
An Approach to the
Implementation of
Digital Filters

LELAND B. JACKSON, Member, IEEE
JAMES F. KAISER, Associate Member, IEEE
HENRY S . McDONALD, Member, IEEE
Bell Telephone Laboratories, Inc.
Murray Hill, N. J.

Abstract

An approach to the implementation of digital filters is presented that
employs a small set of relatively simple digital circuits in a highly regu-
lar and modular configuration, well suited to LSI construction. Using
parallel processing and serial, two’s-complement arithmetic, the
required arithmetic circuits (adders and multipliers) are quite simple,
as are the remaining circuits, which consist of shift registers for delay
and small read-only memories for coefficient storage. The arithmetic
circuits are readily multiplexed to process multiple data inputs or to
effect multiple, but different, filters (or both), thus providing for effi-
cient hardware utilization. Up to 100 filter sections can be multiplexed
in audio-frequency applications using presently available digital cir-
cuits in the medium-speed range. The filters are also easily modified to
realize a wide range of filter forms, transfer functions, multiplexing
schemes, and round-off noise levels by changing only the contents of
the read-only memory and/or the timing signals and the length of the
shift-register delays. A simple analog-to-digital converter, which uses
delta modulation as an intermediate encoding process is also pre-
sented for audio-frequency applications.

Manuscript received May 6, 1968.

Introduction

The basic theory underlying the analysis and design of
digital filters is well advanced (although by no means
complete) and quite a few summaries of theoretical results,
are now available in the engineering literature [I]-[4 1..
However, the impact of digital filtering theory has not yet
been felt by most of the engineers and technicians who
design and use the wide variety of filters presently con-
structed from RLC or crystal circuits. This has been due,
in part, to a general unawareness of the possibilities of
digital filtering and also, until recently, to the prohibitive
complexity and cost of constructing most digital filters.
Hence, digital filter implementation has been confined
primarily to computer programs for simulation work or
for processing relatively small amounts of data, usually
not in real time. However, the rapid development of the
integrated-circuit technology and especially the potential
for large-scale integration (LSI) of digital circuits now
promise to reverse this situation in many instances and to
make many digital filters more attractive than their ana-
log counterparts, from the standpoints of cost, size, and
reliability.

In this paper, we present an approach to the physical
implementation of digital filters which has the following
features.

1) The filters are constructed from a small set of rela-
tively simple digital circuits, primarily shift registers and
adders.

2) The configuration of the digital circuits is highly
modular in form and thus well suited to LSI construction.

3) The configuration of the digital circuits has the flexi-
bility to realize a wide range of filter forms, coefficient
accuraices, and round-off noise levels (i.e., data accura-
cies).

4) The digital filter may be easily multiplexed to pro-
cess multiple data inputs or to effect multiple, but differ-
ent, filters with the same digital circuits, thus providing
for efficient hardware utilization.

After a brief review of general digital filter forms, the
advantages of serial, two’s-complement, binary arithmetic
in the implementation of digital filters are discussed. The
required arithmetic circuits (adder/subtractor, comple-
menter, and multiplier) are then described, followed by
the techniques for multiplexing. Finally, several examples
are presented of multiplexed digital filters that have been
constructed and tested. A description of a simple analog-
to-digital converter for relatively low-frequency applica-
tions is also included.

Canonical Forms

The transfer characteristics of a digital filter are com-
monly described in terms of its z-domain transfer func-
tion [1],

IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS VOL. AU-16, NO. 3 SEPTEMBER 1968 41 3

Fig, 1. The direct form for a digital filter.

Fig. 2. The cascade form for a digital filter.

h

a,z-i

i= 1

where z1 is the unit delay operator. There are a multitude
of equivalent digital circuit forms in which (1) may be
realized, but three canonical forms, or variations thereof,
are most often employed. These forms are canonical in the
sense that a minimum number of adders, multipliers, and
delays are required to realize (1) in the general case. The
first of these forms, shown in Fig. 1, is a direct realization
of (1) and as such is called the direct form. It has been
pointed out by Kaiser [5] that use of the direct form is
usually to be avoided because the accuracy requirements
on the coefficients { ai f and { bi } are often severe. There-
fore, although the implementation techniques presented
here are applicable to any filter form, we will not spe-
cifically consider the direct form.

The second canonical form corresponds to a factoriza-
tion of the numerator and denominator polynomials of
(1) to produce an H(z) of the form

where m is the integer part of (n+ l)/2. This is the cascade
form for a digital filter, depicted in Fig. 2. Second-order
factors (with real coefficients) have been chosen for (2)

Fig. 3. The parallel form for a digital filter

Fig. 4. (A) Second-order section for digital all-
pass filter in cascade form. (6) Alternate con-
figuration for digital all-pass filter in cascade
form.

(AI

rather than a mixed set of first- and second-order factors
for real and complex roots, respectively, to simplify the
implementation of the cascade form, especially when mul-
tiplexing is employed. If n is odd, then the coefficients 012%
and PZi will equal zero for some i. The aZi multipliers are
shown in dotted lines in Fig. 2, because for the very com-
mon case of zeros on the unit circle in the z-plane (cor-
responding to zeros of transmission in the frequency re-
sponse of the filter) the associated t~~~ coefficients are
unity. Thus, for these coefficients, no multiplications
are actually required.

The third canonical form is the parallel form, shown in
Fig. 3, which results from a partial faction expansion of

414 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS SEPTEMBER 1968

(1) to produce

where yo= an/b, and we have again chosen to use all sec-
ond-order (denominator) factors. Note that all three
canonical forms are entirely equivalent with regard to the
amount of storage required (n unit delays) and the num-
ber of arithmetic operations required (2n+l multipli-
cations and 2n additions per sampling period). As previ-
ously noted, however, the cascade form requires signifi-
cantly fewer multiplications for zeros on the unit circle
and is thus especially appropriate for filters of the band-
pass and the band-stop variety (including low-pass and
high-pass filters).

Another interesting filter form may be derived for the
special case of an all-pass filter (APF), i.e., a filter or
“equalizer” with unity gain at all frequencies. The transfer
function for a discrete APF has the general form [6]

Thus, with ai= bnPi and bo= 1, the direct form can be used
to implement (4). However, to reduce the accuracy re-
quirements on the filter coefficients, a modified cascade
form can be derived for the APF, corresponding to an
HAi(z) of the form

Second-order sections for the cascade form of the APF
are shown in Fig. 4. Fig. 4(A) is a straightforward modifi-
cation of the standard cascade form in Fig. 2. Note that
because the Pli multiplier may be shared by both the feed-
forward and feedback paths, only three multiplications
are required per second-order section rather than four.
The number of multiplications may be further reduced by
using the form of Fig. 4(B), which requires only two mul-
tiplications per second-order section. But now, two addi-
tional delays are required preceding the first second-order
section to supply appropriately delayed inputs to the first
section. Therefore, the cascade form of Fig. 4(B) requires
a total of n multiplications and n+2 delays for an nth-
order APF.

Serial Arithmetic

Using any of the canonical forms described in the pre-
ceding section, all of the coefficient multiplications and
many of the additions during a given Nyquist interval
may be performed simultaneously. Therefore, a high de-

gree of parallel processing is possible in the implementa-
tion of a digital filter and this may be achieved by provid-
ing multiple adders and multipliers with appropriate inter-
connections. Economy is then realized by using serial
arithmetic, and by sharing the adders and multipliers
(using the multiplexed circuit configurations to be de-
scribed) insofar as circuit speed will allow.

In addition to a significant simplification of the hard-
ware, serial arithmetic provides for an increased modu-
larity and flexibility in the digital circuit configurations.
Also, the processing rate is limited only by the speed of
the basic digital circuits and not by carry-propagation
times in the adders and multipliers. Finally, with serial
arithmetic, sample delays are realized simply as single-
input single-output shift registers.

The two’s-complement representation [7] of binary
numbers is most appropriate for digital filter implementa-
tion using serial arithmetic because additions may pro-
ceed (starting with the least significant bits) with no ad-
vance knowledge of the signs or relative magnitudes of the
numbers being added (and with no later corrections of the
obtained sums as with one’s-complement). We will
assume a two’s-complement representation of the form

which represents a number (6) having a value of

i=l

where each 6i is either 0 or 1. Thus, the data is assumed to
lie in the interval

-1 5 6 < I, (8)

with the sign of the number 6 being given by the last bit
(in time) 60.

An extremely useful property of two’s-complement
representation is that in the addition of more than two
numbers, if the magnitude of the correct total sum is
small enough to allow its representation by the N avail-
able bits, then the correct total sum will be obtained
regardless of the order in which the numbers are added,
even if an overflow occurs in some of the partial sums,
This property is illustrated in Fig. 5, which depicts num-
bers in two’s-complement representation as being arrayed
in a circle, with positive full scale (1 - 2-“+’) and negative
full scale (- 1) being adjacent. The addition of positive
addends produces counterclockwise rotation about the
circle, whereas negative addends produce clockwise rota-
tion. Thus, if the correct total sum satisfies (S), no infor-
mation is lost with positive.or negative overflows and the
correct total sum will be obtained.

This overflow property is important for digital filter
implementation because the summation points in the
filters often contain more than two inputs (see Fig. 3);

JACKSON et ul.: IMPLEMENTATION OF DIGITAL FILTERS 41 5

0

Fig. 5. Illustration of overflow
property in two’s-complement
binary representation.

Fig. 6. Serial two’s-complement adder.

CARRY I h FLIP-FLOP

CLEAR (BIT DELAY)
I I - I

AUGEND

ADDEND
ADDER

although it may be possible to argue that because of gain
considerations the output of the summation point cannot
overflow, there is no assurance that an overflow will not
occur in the process of performing the summation. Note
that this property also applies when one of the inputs
to the summation has itself overflowed as a result of a
multiplication by a coefficient of magnitude greater than
one.

Arithmetic Unit

The three basic operations to be realized in the imple-
mentation of a digital filter are delay, addition (or subtrac-
tion), and multiplication. As previously mentioned, serial
delays (z-’) are realized simply as single-input single-
output shift registers. Realizations for a serial adder (sub-
tractor) and a serial multiplier are described in this sec-
tion. The adders and multipliers, including their inter-
connections, will be said to comprise the arithmetic unit
of the digital filter.

A serial adder for two’s-complement addition is ex-
tremely simple to construct [7]. As shown in Fig. 6, it
consists of a full binary adder with a single-bit delay
(flip-flop) to transfer the carry output back to the carry
input. A gate is also required in the carry feedback path
to clear the carry to zero at the beginning of each sample.
Accordingly, the carry-clear input is a timing signal,
which is zero during the least significant bit of each sample
and is one otherwise.

A serial two’s-complement subtractor is implemented
by first complementing (negating) the subtrahend input

CARRY
CLEAR (BIT DELAY1

v n

SUBTRAHEND 4 E ADDER r l D I F F E R E N C E

Fig. 7. Serial two’s-complement subtractor.

Fig. 8. Serial two’s complementer.

CLOCK FLOP

RESET

and then adding the complemented subtrahend to the
minuend. To complement a number in two’s-complement
representation, each bit of the representation is inverted
and a one is then added to the least significant bit of the
inverted representation (i.e., 2-”+* is added to the inverted
number). The corresponding serial subtractor circuit is
shown in Fig. 7. The subtrahend is inverted and a one is
added to the least significant bit by clearing the initial
carry bit to one, rather than to zero as in the adder. This is
accomplished by means of two inverters in the carry feed-
back path, as shown.

A separate two’s complementer (apart from a subtrac-
tor) may also be constructed; such circuits are required in
the multiplier to be described. This operation is imple-
mented with a simple sequential circuit which, for each
sample, passes unchanged all initial (least significant) bits
up to and including the first “1” and then inverts all suc-
ceeding bits. A corresponding circuit is depicted in Fig. 8.

A serial multiplier may be realized in a variety of con-
figurations, but a special restriction imposed by this im-
plementation approach makes one configuration most ap-
propriate. This restriction is that no more than N bits per
sample may be generated at any point in the digital net-
work because successive samples are immediately adja-
cent in time and there are no “time slots” available for
more than N bits per sample. Hence, the full (N+K)-bit
product of the multiplication of an N-bit sample by a
K-bit (fractional) coefficient may not be accumulated
before rounding is performed. However, using the multi-
plication scheme described below, it is possible to obtain
the same rounded N-bit product without ever generating
more than N bits per sample. Rounding is usually prefer-
able, rather than truncation, to limit the introduction of
extraneous low-frequency components (dc drift) into the
filter.

MULTIPLICAND (DATA):
MULTIPLIER (COEFF.): x ao’a,aE. . , .aK

S0.81S2.. . .SN-I

(8, = 0)
a K x S0.6,6,. I . .SN-,

aK-Ix 6,.6,8,. . . .8,-,
ao.0102.. . .aN- I

aK-zx 8,~8,8,8,-,
bo. bl b e bN-l

l 0 . f l f 2’.’. f N - 1

a. x 6,48,. .. .8,-,
gO’(JI(Je....gN-I ’ ‘N - I

PRODUCTIDATA): Po‘PI P ZPN- I

Fig. 9. Serial multiplication using no more than
N bits per data word.

The serial multiplication scheme is depicted in Fig. 9.
To simplify the required hardware, both the multiplicand
(data) and the multiplier (coefficient) are constrained to be
positive, with appropriate sign changes being made before
and after the multiplication. Thus 6o = 0 in Fig. 9 and the
sign of the multiplicand (6) is stored separately as SGN 6.
For convenience, the multiplier (a) will be assumed to lie
in the interval.

-2 < a < 2 . (9)

Although (9) is not necessarily applicable in the general
case, it does hold for the denominator coefficients of the
cascade and parallel forms, and usually for the numeraror
coefficients of the cascade form as well. The magnitude of
the multiplier is thus represented in Fig. 9 as

C Y O ’ ~ 1 ~ 2 ‘ ‘ * a K , (10)

which represents a value of

The restriction in (9) and the resulting representation in
(10) and (1 1) are in no way essential to the serial multi-
pliers to be described, but are meant only to be representa-
tive of the multiplication scheme. The sign of the multi-
plier is also stored separately as SGN a.

The multiplication scheme in Fig. 9 proceeds as follows.
The multiplicand is successively shifted (delayed) and
multiplied (gated) by the appropriate bit (ai) of the multi-
plier. These delayed gated instances of the multiplicand
are then added in the order indicated. After each addi-
tion (including the “addition” of ~ K B to 0), the least
significant bit of the resulting partial sum (i.e., 6-v-,.l,aN-.l,
bN-l, . + . , fN-$ is truncated to prevent the succeeding
partial sum from exceeding N bits in length. Note that
these bits may be truncated because the full unrounded
product would be

MULTIPLIER BIT SECTIONS

0 . 8

Fig. 10. Serial multiplier, showing modularity.

Fig. 1 1. A multiplier bit section.

a i p i t 1

and to round (12) to N bits, only the value of the bitfx-l
is required. Thus, before truncating J;v-l, its value is
stored elsewhere to be added in the final step to g, as
shown in Fig. 9, to obtain the rounded product (p).

The serial multiplier corresponding to the scheme de-
scribed above is shown in Fig. 10. The absolute value of
each incoming datum (6) is taken and its sign (SGN 6) is
added modulo-2 to the coefficient sign (SGN a) to de-
termine the product sign (SGN a.6). The (positive) multi-
plicand is then successively delayed and gated by the ap-
propriate multiplier bits (ai) and the partial sums are ac-
cumulated in the multiplier bit sections. A single multi-
plier bit section is shown in Fig. 11. The least significant
bit of each partial sum is truncated (gated to zero) by the
appropriate timing signal Y ~ + ~ . Rounding is accomplished
by adding in the last truncated bit (fN-3 via the * input to
the last bit section. Finally, the sign of the product is in-
serted using a two’s-complementer such as that in Fig. 8.
At high data rates, it may be necessary to insert extra
flip-flops between some or all of the multiplier bit sections,
as shown in dotted lines in Fig. 11, to keep the propaga-
tion delay through the adder circuits from becoming ex-
cessive.

Several observations concerning the serial multiplier
should be made at this point. First, there is a delay of K
bits in going through the multiplier and this delay must
be deducted from a delay (zl) that precedes the multi-
plier. (If the extra flip-flops in Fig. 11 are required, then
the multiplier will yield a delay of up to 2K bits.) In addi-

JACKSON et a[.: IMPLEMENTATION OF DIGITAL FILTERS 417

tion, the absolute value operation at the first of the multi-
plier requires a delay of N bits (to determine the sign of
each incoming datum) and this must be deducted from a
preceding delay as well. Thus, to use this serial multiplier,
the z-l delays of the digital filter must be at least N+K
(or up to N+2K) bits in length. This in turn implies, as we
shall see in the next section, that some form of multiplex-
ing is required if the multipliers are to be implemented in
this manner.

Another observation is that the adders in the multiplier
bit sections do not require carry-clear inputs because only
positive numbers are being added. However, output prod-
uct overflows (in the sense of Fig. 5) are possible with
coefficients (a) of magnitude greater than one. It may thus
be necessary to restrict the amplitude of the data into cer-
tain multipliers to prevent output overflows; while in cer-
tain other multipliers, these overflows may be perfectly
allowable as discussed in the preceding section. In gen-
eral, however, the inputs to a summation must be scaled
so that an overflow will not occur in the j n a l output of
the summation. Such overflows represent a severe non-
linearity in the system, and very undesirable effects can
result in the output of the filter.

Multiplexing

Having realized the three basic digital filter components
(delays, adders, and multipliers), the filter itself may be
implemented by simply interconnecting these compo-
nents in a configuration corresponding to one of the digital
forms, canonical or otherwise, for the filter. However, if
the input rate bit (sampling rate times bits per sample) is
significantly below the capability of the digital circuits,
the digital filter can be multiplexed to utilize the circuits
more efficiently. The various multiplexing schemes are of
two main types: 1) the multiplexed filter may operate
upon a number of input signals simultaneously or 2) the
multiplexed filter may effect a number of (different) filters
for a single input signal. A combination of these two types
is also possible.

To multiplex the filter to process M simultaneous in-
puts (type l), the input samples from the M sources are
interleaved sample by sample and fed (serially) into the
filter. The bit rate in the filter is thus increased by a factor
of M. The shift-register delays must also be increased by
a factor of A4 to a length of M N bits. Otherwise, the filter
is identical in its construction to the single-input case. In
particular, the arithmetic unit containing the adders and
multipliers is the same; it just operates M times faster.
The output samples emerge in the same interleaved order
as the input and are thus easily separated. Type-1 multi-
plexing is depicted in Fig. 12.

If the M channels in Fig. 12 are to be filtered differently
or if type-2 multiplexing is also employed, the filter co-
efficients are stored in a separate read-only coefficient
memory and are read-out as required by the multiplexed

SHIFT-REGISTER
DELAY UNIT

(z-'-MN BITS)

...
CH. I CH. I

ARITHMETIC
UNIT

r ---- 1

....
i READ-ONLY

I COEFFICIENT
I MEMORY

'
L---------d

Fig. 12. Type-1 multiplexing for M input
channels.

filter. A diode matrix provides a very fast and inexpensive
form of read-only memory (ROM) for this purpose. If,
however, all M channels are to be filtered identically and
no type-2 multiplexing is employed, the coefficients may
be wired into the multipliers and no ROM is then re-
quired. This is indicated by the dotted lines enclosing the
ROM in Fig. 12. In this case, adders must be included
only in those multiplier bit sections of the arithmetic unit
for which the corresponding multiplier bits (ai) equal one.

In many cases, a number of different, but similar, filters
or subfilters are required for the same input signal. For
example, all of the second-order subfilters comprising the
cascade or parallel forms are similar in form, differing
only in the values for the multiplying coefficients (see
Figs. 2 and 3). Type-2 multiplexing refers to the imple-
mentation of these different (sub)filters with a signal mul-
tiplexed filter. An example of a multiplexed second-order
filter is shown in Fig. 13. As with type-1 multiplexing, the
combining of M separate filters into one multiplexed filter
requires that the bit rate in the filter be increased by a fac-
tor of M and that the shift-register delays (z-') also be in-
creased by a factor of M to M N bits in length. The co-
efficients are supplied from the read-only coefficient mem-
ory, which cycles through M values for each coefficient
during every Nyquist interval. Data are routed in, around,
and out of the filter by external routing switches, which
are also controlled from the ROM.

As an example of type-2 multiplexing, consider the im-
plementation of a 12th-order filter in cascade form, using
the multiplexed second-order filter in Fig. 13. Here M= 6,
so the bit rate in the filter must be (at least) 6N bits per
Nyquist interval. During the first N bits of each Nyquist
interval, the input sample is introduced into and is pro-
cessed by the arithmetic unit with the multiplying coeffi-
cients (a1, a2, PI, P z) of the first subfilter in the cascade
form. The resulting output is delayed by N bits (z - ~ ' ~ ~ ~)
and fed back via the input routing switch to become the
input to the filter during the second N-bit portion of the
Nyquist iraterval. This feedback process is repeated four

418 IEEE TKANSACIIONS ON AUDIO AND ELECrROACOUSTICS SIPTEMHER 1968

Fig. 13. General second-order filter for type-1 and type-2
multiplexing.

more times, with the filter coefficients from the ROM
being changed each time to correspond to the appropriate
subfilter in the cascade form. The sixth (last) filter output
during each Nyquist interval is the desired 12th-order
filter output. The parallel form, or a combination of cas-
cade and parallel filters, may be realized using the filter in
Fig. 13 by simply changing the bits in the ROM which
control the switching sequences of the input and output
routing switches.

Sample System

As an example of this approach to the implementation
of digital filters, we will take an experimental, all-digital
touch-tone receiver (TTR) which has been designed and
constructed at Bell Telephone Laboratories, Inc. The
digital TTR is depicted in block-diagram form in Fig. 14
This is a straightforward digital version of the standard
analog TTR described elsewhere [SI. Without going into
the detailed operation of the system, we simply note that
the combined high-pass filters (HPF’s) are third order,
the band-rejection filters (BRF’s) are each sixth order, the
bandpass filters (BPF’s) are each second order, and the
low-pass filters (LPF’s) are each first order. The other
signal-processing units required are the limiters (LIM‘s),
half-wave rectifiers (HWR’s), and level detectors. These
nonlinear operations are, of course, easily implemented
in digital form.

A multiplexing factor of M= 8 is employed in the ex-
perimental TTR to combine all of the units enclosed in
dotted lines into single multiplexed units. In particular,

(MULTIPLEXED UNITS E N U S E D IN OOTTED LINES)

Fig. 14. Digital touch-tone receiver, showing multiplexed filters and
nonlinear units.

all of the HPF’s and BRF’s are multiplexed into one sec-
ond-order filter (combined type-I and type-2 multiplex-
ing), the eight BPF’s are multiplexed into another second-
order filter (type-1 multiplexing with ROM coefficients),
and the eight LPF’s are multiplexed into one first-order
section (type-1 multiplexing with wired-in coefficients).
The nonlinear units are readily multiplexed as well and
operate directly upon the interleaved output samples from
the filters.

Some of the parameters of the experimental TTR de-
sign are as follows: the sampling rate is 10 K samples/sec-
ond with an initial quantization (A/D conversion) of7
bits/sample; the data word length (N> within the filter is
10 bits/sample; the filter coefficients have 6-bit fractional
parts (K); and, as previously stated, the multiplexing
factor (M) is eight. Thus, the bit rate within the filter
(sampling rate X bits/sample X M) is 800 K bits/second.
The number of bits required to represent the data and the
coefficients of the TTR were determined through comput-
er simulation of the system. The hardware required to
implement this design consists primarily of about 40 serial
adders and 400 bits of shift-register storage.

Analog-to-Digital Converter

In most applications of digital filters, the initial input
signal is in analog form and must be converted to digital
form for processing. It may or may not be necessary to
reconvert the digital output signal to analog form, de-
pending upon the application. Digital-to-analog (D/A)
conversion is a relatively straightforward and inexpensive

JACKSON et al. : IMPLEMENTATION OF DIGITAL FILTERS 419

process, but the initial analog-to-digital (A/D) conversion
is often quite a different situation. For audio-frequency
applications, however, a simple and very accurate A/D
converter may be implemented using delta modulation
(A-mod) as an intermediate encoding process. This A/D
converter will now be described.

The A/D converter is depicted in Fig. 15, with a
A-mod encoder being shown in Fig. 16. The A-mod en-
coder produces a series of bivalued pulses (0's and 1's)
which, when integrated, constitute an approximation to
the input analog signal. The number of 1's (or 0's) oc-
curring during each (eventual) sampling interval is ac-
cumulated in the counter as a measure of the change in
signal amplitude during that interval. At the end of the
interval, this number is transferred to the storage register
and the counter is then reset to its initial value to begin
counting during the next interval. The appropriate initial
value for the counter is minus one-half the number of
A-mod pulses per sampling interval.

The number stored in the storage register for each
sampling interval is the difference between the desired
sample value and the preceding sample value. Thus, if
these difference samples are accumulated in a simple first-
order accumulator, as shown, the full digital sample
values result. A small "leak" is introduced into the ac-
cumulator by making the feedback gain slightly less than
one (1-2-9 to keep the dc gain of the accumulator from
being infinite. This prevents a small dc bias in the A-mod
output from generating an unbounded accumulator out-
put. The accumulator leak should be matched by a simi-
lar leak in the integrator of the A-mod encoder.

Since the accumulator is itself a first-order digital filter,
it can be implemented and multiplexed using the same
circuits and techniques as previously described. The
multiplexing may be either with other A/D conversion
channels or with other filters, or both. Note, however,
that if the digital filter following the A/D converter has,
or can have, a zero at z= 1 (corresponding to zero of
transmission at dc), this zero would cancel the pole sup-
plied by the accumulator (with no leak). Therefore, in this
case, the accumulator may be eliminated from the A/D
converter (along with the zero at z= 1 from the following
filter), making the A/D conversion even simpler.

The accuracy of A/D conversion implemented in this
manner is a function of the following factors: 1) the ratio
of the A-mod rate to the sampling rate, 2) the sensitivity
of the input comparison amplifier in the A-mod encoder,
and 3) the match between the accumulator leak (if an
accumulator is required) and the integrator leak in the
A-mod encoder. There is also a maximum-slope limitation
with delta modulation and an accompanying slope over-
load noise results if this slope limitation is exceeded [9].
Assuming that the error resulting from 2) and 3) and
from slope overload is negligible, a useful rule of thumb
for the A/D conversion accuracy is that the number of
quantization levels effected equals approximately the

RESET
I

DIGITAL

SIGNAL

STORAGE
REGISTER

,
STORE ACCUMULATOR

Fig. 15. Simple A/D converter using delta modulation.

Fig. 16. Delta-modulation encoder.

""I

MODULATlOh

ratio of the A-mod rate to the sampling rate. Thus, for
example, to effect 10-bit A/D conversion using this
scheme, the A-mod rate must be approximately 1000
times the sampling rate.

Conclusions

An approach to the implementation of digital filters has
been described that employs a small set of relatively simple
digital circuits in a highly regular and modular configura-
tion, well suited to LSI construction. By using parallel
processing and serial, two's-complement arithmetic, the
required arithmetic circuits (adders and multipliers) are
greatly simplified, and the processing rate is limited only
by the speed of the basic digital circuits and not by carry-
propagation times. The resulting filters are readily multi-
plexed to process multiple data inputs or to effect multi-
ple, but different, filters (or both) using the same arithme-
tic circuits, thus providing for efficient hardware utiliza-
tion. A multiplexing factor of 100 or so is possible in
audio-frequency applications, using presently available
digital logic in the medium-speed range. The filters are
also easily modified to realize a wide range of filter forms,
transfer functions, multiplexing schemes, and round-off
noise levels (i.e., data accuracies) by changing only the
contents of the read-only coefficient memory and/or the
timing signals and the length of the shift-register delays.
For audio-frequency applications, a simple A/D convert-
er may be implemented using delta modulation as an
intermediate encoding process.

420 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS SEPTEMBER 1968

REFERENCES

[l] J. F. Kaiser, “Digital filters,” in System Analysis by Digital
Computer, J. F. Kaiser and F. F. Kuo, Eds. New York: Wiley,

[2] C. M. Rader and B. Gold, “Digital filter design techniques in
the frequency domain,” Proc. IEEE, vol. 55, pp. 149-171,
February 1967.

[3] R. M. Golden, “Digital filter synthesis by sampled-data trans-
formation,” this issue, pp. 321-329.

141 B. Gold and C. M. Rader, Digital Processing of Signals. New
York: McGraw-Hill, 1969.

1966, pp. 218-85.

[5] J. F. Kaiser, “Some practical considerations in the realization
of linear digital filters,” I965 Proc. 3rd Allerton Conf. on Circuit
and System Theory, pp. 621-633.

[6] R. B. Blackman, unpublished memorandum.
[7] Y. Chu, Digital Computer Design Fundamentals. New York:

McGraw-Hill, 1962.
[8] R. N. Battista, C. G. Morrison, and D. H. Nash: “Signaling

system and receiver for touch-tone calling,” IEEE Trans. Com-
munications and Electronics, vol. 82, pp. 9-17, March 1963.

[9] E. N. Protonotarios, “Slope overload noise in differential pulse
code modulation system,” Bell Sys. Tech. J., vol. 46, pp. 2119-
2161, November 1967.

Leland B. Jackson (”65) was born in Atlanta, Ga., on July 23, 1940. He received the
B.S. and M.S. degrees in electrical engineering in 1963 from the Massachusetts Insti-
tute of Technology, Cambridge. He is presently working towards the Sc.D. degree in
electrical engineering at the Stevens Institute of Technology, Hoboken, N. J.

In 1961 and 1962 he was associated with Bell Telephone Laboratories, Inc., under
the M.I.T. cooperative program in electrical engineering. From 1964 to 1966, he was
employed by Sylvania Electronic Systems, Inc., Mountain View, Calif., where he
studied and designed signal processing techniques for ionospheric research. In 1966
he joined Bell Telephone Laboratories, Inc., Murray Hill, N. J., where he has been
primarily concerned with the analysis and design of digital filters and related systems.

Mr. Jackson is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.

James F. Kaiser (SY50-A’52), for a photograph and biography, please see page 183 of
the June, 1968, issue of this TRANSACTIONS.

Henry S . McDonald (A’52-MY57) received the B.S. degree in electrical engineering in
1950 from the Catholic University of America, Washington, D.C., and the M.S. and
Doctor of Engineering degrees in 1953 and 1955 from The Johns Hopkins University,
Baltimore, Md.

He served as an Instructor in Electrical Engineering and as a Research Staff Assis-
tant while pursuing his academic work. Since 1955 he has been with the Research Divi-
sion of Bell Telephone Laboratories, Inc., Murray Hill, N. J. His interests and work
have ranged over speech processing, vocoders, television bandwidth reduction, digital
signal processing, computer input-output devices, real-time and graphical aspects of
computing, computer design, and switching system design. He is currently Assistant
Director of the Communication Principles Research Laboratory at Murray Hill.

JACKSON et al.: IMPLEMENTATION OF DIGITAL FILTERS 42 1

