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Abstract 

An approach to the implementation of digital filters is presented that 
employs a small set of relatively  simple digital circuits in a highly  regu- 
lar and  modular  configuration, well suited to LSI construction.  Using 
parallel processing and serial, two’s-complement arithmetic, the 
required arithmetic circuits (adders and  multipliers) are quite simple, 
as  are the remaining circuits, which consist of shift registers for delay 
and small read-only  memories for coefficient storage. The arithmetic 
circuits are readily multiplexed to process  multiple data inputs or to 
effect  multiple,  but different, filters (or both), thus providing for effi- 
cient hardware utilization. Up to 100 filter sections can be multiplexed 
in audio-frequency applications using  presently available digital cir- 
cuits in the medium-speed  range. The filters are also easily modified to 
realize a wide range of filter forms, transfer functions,  multiplexing 
schemes, and round-off  noise  levels by changing  only the contents of 
the read-only  memory and/or the timing  signals  and the length of the 
shift-register delays. A simple  analog-to-digital  converter, which  uses 
delta modulation as  an intermediate encoding  process is also pre- 
sented for audio-frequency  applications. 

Manuscript received May 6, 1968. 

Introduction 

The basic theory underlying the analysis and design of 
digital filters is well advanced (although by no means 
complete) and  quite  a few summaries of theoretical results, 
are now available in  the engineering literature [I]-[4 1.. 
However, the impact of digital filtering theory  has not yet 
been felt by most of the engineers and technicians who 
design and use the wide variety of filters presently con- 
structed from RLC or crystal circuits. This has been due, 
in  part,  to a general unawareness of the possibilities of 
digital filtering and also, until recently, to the prohibitive 
complexity and cost of constructing  most digital filters. 
Hence, digital filter implementation has been confined 
primarily to computer  programs  for simulation work or 
for processing relatively small amounts of data, usually 
not  in real time. However, the rapid development of the 
integrated-circuit technology and especially the  potential 
for large-scale integration (LSI) of digital circuits now 
promise to reverse this  situation in many instances and to 
make many digital filters more  attractive  than  their  ana- 
log counterparts,  from  the  standpoints of cost, size, and 
reliability. 

In this  paper, we present an approach to  the physical 
implementation of digital filters which has  the following 
features. 

1) The filters are constructed from  a small set of rela- 
tively simple digital circuits, primarily shift registers and 
adders. 

2) The configuration of the digital circuits is highly 
modular in form and  thus well suited to LSI construction. 

3) The configuration of the digital circuits has  the flexi- 
bility to realize a wide range of filter forms, coefficient 
accuraices, and round-off noise levels (i.e., data accura- 
cies). 

4) The digital filter may be easily multiplexed to pro- 
cess multiple data inputs  or to effect multiple, but differ- 
ent, filters with the same digital circuits, thus providing 
for efficient hardware utilization. 

After a brief  review  of general digital filter forms,  the 
advantages of serial, two’s-complement, binary  arithmetic 
in the implementation of digital filters are discussed. The 
required arithmetic circuits (adder/subtractor, comple- 
menter, and multiplier) are  then described, followed by 
the techniques for multiplexing. Finally, several examples 
are presented of multiplexed digital filters that have been 
constructed and tested. A description of a simple analog- 
to-digital converter for relatively low-frequency applica- 
tions is also included. 

Canonical Forms 

The transfer characteristics of a digital filter are com- 
monly described in terms of its z-domain transfer func- 
tion [1], 
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Fig, 1. The direct form for  a  digital filter. 

Fig. 2. The cascade form for  a  digital filter. 
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where z1 is the  unit delay operator.  There  are a multitude 
of  equivalent digital  circuit  forms  in which  (1)  may be 
realized, but three  canonical  forms,  or  variations  thereof, 
are  most often employed.  These forms are canonical in the 
sense that a minimum  number of adders, multipliers, and 
delays are required to realize (1) in the general case. The 
first of these forms, shown in Fig. 1, is a direct realization 
of (1) and  as such  is called the direct form. It  has been 
pointed out by Kaiser [5] that use  of the direct form is 
usually to be avoided  because the accuracy  requirements 
on  the coefficients { ai f and { bi } are often severe. There- 
fore,  although  the  implementation techniques  presented 
here are applicable to  any filter form, we  will  not spe- 
cifically  consider the direct form. 

The second  canonical form  corresponds to a  factoriza- 
tion of the  numerator and denominator polynomials  of 
(1) to produce an H(z) of the  form 

where m is the integer part of (n+ l)/2. This is the cascade 
form for a digital filter, depicted in Fig. 2. Second-order 
factors (with real coefficients) have  been  chosen for (2) 

Fig. 3. The parallel form for  a digital filter 

Fig. 4. (A)  Second-order section for  digital  all- 
pass filter  in  cascade form. (6) Alternate con- 
figuration  for  digital  all-pass  filter in cascade 
form. 

(AI 

rather  than  a mixed set of first- and second-order factors 
for real and complex roots, respectively, to simplify the 
implementation of the cascade form, especially when mul- 
tiplexing is employed.  If n is odd,  then  the coefficients 012% 
and PZi will equal zero for some i. The aZi multipliers are 
shown in dotted lines in Fig. 2, because for  the very com- 
mon case  of zeros on the  unit circle in the  z-plane  (cor- 
responding to zeros of  transmission in the frequency re- 
sponse of the filter) the associated t~~~ coefficients are 
unity. Thus,  for these coefficients, no multiplications 
are actually required. 

The  third  canonical  form is the parallel form, shown in 
Fig. 3, which results from  a  partial faction expansion of 
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(1) to produce 

where yo= an/b, and we have again chosen to use all sec- 
ond-order  (denominator) factors. Note  that all three 
canonical forms are entirely equivalent with regard to the 
amount of storage required (n unit delays) and  the num- 
ber of arithmetic  operations required (2n+l multipli- 
cations  and 2n additions per sampling period). As previ- 
ously noted, however, the cascade form requires signifi- 
cantly fewer multiplications for zeros on  the unit circle 
and is thus especially appropriate  for filters of the  band- 
pass and  the  band-stop variety (including low-pass and 
high-pass filters). 

Another interesting filter form may  be derived for  the 
special case of an all-pass filter (APF), i.e., a filter or 
“equalizer” with unity gain at all frequencies. The transfer 
function for a discrete APF has the general form [6] 

Thus, with ai= bnPi and bo= 1, the  direct  form  can be used 
to implement (4). However, to reduce the accuracy re- 
quirements on the filter coefficients, a modified cascade 
form can  be derived for  the  APF, corresponding to an 
HAi(z) of the form 

Second-order sections for  the cascade form of the APF 
are shown in Fig. 4. Fig. 4(A) is a straightforward modifi- 
cation of the  standard cascade form in Fig. 2. Note  that 
because the Pli multiplier may be shared by both  the feed- 
forward  and feedback paths, only three multiplications 
are required per second-order section rather than  four. 
The number of multiplications may be further reduced by 
using the  form of Fig. 4(B),  which requires only two mul- 
tiplications per second-order section. But now, two  addi- 
tional delays are required preceding the first second-order 
section to supply appropriately delayed inputs to  the first 
section. Therefore, the cascade form of Fig. 4(B) requires 
a  total of n multiplications and  n+2 delays for  an  nth- 
order  APF. 

Serial  Arithmetic 

Using any of the canonical forms described in the  pre- 
ceding section, all of the coefficient multiplications and 
many of the  additions  during a given Nyquist  interval 
may be performed simultaneously. Therefore, a high de- 

gree of parallel processing is possible in  the implementa- 
tion of a digital filter and  this may be achieved by provid- 
ing multiple adders  and multipliers with appropriate  inter- 
connections. Economy is then realized by using serial 
arithmetic, and by sharing the  adders  and multipliers 
(using the multiplexed circuit configurations to be  de- 
scribed) insofar as circuit speed will  allow. 

In addition to a significant simplification of the  hard- 
ware, serial arithmetic provides for an increased modu- 
larity  and flexibility in the digital circuit configurations. 
Also, the processing rate is limited only by the speed of 
the basic digital circuits and  not by carry-propagation 
times in  the  adders  and multipliers. Finally, with serial 
arithmetic, sample delays are realized simply as single- 
input single-output shift registers. 

The two’s-complement representation [7] of binary 
numbers is most  appropriate  for digital filter implementa- 
tion using serial arithmetic because additions may pro- 
ceed (starting with the least significant bits) with no  ad- 
vance knowledge of the signs or relative magnitudes of the 
numbers being added (and with no later  corrections of the 
obtained sums as with one’s-complement). We will 
assume a two’s-complement representation of the  form 

which represents a number (6) having a value of 

i=l 

where each 6i is  either 0 or 1. Thus,  the  data is assumed to 
lie in  the interval 

-1 5 6 < I, (8) 

with the sign of the  number 6 being given by the last  bit 
(in time) 60. 

An extremely useful property of two’s-complement 
representation is that in the  addition of more than two 
numbers, if the magnitude of the  correct  total sum is 
small enough to allow its  representation by the N avail- 
able bits, then the correct total sum will be obtained 
regardless of the  order  in which the  numbers  are  added, 
even if an overflow occurs in some of the  partial sums, 
This  property is illustrated in Fig. 5,  which depicts num- 
bers in two’s-complement representation as being arrayed 
in a circle, with positive full scale (1 - 2-“+’) and negative 
full scale (- 1) being adjacent. The  addition of positive 
addends produces counterclockwise rotation  about  the 
circle, whereas negative addends  produce clockwise rota- 
tion.  Thus, if the  correct  total  sum satisfies (S), no infor- 
mation is lost with positive.or negative overflows and  the 
correct  total  sum will be obtained. 

This overflow property is important  for digital filter 
implementation because the  summation  points in the 
filters often contain more  than  two  inputs (see Fig. 3); 
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0 

Fig. 5. Illustration of overflow 
property in two’s-complement 
binary  representation. 

Fig. 6. Serial two’s-complement adder. 
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although  it may  be possible to argue that because of gain 
considerations the  output of the  summation  point  cannot 
overflow, there is no assurance that  an overflow  will not 
occur in the process of performing the  summation. Note 
that this  property also applies when one of the  inputs 
to the summation has itself  overflowed as a result of a 
multiplication by a coefficient of magnitude greater than 
one. 

Arithmetic Unit 

The three basic operations to be realized in  the imple- 
mentation of a digital filter are delay, addition  (or  subtrac- 
tion), and multiplication. As previously mentioned, serial 
delays (z-’) are realized simply as single-input single- 
output shift registers. Realizations for  a serial adder  (sub- 
tractor)  and  a serial multiplier are described in this sec- 
tion.  The  adders  and multipliers, including their inter- 
connections, will be said to comprise the  arithmetic  unit 
of the digital filter. 

A serial adder  for two’s-complement addition is  ex- 
tremely simple to construct [7]. As shown in Fig. 6, it 
consists of a full binary adder with a single-bit delay 
(flip-flop) to transfer  the  carry  output back to  the carry 
input.  A  gate is also required in the  carry feedback path 
to clear the  carry to zero at  the beginning of each sample. 
Accordingly, the carry-clear input is a timing signal, 
which is zero during  the least significant bit of each sample 
and is one otherwise. 

A serial two’s-complement subtractor is implemented 
by first complementing (negating) the  subtrahend  input 

CARRY 
CLEAR (BIT DELAY1 

v n 

SUBTRAHEND 4 E ADDER r l D I F F E R E N C E  

Fig. 7. Serial two’s-complement subtractor. 

Fig. 8. Serial two’s complementer. 
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and then adding  the complemented subtrahend to the 
minuend. To complement a number in two’s-complement 
representation, each bit of the representation is inverted 
and  a  one  is  then added to the least significant bit of the 
inverted representation (i.e., 2-”+* is added to the inverted 
number). The corresponding serial subtractor circuit is 
shown in Fig. 7. The  subtrahend is inverted and  a one is 
added to the least significant bit by clearing the initial 
carry  bit to one, rather  than to zero as in the  adder. This is 
accomplished by means of two inverters in the  carry feed- 
back path,  as shown. 

A separate two’s complementer (apart  from  a  subtrac- 
tor) may also be constructed; such circuits are required in 
the multiplier to be described. This operation is imple- 
mented with a simple sequential circuit which, for each 
sample, passes unchanged all initial (least significant) bits 
up to  and including the first “1” and then inverts all suc- 
ceeding bits. A corresponding circuit is depicted in Fig. 8. 

A serial multiplier may be realized in a variety of con- 
figurations, but  a special restriction imposed by this im- 
plementation approach makes one configuration most ap- 
propriate. This restriction is that  no  more  than N bits per 
sample may be generated at any point in the digital net- 
work because successive samples are immediately adja- 
cent in time and there are  no  “time slots” available for 
more than N bits per sample. Hence, the full (N+K)-bit 
product of the multiplication of an N-bit sample by a 
K-bit (fractional) coefficient may not be accumulated 
before rounding is performed. However, using the multi- 
plication scheme described below, it is possible to obtain 
the same rounded N-bit  product  without ever generating 
more than N bits per sample. Rounding  is usually prefer- 
able, rather  than  truncation, to limit the  introduction of 
extraneous low-frequency components (dc drift)  into  the 
filter. 
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Fig. 9. Serial  multiplication using no more  than 
N bits per  data word. 

The serial multiplication scheme is depicted in Fig. 9. 
To simplify the  required  hardware,  both the multiplicand 
(data)  and  the multiplier (coefficient) are constrained to be 
positive, with appropriate sign changes being made before 
and after the multiplication. Thus 6o = 0 in Fig. 9 and the 
sign of the multiplicand (6) is stored separately as  SGN 6. 
For convenience, the multiplier (a)  will  be  assumed to lie 
in the interval. 

-2  < a < 2 .  (9) 

Although (9) is not necessarily applicable in the general 
case, it  does  hold  for  the  denominator coefficients of the 
cascade and  parallel  forms,  and usually for  the  numeraror 
coefficients  of the cascade form  as well. The  magnitude of 
the  multiplier  is thus represented in  Fig. 9 as 

C Y O ’ ~ 1 ~ 2  ‘ ‘ * a K ,  (10) 

which represents a value of 

The restriction  in (9) and  the resulting representation  in 
(10) and (1 1) are in no way essential to the serial multi- 
pliers to be described, but are  meant only to be representa- 
tive of the  multiplication scheme. The sign of the multi- 
plier is also  stored  separately as  SGN a. 

The multiplication scheme in Fig. 9 proceeds as follows. 
The multiplicand is successively shifted (delayed) and 
multiplied (gated) by the  appropriate bit (ai) of the multi- 
plier. These delayed gated instances of the multiplicand 
are  then added in the  order  indicated. After each addi- 
tion (including the  “addition” of ~ K B  to 0), the  least 
significant bit of the resulting partial  sum (i.e., 6-v-,.l,aN-.l, 
bN-l, . + . , fN-$ is truncated to prevent the succeeding 
partial  sum  from exceeding N bits  in length. Note  that 
these bits may be truncated because the  full  unrounded 
product would be 

MULTIPLIER BIT SECTIONS 

0 . 8  

Fig. 10. Serial multiplier, showing modularity. 

Fig. 1 1. A multiplier  bit section. 

a i  p i t 1  

and to  round (12) to N bits, only the value of the  bitfx-l 
is required. Thus, before truncating J;v-l, its value is 
stored elsewhere to be added in  the final step to g, as 
shown in Fig. 9, to obtain  the  rounded  product (p). 

The serial multiplier corresponding  to  the scheme de- 
scribed above is shown  in  Fig. 10. The absolute value of 
each incoming datum (6) is taken  and  its sign (SGN 6) is 
added modulo-2 to the coefficient  sign (SGN a)  to  de- 
termine the  product sign (SGN a.6). The (positive) multi- 
plicand is then successively delayed and gated by the ap- 
propriate multiplier bits (ai) and  the  partial  sums are ac- 
cumulated in  the multiplier bit sections. A single multi- 
plier bit section is shown  in Fig. 11. The  least significant 
bit of each partial sum is truncated (gated to zero) by the 
appropriate timing signal Y ~ + ~ .  Rounding is accomplished 
by adding  in  the  last  truncated  bit (fN-3 via the * input  to 
the last bit section. Finally,  the sign of the  product is in- 
serted using a two’s-complementer such as that in  Fig. 8. 
At high data rates, it may be necessary to insert extra 
flip-flops  between some  or all  of the multiplier bit sections, 
as shown  in dotted lines in Fig. 11, to keep the  propaga- 
tion delay through  the  adder  circuits  from  becoming ex- 
cessive. 

Several observations concerning the serial multiplier 
should be made at this point. First,  there  is  a delay of K 
bits in going through  the multiplier and  this delay must 
be deducted  from  a delay (zl) that precedes the multi- 
plier. (If the  extra flip-flops in Fig. 11 are  required,  then 
the  multiplier will  yield a  delay of up  to 2K bits.) In addi- 
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tion,  the  absolute value operation at  the first of the multi- 
plier requires  a delay  of N bits (to  determine  the sign of 
each incoming datum)  and  this  must be deducted from a 
preceding  delay as well. Thus, to use this serial multiplier, 
the z-l delays of the  digital filter must be at least N+K 
(or  up to  N+2K) bits in length. This in turn implies, as we 
shall see in the next section, that some  form of  multiplex- 
ing is required if the multipliers are  to be  implemented in 
this  manner. 

Another  observation  is that  the adders in the  multiplier 
bit sections do  not require carry-clear inputs because  only 
positive numbers  are being added. However, output  prod- 
uct overflows  (in the sense of Fig. 5 )  are possible with 
coefficients (a)  of magnitude  greater  than  one. It  may thus 
be  necessary to restrict the  amplitude of the  data  into cer- 
tain multipliers to prevent output overflows;  while in cer- 
tain  other multipliers, these overflows may be perfectly 
allowable as discussed  in the preceding section. In gen- 
eral, however, the inputs to a summation  must be scaled 
so that  an overflow  will not occur in the j n a l  output of 
the  summation. Such  overflows represent a severe non- 
linearity in the system, and very undesirable effects can 
result in  the  output of the filter. 

Multiplexing 

Having realized the  three basic digital filter components 
(delays, adders,  and multipliers), the filter itself  may be 
implemented  by  simply interconnecting these compo- 
nents in a configuration corresponding to one of the digital 
forms, canonical or otherwise, for  the filter. However, if 
the  input  rate  bit (sampling rate times bits per sample) is 
significantly below the  capability of the  digital circuits, 
the  digital filter can be  multiplexed to utilize the circuits 
more efficiently. The  various multiplexing  schemes are of 
two  main  types: 1) the multiplexed filter may  operate 
upon  a  number of input signals simultaneously or 2) the 
multiplexed filter may effect a  number of (different) filters 
for a single input  signal. A combination of these two  types 
is also possible. 

To multiplex the filter to process M simultaneous  in- 
puts (type l),  the  input samples from  the M sources are 
interleaved sample by sample  and fed (serially) into  the 
filter. The  bit rate in the filter is thus increased by a factor 
of M. The shift-register delays must  also be  increased  by 
a  factor of A4 to a  length of M N  bits. Otherwise, the filter 
is identical in  its  construction to the single-input case. In 
particular,  the  arithmetic  unit  containing  the  adders  and 
multipliers is the  same;  it  just  operates M times  faster. 
The output samples  emerge in the  same interleaved order 
as the  input  and  are  thus easily separated. Type-1 multi- 
plexing  is  depicted in  Fig. 12. 

If the M channels  in Fig. 12 are  to  be filtered differently 
or if type-2 multiplexing is also employed, the filter co- 
efficients are stored in a  separate read-only  coefficient 
memory and  are  read-out as required  by the multiplexed 

SHIFT-REGISTER 
DELAY UNIT 

(z-'-MN BITS) 

... 
CH. I CH. I 

ARITHMETIC 
UNIT  

r ---- 1 

.... 
i READ-ONLY 

I COEFFICIENT 
I MEMORY 

' 
L---------d 

Fig. 12. Type-1 multiplexing for M input 
channels. 

filter. A diode  matrix  provides  a very fast and inexpensive 
form of  read-only memory (ROM) for  this  purpose.  If, 
however, all M channels  are to be filtered identically and 
no type-2 multiplexing is employed, the coefficients  may 
be wired into  the multipliers and no ROM is then  re- 
quired.  This is indicated by the  dotted lines enclosing the 
ROM in  Fig. 12. In this case, adders  must be  included 
only in those multiplier bit sections of the  arithmetic  unit 
for which the  corresponding multiplier bits (ai) equal  one. 

In many cases, a  number of different, but similar, filters 
or subfilters are required for  the  same  input signal. For 
example, all of  the  second-order subfilters comprising the 
cascade or parallel forms  are similar in  form, differing 
only in  the values for  the multiplying  coefficients  (see 
Figs.  2  and 3). Type-2  multiplexing refers to the imple- 
mentation of these different (sub)filters with a signal mul- 
tiplexed filter. An example  of a multiplexed  second-order 
filter is shown in  Fig. 13. As with type-1 multiplexing, the 
combining  of M separate filters into one multiplexed filter 
requires that the  bit  rate in the filter be  increased  by a fac- 
tor of M and  that  the shift-register delays (z-') also be in- 
creased  by a factor of M to M N  bits in length.  The co- 
efficients are supplied from  the  read-only coefficient  mem- 
ory, which  cycles through M values for each  coefficient 
during every  Nyquist interval. Data  are routed in,  around, 
and  out of the filter by external routing switches, which 
are also controlled  from  the ROM. 

As  an example  of  type-2 multiplexing, consider the im- 
plementation of a  12th-order filter in cascade form, using 
the multiplexed second-order filter in Fig. 13. Here M= 6, 
so the  bit  rate in the filter must be (at  least) 6N bits per 
Nyquist interval. During  the first N bits of  each Nyquist 
interval, the  input sample is introduced  into  and is pro- 
cessed by  the  arithmetic  unit with the multiplying  coeffi- 
cients (a1, a2, PI, P z )  of the  first subfilter in the cascade 
form.  The resulting output is delayed by N bits ( z - ~ ' ~ ~ ~ )  
and fed back via the  input  routing switch to become the 
input to the filter during  the second N-bit  portion of the 
Nyquist  iraterval. This feedback  process  is repeated four 
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Fig. 13. General second-order  filter for  type-1  and  type-2 
multiplexing. 

more times, with the filter coefficients from  the  ROM 
being changed each time to correspond  to  the  appropriate 
subfilter in the cascade form.  The sixth (last) filter output 
during each Nyquist  interval  is  the desired 12th-order 
filter output.  The  parallel  form, or  a  combination of cas- 
cade  and  parallel filters, may be realized using the filter  in 
Fig. 13  by simply changing the bits  in the  ROM which 
control  the switching  sequences of the input  and output 
routing switches. 

Sample System 

As an example of this  approach  to  the  implementation 
of digital filters, we will take an experimental, all-digital 
touch-tone receiver (TTR) which has been  designed and 
constructed at Bell Telephone Laboratories,  Inc.  The 
digital  TTR  is depicted in block-diagram form in Fig. 14 
This  is  a  straightforward digital version  of the  standard 
analog  TTR described elsewhere [SI. Without going into 
the detailed  operation of the system, we simply note  that 
the  combined high-pass filters (HPF’s) are  third  order, 
the band-rejection filters (BRF’s)  are each sixth order,  the 
bandpass filters (BPF’s) are each second order,  and  the 
low-pass filters (LPF’s) are each first order.  The  other 
signal-processing units required are  the limiters (LIM‘s), 
half-wave rectifiers (HWR’s),  and level detectors. These 
nonlinear  operations  are, of course, easily implemented 
in digital  form. 

A multiplexing factor of M= 8 is employed  in the ex- 
perimental TTR  to  combine all of the  units enclosed  in 
dotted lines into single multiplexed units. In particular, 

(MULTIPLEXED UNITS E N U S E D  IN OOTTED LINES) 

Fig. 14. Digital touch-tone receiver, showing multiplexed filters and 
nonlinear units. 

all of the  HPF’s  and  BRF’s  are multiplexed into  one sec- 
ond-order filter (combined type-I  and type-2 multiplex- 
ing), the eight BPF’s are multiplexed into  another  second- 
order filter (type-1 multiplexing with ROM coefficients), 
and the eight LPF’s  are multiplexed into  one first-order 
section (type-1 multiplexing with wired-in coefficients). 
The  nonlinear  units  are readily multiplexed as well and 
operate directly upon  the interleaved output samples from 
the filters. 

Some of the  parameters of the experimental TTR de- 
sign are  as follows: the sampling rate is 10 K samples/sec- 
ond with an initial  quantization (A/D conversion) of7 
bits/sample; the data  word length (N> within the filter is 
10 bits/sample;  the filter  coefficients have 6-bit fractional 
parts (K); and,  as previously stated, the multiplexing 
factor ( M )  is eight. Thus,  the  bit  rate within the filter 
(sampling rate X bits/sample X M )  is 800 K bits/second. 
The  number of bits required to represent the  data  and  the 
coefficients of the TTR were determined through  comput- 
er simulation of the system. The  hardware  required to 
implement this design consists primarily of about 40 serial 
adders  and 400 bits of shift-register storage. 

Analog-to-Digital Converter 

In  most applications of digital filters, the initial  input 
signal is  in  analog  form and must be converted to digital 
form  for processing. It may or may not be necessary to 
reconvert the  digital output signal to analog  form,  de- 
pending upon  the  application.  Digital-to-analog (D/A) 
conversion is a relatively straightforward  and inexpensive 
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process, but  the initial analog-to-digital (A/D) conversion 
is often quite a different situation. For audio-frequency 
applications, however, a simple and very accurate A/D 
converter may be implemented using delta  modulation 
(A-mod) as  an intermediate encoding process. This A/D 
converter will now be described. 

The A/D converter is depicted in Fig. 15, with a 
A-mod encoder being shown in  Fig. 16. The A-mod en- 
coder produces a series of bivalued pulses (0's and 1's) 
which,  when integrated,  constitute  an  approximation to 
the  input  analog signal. The  number of  1's (or 0's) oc- 
curring during each (eventual) sampling interval is ac- 
cumulated in  the  counter  as  a measure of the change in 
signal amplitude during that interval. At  the end of the 
interval, this number is transferred to  the storage register 
and  the  counter is then reset to  its initial value to begin 
counting during  the next interval. The  appropriate initial 
value for  the  counter is minus one-half the  number of 
A-mod pulses per sampling interval. 

The  number  stored in the storage register for each 
sampling interval is the difference  between the desired 
sample value and  the preceding sample value. Thus, if 
these difference samples are accumulated in  a simple first- 
order accumulator, as shown, the full digital sample 
values result. A small "leak" is introduced  into the ac- 
cumulator by making the feedback gain slightly less than 
one (1-2-9 to keep the  dc gain of the  accumulator  from 
being infinite. This prevents a small dc bias in the A-mod 
output  from generating an unbounded  accumulator out- 
put.  The accumulator  leak  should  be matched by a simi- 
lar leak in the integrator of the A-mod encoder. 

Since the  accumulator is itself a first-order digital filter, 
it can be implemented and multiplexed using the same 
circuits and techniques as previously described. The 
multiplexing may be either with other A/D conversion 
channels or with other filters, or both.  Note, however, 
that if the digital filter following the A/D converter has, 
or can have, a zero at z= 1 (corresponding to zero of 
transmission at dc), this zero would cancel the pole sup- 
plied by the  accumulator (with no leak). Therefore, in this 
case, the accumulator may be eliminated from  the A/D 
converter (along with the zero at z= 1  from  the following 
filter), making the A/D conversion even simpler. 

The accuracy of A/D conversion implemented in this 
manner is a function of the following factors: 1) the  ratio 
of the A-mod rate to the sampling rate, 2) the sensitivity 
of the  input comparison amplifier in the A-mod encoder, 
and 3) the match between the  accumulator leak (if an 
accumulator is required) and  the  integrator  leak  in  the 
A-mod encoder. There is also a maximum-slope limitation 
with delta modulation and  an accompanying slope over- 
load noise results if this slope limitation is exceeded [9]. 
Assuming that  the  error resulting from 2) and 3) and 
from slope overload is negligible, a useful rule of thumb 
for the  A/D conversion accuracy is  that the  number of 
quantization levels  effected equals approximately the 
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Fig. 15. Simple A/D converter using delta modulation. 

Fig. 16. Delta-modulation encoder. 
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ratio of the A-mod rate to  the sampling rate.  Thus, for 
example, to effect 10-bit A/D conversion using this 
scheme, the A-mod rate must be approximately 1000 
times the sampling rate. 

Conclusions 

An  approach to  the implementation of digital filters has 
been described that employs a small set of relatively simple 
digital circuits in a highly regular and  modular configura- 
tion, well suited to LSI construction. By using parallel 
processing and serial, two's-complement arithmetic, the 
required arithmetic circuits (adders and multipliers) are 
greatly simplified, and  the processing rate is limited only 
by the speed of the basic digital circuits and  not by carry- 
propagation times. The resulting filters are readily multi- 
plexed to process multiple data inputs  or to effect multi- 
ple, but different, filters (or both) using the same arithme- 
tic circuits, thus providing for efficient hardware utiliza- 
tion. A multiplexing factor of  100 or so is possible in 
audio-frequency applications, using presently available 
digital logic in the medium-speed range. The filters are 
also easily  modified to realize a wide range of filter forms, 
transfer functions, multiplexing schemes, and round-off 
noise levels (i.e., data accuracies) by changing only the 
contents of the read-only coefficient memory and/or  the 
timing signals and  the length of the shift-register delays. 
For audio-frequency applications, a simple A/D convert- 
er may be implemented using delta  modulation  as an 
intermediate encoding process. 
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