An Approach to the Degree of Parallelism in P
Systems

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, Agustin Riscos-Nunez

Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda Reina Mercedes s/n, 41012 Sevilla, Spain
{magutier,marper,ariscosn}Qus.es

Summary. In the literature, several designs of P systems were used for performing the
same task. The use of different techniques or even different P system models makes it
very difficult to compare these designs. In this paper, we introduce a new criterion for
such a comparison: the degree of parallelism of a P system. To this aim, we define the
labeled dependency graph associated with a P system, and we use this new concept for
proving some results concerning the maximum number of applications of rules in a single
step along the computation of a P system.

1 Introduction

In the last years, an extensive literature on Membrane Computing has been pro-
duced, studying multiple approaches. We can consider the following rough classi-
fication:

e (enerative task: from a given initial configuration several distinct computations
may be developed (in a non-deterministic manner) and they may produce dif-
ferent outputs. We can consider that the system generates the set of all the
outputs of all the computations (and this set can be interpreted as the language
generated by the system).

o Computing task: if we can encode any natural number, n, in the initial con-
figuration of a given P system and we consider the cardinality of the output
multiset as the result of the computation, then we can interpret that the system
has “computed” a numerical function over n.

e Decidability task: another option is to consider that the output alphabet con-
sists of two special objects, yes and no, in such a way that these are the only
objects that determine the answer, irrespectively of the occurrence of other
possible objects from the working alphabet in the output membrane.

88 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

Several designs of P systems might be used for performing the same task.
The use of different techniques or even different P systems models makes it very
difficult to compare these designs. Furthermore, the intrinsic non-determinism of
P systems usually yields computational trees of a very large size, which makes the
comparison task especially hard.

A first attempt! to give an appropriate description of the complexity of the
evolution of a P system was given by G. Ciobanu, Gh. Paun, and Gh. Stefanescu
in [1]. In this paper, a new tool for the descriptive complexity of P systems called
Sevilla carpet was presented. Roughly speaking, a Sevilla carpet is a table with
time and an explicit enumeration of the rules of the P system on its axes. For each
pair step—rule, a piece of information is given. Additional parameters for studying
Sevilla carpets were introduced in [6] and a multidimensional generalization of
Sevilla carpets was presented in [8].

Sevilla carpets and their associated parameters provide very useful information
to describe the evolution of a P system, but only for one computation. If we consider
two deterministic P systems which perform the same task, then the use of Sevilla
carpets, together with the associated parameters, gives enough information to
establish a comparison. But this is not the general case.

In general we have non-deterministic P systems which may have infinite compu-
tations. We wonder how to compare two different P system designs which perform
the same task, possibly implemented in different models.

One of the basis of the power of P systems as computational devices is the
maximal parallelism in the use of rules. This maximal parallelism is twofold: all
membranes process data in parallel and inside each membrane as many objects
as possible evolve. Complementing this feature with the ability of producing new
membranes along the computation is the basis of the design of families of P systems
which solve NP-complete problems in polynomial time (see, e.g., [5, 7, 12, 13, 16,
18, 19, 17], and also [20] and references therein)

In this paper we focus our attention on the parallelism in order to have a tool
to compare the design of P systems which perform the same task. Intuitively, a bad
design of a P system consists of a P system which does not exploit its parallelism,
that is, it works as a sequential machine: in each step only one object evolve in
one membrane whereas the remaining objects do not evolve. On the other hand, a
good design consists on a P system in which a huge amount of objects are evolving
simultaneously in all membranes. If both P systems perform the same task, it is
obvious that the second one is a better design that the first one.

In the general case the comparison is not so easy and, in most cases, it would
be useful to have a numerical function which captures the idea of how good is the
use of the parallelism in a P system. The quest for such a function is hard, since
P systems are intrinsically non-deterministic and two computations can be quite

! Recently two new parameters have been introduced in [2] in order to describe the
complexity of P systems. They are related to the graph of reachable configurations of
a given P system, namely the outdegree as a measure of the degree of non determinism,
and the indegree as a measure of the degree of confluence.

An Approach to the Degree of Parallelism in P Systems 89

different even in confluent P systems. In this paper we propose a parameter based
on the (potentially) maximum number of applications of rules in a step of any
computation. This number depends on the initial configuration, the set of rules
and the semantics of the model.

The paper is organized as follows. First, some preliminaries are given, recalling
some concepts related to multisets, introducing the new concept of injective map-
ping with respect to a multiset and fixing some ideas about graphs and P systems.
In Section 3 we give an estimation of the use of parallelism in a P system from a
given configuration in one step. In the following section we extend our study to
the general case and provide a new parameter, 3(I1,C), which is an upper bound
on the maximum number of simultaneous applications of rules in one step in any
computation of II with the initial configuration C. Finally, some conclusions and
lines for future work are given.

2 Preliminaries

In this section we recall some concepts which will be used along the paper. First
of all, we remind some basic ideas on multisets and introduce the new concept of
injective mapping with respect to a multiset. Next we present the P system model
we will work with in this paper and adopt some conventions for notation.

2.1 Multisets

Multisets are the basic data structure in P systems. Its use is inspired in the chem-
ical compounds of the vesicles of living cells. First of all, we recall the definition?.

Let D be a set. A multiset over D is a pair (D, f) where f : D — N is a
mapping. If A = (A, f) is a multiset, its support, supp(A) is defined as supp(A) =
{z € A| f(z) > 0} and its cardinality, denoted by #.A, is defined as

#A=" f(a).
a€A
Suppose that A = (A4, f) and B = (A, g) are two multisets over the set A.

e (Sub-multisets) If for all a € A we have f(a) < g(a), then we say that (4, f)
is a sub-multiset of (A4, g)

e (Union of multisets) The union of A and B, denoted by AUB is the multiset
(A, h), where h(a) = f(a) + g(a) for all a € A.

Next we introduce a new definition that will be useful in the following sections.
It is a natural generalization of the definition of injective mapping between sets.

Definition 1. Let Dy and Dy be sets, (Da, f) a multiset over Dy and g : D1 — Do
a mapping. We will say that g is injective with respect to the multiset (Da, f) if

Yy € Dy (#{z € D1 |g(z) =y} < f(y)).

2 A detailed presentation of multisets can be found, for example, in [21].

90 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

Fig. 1. Mappings on multisets

This definition can be illustrated with the following example.

Ezample 1. Let us consider the sets D1 = {a,b, ¢} and Dy = {z,y} and the mul-
tisets® over Dy (Do, f1) = {22,y} and (Ds, f2) = {z,y3}. Then the mapping
g: D1 — Dy with g(a) =z, g(b) = x and g(c) = y is injective w.r.t. (Do, f1) and
is not injective w.r.t. {Da, fo) (see Figure 1.) Note that this definition expands the
usual definition of injective mappings over sets.

2.2 Graphs

In this paper we will use directed graphs as a structure for organizing information.
We briefly fix some concepts which will be used later.

A directed graph G is a pair G = (V, E) where V is a set and E C V x V. The
elements of V' are called nodes, and the elements of E are called arcs. Given a
directed graph G, a subgraph G’ from G is a pair G’ = (V', E’) such that V' C V|
E'CEN (V' xV’"). Given a set of graphs {G;}ic; with G; = (V;, E;), its union is

the graph
Ugi = (U‘@UE) :

icl iel i€l
We will consider the paths in a directed graph as subgraphs following the next
definition.

Definition 2. A path of length n from a vertex x to a vertex y in a directed graph
G = (V,E) is a subgraph G' = (V', E') such that V' = {vg,v1,..., v} with vy = z,
v =9y, and B = {(v;,v;41) |1 =0,...,n—1}. If x =y, then we will say that the
path is a cycle. The subgraph with a single vertex and no arcs is also considered a
path.

Finally, we define the subgraph generated by a source A and a sink B.

Definition 3. Given a directed graph G = (V, E) and two sets of vertices A,B CV
we define the subgraph generated by the source A and the sink B as the subgraph
of G obtained as the union of all the paths in G from x toy withx € A andy € B.

3 With the usual notation {zf® |z € D} for the multiset (D, f).

An Approach to the Degree of Parallelism in P Systems 91

2.3 P systems

We assume that the reader is familiar with the standard P system models. In this
section we briefly define a simple model that we will be using along this paper.

Recall that, basically, a P system consists of a cell-like membrane structure
together with associated multisets of objects and a set of rules expressing how
these objects can evolve (see [15]). The membrane structure of a P system is used
to enclose computing cells in order to make them independent computing units.
The objects can pass through membranes and, depending on the variant of the
model we are dealing with, the membranes can be dissolved, divided, or created.
Nevertheless, in this paper we shall work in a simplified model without division,
dissolution nor creation of membranes. We do not use cooperation nor priority
among rules either.

A configuration is the instantaneous description of the current membrane struc-
ture and the multisets of objects associated with the membranes. In each time unit
(a step), a transformation of a configuration of the system takes place by applying
the rules of each region in a non-deterministic maximally parallel manner. In this
way, transitions between two configurations of the system are obtained. A sequence
of such transitions (finite or infinite) is called a computation.

More formally, a P system is a tuple IT = (I, H, i, w1, - . ., wq, R), where:

I is a finite alphabet (the working alphabet) whose elements are called objects.
H is a finite set of labels for membranes.

1 is a tree-like membrane structure of degree q. Membranes are labeled bijec-
tively by elements from H.

e wi,...,w, are multisets over I" describing the multisets of objects initially
placed in the membranes of p .

e R is a finite set of developmental rules. These rules can be of two types: evolu-
tion rules where the object that triggers the rule do not cross any membrane
and communication rules where the object which triggers the rule do cross a
membrane. These communication rules can be of type send-in or send-out as
described below:

1. [a = v];, where a € ', v € I'*, I € H (evolution rules).
An object a evolves to a multiset v inside a membrane labeled by I.

2. [a); — b], where a,b € I', | € H (send-out communication rules).
An object a gets out of a membrane labeled by [, possibly transformed in
a new object, b.

3. a[] = [b];, where a,b € I', | € H (send-in communication rules).
An object a gets into a membrane labeled by [, possibly transformed in a
new object, b.

Let us observe that the rules of the system are associated with labels (e.g., the
rule [a — v]; is associated with the label [€ H). Rules are applied according to
the following principles:

e The evolution rules are applied as usual in the framework of Membrane Com-
puting, that is, in a maximally parallel way. In one step, each object in a

92 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

membrane can only be used for one rule (non-deterministically chosen in case
there are several possibilities), but any object which can evolve by a rule of any
form must evolve (with the restrictions indicated below for the communication
case).

e All elements which are not specified in any of the operations to apply remain
unchanged to the next step.

In the literature we can find two different semantics concerning rules which
cross membranes.

e Parallel communication case: Communication rules follow the same principle
of maximality as evolution rules, i.e., several objects (as many as possible, via
the application of their respective rules) can cross simultaneously the same
membrane.

e Sequential communication case: At one step, a membrane can only be the sub-
ject of only one communication rule. This is the case for P systems with active
membranes, which has been profusely used for designing solutions to NP prob-
lems (see [20] and references therein).

2.4 Notation

We will adopt the notation for rules and configurations given in [4], that we briefly
recall in what follows.

Roughly speaking, transitions in P systems are performed by rules in which
the occurrence of an element ag in a membrane mg sends the element a; into a
membrane m1. In a certain sense, one can consider a dependency between the pair
(ag, mo) and the pair (aj,mq). The rules in the P system model presented above
fit into the following schema (with some constraints):

(ag,m1) — (a1, me)(az, msa) ... (an, ma),

which can be interpreted as follows: The occurrence of the element ag in the mem-
brane my triggers the rule and sends the multiset aias ...a, into the membrane
ma.

Obviously, if m; # ms then we have a communication rule. In this case, n
must be equal to 1 and both membranes must be adjacent (one membrane is
contained inside the other one). If m; is contained inside ms, then we have a
send-out communication rule, and if the opposite holds, then we have a send-in
communication rule. On the other hand, if m; = ms, then we have an evolution
rule.

As usual, the pair (ag,mq) is called the left hand side (LHS) of the rule and
the multiset of pairs (a1, ms2)(az, m2) ... (an, me) is the right hand side (RHS) of
the rule.

In the next sections, we shall consider that a configuration is represented as a
multiset of pairs (z,m) such that, for every object z of the alphabet and for every
membrane m, the multiplicity of z in m is the multiplicity of the pair (z,m) in
the multiset. This notion is called an L-configuration of a P system in [4].

An Approach to the Degree of Parallelism in P Systems 93
3 Applications of Rules in a Single Step

A first step in order to have an estimation of the use of parallelism of a P system is
to consider a single configuration. In the general case, there are several configura-
tions Cy,...,C, reachable in one step of a computation from a given configuration
C. The number of applications of rules to reach each configuration C; can vary as
the next example shows.

Ezample 2. Consider the P system with the alphabet I" = {a, b}, the membrane
structure [[].]s, the initial multisets w. = {a}, ws = {a}, and the set of rules:

Rl:[a]c—b]]e, R2:al]. — [b]e, R3:[a —b]s,

and the sequential communication semantics. By using rules R1 and R3 we reach
the configuration C; = [[] b?]s from the initial one [[a]. a]s. On the other hand,
by using R2 we can also reach the configuration C3 = [[ab]. |s. Notice that C; has
been obtained by two applications of rules and C; by only one application.

Next let us try to determine the maximum number of applications of rules from
a given configuration in one step, that will be denoted by 1 (II,C). In our study,
the key is to consider the multiset of elements which can trigger a rule. Due to the
massive parallelism, if an element can trigger an evolution rule, then we are certain
that this element will be consumed by the application of one of the rules triggered
by it. If an element only triggers communication rules, then in order to know if
the object will be consumed we need to know if only one or several objects can
cross a membrane, how many rules can be triggered by that object, and whether
there exist or not more objects that can cross the same membrane.

We will start by defining two distinguished sub-multisets, Cg and C¢, of a given
configuration C. Let IT be a P system and C a configuration of I7T. We define:

Cr ={(a,m) € C|(a,m) is the LHS of an evolution rule},
Cc ={(a,m) € C|(a,m) is the LHS of a communication rule and
it is not the LHS of any evolution rule}.

3.1 The sequential communication case

Let us first consider the sequential semantics. In this context we define a crossing
mapping. The intuition behind this definition is the following: we intend to map
membrane labels onto objects that can cross them in the next step by the appli-
cation of a communication rule. In general, it may not be possible to find such a
mapping defined over all labels, so we have to consider a subset S C H. Besides,
in order to avoid that two objects cross the same membrane, we demand that the
mapping is injective in the sense of Definition 1.

Definition 4. Let IT be a P system, H its set of labels, and C a configuration of
I1. A crossing mapping on C is a mapping [: S — supp(Cc) with S C H, injective
w.r.t. Cc, such that for every h € S there exists a communication rule associated
with membrane h and having f(h) on its LHS.

94 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

Notice that for a given configuration there may exist several crossing mappings,
that correspond to different non-deterministic choices of communication rules to
be applied over the membranes with labels in S.

Finally, we give an expression of the maximum number of applications of rules
in a transition step from the current configuration.

Theorem 1. Let IT be a P system and C a configuration. Let us consider the se-
quential communication semantics. The maximum number 51 (II,C) of applications
of rules for reaching a configuration from C is

0111, C) = #Cg + max{#5 |3 a crossing mapping f : S — supp(Cc)}.

Proof. Let IT be a P system, C a configuration and let f* : S* — supp(Cc) be
a crossing mapping such that #S5* = max{#S5 |3 a crossing mapping f : S —
supp(Cc)}. Then, for every label h € S* there exists a communication rule that
crosses membrane h with f*(h) on its LHS. By the definition of crossing mapping,
there exists one transition step starting from C in which all objects f*(h) trigger
their corresponding communication rules crossing the membrane labeled by h, and
this causes #5* application of rules.

Let us consider now the set Cg. By definition, and due to the maximal par-
allelism, all the objects in Cg trigger an evolution rule in any transition step
starting from C. In particular, there exists a transition step where the number of
application of rules is exactly #Cg + #5*. In other words, the maximum number
of applications of rules in a transition step starting from C, £ (II,C), is at least
#Cg + max{#5S |3 a crossing mapping [: S — supp(Cc)}.

Next, we will prove that the maximum number of applications of rules 3; (11, C)
is not greater than #Cg + max{#5 | 3 a crossing mapping f : S — supp(Cc)}.

Let C; be a configuration obtained from C in one transition step and let Tg
(T, resp.) be the multiset of elements of the configuration C which have triggered
evolution (communication, resp.) rules in order to reach C;. Obviously, the number
of applications of rules in the transition step C = Cy is #1¢ + #1k. Now, let us
split the multiset T¢ into two multisets: T§&, the submultiset from T containing
the elements which are LHS of some evolution rule, and 7%, the submultiset from
T containing the elements which are not LHS of any evolution rule. We have that
#To = #TE + #T2° and

#1Tg + #1§ = #Cg, since Tk UTE = Cg.

#TF° < max{#5S|3 a crossing mapping f : S — supp(Cc)}, since we can
consider the natural crossing mapping f* : Sp — supp(Cc) where St is the
set of labels of membranes crossed by the objects in T74°.

Therefore, the number of applications of rules in the transition step from C to Cy
is less than or equal to #Cg + max{#S5 | 3 a crossing mapping f : S — supp(Cc)}
and this concludes the proof. O

Due to the high computational cost of computing 51 (II,C), sometimes we would
rather look for an upper bound easier to compute. The next corollary gives such
an upper bound for 31 (II,C). The proof is immediate.

An Approach to the Degree of Parallelism in P Systems 95

Corollary 1. Let IT be a P system working with a sequential communication se-
mantics. Let C be a configuration, and H the set of labels of II. Then

Pi(I1,C) < #Cp + #H.
We illustrate the theorem with the following example.

Ezample 3. Let us consider a P system with set of labels H = {0, 1,2,3} and the
following set of rules:

Rule 1: [a]; — b[]1, Rule 5: z[]; — [z];, Rule 8: [a — b],
Rule 2: [a]s — b[]2, Rule 6: z[]3 — [z]2, Rule 9: [a — b]2,
Rule 3: [a]s — b[]3, Rule 7: z[]3 — [z]5, Rule 10: [a — b]3,
Rule 4: [2]; — b]];.
Consider now a configuration C = [[az3]; [a®2]2 [az]3 2%]o. Then,
Ce = {(a7 1)7 (av2)7 (CL72)7 (CL,3)}7
Co ={(z,1),(z,1),(z,1),(2,0),(z,0),(2,0)}.

Therefore, we have #Cg = 4 and #H = 4. From the previous corollary we deduce
that £, (II,C) < 8.
Actually, a more detailed study of the example shows that

max{#S |3 a crossing mapping f: S — Cc} =3

(e.g., by taking § = {1,2,3} and f(1) = (2,1), f(2) = (a,2), f(3) = (2,0)). Thus,
from Theorem 1 we obtain the maximum number of applications of rules in a
transition step from the current configuration: 8;(II,C) = 7.

3.2 The parallel communication case

In order to compute the number of rule applications, in this case we do not dis-
tinguish between evolution and communication rules.

Theorem 2. Let I be a P system using a parallel communication semantics, and
let C be a configuration of II. Then the mazimum number 51 (II,C) of applications
of rules in one transition step starting from C is $1(I1,C) = #Cg + #Cc.

Proof. In this case the number of applications of rules is constant regardless of the
non-determinism of the P system. Indeed, because of the maximal parallel con-
dition applied both over evolution and communication rules, no “usable” object
will remain unused. Therefore, the number of applications of rules for any pos-
sible transition step starting from C coincides with the number of objects in the
configuration that can trigger at least one rule. 0O

The following example illustrates this result.

Ezxample 4. Let us consider again the P system from Example 3 and the same
configuration, but now considering the parallel communication semantics. In this
case, the sets Cp and Cc do not change, because they are independent of the
semantics of the system. Therefore, 51 (I1,C) = #Cg + #Cc = 10.

96 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

4 An Estimation of Maximal Parallelism

In the previous section, we have obtained the maximum number of applications
of rules for any transition step starting from a given configuration. We intend to
extend our study to all possible transition steps in the computation tree. Given a
configuration, there might exist several possible computations to follow, and many
different reachable configurations. We shall give an upper bound to the number of
applications of rules performed in a transition step from any configuration of the
computation tree.

Such a bound can be used for estimating, given a P system design, which is the
degree of parallelism that it is using. It is worth to remark that this estimation is
done without performing all the computations.

In order to obtain such an estimation, we start by building an extension of the
notion of dependency graph of a P system, that will be called labeled dependency
graph. Dependency graphs of P systems were presented in [3] as a tool for finding
short paths in computation trees. Later, this notion was used as an efficient tool for
studying the borderline of the tractability through P systems (see, e.g., [9, 10, 11]).
Before going on, we shortly recall the main features of dependency graphs.

The dependency graph of a P system II is a directed graph G = (Viz, Enr)
such that Vi is the set of all the pairs (z,m), where z is a symbol of the alphabet
of IT and m is the label of a membrane, and E7 is the set of all ordered pairs
(arcs) of elements of Viz, ((21,m1), (22,m2)), such that (z1,mq) is the LHS of a
rule and (z2,m2) belongs to the RHS of that rule (recall the notation introduced
in Subsection 2.4).

Given a rule r = (ag,m1) — (a1, ma)(az, m2)...(an, ms), for each (e,msz) in
the RHS of r, we will consider a directed labeled arc

(Zl7m1) ﬁ} (67m2)a

where k is the multiplicity of (e,ms) in the RHS of rule r. Note that, given two
nodes of the graph, there might exist several arcs connecting them with different
labels 4.

Note that the labeled dependency graph, in the same way as the dependency
graph, does not depend on the initial configuration. It only depends on the mem-
brane structure and the set of rules of the P system.

We shall extract information from this labeled dependency graph that allows us
to compute an integer G(I1,C), associated with a P system IT and a configuration
C, denoting an upper bound of the number of simultaneous applications of rules
in any transition step starting from any configuration reachable from C.

In a certain sense, S(II,C) represents the capability of the P system to exploit
the parallelism along the computation. The greater B(II,C) is, the better is the
design, from the point of view of using the parallelism.

4 Following [14], the definition of labeled dependency graph corresponds to an edge-
labeled, vertex-labeled, directed loop multigraph.

An Approach to the Degree of Parallelism in P Systems 97

Next, we give an explicit calculus for 5(II,C) (in case it exists) based on the la-
beled dependency graph. As we did in the previous section, we distinguish between
the different semantics of the P systems.

4.1 The sequential communication case

Let us first consider a semantics where only one object can cross a membrane in
a step of computation.

Theorem 3. Let IT be a P system, C a configuration of II and let T be the set of
LHS of the rules of II. Let us consider the sequential communication semantics.
Let G be the subgraph of the labeled dependency graph of II generated by the source
C and sink T.

1. If there exists in G a cycle such that the labels v /k of its arcs verify the follow-
mg:
o all the rules r involved in the cycle are evolution rules,
e at least one of the multiplicities k appearing in the cycle is greater than 1,
then, there is no upper bound on the number of simultaneous applications of
rules in one step starting from any configuration of II reachable from C.
2. Otherwise, B(I1,C) = (#Cg + #C¢) ~B1(;H'C)_1, where:
e By is the mazximality cardinal of the RHS of the rules of II.
® prc is the mazimum of the lengths of the paths in the labeled dependency
graph of II starting from an element of C and not containing duplicated
nodes.

Proof. Let us first consider the case where there exists in G a cycle such that
all the rules involved in it are evolution rules, and such that at least one of the
multiplicities k appearing in the cycle is greater than 1. Let ¢» = (V, E) be such a
cycle, with V = {xq,...,zn} and E = {(z;,z;11) |1 € {0,...,n—1} U {(@n, z0)}
and let K be the product of multiplicities in ¢, K > 2.

Consider now an element 2y in the configuration C such that there exists a
path, P, in the labeled dependency graph starting in zp and ending on zy. The
existence of such zj is granted, since, by definition, G is the subgraph of the labeled
dependency graph of I generated by the source C and sink T, and therefore every
vertex in G (in particular, z¢) is reachable from a vertex from C. Let us denote the
product of multiplicities of P by S, and let m be the length of P.

There exists a computation such that in the configuration C’ obtained after
m steps there are at least S occurrences of xy (these copies of xy are obtained
by application of the rules of the path P). Then, after n further steps (n is the
length of the cycle 1) we can reach another configuration where each element xg
has produced K copies of itself, following the cycle % (i.e., the total number of
copies of x is now at least S - K). This cycle of n steps can be iterated, and after
r loops there will be at least S - K" elements zy. All these elements may continue
evolving in the next step of the computation, granting the existence of an infinite

98 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

computation with an unbounded number of objects evolving. Thus, we conclude
that there is no upper bound for the number of applications in a single transition
step.

Notice that in the case when for every cycle we have that at least one of the
rules involved in it is a communication rule, then such rule can be triggered only
once for each transition step, regardless the number of objects that could trigger
it. That is, although there may be an unbounded amount of objects appearing in
the LHS of a communication rule, the number of simultaneous applications of any
communication rule is always 1. In other words, the number of applications of rules
in a single step inside the cycle is bounded, although the product of multiplicities
in the arcs in the cycle was greater than 1.

Let us now consider the case where there is no cycle in G such that the product
of the multiplicities of its arcs is greater than 1. The number of objects in the
initial configuration that can trigger a rule is #Cg+#Cc. Therefore, the number of
applications of rules in the first computation step is at most #Cg+#Cc. Let By be
the maximal cardinality of the RHS of the rules of II; then, the number of objects
in the second configuration that can trigger a rule is bounded by (#Cg++#Cc)-Brr.
This number is obviously also an upper bound for the number of applications of
rules in the second step of computation. Following a similar reasoning, we deduce
that (#Cg + #C¢) - (B)™ is an upper bound for the number of applications of
rules performed in the (n + 1)-th step of any possible computation starting from
C.

Let us consider now the labeled dependency graph of the P system, and consider
all the paths in this graph starting from objects in C and such that they do not
contain duplicated nodes. Let us denote by p ¢ the maximum of the lengths of
these paths.

The number of consecutive transition steps increasing the number of appli-
cations of rules is bounded by prc — 1, so the upper bound for the number
of applications of rules in a single transition step during the computation is
(#Cg + #C¢) - Blpme)-1,

Note that the computation can be infinite in case that there exist cycles in G,
but as these cycles have all their arcs with multiplicity 1, such cycles do not cause
an increase on the number of applications of rules. O

We illustrate this theorem with some examples. In the first one, S(I1,C) is
finite, although we have an infinite computation and the number of objects in a
configuration is not bounded.

Ezample 5. Let us consider the P system IT with alphabet I" = {a, b, ¢}, membrane
structure p = [[|1 Jo, and set of rules:

Rl:[a]i = b[]1, R2:[b— c?]o, R3:¢c[]1 — [a],

and let us consider the sequential semantics. The labeled dependency graph of this
P system is depicted in Figure 2.

An Approach to the Degree of Parallelism in P Systems 99

(a,1)
R1/1 R3/1
oy 22, o)

Fig. 2. The labeled dependency graph of the system in Example 5

IT is a non-deterministic P system. Let [[a];]o be a configuration of I1. A
possible computation starting from C is:

]

From o with one application of rule R1 we reach

[la]i] [[]10]o
From [[]1b]o with one application of rule R2 we reach (1120
From [[]1¢?]o with one application of rule R3 we reach [[al]iclo
From [[a]1 c]o with one application of rule R1 we reach [[]1bc]o
with one application of rule R2 9
From []1 belo {and one application of rule R3 we reach [[a]i %Jo
From [[a]; ¢?]o with one application of rule R1 we reach [[11b6c2]o
with one application of rule R2 3
From [[] b¢*Jo {and one application of rule R3 } we reach [[a]1 ¢’ o

Notice that in this computation, after 2k + 1 transition steps we reach a configu-
ration [[a]1 c¥]o. This computation is infinite and the number of objects ¢ is not
bounded. However, the number of applications of rules in any single transition step
from any configuration is bounded by 2

It is worth to remark that we do not need to develop the computation tree
in order to calculate this upper bound. Notice also that in this example, there
exists a cycle in the labeled dependency graph such that one of the multiplicities
appearing in it is greater than 1. However, we are in case 2 of Theorem 3, since
there are communication rules involved in the cycle.

We have Cc = {(a,1)}, Cg =0, By = 2, and pjzc = 2, so from Theorem 3 we
deduce

B(IT,C) = (#Cp + #Cc) - BT = 1.9271 =9,

The following example shows that the upper bound 3(I1,C) can be reached in
some cases.

Ezample 6. Let us consider the P system IT with alphabet I' = {a1, ..., ar, x,y, 2},
membrane structure g = [[]1 []2]o, and set of rules:

Ri:[z]i —ailli, Rs: [z — ailo,
Ro: [yle — a1 (]2, Raqe [ai — aZyq o, with i€ {1,...,k — 1},

100 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

and let us consider the sequential semantics. The labeled dependency graph of this
P system is depicted in Figure 3.

(1)
%
w2 2 G B2 B2)
Re/1
(2.0)

Fig. 3. The labeled dependency graph of the system in Example 6

IT is a deterministic P system. Let [[2]1 [y]2 2]o be a configuration of II. In
the first step we have three applications of rules (Ry, Ry and Rj are applied
once each) which produces the configuration [[]; []2 a$]o with objects a1 in the
membrane labeled by 0. It is easy to check that in the i-th step, with ¢ € 2,... k,
we have 3 - 2¢=2 applications of rule R; o which produce 3 -2°~! objects a; in the
membrane labeled by 0. Therefore, the maximum number of applications of rules
in any step of computations is reached in the last step, where we have 3 - 2F~2
applications of rules.

The upper bound 3(II,C) can be obtained following the formula of the theorem.
Since Cg = {(a1,0)}, Cc = {(2,1),(y,2)}, B =2, and przc = k, we have

B(IT,C) = (#Cg + #Cc) - BY™) ™ = 3. 951,

We have that the maximum number of applications of rules actually performed
in the computation (3 - 28~2) is strictly smaller than the upper bound 3(I1,C).

Let us consider now a different initial configuration, namely [[]1 []2 a}]o. Then,
in the first step three applications of R4 are performed, producing the configuration
[[]1]]z2aS]o- In the second step, by 3-2 applications of Ry we obtain [[] []2 a3?]o.
Finally, in the (k — 1)-th step, by 3-2*~2 applications of rule Ry o we obtain the
final configuration [[|1 []2 aszil}o.
In this case we have Cg = {(a1,0), (a1,0), (a1,0)}, Cc = 0, B = 2 like before,

but pgc = k — 1. Therefore, the upper bound
BUIT,C) = (#Cp + #Cc) - By~ =3 202

is actually reached.

An Approach to the Degree of Parallelism in P Systems 101
4.2 The parallel communication case

Let us now consider the parallel communication semantics. We obtain a similar
result as in the sequential case. The only difference is that in the previous case
we have to check whether the cycle contains or not a communication rule, since
the flow in a cycle with communication rules is one due to the semantics. In the
parallel communication case, whenever there is a cycle in G such that at least one
of the multiplicities of its arcs is greater than 1, there is no upper bound on the
number of applications of rules in a transition step, regardless of the occurrence
of communication rules in the cycle.

Theorem 4. Let II be a P system, C a configuration of I, and let T be the set of
LHS of the rules of II. Let us consider the parallel communication semantics. Let
G be the subgraph of the labeled dependency graph of II generated by the source C
and sink T.

1. If there exists in G a cycle such that the labels r/k of its arcs verify that at
least one of the multiplicities k appearing in the cycle is greater than 1, then
there is no upper bound on the number of applications from a configuration of
11 reachable from C.

2. Otherwise, B(II,C) = (#Cg + #Cc) ~B§7pn’c)71, where:

e By is the mazximal cardinality of the RHS of the rules of II.

o prc is the mazimum of the lengths of the paths in the labeled dependency
graph of Il starting from an element of C and not containing duplicated
nodes.

Proof. The proof is similar to the proof of Theorem 3. 0O

Ezample 7. Let us consider again Example 5, with the same configuration [[a];]o,
but now under the parallel communication semantics. The labeled dependency
graph is the same, but the system is now deterministic. Indeed, the possible choices
in the sequential case occurred only when several communication rules were ap-
plicable to the same membrane.

The reader can easily check that for every k > 0, we have

k

Co =[[a® 11lo, Carsr=[[110* o, Camya=[[h

Jo-

In every step all the objects trigger a rule, and hence the number of applications
of rules is not bounded. We have deduced this by tracing the computation, but
this is not necessary, as we can draw the same conclusion from Theorem 4.

Example 6 also shows that the upper bound S(I1,C) can be reached in the
parallel communication case, since the behavior of the computation is identical
regardless of the communication semantics.

102 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

5 Conclusions and Further Work

The comparison of two P systems which perform the same task is extremely hard.
These computational devices are too complex to be evaluated only with usual
parameters time and space. Sevilla Carpets and its associated parameters are useful
tools for the comparison of two computations and therefore, useful for deterministic
P systems, but not in the general case.

In this paper we make a first step in this direction. We introduce the concept
of injective mapping w.r.t. a multiset, and we extend the definition of dependency
graph to labeled dependency graph by adding more information. The usefulness of
this new tool should be further investigated in the future.

We have proved several results concerning the estimation of the use of paral-
lelism in P systems.

We consider three main open directions for developing the ideas presented in
this paper.

First of all, a very natural improvement is to search for an estimation of the
average number of applications of rules in each step of the computation of a P
system, instead of knowing only the maximum.

Secondly, the P system model studied in this paper is quite simple, only allow-
ing pure evolution or communication rules. It is interesting to study the effect on
the bounds of parallelism of other types of rules, e.g., symport/antiport, dissolu-
tion, etc.

Finally, another open line is related to calculating estimations for the paral-
lelism on families of P systems. This is motivated by the fact that in the literature
solutions to decision problems are usually carried out via uniform or semi-uniform
families of P systems, not by using only a single P system. It is thus very inter-
esting to extend the results presented here to families of P systems, in order to be
able to compare different solutions to the same problem.

Acknowledgement

Work supported by project TIN2005-09345-C04-01 of Ministerio de Educacién y
Ciencia of Spain, cofinanced by FEDER funds.

References

1. G. Ciobanu, Gh. Paun, Gh. Stefanescu: Sevilla carpets associated with P systems.
In Proceedings of the Brainstorming Week on Membrane Computing (M. Cavaliere,
C. Martin-Vide, Gh. Pdun, eds.), Tarragona, Spain, 2003, Report RGML 26/03,
135-140.

2. G. Ciobanu, Gh. Paun, M.J. Pérez-Jiménez: On the branching complexity of P sys-
tems. Fundamenta Informaticae, 2006, in press.

10.

11.

12.

13.

14.

15.
16.

17.

An Approach to the Degree of Parallelism in P Systems 103

. A. Cordén-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Ntfiez:
Weak metrics on configurations of a P system. In Proceedings of the Second Brain-
storming Week on Membrane Computing (Gh. Pdun, A. Riscos-Nufiez, A. Romero-
Jiménez, F. Sancho-Caparrini, eds.), Report RGNC 01/04, University of Seville, 2004,
139-151.

A. Cordén-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Ntfiez:
Exploring computation trees associated with P systems. In Membrane Computing,
LNCS 3365, Springer, 2005, 278-286.

A. Cordén-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nufiez,
F. Sancho-Caparrini: Cellular solutions of some numerical NP-complete problems:
A Prolog implementation. In Molecular Computational Models: Unconventional Ap-
proaches (M. Gheorghe, ed.), Idea Group, Inc., London, 2005.

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nuifiez: On descriptive com-
plexity of P systems. In Membrane Computing, LNCS 3365, Springer, 2005, 320-330.
M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez: A fast P system for
finding a balanced 2-partition. Soft Computing, 9, 9 (2005), 673-678.

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nuifiez: Multidimensional
descriptional complexity of P systems. In Proceedings of the 7th International Work-
shop on Descriptional Complexity of Formal Systems (C. Mereghetti, B. Palano, G.
Pighizzini, D. Wotschke, eds.), Como, Italy, 2005, 134-145.

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nuifiez, F'. Romero-Campero:
On the power of dissolution in P systems with active membranes. In Membrane
Computing, LNCS 3850, Springer, 2005, 373-394.

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nuifiez, F. Romero-Campero:
P systems with active membranes, without polarizations and with dissolution: A
characterization of P. In Unconventional Computation, LNCS 3699, Springer, 2005,
105-116.

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez, F. Romero-Campero:
Computational efficiency of dissolution rules in membrane systems. International
Journal of Computer Mathematics, 2006, in press.

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving SAT
with membrane creation. In Computability in Furope 2005, CiE 2005: New Com-
putational Paradigms (S. Barry Cooper, B. Lowe, L. Torenvliet, eds.), Report ILLC
X-2005-01, University of Amsterdam, 82-91.

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A linear solu-
tion of Subset Sum problem by using membrane creation. In Mechanisms, Symbols
and Models Underlying Using Cognition, First International Work-Conference on
the Interplay between Natural and Artificial Computation, IWINAC 2005 (J. Mira,
J.R. Alvarez, eds.), LNCS 3561, Springer, 2005, 258-267.

B. Mehdi, G. Chartrand: Introduction to the Theory of Graphs. Allyn and Bacon,
Inc. Boston, 1971.

Gh. Paun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
M.J. Pérez-Jiménez, A. Riscos-Nufiez: Solving the Subset-Sum problem by active
membranes. New Generation Computing, 23, 4 (2005), 367-384.

M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving the Bin Packing problem by
recognizer P systems with active membranes. In Proceedings of the Second Brain-
storming Week on Membrane Computing (Gh. Paun, A. Riscos-Nunez, A. Romero-
Jiménez, F. Sancho-Caparrini, eds.), Report RGNC 01/04, University of Seville, 2004,
414-430.

104 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Nunez

18. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. In Proceedings of the 5th Work-
shop on Descriptional Complezity of Formal Systems, DCFS 2003 (E. Csuhaj-Varju,
C. Kintala, D. Wotschke, Gy. Vaszyl, eds.), Budapest, 2003, 284-294.

19. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: Solving VALIDITY
problem by active membranes with input. In Proceedings of the Brainstorming Week
on Membrane Computing (M. Cavaliere, C. Martin-Vide, Gh. Pdun, eds.), Tarragona,
Spain, 2003, Report RGML 26/03, 279-290.

20. A. Riscos-Nunez: Cellular Programming: Efficient Resolution of Numerical NP-
complete Problems. Ph.D. Thesis, University of Seville, 2004.

21. A. Syropoulos: Mathematics of multisets. In Multisets Processing, LNCS 2235,
Springer, 2001, 347-358.

