be captured for a component. Instead any number of properties may
be assigned to a component using the property models outlined in Section

5.7. 

Since the focus is on a logical view on system components there is no sup-
port for detailed property representations such as component shape and
engineering analysis properties. Representations suitable for this level of

abstraction are available in product oriented STEP Application Protocols,
e.g., AP-203 and AP-209. 

9.1.2 REUSE OF DESIGN FRAGMENTS

A physical architecture captured is essentially system independent. A set
of components identified may be applicable to multiple systems, system
versions and viewpoints. On the other hand, the set of requirements and

functional architecture elements that the set of components shall realise is
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system dependent. Consequently, allocation relationships that link other

specification elements to a component in the physical architecture, e.g.,
for requirements or functions, shall be represented such that allocation is
represented locally for each system. The relationship between require-

ments and physical architecture is illustrated in Figure 9.1 where a physi-
cal architecture model is common to two systems despite the requirements
for systems are not identical. 

9.2 Physical Architecture and System Architecture

In the information model there are two related structures for capturing

structure related information on a system. 

 • The system architecture model define the system composition struc-
ture

 • The physical architecture define the components of individual systems

Figure 9.1: Requirements and physical architecture
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One difference in the two architecture views is that the system composi-

tion structure is capturing relationships between conceptual objects. The
system internal architecture is the collection of specification elements
assigned to the life-cycle view of a system. The physical architecture on

the other hand is the set of physical or logical components identified for
the realisation of a single system component. Moreover, the system archi-
tecture need not contain any physical architecture elements to be com-

plete. 

9.3 Physical Architecture Information Model Structure

The structure of the physical architecture model is similar to that of the

functional architecture model. As with the functional architecture there is
a system invariant layer for capturing components, component composi-
tion, their interfaces. A physical composition structure may not contain

any cycles. The system invariant layer may be valid for any number of
systems, system versions or viewpoints and capture any number of prop-
erties that apply for all usages of a component. 

Strict interfaces are enforced for components similar to the functional
interaction model. The interfaces of components are explicit and connec-
tions between components may only be captured via the interface. 

There is also a system specific layer which extends on the invariant
layer to capture properties that are system dependent, e.g., weight or avail-
ability data, and allocation data, i.e., requirement and functional allocation

data as discussed in chapter 11. 

9.4 System Invariant Physical Architecture Layer

The information model for capturing the system invariant physical archi-

tecture layer is similar to those for capturing requirement and functional
architecture information. The structures for capturing version manage-
ment information are also identical with the exception that configuration_

element objects representing physical architecture objects shall have the
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configuration_element_type attribute set to the string ‘physical architec-

ture element’. This constraint is enforced to ensure that only physical
components can be used to build a physical composition structure. 

The information model for capturing the system invariant physical

architecture of a system is presented in Figure 9.2. Definitions of individ-
ual entities are presented below.

 • general_physical_definition, an abstract supertype of physical_node_

definition and physical_link_definition. The general_physical_defini-

tion provides access to version management and identification infor-
mation common to the two subtypes. A general_physical_definition

type object may be referenced by any number of physical_instance

objects. Consequently a general_physical_definition type object may
be used in multiple physical architecture models and multiple

physical_instance objects may refer to a single general_physical_defi-

nition objects.
 • physical_node_definition, represents a physical or logical element

whose main purpose is to process things (e.g., data, material or
energy). 

 • physical_link_definition, represents a physical or logical element

whose main purpose is to transfer things (e.g., data, material or
energy).

 • physical_instance, represents the use of a general_physical_definition

object within a physical architecture. A physical_instance is related to
exactly one general_physical_definition via its definition attribute. 

 • physical_composition_relationship, is the mechanism for relating a

general_physical_definition object to one of its immediate child com-
ponents (represented by a physical_instance object). 

 • physical_port, represents an element of the interface of an object in

the physical architecture model. It is an abstract supertype for the enti-
ties actual_physical_port and formal_physical_port. A physical_port

does not capture any detail on the nature of the communication over

the interface. 
 • actual_physical_port, is an element in the interface of a physical_

instance object. 



CHAPTER 9

230

 • formal_physical_port, is an element in the interface of a general_

physical_definition object. 
 • physical_binding, is the mechanism for indicating an ideal connection

between an actual_physical_port and an formal_physical_port. There

related

connecting

connected

definition

Figure 9.2: System invariant physical architecture model
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are no time delays or energy losses associated with a physical_bind-

ing. The actual_io_port in the relationship is associated with a

physical_instance object one level higher in the physical composition
structure compared with the general_physical_definition object
related to the formal_physical_port in the relationship. Just as for

parameter binding for functional elements the physical_instance

object the actual_port object in the relationship is associated with
shall refer to the general_physical_definition object with its definition

attribute the formal_physical_port object in the relationship is associ-
ated with. The usage of physical_binding object is illustrated in
Figure 9.3. 

 • physical_connection is the mechanism for indicating connection
between a pair of physical_port objects at the same level of decompo-
sition in a physical architecture model. Any number of physical_con-

nection objects may be associated to a physical_port object. The
physical_connection represent an ideal connection. There are no time
delays or energy losses associated with a physical_connection. 

9.4.1 PHYSICAL COMPOSITION EXAMPLE

This section presents a small example physical composition structure. The
components in the example presented in Figure 9.4 represent a trivial sen-
sor system with an integrated processing unit. The composition consists of

one CPU component and a sensor assembly containing two sensor compo-

Figure 9.3: Physical_binding example. 

physical_instance

physical_node_
definition

definition

name

node 1

actual_physical_port

formal_physical_port

port_of

port_of

physical_binding

actual_port

formal_port



CHAPTER 9

232

nents. The sensors are considered being identical, so the physical_instance

objects representing the sensors refers to the same physical_node_defini-

tion object. Note that all version management information is suppressed in
Figure 9.4.

Figure 9.4: Physical composition example for a trivial sensor sys-
tem

physical_node_
definition

assembly

component

definition

physical_instance

physical_instance

physical_composition_
relationship

physical_composition_
relationship

physical_node_
definition

physical_node_
definition

definition

component

assembly

physical_instance

definition

name
sensor assembly

name primary_

sensor

namesecondary_

sensor

physical_node_
definition

physical_composition_
relationship

assembly

component

physical_composition_
relationship

component

physical_instance

definition

assembly

name

Processing unit

name
sensor component



PHYSICAL ARCHITECTURE

233

9.5 System Variant Physical Architecture Layer

The system variant physical architecture layer provides the structures for
associating a physical composition structure to entities in the system
architecture model, for capturing system specific properties of individual

physical components and for supporting allocation of requirements and
functions onto a physical component. 

A specific property and allocation entity, physical_instance_reference, is

introduced for capturing system specific properties of physical_instance

objects in a physical composition structure. physical_instance_reference

objects are related to form a tree structure via physical_instance_relation-

ship objects such that each component in the physical architecture is
potentially associated with its own unique property placeholder. 

A physical_reference_configuration relate to all property placeholder

objects relevant for a static physical composition model. There may be at
most one physical_reference_configuration for a static physical composi-
tion model and a physical_reference_configuration may be valid for any

number of systems. 
The system variant physical architecture information model part in pre-

sented in Figure 9.5. This portion of the information model connects the

system architecture part of the model with the system invariant model.
The following entities are introduced:

 • context_physical_relationship, is the mechanism for associating a top-

node physical_instance object to a system represented by a system_

view_definition object. The assigned physical_instance object either
represents an element of the system or an element in the environment

of the system. 
 • physical_instance_reference, is a placeholder for capturing system

specific properties and allocation relationships for physical_instance

objects. Any number of physical_instance_reference objects may be
associated to a physical_instance object. Each would capture its own
set of system specific properties.

 • physical_reference_relationship, is the mechanism for representing a
parent child relationship between a pair of physical_instance_refer-
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ence objects. The composition relationship realised by a physical_

reference_relationship shall correspond that defined in the system

invariant physical architecture layer. A physical_reference_relation-

component

role

Figure 9.5: System variant physical architecture information model
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ship is part of exactly one physical_reference_configuration via its

valid_configuration attribute. 
 • physical_reference_configuration, represent a set of physical_

reference_relationship objects for a physical architecture for a system

or a set of systems. The purpose is to identify the physical_instance_

reference objects that are valid for a particular system.
 • system_physical_configuration, is the mechanism for assigning the set

of system specific properties associated physical_reference_configu-

ration object to a system_view_definition type object. 

9.5.1 EXAMPLE

This section illustrates how system variant layer and system invariant

layer of the physical architecture information are combined to capture
properties and allocation data for a physical model. The model excerpt
presented in Figure 9.6 extends on the structure presented in Figure 9.4 to

include:

 • The association of the physical composition structure to a system_

view_definition type object. This is performed by the context_

physical_relationship object at label 1 in Figure 9.6.
 • A set of physical_instance_reference objects (label 2) to capture prop-

erties local to a specific system. No property assignment or allocation

data is present in the figure.
 • The use of physical_reference_relationship objects to form a system

specific physical_reference_configuration, which in turn may serve as

the configuration for a specific system view. This is indicated by the
system_physical_configuration entity in Figure 9.6. A physical_

reference_configuration can be assigned to multiple context_

physical_relationship objects, i.e., the same configuration may be
assigned to multiple system view or viewpoints.

In case a system invariant physical architecture structure is assigned to

multiple systems with divergent property or allocation assignments then
there should be specific physical_reference_configuration objects defined
for each system. Note that physical_instance_reference objects may be
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part of multiple physical_reference_configuration. This would be the case

if the same property and allocation patters would apply for more than one
system.

Figure 9.6: System invariant and system variant physical architec-

ture models combined
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9.6 Summary

The physical architecture part of the information model supports represen-
tation of a physical or logical architecture for a system. System compo-
nents, their interfaces and how they interact may be captured at a high

level of abstraction. 
The system variant part of the physical architecture model is further

used for allocation of functional and requirement elements onto elements

in the physical architecture. This part of the information model is pre-
sented in Chapter 11.
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Chapter 10
Verification and Validation

This chapter cover the information model support for representing verifi-
cation and validation statements and how they are related to the system
architecture part of the information model.

10.1 Verification and Validation 

Verification and validation is a key Systems Engineering activity. Capture

of verification and validation procedures that verify that the required capa-
bilities are met are just as important as the requirements themselves [24]
[100] [142]. Within this text we use the terms verification and validation

as used by Storey in [143]:

 • Verification, is the process of determining that a system, component or
module, meets its specification

 • Validation is the process of determining that a system is appropriate
for its purpose.

Identification of verification activities and the definition of procedures for

verification and validation (test cases) are performed as an integral part of
the system engineering process [24] [100]. We use the term verification

and validation plan to refer to a collection of information related to verifi-
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cation and validation activities and the term verification and validation

plan item to refer to a specific element in a verification and validation
plan.

In theory verification and validation plans should be defined such that

each requirement is verified, i.e., verification activities shall be performed
to verify conformance with each requirement statement. However, for a
complex system it could be difficult or even impossible to verify and val-

idate all requirements over all system life-cycles. Verification is typically
carried out at multiple levels in a system, i.e., verification activities are
performed at all levels in the system breakdown structure. 

The following assumptions where made for the verification and validation

part of the information model.

1. Verification and validation plan items can be captured in any represen-
tation supported by the information model. 

2. Verification and validation plans can be of any complexity. For cus-
tomer validation a system demonstration may be sufficient, but verifi-
cation may also include any number of complex steps or components

captured by verification and validation plan items. 
3. A verification and validation plan item can verify any number of re-

quirements, or other specification elements in the information model,

or a complete system specification.
4. A verification and validation plan item may be applicable to multiple

systems, system versions or system viewpoints.

The mechanism for capturing traceability links between requirements and

verification and verification plan items is presented in Chapter 11.

10.2 Verification and Validation Information Model

The same static representation structures are selected for product require-
ments and verification and validation data. The assignment mechanism
used to determine whether a requirement item captures verification or val-

idation information or system requirement information. The motivation
for this structure is that both product requirements and verification and
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validation requirements share a common static structure. A product
requirement is a statement of a capability that may be broken down into
more basic components. The same is true for verification or validation

plan items. The actual statements captured by requirements and verifica-
tion and validation plans and properties captured can be expected to be
fundamentally different, but the representations for capturing the informa-

tion are identical. A detailed discussion on the system variant requirement
representation model that motivates the selected structure is presented in
Section 7.6.

Figure 10.1: Verification and validation information model
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The information model for capturing verification and validation plans for

a system is presented in Figure 10.1. The following entities are intro-
duced: 

 • Verification_specification represent a verification and validation plan.

It is the placeholder for capture of system specific verification and val-
idation properties. The entity corresponds to the requirement_instance

entity in the system variant requirement representation model pre-

sented in Section 7.6.
 • verification_specification_system_view_assignment is the abstract

supertype for assigning a verification_specification object to a

system_view object. A verification_specification object may only be
assigned once to a system_view object. The subtypes root_

verification_specification_system_view_assignment and child_

verification_specification_system_view_assignment perform the
assignment for root and child validation and verification plans respec-
tively. 

Note that the entities introduced mirror those for representing require-
ments as presented in Section 7.6. 

10.3 Discussion

The verification and validation model is severely limited in the sense that
it does neither allow for the representation of the product that shall be ver-
ified or validated nor does it allow for the capture of test results. This

restriction is made on purpose as the information model does not include
support for the detailed product data required to represent the verification
configuration. Inclusion of this functionality may be performed as a future

extension of the information model through the combination of the infor-
mation model presented herein, production oriented STEP application
protocols and product instance oriented information models from the

PLCS project. 
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10.4 Summary

Planning for verification and validation activities is an important activity
in the Systems Engineering process. The information model for specific
verification and validation items presented in this chapter can capture

items in multiple representations and can relate them to multiple system
life-cycle views, system versions or viewpoints. The mechanisms for
relating a verification and validation plan to other specification elements

are presented in Chapter 11.
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Chapter 11
Traceability

Design and decision traceability, i.e., the capture of justifications, motiva-
tions for decisions made is of outmost importance for projects developing
complex systems. The risk for repeating analysis activities or for taking

conflicting design decisions is lowered substantially if design decisions
and trade-off studies are properly documented, motivated and available to
project participants. 

In chapters 6 - 10 specific parts of the information model has been pre-
sented in isolation. In this chapter the structures in the information model
for capturing the relationship between specification elements and between

elements and the engineering process is introduced and motivated. 

11.1 Traceability

There are multiple definitions for the term traceability. The term as used
within this thesis corresponds with that definition presented in the EIA-
632 standard [102]. 

Traceability: The ability to identify the relationship between vari-
ous artefacts of the development process, i.e., the lineage of
requirements, the relationship between a design decision and the
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affected requirements and design features, the assignment of

requirements to design features, the relationship of text results to
the original source of requirements. 

Maintaining traceability links throughout the engineering process is
resource demanding but do provide the groundwork for understanding,

e.g., how changes in one system specification view influence other views.
The consequences of a modification may be defined easily if traceability
links are captured correctly and maintained properly. 

Support for capturing traceability can be implemented at different levels
of granularity [98]: 

 • Coarse-grained traceability allow for capture that there exist a rela-

tionship between some information residing in compound objects. The
precise elements that are involved in each compound cannot be estab-
lished. 

 • Fine-grained traceability allow for capture of relationships directly
with the relevant objects. 

The information model has been designed with the intention to support

fine-grained traceability between elements. 

11.2 Traceability Dimensions

There are multiple aspects of traceability that shall be considered. In the

information model five dimensions of traceability can be identified:

1. Specification element history traceability, refers to the capability to
capture how a specification element evolves over time, e.g., version

and variant management. 
2. Specification element traceability, refers to the capability to relate

specification elements of different types to each other. This dimension

of traceability includes, e.g., allocation of requirements to functional
and physical specification elements and the allocation of functional el-
ements to physical specification elements. 

3. System composition and viewpoint traceability, refer to the capability
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to relate specification elements at different levels of detail, e.g., trace-

ability between user and system requirements on a system, and to cap-
ture how a subset of the requirements on a system is related to the re-
quirements on one of its subsystems. The purpose of this dimension of

traceability is to ensure that requirements captured at a specific level
of abstraction are properly reflected in other life-cycle representations
or subsystem specifications.

4. Engineering process traceability, refer to the capability to relate ele-
ments of the system specification to activities performed in the engi-
neering process. The purpose is to capture where the elements were

create or referenced. This aspect of traceability can also be used to
capture design decisions, change management and trade-off analysis
data. 

5. Commonality traceability, refer to the capability to identify specifica-
tion elements common to multiple system specifications. The benefit
of this aspect of traceability is a capability to identify the occurrences

of a specific specification element across multiple system specifica-
tions. 

The details of each traceability dimension presented in detail in the rest of
this paper.

11.3 Specification Element History

This traceability aspect capture how a specification element evolves over

time and how different specification elements relate. The purpose is to
capture version history and identification of, e.g., variant and alternate
specification elements. In the information model this aspect is captured by

a set of entities common to all concepts under configuration control. The
following entities are defined for capturing specification element history
traceability: configuration_element, configuration_element_version,

configuration_element_relationship and configuration_element_version_

relationship. Of these entities the two capturing relationships are of inter-
est for capturing specification element history traceability. The informa-

tion model entities for capturing specification element history is available
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in Figure 11.1. Note that the entity configuration_element_version is used

by all entities with a _definition suffix to support representation of rela-
tionships between individual versions. 

The configuration_element_relationship captures any logical relationship

between a pair of configuration_element objects. The semantics of the
relationship is defined by the relationship_type attribute. In the informa-
tion model the following attribute values are defined explicitly defined:

1. ‘Variant’, the configuration_element object identified by the alternate

attribute has a substantial degree of commonality with the
configuration_element object identified by the base attribute.

2. ‘Alternative’, the configuration_element object identified by the alter-

nate attribute may be replaced with the configuration_element object
identified by the base attribute. 

Additional attribute values may be defined to capture additional concepts. 

The second aspect of specification element traceability is that concerning

how versions of a configuration_elements relate to each other. This aspect
is captured by the entity configuration_element_version_relationship.
Three kinds of relationships are supported:

related

configuration_
element

configuration_
element_version

configuration_element_
version_relationship

relating

version_of

base
configuration_element_

relationship

alternate

relationship_type

relationship_type

Figure 11.1: Specification element history information model
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1. ‘Revision’, a revision relationship indicates a relationship between

two revisions, major versions, of a configuration_element object.
2. ‘Workspace revision’, a workspace revision relationship indicates a

relationship to or from a minor version of a configuration_element ob-

ject.
3. ‘Alternative’, an alternative relationship indicates that a pair of

configuration_element_version objects related are alternate, i.e., it is

judged that the two version objects can be used interchangeably within
a specification.

The version history structures built by configuration_element_version and
configuration_element_version_relationship objects form a directed acy-

clic graph. 

11.4 Specification Element Traceability

This aspect of traceability concerns the relationships between specifica-
tion elements objects for a system specification. The intention is to sup-
port capture of how different specification elements relate to each other,

e.g., that requirement is traced to or allocated to a functional or physical
elements. The importance of specification element traceability is under-
lined in Systems Engineering literature, e.g., Martin [101] and Stevens et

al. [142], as well as in Systems Engineering standards, e.g., [126] and
EIA-632 [102]. 

Three types of allocation relationships can be identified in the information
model:

 • Requirement allocation to functional and physical elements, indicat-
ing that the functional or physical element shall fulfil the requirement.

 • Functional allocation to physical elements, indicating that the physical
element shall realise the functionality specified by the functional ele-
ment.

 • Verification and validation allocation to requirements, functional and
physical elements. This allocation relationship indicate that a require-
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ment, functional or physical element shall be verified or validated

against a specific verification and validation object defined.

The characteristics of each allocation relationship and the implementa-
tions in the information model are discussed below.

11.4.1 REQUIREMENT ALLOCATION

A requirement allocation relationship is a binary relationship that relates a

requirement to a specification element indicating that the requirement
shall be fulfilled by the element. This view on requirement allocation
implies that a set of requirements is guiding the development of the func-

tional or physical architecture. Alternatively the relationship capture that
the specification element fulfils the requirement. This view on require-
ment allocation indicates that a functional or physical architecture model

is used to guide the identification of requirements.
Requirement allocation may also be made relative to pairs of elements,

e.g., for capturing the temporal requirements on functions. A requirement

may state that a pair of functions shall terminate within a specific interval
or that there shall be a minimal or maximal amount time elapsed from the
activation of one function to the termination of another. 

The requirement being allocated may be leaf requirements or composite
requirements. If a composite requirement r is allocated to a functional or
physical element then all child requirements to r are allocated.

Likewise, a requirement may be allocated to a composite or leaf objects
of the functional or physical architecture of a system. Allocation to a com-
posite object implies that no guidance is given in the specification on how

the requirements shall be fulfilled by child objects in the composition
structure. 

Requirement allocation is system specific. The fact that a requirement is
allocated to, e.g., a functional element within one system does not imply

that the allocation holds for all systems to which the requirement and func-
tional element are assigned. Consequently requirement allocation is per-
formed on the system variant views of the requirement, functional and

physical architecture information models. 
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The requirement allocation part of the information model is presented in

Figure 11.2. The following entities are introduced to capture requirement
allocation information: 

 • requirement_allocation_relationship, is the mechanism for relating a

requirement_instance object to an element in the functional or physi-
cal architecture model. The role attribute is used to indicate whether
the relationship captures allocation of a requirement to the functional

or physical component or fulfilment of a requirement by the functional

Figure 11.2: Requirement allocation information model entities
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or physical element. The requirement_allocation_relationship entity

may only be used to relate objects assigned to the same system speci-
fication. 

 • specific_requirement_allocation_relationship, is a subtype of the

requirement_allocation_relationship entity and the mechanism for
allocating requirements to elements capturing functional behaviour
within a function, i.e., a fsm_generic_state object within the scope of a

finite state machine (fsm_model) or a cb_place object within a causal
behaviour model.

The requirement_allocation_relationship entity support the alternatives
for requirement allocation to objects of type:

 • data_instance, for allocation of requirements to objects used to repre-
sent the items in functional interaction. 

 • physical_instance_reference, for allocation of requirements to objects
representing elements in the physical architecture description of a sys-
tem.

 • functionality_instance_reference, for allocation of requirements to
objects representing elements in the functional architecture descrip-
tion of a system.

 • functionality_reference_relationship, for allocation of, e.g., temporal
requirements, to a pair of functionality_instance_reference objects. 

 • functional_link_reference, for allocation of requirements to a

functional_link object.

Requirement allocation example

The information model part for requirement allocation is illustrated in
Figure 11.3 where a requirement is allocated to a function within the func-

tional architecture description for a system. The requirement_allocation_

relationship object performing the allocation is indicated by label 1 in the
figure. 



TRACEABILITY

253

Note that the allocation illustrated in Figure 11.3 is only valid for a spe-
cific functionality_reference_instance object. The mechanism for associa-
tion allocation information to a specific system is through the

functionality_reference_configuration object at label 2 and the system_

functional_configuration at label 3 in the figure. If the functional architec-
ture part of the example is part of the functional architecture of another

system specification then there may be a different set of allocations made. 

11.4.2 FUNCTIONAL ALLOCATION

Functional allocation relates elements in the functional architecture
description of a system to elements in the physical architecture description

of the same system. A functional allocation relationship is a binary rela-
tionship either relates a functional element to a physical element or a func-
tional connection element to a physical element. The allocation indicate

Figure 11.3: Requirement allocation example
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that the physical element shall display the functionality defined by the

functional element or the physical element has been found to exhibit the
functionality indicated by the functional element in the allocation. Func-
tional allocation is, just as requirement allocation, system specific.

The functional allocation part of the information is presented in
Figure 11.4 and the entities introduced are presented below.

 • functionality_allocation_relationship, is the mechanism for allocating

a functional element onto a physical element of a system specification. 
 • functional_link_allocation_relationship, is the mechanism for relating

a functional_link to the physical_instance object that shall enable the

interaction captured by the functional_link. The entities related are of
type physical_instance_reference and functional_link_reference as the
allocation is system specific.

11.4.3 VERIFICATION AND VALIDATION ALLOCATION

Verification and validation allocation relate verification and validation
plan elements to the requirement, functional or physical architecture ele-

ments that the verification and validation plan objects shall verify or vali-
date. 

Figure 11.4: Functional allocation part of information model
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Like for requirement and functional allocation the he elements related

shall be assigned to the same system specification. The structure of the
verification and validation plan allocation model is identical to that of
requirement allocation and not presented in further detail here.

11.5 System Composition and Viewpoint Traceability

The System composition and viewpoint traceability dimension consider
relationships between specification elements assigned to different sys-

tems, system life-cycle views and viewpoints. The purpose is to ensure
that the different views are consistent and relationships between individ-
ual elements in different views are captured explicitly. Note that the pur-

pose of this traceability dimension is to capture relationships between
views on the same system or between systems that are related via the sys-
tem composition structure. This is in contrast with the specification ele-

ment traceability dimension outlined in Section 11.4 which provide for
traceability within a single system life-cycle view or viewpoint.

In the information model this traceability dimension is captured using two

mechanisms — coarse level traceability and explicit traceability relation-
ships. The two aspects are further outlined below.

11.5.1 COARSE LEVEL TRACEABILITY

Coarse level traceability support is enabled through the structures for cap-

turing system internal and external architecture as outlined in Chapter 6.
These include relationships for defining system-subsystem, viewpoint-
system and viewpoint-viewpoint relationships. These relationships pro-

vide a coarse granularity traceability mechanism. For instance, a modifi-
cation in a viewpoint could potentially have an impact to other
specification views on the system. However, the exact nature of the impact

on individual specification elements cannot be determined from these
relationships.
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11.5.2 EXPLICIT TRACEABILITY RELATIONSHIPS

The second traceability aspect supported within this dimension is through
explicit traceability relationships between specification elements assigned

to different system views. In the information model this is only supported
for requirements objects. The motivation for this restriction is that tracea-
bility for functional and physical elements are captured implicitly via rela-

tionships captured on system_view_definition type objects. This is due to
the fact there is at most one functional architecture model and physical
architecture model respectively for each system_view_definition object. 

The intention with the support for explicit traceability relationships in
the model is to allow the capture of relationships between requirements
captured with different system life-cycle views or different systems. The

relationship shall be used to provide traceability to answer the following
questions:

 • What is the relationship between a pair of requirements captured in
different system viewpoints?

 • How is a pair of requirements captured in different system life-cycle

views defined at different levels of abstractions related?
 • What is the relationship between a requirement captured for a system

and a requirement on one of its subsystems? 

11.6 Engineering Process Traceability

The engineering process traceability dimension considers the relationship
between engineering activities and data, i.e., capture of information relat-

ing to the context where individual specification elements were captured,
references or modified. In the information model this dimension considers
three aspects:

 • Establishment of links between engineering activities and Systems
Engineering data for capture of the data that was used as input or gen-

erated as output as a result of work in the engineering process.
 • Capture of change management information in the form or engineer-

ing change requests and engineering change orders



TRACEABILITY

257

 • Capture of engineering justifications and assessments for design deci-
sions made in design data. 

Each area of the information model is outlined further below.

11.6.1 ENGINEERING PROCESS ACTIVITIES

The objective with the engineering process activity part of the information
model is to allow for capture of the set of information available as input

and reference for a particular activity in the engineering process and the
resulting output from the activity. Thus providing the reference to the
information that where considered for analysis or design at a particular

point in time in the process. 

The entities in the engineering process activity information model is pre-
sented in Figure 11.5 and defined below:
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Figure 11.5: Engineering process activity information model
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 • Project is the representation of a undertaking of work including some

aspect of system engineering activities
 • Project_relationship is the mechanism for relating two project objects

with the purpose of indicating some kind or relationship, e.g., projects

handling the development of two system variants. 
 • Engineering_process_activity is the representation of an activity

undertaken by engineers in the engineering process. The type of the

activity is identified by the activity_type attribute. An activity object is
intended to relate to, e.g., an analysis or design activity in the engi-
neering process. Administrative information such as time frame and

people involved in the activity may be captured.
 • Engineering_process_activity_relationship is the mechanism for relat-

ing two engineering_process_activity objects. Two types of relation-

ships may be captured, as defined by the relationship_type attribute,
either a parent-child or a sequential relationship.

 • Engineering_process_activity_element_assignment is the mechanism

for assigning specification elements to an engineering_process_activ-

ity object. Depending on the value of the attribute role the relationship
may indicate input, output or reference material for the activity.

The primary objective with the entities is to capture project activities as

they evolve as opposed to as planned. Support for project management
activities such as project planning, scheduling and resource allocation is
not within the scope of the information model.

11.6.2 CHANGE MANAGEMENT

Management of change is key to the development of any complex system,
regardless of domain. There is substantial risk in modifying an approved
specification unless proper investigations are carried out to ensure that the

modification will not have any adverse influence on the system under
specification or any systems interfacing with the system. Change manage-
ment is primarily a process, but specific entities need to be included in the

information model to allow for capture of the motivations for performing,
or not performing a change in an approved specification. Five concepts are
supported by the change management part of the information model
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1. The capture of a critical issue, a note or report identifying the exist-

ence of a potential problem associated with one or more specification
elements.

2. The capture of a change request, a formal request to perform a change

based on one or more critical issues.
3. The capture of the result of impact analyses performed to identify con-

sequences of implementing a modification based on a change request.

4. The capture of an approval to implement a change, a change order, in
accordance with a change request.

5. The capture of a change report, a summary of the changes implement-

ed as a result of one or more approved change requests.

The change management part of the information model may be combined
with the engineering process activity part to capture both the information
associated with change management and the change management process,

i.e., investigations of the effects of a potential change and the decision on
a particular change may be represented by the engineering process activity
part of the information model. This allow for the capture of why a decision

was taken as well as the process in which the decision was taken.

11.6.3 JUSTIFICATIONS AND ASSESSMENTS

It may not always be possible or desirable to include all information
related to a specification element within that specification element. Sup-

plementary information may be provided to facilitate the understanding of
why information has been captured as is and why a particular formulation
or design solution has been judged positively or negatively. The informa-

tion model contains two constructs for capture of this kind of information:

 • Justification, a justification is a textual motivation on the quality of

some aspect of one or more specification elements. A justification
may be related to other justifications.

 • Assessment, an assessment is similar to a justification with the dis-

crimination that it is a time stamped evaluation on the status of a par-
ticular specification element, e.g., element risk or completeness.
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Assessment and justification objects may be assigned to a wide range of

objects in the information model. They provide a basic mechanism for
providing contextual information to individual specification elements. 

11.7 Commonality Traceability

Commonality traceability is the ability to identify and track that identical
or related specification elements are in use in multiple system specifica-
tions or system views within the same specification. This traceability

aspect is supported by the basic representation for specification elements
in the information model. If individual specification elements are reused
then it is possible to identify, e.g.:

1. The system versions or systems a particular specification element is
assigned to. This allow for identification of the potential consequences
of a modification to a specification element.

2. The evolution of a specification in terms of the versions of individual
specification elements assigned. This allow for the identification of
the difference between two versions of a system specification.

3. The level of commonality between system variants.

Commonality traceability will of course not be automatic, but requires the
engineers in charge of creating and maintaining specifications to use exist-
ing specification element data whenever the situation arises where an

identical copy of an element is to be used within a specification. The full
implementation of this traceability dimension will require substantial
effort for identification and categorisation of specification element data,

but it appears that there is a huge potential for reuse of specification ele-
ment data in industries developing and maintaining multiple variants of a
base system.
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11.8 Summary

This chapter has presented the information model support for relating dif-
ferent concepts in the information model to each other. The traceability
support allow for capture of types of relationships between elements in the

information model:

 • Logical relationship within a system specification.

 • Relationships for capturing the evolution of a specification element
over time through the capture of new versions and variants of the ini-
tial element. 

 • Capture of relationships between Systems Engineering data elements
allocated to different views of a system or different systems. 

 • Capture of relationships between Systems Engineering data element

and the engineering process where the data elements were created,
modified or referenced.

 • Capturing the commonality in terms of specification elements

assigned to system variants and versions. 



CHAPTER 11

262



PART  IV

Evaluation





EVALUATION

265

Chapter 12
Evaluation

This chapter presents the activities undertaken to evaluate the appropriate-
ness of the information model. Quantitative methods are not applicable for
the evaluation of an information model. There is no absolute truth or

proofs that can be applied for evaluation of a model. The approaches
undertaken to evaluate the quality and scope of the information model pre-
sented in this thesis has followed two paths.

 • Evaluation through peer review within the supporting projects,
INCOSE and ISO 10303. Results from this evaluation activity address

the questions on the appropriateness of the scope and the selected
architecture for the information model.

 • Evaluation through the implementation of data exchange interfaces to

Systems Engineering tools and exchanges of system specifications
within and across organisations. In this evaluation activity the focus is
on whether the information model is adequate for its purpose — Sys-

tems Engineering data representation and data exchange. The main
questions are: Can the information model adequately represent infor-
mation generated in computer tools used by systems engineers and

whether tool interfaces can be developed with a reasonable expendi-
ture of resources?
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The description and outcome of the evaluation activities are presented in

more detail in the following sections.

12.1 Peer Feedback

Over the past years the information model has been presented at a number

of conferences and workshops as well as in ISO workshops. Feedback has
been varied and dependent of the views of each individual reviewer. This
is not surprising since there are no formal proofs for the correctness of an

information model. Extensions may always be called for and the suitabil-
ity of the guidelines used in model development can be debated. The main
arguments raised against the model have been:

1. The information model does not support real Systems Engineering
2. The scope of the information model is too limited to be of value for

Systems Engineering

3. The information model has a software engineering bias 
4. The information model is too complex
5. The architecture of the information model is not conformant with the

modular STEP architecture

Each argument is discussed in the sections below.

12.1.1 WHAT IS REAL SYSTEMS ENGINEERING?

The wide scope of Systems Engineering is presented in Chapter 3 along
with motivations for restrictions made to the scope of the information

model. Practitioners with other priorities in Systems Engineering may not
agree with the restrictions made. However, we believe that the information
model is supporting data exchange requirements for a substantial and

important subset of the total scope for Systems Engineering data represen-
tations. 
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12.1.2 TOO LIMITED SCOPE

A similar criticism to that above is that the scope of the information
model, while the content of the information model is essentially sound

[33], is too limited for real industrial use. The main criticism has been the
lack of comprehensive support for project management data and structures
suitable for Systems Engineering as performed in the detailed design and

realisation phases of the engineering process. 
Extending the information model to support new domains is always an

option. However an increase in scope will also increase the time required

to reach agreement on the information model. Clearly development time
must be balanced against the benefit provided by a standard. Standards do
have a limited validity and are updated at regular intervals. Moreover, the

STEP framework is structured such that extensive standards can build on
more basic ones. Consequently, the information model can always be
extended to include support for roles or aspects not currently included. 

12.1.3 SOFTWARE ENGINEERING BIAS

A point that has been made is that the information model is biased to tools
used by software engineers rather than Systems Engineering tools. This

criticism has been raised against the functional architecture model, espe-
cially for the structures supporting finite state machines and the explicit
structure selected for functional interfaces [113]. This comment seems to

be due to a more restricted view on the set of tools used to support Systems
Engineering or a preference for a specific set of reference tools. Motiva-
tion for the selected approach is presented in chapters 3 and 4.

12.1.4 TOO COMPLEX MODEL

There have been a number of comments on the large number of entities in
the information model coupled with proposals for reducing the model size.
The size of the model is not accidental but a consequence of the modelling

guidelines presented in Chapter 4. A reduction of model size is possible by
relaxing or dropping any of the guidelines presented. Such a decision will
reduce model size, but also model capabilities. Three straightforward

alternatives to scaling down the model can be identified:
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1. Restrict the capabilities to use specification elements in the context of

more than one system specification. 
2. Relax the rigour of the information model through the removal of sup-

port for method specific modelling constructs. 

3. Definition of a model supporting what is perceived to support state of
the art Systems Engineering only. Thus removing any support for
what is perceived to be inferior methods. 

The first alternative shall be considered in case the perceived cost for

implementing tool interfaces based on the information model is higher
than the perceived benefits. This is a subjective decision that shall be con-
sidered in the light of the implementation experiences presented in Section

12.3. 

The second alternative cannot be advised as long as there is an ambition to
make the information model method and tool independent. If method

independence remains an objective it is important that the information
model can correctly represent method specific constructs, or information
will be lost when tool data is exported to the information model format.

I.e., mapping functions belonging to the generalisation class (as defined in
Section 2.4) will be used when mapping from tool representations to infor-
mation model ditto. As a consequence there the risk that modifications

introduced by mapping functions are not detected when data is imported
into another tool. See the discussion on mapping functions in Section 2.4.

The third alternative is also not advisable if the objective with a data
exchange information model is to enable exchange between heterogene-

ous Systems Engineering tools. If restrictions are included in the informa-
tion model in order to only support a specific method then there is a
substantial risk the restrictions made are too constraining for most poten-

tial users of the information model.
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12.1.5 WRONG ARCHITECTURE

The STEP architectures have been outlined in Chapter 2. Since 1999 there
has been a move away from the monolithic application protocol architec-

ture in favour of a modular architecture. A central theme in the criticism
against the information model has been that it still adheres to the mono-
lithic application protocol architecture. 

The selection of architecture for the information model is mainly a
political issue. There are no differences in what can be expressed in the
two architectures. The justification for keeping with the monolithic archi-

tecture is that there were no interface development tool support available
for the modular architecture when validation activities for the information
model was initiated in the autumn of 2000. Still, the modular architecture

appears to be the future within STEP and transformation of the informa-
tion model into STEP application modules is likely. There appears to be no
technical problems associated with transforming the information model

from the monolithic to the modular STEP architecture.

12.2 Evaluation Through Tool Interface Implementation 
and Data Exchange

Five revisions of the information model has been developed and submitted

for review to the AP-233 working group at ISO 10303. Four of the model
revisions have been validated through the development of tool data
exchange interfaces and through exchange of real design data. A summary

of the evaluation results for the last revision is presented along with infor-
mation model relevant feedback. Two levels of evaluation are considered
in this thesis. 

1. Feedback from the interface implementers regarding the problems re-

alising the tool import and export interfaces including mapping from
tool specific to the corresponding information model representations.
This feedback respond to the question “Is the information model ap-

propriate for Systems Engineering data exchange from the perspective
of a specific tool?”

2. Feedback from users of the interfaces in their day-to-day work. This
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feedback respond to the question “Is the information model coverage

extensive enough for realising data exchange interface in an industrial
setting?”.

The presentation of tool interface development and validation scenario
results herein is based on information collected and documented within

the SEDRES-2 project by other project participants. They are presented in
this thesis as they provide objective feedback on the quality of the infor-
mation model. Additional comments and clarifications have been added

by the author to evaluate the severity and consequences of individual com-
ments and observations. 

12.3 Tool Interface Implementation

The following tools and tool interfaces have been developed to validate
the fifth information model revision. The tool selection was based on the

tools in use by the partners in the SEDRES-2 project as presented in Table
12.1.

Tools 1 to 5 in Table 12.1 are commercially available and tools 6 to 8 are

in-house tool used by respective organisation. Demanda 2 and the
EuroSTEP Express AP-233 data servers are of special interest as they are

Table 12.1: Tool interfaces developed

id Tool name Implementer Import Export

1 Statemate Magnum BAE Systems √ √

2 Teamwork Conformics √ √

3 StP EADS LV √ √

4 Doors EADS LV √

5 MatrixX/Systembuild BAE Systems √

6 Demanda 2 TU Clausthal √ √

7 Labsys EADS LV √

8 Express AP-233 data 
server

EuroSTEP √ √
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implemented directly on top of the information model. As implemented

they have a complete coverage of the information model, although not all
aspects were used actively.

12.3.1 INTERFACE DEVELOPMENT — SETUP

The interfaces were developed by independent developers within the

respective organisation. All the developers had previous experience with
the EXPRESS language and EXPRESS development tools. In some cases
they also had experience with interface implementation for previous revi-

sions of the information model. The information provided to each devel-
oper was limited to:

 • Formal information model documentation presented in the style man-

dated by STEP.
 • Documents describing and motivating the information modelling phi-

losophy.

 • Development guidelines describing parts of the information model in
detail together with sample instantiations. 

The documentation made available to developers can be considered equiv-

alent with, although less mature compared with what can be expected for a
completed STEP standard. In addition the developers had access to the
author for handling cases where ambiguities and errors were discovered in

the information model. 
It was agreed that modifications to the information model to correct

errors and mistakes was to be accepted in the early phases of the develop-

ment exercise provided the modification was agreed by all partners in the
project. All in all four model information model revisions were released to
tool interface developers in order to correct minor modelling mistakes. 

Interface developers were also encouraged to communicate with their
peers to perform early tests on their interfaces to detect errors and incon-
sistent usage of the information model. It is our estimate that the functions

provided by this communication equate that of a known good reference
implementation that is likely to be available for a standardised data
exchange information model.
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12.3.2 TOOLS VS. INFORMATION MODEL SCOPE

The coverage of individual tools compared with the scope of the informa-
tion model is presented in Table 12.1. In the table the tools are identified

via the identifier assigned in Table 12.1. 

A tick in respective category in the table indicate that there is support in

the interface for some, but not necessarily all entities in the group. 

12.4 Tool Interface Development Validation Results

This section summarizes the evaluation from tool interface developers.

The evaluation has been compiled from interviews with developers and
via the tool interface development document published by the SEDRES-2

Table 12.1: Tool interface data coverage vs. information model scope

Information model conceptual 
group 1 2 3 4 5 6 7 8

System architecture √ √ √ √ √ √ √ √

Engineering process √ √

Configuration management √ √ √ √ √ √ √

Requirement representation √ √ √ √ √

Functional architecture √ √ √ √ √ √ √ √

Physical architecture √ √ √

Requirement allocation √ √ √

Functional allocation √ √ √

Presentation information √ √ √ √ √ √

External document √ √

Administrative information √ √ √

Properties √ √ √

Data types √ √ √ √ √ √ √

Classification √ √
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project [74] and in more detail in papers by Eckert and Johansson [44] and

Scott et al. [136]. Results of validation from the tool interface develop-
ment are presented from five perspectives below.

12.4.1 INFORMATION MODEL COMPLETENESS

In all cases the interface developers where able to define mapping func-

tions for the main data structures within the tools to the structures in the
information model [74]. There were no cases where interface developers
were forced to define mapping functions between tool and information

model representations not belonging to the equivalence class, except for
areas where conscious restrictions had been made in the information
model scope, e.g., the lack of support for representing textual computer

interpretable languages. 

12.4.2 REUSE SUPPORT

The interfaces developed for the commercially available tools did not pro-
vide support for specification element reuse. Tool developers where

forced to implement mapping functions for generating data not directly
available in the tool format for export interfaces and code for synthesizing
the tool specific structures for import interfaces. In both cases the mapping

functions belong to the equivalence class so the mappings performed in
the interfaces did not alter the semantics of the data exchanged.

It was commented that a lot of objects had to be created to represent tool

data in the information model format. This did complicate interface devel-
opment and also did have a negative impact on interface performance,
especially for tool interfaces implemented on-top of database systems

[75]. 

12.4.3 CONFIGURATION MANAGEMENT SUPPORT

Only three of the commercial tools used in the validation scenarios had
some level of support for version management - Doors, Teamwork and

Statemate. Version management data had to be synthesized for the remain-
ing tools. 
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Another observation is that there is a multitude of version management

models implemented in commercially available tools. For instance, ver-
sion management is supported on diagram level in Statemate, but the tool
can only maintain one specification configuration. 

The existence of multiple version management models in Systems Engi-

neering tools is not surprising. Studies investigating software [37] and
mechanical engineering [80] tools indicate a large span of variants. In
STEP the version management model defined in the integrated resources

and can be considered fixed. Whether the STEP model structure is the
most appropriate for Systems Engineering tools is an open question, but
the model is rich enough to represent multiple configurations of version

managed data elements. 

12.4.4 ELEMENT IDENTIFIERS

In many cases the tools use the name of an element as its identifier, where
the information model assume the existence of unique object identifiers

for unique identification of each element. Consequently it is possible that
a legal instantiation of the information model cannot be directly mapped
onto the structures of individual tools. For instance, the Teamwork inter-

face did not accept models containing elements with multiple distinct
functional_link objects with identical name attribute values [44]. 

Issues relating to element identifiers is a result of the implementation

architecture selected for each tool. It is likely that there will be conflicts no
matter which identification schema is selected in the information model.
However, we consider the approach based on object identifiers more gen-

eral than any one based on attribute values.
It shall also be noted that issues relating to uniqueness constraints may

be resolved in import interfaces via algorithms that test individual identi-

fiers for uniqueness and generates new names in cases where conflicts are
detected.
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12.4.5 SCHEMA HETEROGENEITY

Schema heterogeneity is inevitable when data from multiple heterogene-
ous sources shall be integrated. For the tools for which interfaces were

developed there are areas where the information model is more extensive
than the corresponding representations supported by the individual tools.
As a result there where multiple instances where tool interface developers

had to implement extensive glue code to comply with the rules defined in
the information model. 

Function interfaces and io ports

Only the Systembuild/MatrixX tool included explicit support for io_port

objects for function actual/formal parameter binding. In all other tools
used in the validation activity parameter binding is performed via the flow
name. In these cases the interfaces had to synthesize io_port objects when

data is exported. Conversely the import interfaces had to synthesize tool
specific representations from those in the information model. 

Range of data types supported

Heterogeneity issues were also identified for import interfaces. The devel-

opers of the Teamwork import interface, for instance, reported that they
had to develop substantial glue code to handle cases where the information
model allowed for far more advanced data type representations than the

Teamwork tool could handle. For individual tools there were multiple sim-
ilar situations where the information model was richer than in internal tool
schema. Yet, this situation is preferable over a situation where the infor-

mation model is limiting the set of data that may be exchanged.

Schema heterogeneity — discussion

Heterogeneity between tool internal schemas and the information model
do not imply information model deficiencies. Rather it is an expected con-

sequence of the objective to make the information model method and tool
independent. 

The information model is designed to support constructs of multiple

methods using a single unified representation. In doing so the mapping
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from tool representations to the information model ditto may become

complex. The important point is whether there exists equivalent class
mapping functions from tool specific representations to the information
model. These ensure that no information is modified in the data exchange,

c.f., the discussion on mapping functions in Section 2.4.

It was also observed that a large number of objects carrying relatively little
information had to be instantiated when tool data was mapped onto the
information model structures. The use of entities with few attributes is a

conscious decision to allow tools supporting different methods to map
information to the information model without any loss of data. The conse-
quence of this design was additional work for tool interface developers

and also low performance for interfaces built on-top of relational database
management systems, i.e., the Express AP-233 data server.

Tool interface development and information model complexity

One of the issues raised against the information model is that it is too com-

plex to interpret and implement. The implementation activities indicate
that developers can realise a fully functional import or export interface to
the information model in 1.5 - 5 man-months [74]. This time include tool

familiarisation and time required to master the mechanism selected for
accessing the tool internal database. 

In some cases database access was made through public application

programming interfaces, but at least in two cases developers were forced
to parse and generate proprietary file formats to access and populate tool
databases. Needless to say development of these interfaces required more

time than for those utilising public interfaces. 

Problems and bugs associated with the STEP development tools also
influenced interface development time significantly as reported in [26].

This was particularly true for the version of the EXPRESS-X development
tool used for the Statemate and MatrixX interfaces [74]. 
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12.4.6 INTERFACE DEVELOPMENT SUMMARY

Whether it is possible to develop a data exchange interface for a tool is
only partly up to the information model. A large proportion of problems

reported have been due to:

 • Incomplete tool import or export facilities or documentation of such

facilities. In some cases tool suppliers have taken the decision not to
publish file grammars or programmatic interfaces. This obviously
complicates interface development substantially.

 • Problems related to the development tools used to develop tool inter-
faces. 

Still there are multiple cases where simple tool specific constructs did
require definition of complex mapping functions in order to create the cor-

responding representation in the information model. Conversely, a large
number of queries over specification data in the information model format
were required to recreate a simple tool specific construct. 

This is a consequence of the variety of tools and methods in use by sys-
tems engineers and the objective to keep the information model tool and
process independent. Any change in the information model towards the

structures used in a specific tool, would most likely complicate interfacing
to other tools. 

With these observations in mind it must be concluded that tool data

exchange interfaces based on the information model can be implemented
for a range of Systems Engineering tools.

12.5 Validation Through Data Exchange

The tool interfaces developed were used in mini-projects to validate that
the information model could be employed for data exchange in realistic
Systems Engineering projects. Two validation scenarios were carried out

on industrial material within in the SEDRES-2 project:

 • Validation scenario 1 was defined to be similar to a contractor - sub-

contractor relationship where functional specifications were
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exchanged. The scenario was defined to demonstrate the viability of

data exchange between different tool sets supporting the same engi-
neering activities. 

 • Validation scenario 2 was defined to evaluate the suitability of the

information model for data exchange between different phases in the
Systems Engineering process. The scenario demonstrates the viability
of using the information model to integrate data from multiple stan-

dalone tools used within the Systems Engineering process.
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An additional validation scenario was executed in conjunction with the
SEDRES-2 project at BAE SYSTEMS Australia in cooperation with Uni-
versity of South Australia. In this scenario data was exchanged from State-

mate to DOORS in a setting where DOORS where used store, view and
analyse project data [136]. DOORS modules were created for require-
ments, functional and physical architecture elements. Traceability links

were captured across the elements. Experience collected in this scenario
also indicates the value of using a central repository for project data. 

The extent of the two validation scenarios against the Systems Engineer-

ing process is illustrated in Figure 12.1. A brief description of each sce-
nario and results are presented below. 

12.5.1 VALIDATION SCENARIO 1 

Validation scenario 1 was set up to demonstrate data exchange between

functional analysis tools. The scenario mimics a multi-partner develop-
ment effort, incidentally similar to that for the Eurofighter programme,

Time (approx 2 weeks)
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24 37 5013

Fi rst leg exchange Second leg exchange Third leg exchange

Interface Maturity
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Equipment
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Equipment Control
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Equipment
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Design subset:

Figure 12.2: Validation scenario 1 data exchanges 
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using the design of an aircraft landing gear system as a demonstrator. The
validation scenario was performed by EADS-GE, using the tool Team-

work, and BAE SYSTEMS, using the tool Statemate. The full report on
the validation scenario is available in [76]. Exchange of design data was
performed in three legs as outline in Figure 12.2.

The design data exchanged contained only element from the functional

architecture part of the information model. Moreover data exchanged
included only functions and data flows, since the Statemate interface did
not implement support for handling finite state machines and Statecharts.

An example of the data exchanged from Statemate to Teamwork is pre-
sented in Figure 12.3. Two views on the resulting top level representation
in the Teamwork tool is presented in Figure 12.4 and Figure 12.5. The

view in Figure 12.5 is created based on layout information encoded in the
information model format, while a generic placement algorithm has been
used to create the view in Figure 12.4. Note that Statemate supports the

representation of multiple functional levels within a single graphical view,

Figure 12.3: Original Statemate model
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while Teamwork can represent a single functional level per graphical

view. Consequently the Statemate model illustrated in Figure 12.3 is rep-
resented using two views in Teamwork.

The graphical layout of the model presented in Figure 12.4 is generated

from the functional architecture elements of the information model only.
The appearance of individual functional elements is a result of a generic
layout algorithm implemented in the Teamwork interface. Hence there is

no direct visual correspondence between the original Statemate model and
the resulting one in Teamwork. As a result it is difficult for humans to
ascertain that the models are equivalent, even though a closer inspection

will reveal that the same model elements are present in both tools.

Figure 12.4: Teamwork model generated without layout informa-
tion from Statemate
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Figure 12.5: Teamwork top-level model with layout information 

transferred from Statemate

Figure 12.6: Teamwork first level model with layout information 

transferred from Statemate



EVALUATION

283

In contrast the Teamwork model in Figure 12.5 and Figure 12.6 are much

more similar to the original Statemate model and hence easier to interpret.
Note that lightning shaped flows in Figure 12.5 are the result of incorrect
representations/interpretation of layout information in the tool interfaces

that would not be expected in production quality tool interfaces.
The symbols used in Teamwork for representing functions and external

agents are fixed. Hence a function presented as a square in Statemate will

always be presented as a circle in Teamwork. These transformations are
inevitable and do not imply any modifications to the semantics of the
models. 

Validation scenario results

The validation scenario was very successful in the sense that the informa-
tion model provide adequate structures for Teamwork and Statemate indi-
vidually to read and write data to a data exchange format without any loss

of data. Still there are substantial risks that information is lost in a data
transfer between the tools as:

 • Statemate supports a rich set of data types whereas Teamwork only

support a basic set. Any use of structured data types in Statemate can-
not be represented in Teamwork.

 • Teamwork supports representation of functional behaviour using

Mealy and Moore type state machines where Statemate supports
Statecharts. Any use of Statechart constructs in a data exchange from
Statemate to Teamwork will require the Teamwork interface to trans-

form the Statechart to a Mealy or Moore state machine. While this is
possible for many cases, the resulting state machine will bear no vis-
ual resemblance with the original Statechart. The original Statechart

representation cannot be recreated if data is re-imported into Statem-
ate.

 • Teamwork supports the use of multiple control bars within a function

where Statemate allows only one control activity. It is certainly possi-
ble to merge multiple state machines into a single Statechart, but the
resemblance with the original specification will be lost. Moreover, a
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complex transformation is required when data i re-imported to Team-

work. 

The above observations indicate the limitation of data exchange between
tools supporting similar, but not equivalent methods. Frequent data
exchange between Teamwork and Statemate would require the implemen-

tation of restrictions on functionality usage in respective tool. It could be
the case that these restrictions would be so constraining that the utility of
data exchanges is lost. This result does not disqualify data exchange in all

cases. Migration of design models from a basic tool (Teamwork) to an
advanced one (Statemate) using the information model would provide
substantial benefits.

12.5.2 VALIDATION SCENARIO 2 SETUP AND DESCRIPTION

Validation scenario 2 was setup to demonstrate tool data exchange
between different phases in the Systems Engineering process from
requirements identification, over functional analysis to identification of

high-level system components [18]. The scenario was executed on mate-
rial developed for the ATV1 project. The following partners participated in
the scenario:

 • EADS Launch Vehicles acted as a prime contractor responsible for
capturing requirements and performing functional analysis. The tools

LabSys and Software through Pictures were used in the process.
 • The Technical University of Clausthal acted as subcontractor respon-

sible for identification of system components and allocation of

requirements and functionality onto identified components. The tool
Demanda 2 was used for this step in the process.

 • Alenia acted as a quality assurance entity double-checking the appro-

priateness of all allocations made. Doors were used to validate alloca-
tions.

1. ATV = Automatic Transfer Vehicle, space vehicle under development to deliver 
freight to the ISS (International Space Station), to boost the orbit of and to move 
garbage from the ISS.
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The setup of the scenario is illustrated in Figure 12.7. Data exchanges

were performed from LabSys to StP, LabSys to Doors, StP to Demanda 2,
StP to Doors and from Demanda 2 to Doors. The tools were selected such
that the sink tool in all exchanges could handle all significant data gener-

ated by the source tool.

 • LabSys allows for the capture of textual requirements and the identifi-

cation of required system functionality in different system life-cycles,
and interaction between the system under specification and external
systems. Functions and interactions are captured in a textual view.

 • The functionality captured in LabSys is interpreted in StP and used to
form the basis for a system functional architecture per life-cycle. The
imported functional architecture was further extended in StP.

 • Identified requirements and functionality was imported into Demanda
2 and served as a baseline for the identification of system components
and the allocation of functionality and requirements onto the compo-

nents. 
 • Design data from each tool was imported into Doors for verification of

the allocations made.

Figure 12.7: Validation scenario 2 setup
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Validation scenario 2 prime focus was on the information models support
for representing traceability links between requirements and functions,
between functions and physical components, and between requirements

and physical components. A view from Doors generated in validation sce-
nario 2 illustrating traceability links generated from LabSys and StP is
presented in Figure 12.8.

Validation scenario results

The usage of the information model in validation scenario 2 validates the
information model support for traceability links between requirements,

functional and physical architecture. A large portion of the success lie in
the selection and use of tools for the scenario. The overlap in tool func-
tionality allowed for data exchanges with no loss of information. 

Figure 12.8: Doors view on requirement to function traceability
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12.5.3 VALIDATION SCENARIO RESULTS

Both validation scenarios indicate that data exchange based on a tool neu-
tral information model is a viable approach for industrial applications both

between tools of similar types and between tools used in different phases
in the engineering process. It is noted in [26] that “after interface maturity
actions are discarded, realistic design data sets can be transferred between

tools in minutes”. This is certainly an important validation result. More
specific findings captured include:

 • The practical applicability of the information model for data represen-
tation and tool interface development was validated.

 • Data exchange highlights the challenge of configuration control of

data distributed over multiple tools
 • There were cases where tool interfaces implementing the semantic

integrity constraints in the data model did capture design inconsisten-

cies not captured in tool internal consistency checks.

12.6 Validation Result Summary

The validation scenarios performed has validated that the information

model is applicable for the representation and exchange of:

 • Textual requirements, including defined and arbitrary requirement

properties such as priority and requirement ownership.
 • Functional models, including functional hierarchy, functional interac-

tion models, and models containing explicit behaviour components in

the form of finite state machines. 
 • Physical architecture model in terms of identification of logical sys-

tem components.

 • Requirement and functional allocation information capturing how
requirements are allocated to functions and physical components and
the allocation of functions to physical components.

 • The appropriateness of the part of the model capturing specification
layout was validated. Specifications exchanged with layout informa-
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tion included are much easier for humans to interpret as compared

with specifications exchanged without layout information.
 • The utility of the system architecture model has been clearly demon-

strated as it allow for representation of multiple system specification

configurations. However, there have only been limited experiments
involving multiple specification element versions and multiple config-
urations.

Despite the fact that substantial parts of the model have been validated

there remain areas which have not been validated through interface devel-
opment and data exchanges. The main areas are:

 • Representations of functional behaviour using causal models such as
Functional Flow Block Diagrams (FFBD) and Extended Functional
Flow Block Diagrams (EFFBD). These functional models are widely

in use and there is no doubt that a demonstration indicating the sup-
port for these models would increase peer confidence in the informa-
tion model.

 • Capture of the engineering development process in terms of activities
performed, relating specification data to activities performed and
change management. 

 • Capture of verification and validation requirements on a system.

The validation results are assessed positively despite the fact that the val-
idation activities did not cover all parts of the information model. Moreo-
ver, the fact that the tool set developed for Validation scenario 2 has been

put in operational use within EADS Launch Vehicles is a clear indication
of the applicability of the information model for real tool data exchanges
[20].
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12.7 Validation Results vs. Information Modelling 
Requirements

In this section the results from the validation activities are related to the

information modelling requirements as presented in Section 4.3. The eval-
uation is based on observations made throughout the SEDRES-2 project
and captured in [74] [75] [26]. 

12.7.1 PROCESS AND METHOD INDEPENDENCE

The information model has been validated through real data exchanges
between a number of tools and also been subject to dry mappings analyses
from tool concepts to information model concepts. The results indicate

that the information model is suitable for data exchange of data generated
from a number tools supporting different methods appropriate for Systems
Engineering. 

12.7.2 COMPLETENESS ASSUMPTION

Overall this guideline proved to be appropriate. In all cases interface
developers were able to map tool data to the information model, but in

some cases some extensive transformation were required. 

12.7.3 CONTEXT INDEPENDENCE

The approach to define entities such that they could be used independent
of a specific system context has not been validated during the validation

scenarios. The reason for this is the limited configuration management
support in the tools used to validate the information model. None of the
tools used had the facilities to support specification element reuse across

multiple system specifications or multiple versions thereof. Moreover, at
least one tool interface developers did questioned whether the additional
effort required to implement context independence match the value pro-

vided by the concept [75]. Especially given the fact that there appears to
be no tool support for the capabilities implemented in the information
model.
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12.7.4 INFORMATION MODEL DETAIL

The validation scenarios validated that the information model was suitable
for the exchange of data between basic tools, between advanced tools and

between a basic and an advanced tool. Moreover, the value of the support
for multiple semantic variants of common modelling concepts has been
validated. 

12.7.5 PRESERVATION OF SPECIFICATION STRUCTURE

The tools used, and hence the underlying methods supported, in the vali-
dation scenarios were similar that the need to transform a specification

element from an original structure to an equivalent one did never arise.
However, in previous validation activities during the SEDRES project
there were a case where process activation tables (PAT) was represented as

an equivalent Moore finite state machines in the information model, and
hence in the receiving tool. In this case substantial analysis efforts were
required before it could be concluded that the process activation table and

finite state machine representations were indeed equivalent. 

12.7.6 PRESERVATION OF SPECIFICATION LAYOUT

The capability to represent the approximate layout of specification ele-
ments exchanged has been much appreciated. Readability of transferred

specifications where layout information is included was deemed to be sig-
nificantly higher as compared to the same information exchanged without
any layout information included in the data exchanged. This is also clearly

illustrated in Figure 12.4 and Figure 12.5. 

12.8 Discussion

The results gathered from validation activities performed were generally

positive. 

 • Data exchange capabilities have successfully been implemented and

validated for a number of commercial and in-house tools. The com-
pleteness of the information model was validated through validation
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scenarios involving multiple partners using multiple tools. 

 • The requirements guiding the development of the information proved
to be sound in the sense that tool interfaces to complex commercial
tools could be developed within relative short time periods. 

In this sense the results from using the information model is a complete

success. However, there are no results suggesting that the information
model as implemented is the best possible vehicle for Systems Engineer-
ing data exchange. 

A number of issues relevant for future development of tool neutral Sys-
tems Engineering data exchange information models have been high-
lighted. The main issues are over the complexity of the information model

and the associated cost for tool interface development. This indicate that a
number of conscious trade-offs have to be made when designing a data
exchange information model.

1. Trade off between information model configuration management and

specification element reuse capabilities vs. tool interface development
cost. The more capabilities included in the information model, the
more entities will be required to be handled in tool interface, which

will result in higher tool interface development costs.
2. Trade off between information model detail and support for multiple

Systems Engineering methods vs. tool interface development cost.

The more variants to a concept supported, the more complex the infor-
mation model, which in turn will results in higher tool interface devel-
opment costs.

The issue of tool interface development cost must also be weighted against
the utility provided by the tool neutral information model. Reducing
model capabilities may make it less applicable in an industrial context and

less appealing to adopt for industry as well as for tool vendors. Especially
as long as there is a diversity of tools and methods in use for system spec-
ification in the Systems Engineering community. 

Likewise, if support for multiple semantics variants to a basic concept is
dropped then the information model will not be able to convey the fine
facets of a system specification. This would increase the risk for non-
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detected modifications to specification data exchanged. One approach to

simplifying the information model would be to drop the requirement for
tool and method neutrality altogether and encode support for a specific
Systems Engineering method only. This would be similar to the develop-

ment of a “UML” for Systems Engineering as done in the SysML project
[146]. While this could be an interesting approach from a usability point of
view it is a breech with the approach selected for the work presented in

this thesis and in conflict with the authors view on the purpose of a data
exchange standard. 

12.9 Summary

In this chapter we have reviewed activities undertaken by industry part-
ners to validate the suitability of the information model for Systems Engi-
neering tool data exchange. 

Validation activities performed has clearly indicated that Systems Engi-
neering tool data exchange implemented using a tool independent infor-
mation model has the potential to save a lot of time and effort in Systems

Engineering projects. High quality tool interfaces to the information
model can be developed at was perceived to be reasonable cost. However,
issues have been raised whether the information model could be simpli-

fied to facilitate tool interface development. 
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Chapter 13
Conclusions and Future Work

In this chapter a summary of the contents of this thesis is presented with
emphasis on its contributions. Finally we discuss some areas for potential
future work.

13.1 Thesis Summary

The objective of the work reported in this thesis has been to research meth-

ods for enabling data exchange between computer-based tools used for
capturing Systems Engineering data. The work reported in the thesis can
be divided into three overarching sections as follows:

13.1.1 INTRODUCTION

Parts I and II of the thesis present the domain of systems engineering and
the restrictions made for the thesis. Product data modelling frameworks,
especially STEP, and problems related to data exchange is introduced.

Finally the approach and guiding non-functional requirements for imple-
menting the information model is presented. 



CHAPTER 13

294

13.1.2 INFORMATION MODEL OVERVIEW

Part III of the thesis presents and motivates the major constructs in the
information model. The presentation is made for each significant compo-

nent of the information model coupled with example instantiations to
illustrate how the information model constructs shall be used to represent
tool data. 

13.1.3 EVALUATION

Part IV of the thesis presents activities performed to evaluate the suitabil-
ity of the information model for data representation and data exchange.

Evaluation activities undertaken include:

 • Information model review by Systems Engineering specialists from
INCOSE and the AP-233 working group within ISO 10303. 

 • Implementations to validate the applicability of the information model
for Systems Engineering tool data exchange interface development.

 • Validation scenarios to validate the suitability of the information

model for data exchange of realistic Systems Engineering data.

13.2 Conclusions

The reviews of the information model, the results tool interfaces devel-
oped and the tool data exchanges carried out as presented in this thesis
clearly illustrate the benefits of using the information model for data

exchange. Separate scenarios have demonstrated the ability of the infor-
mation model to support:

 • Data exchange across tools used in the same phase in the Systems

Engineering process
 • Data exchange between tools and a central repository to support trace-

ability throughout the engineering process

The validation activities have been carried out in an industrial context,
using industrial material so a fair amount of confidence can be placed in
the results obtained. The number of tools used in the validation scenarios
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also indicates that the model can be used by a range of tools. The objective

to make the information model method and tool independent is considered
validated.

With these results in mind it is fair to say that the information model has
been successful, considering the constraints documented and the model

guidelines applied to the design of the model. However, many comments
from the Systems Engineering community on the work presented herein
relate to these imposed constraints. The objective to build a method and

tool independent information model result in a model which is complex to
interface with for some tools. Some stakeholders have found the lack of
explicit support for popular methods most distracting. Likewise there has

been a lot of debate over the scope of the information model. Again this is
not surprising considering the large number of people with different back-
grounds that has participated in formal reviews of the information model. 

These observations highlight the dilemma of a data exchange information
model. Ideally the information model shall be trivial in structure, provide a
perfect interface to all relevant methods and be extensive in its method

support. Unfortunately, in a field like Systems Engineering with embed-
ded complexity and where multiple methods are in use, it is not possible to
comply with all these points. Support for multiple methods will inevitable

increase model complexity. 

13.3 Future Work

There are multiple paths to extend on the work presented herein. Potential

extensions are presented below.

13.3.1 EXTENDING THE INFORMATION MODEL

The STEP framework offer product models (and modules) for mechanical
and electrical design as well as maintenance and logistics. There are obvi-

ous advantages of combining these models to create a single integrated
model supporting representation of product data supporting larger product
data sets of the system life-cycle. Much of this work is already underway
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within the AP-233 working group through the creation of STEP modules

supporting Systems Engineering. These modules can quite easily be com-
bined with modules created for other engineering domains. The primary
activity is to define modules that allow for capturing of traceability links

between the domains, i.e., traceability between Systems Engineering data
and, e.g., mechanical engineering data. 

13.3.2 DEFINITION OF FORMAL SEMANTICS

The semantics of each entity in the information model is defined textually.

This is sufficient for the representation of requirement and the system
physical architecture, but the definition of a formal semantics for the func-
tional architecture part of the information model would improve the integ-

rity of the model substantially. The definition of a formal semantics for the
information model must encompass multiple combinations of information
model entities in order to cover all alternatives that can be expressed in the

information model. This work may build on work performed in the
SAFEAIR project [53]. 

13.3.3 TOOL IMPLEMENTATION

The implementation of a user friendly Systems Engineering tool based on

the information model would provide a computer based specification tool
for evaluation of the benefits of the context independence principle infor-
mation modelling requirement presented in Section 4.3. A tool could be

implemented with relative ease based on a database generated directly
from the information model. 

13.3.4 STANDARDISATION

One obvious path is to continue work towards information model stand-

ardisation. To prepare the information model for standardisation it must be
partitioned to suit the STEP modular architecture. Technically speaking
this is primarily a matter of transforming the structures in the information

model to fit the data structures in the STEP PDM modules, but it also
includes activities to collect information from the stakeholders active
within STEP. 
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13.4 Concluding Remarks

The information model presented herein was developed with the intention
that it should eventually become a Systems Engineering data exchange
standard. Judged by the interest the work has generated at ISO 10303 and

INCOSE (the International Council for Systems Engineering) there is no
doubts that there exists a real industrial need for data exchange capabilities
between Systems Engineering tools. However, the problems associated

with striking an agreement on the scope and objectives with the informa-
tion model is a clear indication that additional work is required to define
the extent of Systems Engineering representations suitable for standardi-

sation and also the level of support the information model shall provide. It
is the hope of the author that the ideas, objectives and results presented in
this thesis will provide some guidance to future projects for facilitating

Systems Engineering tool data exchange.
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