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Abstract

On-the-fly composition of service-based software solutions is still a challenging task. Even more challenges emerge

when facing automatic service composition in markets of composed services for end users. In this paper, we focus on

the functional discrepancy between “what a user wants” specified in terms of a request and “what a user gets” when

executing a composed service. To meet the challenge of functional discrepancy, we propose the combination of

existing symbolic composition approaches with machine learning techniques. We developed a learning

recommendation system that expands the capabilities of existing composition algorithms to facilitate adaptivity and

consequently reduces functional discrepancy. As a representative of symbolic techniques, an Artificial Intelligence

planning based approach produces solutions that are correct with respect to formal specifications. Our learning

recommendation system supports the symbolic approach in decision-making. Reinforcement Learning techniques

enable the recommendation system to adjust its recommendation strategy over time based on user ratings. We

implemented the proposed functionality in terms of a prototypical composition framework. Preliminary results from

experiments conducted in the image processing domain illustrate the benefit of combining both complementary

techniques.

Keywords: Service composition; Service functionality; Service recommendation; Reinforcement learning;

Service markets; Image processing; On-the-fly computing

1 Introduction
A major goal of the Collaborative Research Centre 901

“On-The-Fly (OTF) Computing” [1,2] is the automated

composition of software services that are traded on mar-

kets and that can be flexibly combined with each other.

In our vision, a user formulates a request for an indi-

vidual software solution, receives an answer in terms of

a composed service, and finally executes the composed

service.

Figure 1 illustrates the very basic idea of OTF Comput-

ing. A so-called OTF provider receives and processes a

user request. The processing step mainly involves auto-

matic composition of individual software solutions based

on elementary services supplied by service providers. The

OTF provider responds in terms of a composed service

that provides the functionality the user specified.
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As an illustrative example, let us assume that someone

wants to post-process a holiday photo. The person, how-

ever, is not able to use a monolithic software solution

(e.g., he does not know how to handle it or a solu-

tion is not available at all). Web based platforms such as

Instagram [3] provide image processing services that can

be applied to an uploaded photo or video. The selection

of appropriate services, however, has still to be done man-

ually by the user. Furthermore, the variety of available

services is restricted.

Now let us consider a market of image processing ser-

vices. The person who wants to post-process his photo

becomes a customer (henceforth referred to as user)

within this market by formulating a request describing

what he expects from the execution result. A solution

that satisfies the user’s request is automatically composed

based on image processing services that are supplied

by different service providers. In this scenario, the user

only has to pay for the actually utilized functionality.
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Figure 1 Basic On-The-Fly (OTF) computing concept for generating individual software solutions. An end user formulates a request, which is

processed by a so-called OTF provider. An OTF provider automatically generates an individual software solution by asking appropriate service

providers for services and by composing those services.

Furthermore, he benefits from the variety of image pro-

cessing services that are provided by different service

providers.

Different major challenges inevitably emerge, when try-

ing to establish automated service composition in such a

market environment. Some of them were already intro-

duced in our previous work [4]. In this paper, however, we

exclusively focus on service functionality, i.e., the discrep-

ancy between the functionality desired by a user and the

actual functionality when finally executing the composed

solution. This gap between “what a user wants” and “what

a user gets” exists due to

• the necessary trade-off between degree of abstraction

and level of detail of the applied composition

formalism in order to ensure feasibility,
• the data-dependency and context-sensitivity of

service functionality, as well as
• inexpert users, who formulate imprecise requests

while additionally having individual preferences that

can hardly be described in all details in advance.

The majority of existing composition approaches can be

considered as symbolic techniques that base on explicitly

given information [5-15]. Alternatively, machine learning

techniques are proposed to replace symbolic techniques

(cf. Section 6). To overcome the mentioned functional dis-

crepancy, however, we propose to not replace symbolic

techniques, but to expand them bymachine learning tech-

niques. In our work, a symbolic composition approach

is responsible for composing solutions that are correct

with respect to formal specifications (service descriptions

and user requests). A Reinforcement Learning (RL) based

recommendation system, in turn, supports the symbolic

approach in deciding between alternative composition

steps based on implicit information in terms of user

feedback from previous composition processes. When

combined, both techniques benefit from each other:

The composition algorithm determines (and restricts) the

learning space of the recommendation system, while the

recommendation system estimates the quality of the com-

position strategy. In case of low quality, i.e., in case of

an unacceptable gap between “what a user wants” and

“what a user gets”, the composition algorithm can adjust

its behaviour to improve the result for future composition

processes (e.g., by choosing an alternative solution). The

contributions of this paper are as follows.

1. We emphasize the necessity to develop more fine

grained methods for selecting services not only based

on their abstract functional properties (and

non-functional attributes, as, e.g., done in [16]) but

also based on their functionality when executed.

2. We introduce and motivate image processing as

appropriate application domain in order to not only

consider service composition on the symbolic level,

but also on the execution level. Furthermore, we

provide an illustrative problem description based on

a realistic image processing example.

3. We descriptively explain the conceptual and technical

integration of our learning recommendation system

into an Artificial Intelligence (AI) planning-based

technique - a representative of symbolic composition

approaches - in order to meet the challenge of

functional discrepancy.

4. Experimental results within the image processing

domain include the entire loop of composition,

execution and learning, and demonstrate the benefits

of combining symbolic approaches with machine

learning techniques.

The remainder of this paper is organized as follows.

Section 2 introduces and motivates image processing as

application domain. It also covers the symbolic approach

for automatically composing simple sequences of image

filters and emphasizes the problem we are tackling in this

paper. Section 3 outlines the functionality of our learning

recommendation approach. The conceptual and technical
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integration is described in Section 4. Experimental results

are presented in Section 5. After discussing related work

in Section 6, the paper finally concludes with Section 7.

2 Motivation and problem description
In our work, wemake an extensive use of image processing

examples for investigating and clarifying open challenges

as well as developing and evaluating newmethods in order

to meet these challenges. From the image processing per-

spective (cf. Section 2.1), we investigate to what extent

currently existing service composition techniques facili-

tate automatic composition of image processing solutions

and how to overcome possible shortcomings. In doing so,

we obtain new insights in a domain with specific char-

acteristics. This, in turn, enables us to come up with

more specialized concepts. These concepts can then be

generalized and transferred back to the service-oriented

computing (SOC) domain.

From the SOC perspective (cf. Section 2.2), the charac-

teristics of the image processing domain such as

• high variability of existing, simple services,
• demand for complex services providing

data-dependent and context-specific functionality,
• availability of executable implementations provided

by open source libraries,
• inherent vividness for motivating new challenges and

new concepts,

enable us to realize examples of high practical relevance,

while the complexity of those examples can be gradually

increased. In our experience, increased practical rele-

vance has a highly positive impact on the awareness and

acceptance of SOC techniques in general.

2.1 From the image processing perspective

Developing image processing solutions heavily depends

on the area of application and the underlying conditions.

In embedded systems, e.g., image processing software is

usually optimized for specific hardware while the imple-

mented algorithms are often highly specialized for certain

tasks. In order to reduce redundant implementation steps,

a functional prototype can be realized in advance. In doing

so, developers primarily focus on the desired function-

ality. They determine at an early stage, if and how the

underlying image processing task can be solved.

A possible way of solving an image processing task is to

follow a component-based approach. Existing algorithms

are considered to be distinct components. Components

can be interconnected in a loosely coupled manner in

order to generate a composition of image processing algo-

rithms. A composition is subsequently executed and eval-

uated in an application-specific test case. If the evaluation

result does not satisfy the requirements, the respective

composition is partially refined by adding, removing or

adjusting available components. The modified compo-

sition is again executed and evaluated. These steps are

repeated until either a prototype that provides the desired

functionality was realized, or until the task itself is modi-

fied, since no feasible solution could be found.

In the end-user domain of photo and video post-

processing, users do not implement a complete post-

processing approach by programming new software. They

use existing algorithms that are provided by monolithic

solutions (such as Adobe Photoshop, Corel Photo-Paint,

and GIMP) or by web-based solutions (like, e.g., Insta-

gram) and combine them in an arbitrary order. End-users,

whether or not being an expert, however, follow a strategy

that is similar to the previously outlined way of proto-

typing. In order to get a solution that satisfies individual

preferences, existing algorithms are consecutively applied

in a trial and error manner.

Dependent on a user’s degree of expertise, this trial and

error process can be highly time consuming. Consider,

e.g., an end-user, who has a concrete idea of how his holi-

day photos should look like. If he is a novice, however, he

has no idea about which algorithms have to be applied in

order to achieve the desired result. As a consequence, he

simply tries different algorithms or combinations of algo-

rithms in order to come up with a satisfying result. But

even being an expert in image processing does not neces-

sarily mean that you are able to come up with a satisfying

solution from scratch. In any case, a composition of con-

crete algorithms has to be identified, most likely by a trial

and error like strategy. Regardless of whether being an

expert or a novice, users almost always have to deal with

one and the same question: Which composition of avail-

able algorithms solves the image processing task as good

as possible?

By automating this composition process, both novices

and experts can be supported and the effort for find-

ing a satisfying solution can be minimized. In the best

case, an optimal solution that perfectly satisfies a user’s

expectations is identified and the problem is solved fully

automatically. However, users can even benefit from non-

optimal solutions: The composition information can be

used as starting point for manual modifications while the

search space for possibly promising modifications was

also reduced. In general, the problem of automatically

composing image processing software solutions is similar

to the service composition problem.

Throughout this paper, we use a simple yet expressive

pre-processing use case for illustration and evaluation

purposes. Figure 2a shows a photo of a sleeping dog. In

order to modify only those parts of the image that belong

to the dog’s gray muzzle, the associated pixels shall be iso-

lated as good as possible. Figures 2b and 2c show example

images that can be achieved by applying a sequence of

simple image processing filters.
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Figure 2 Example for functional discrepancy in the image

processing domain. Based on original image (a), desired image (b)

and undesired image (c) were produced by means of two formally

equivalent solutions.

2.2 From the service-oriented computing perspective

In order to design image processing services that serve as

loosely coupled, functional components for the composi-

tion process, we adhered to the relevant key principles of

SOC [17]. Statelessness is achieved by encapsulating exist-

ing OpenCV algorithms [18], which do not depend on any

state information, but consume a single image and provide

a modified version of that image. Since the functionality of

some of these algorithms can be influenced by changing

parameters and in order to ensure autonomy, we inter-

pret an algorithmwith different parameter sets as separate

services.

To support composability of simple image processing fil-

ters, the functionality of our services is formally specified

in terms of abstract propositions. In this context, we fol-

low an IOPE (input, output, postconditions, effects) [19]

approach to facilitate AI planning techniques. In the most

general sense, propositions correspond to attributes of an

image that are changed by applying a service.

We specify an image processing service s in terms of

the tuple (i, o, p+, p−, e+, e−), where each element corre-

sponds to a set of propositions. Input i and output o rep-

resent signature information (basic input and output data

types) of a service. They ensure syntactically correct solu-

tions and a successful execution. Required preconditions

p+, prohibited preconditions p−, positive effects e+, and

negative effects e− correspond to semantic information.

Semantic information reduces the set of syntactically cor-

rect solutions to only those solutions that are really useful.

Table 1 lists four specifications of services that provide

functionality for solving our example. Service s1 converts

a multi-channel image into a single-channel image that

only contains gray level information. Any existing color

information is lost during the conversion step. Service

s2 applies a binary thresholding method. The seman-

tic description ensures, that images are processed only

once by a thresholding service. Services s3 and s4 real-

ize a blurring functionality for reducing image noise. They

can be applied to both single-channel images and multi-

channel images. Furthermore, the services can be applied

arbitrarily often. However, although having the same for-

mal specification, the services differ in their implemented

blurring methods.

We use the same formalism for specifying a request; that

is, a request r is defined in terms of tuple (i, o, pre, post),

with i and o denoting input and output, respectively, pre

denoting the preconditions and post denoting the post-

conditions. The request for the desired functionality in

our example is defined as

i = {multi-channel},

o = {single-channel},

pre = {colored},

post = {blurred, threshold, gray} ,

(1)

with i and pre describing the original image (Figure 2a) as a

multi-channel, color picture, and o and post describing the

desired image (Figure 2b) as well as the undesired image

(Figure 2c) as a single-channel, grayscale picture, which

was blurred and additionally modified by a thresholding

filter.
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Table 1 Specifications of image processing services (simple filters)

Signature Preconditions Effects

Service si Description isi osi p+
si p−

si
e+
si e−

si

s1 Multi-channel to single-channel Multi-channel Single-channel - - Gray Colored

s2 Binary thresholding Single-channel Single-channel - Threshold Threshold -

s3 Gaussian filter Single-channel Single-channel - - Blurred -

Multi-channel Multi-channel - - Blurred -

s4 Median filter Single-channel Single-channel - - Blurred -

Multi-channel Multi-channel - - Blurred -

Figure 3 shows the composition state space based on

the specified services and the specified request. An action

(edge) corresponds to appending a service to the present

sequence of services. States encode attributes of an image.

The depicted automaton produces all solutions that are

syntactically and semantically correct. The composition

problem itself is now to find a path from initial state

q0 to goal state q∗. The identified path is equivalent to

the composed solution. That said, the major question we

are facing becomes clear: Which path solves the problem

the best? That is, which composed solution produces an

execution result that approximates the desired solution

(Figure 2b) and not a formally equivalent solution such as

Figure 2c?

For solving the composition problem on the symbolic

level, we applied a forward search algorithm. From the

AI perspective, the algorithm can be considered as a

tree-search approach [20], which allows different search

nodes to correspond to the same state in the composition

space. These redundant paths enable our search algorithm

to identify solutions that contain loops (e.g., consecu-

tive invocations of blurring filters). In order to decide

which action (service) should be chosen next in each

Figure 3 Composition state space for request (1) based on the

service specifications listed in Table 1.

state, our learning recommendation system comes into

play.

2.3 Possible reasons for functional discrepancy

Before presenting our learning recommendation system,

let us take a closer look at some possible reasons for

functional discrepancy in our OTF context. For a bet-

ter understanding, Figure 4 illustrates the so-called OTF

Computing process. A user only interacts with an OTF

provider. He formulates a request (Step 1), gets a response

in terms of a composed service (Step 2), executes the com-

posed service (Step 3) and rates his degree of satisfaction

regarding the execution result (Step 4).

2.3.1 Abstraction

Functionality of services is usually described by ser-

vice providers in terms of abstract, functional proper-

ties. Desired functionality, in turn, is abstractly described

by users. Due to the abstraction, similar services most

likely end up with identical formal descriptions, although

they provide different functionality when executed. The

expressiveness of specification languages might theoreti-

cally be high enough to make a difference between similar

services. Abstraction, however, is necessary to ensure fea-

sibility of composition processes. Furthermore, the more

precise and restrictive functional properties are specified,

the higher the probability to exclude solutions that might

be desired by users.

2.3.2 Data- and context-dependency

In certain domains, service functionality heavily depends

on the concrete data that has to be processed. Although

the functional description of a service might be very

detailed, there is always a high probability that a service is

not or not sufficiently fulfilling the required functionality

when executing it with concrete data. It is usually impos-

sible to predict, consider and formalize every possible

execution context in advance.

2.3.3 Inexpert users

Users are not necessarily experts in the domain in which

they formulate a request. As a consequence, although

having the possibility to describe a request on a very
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Figure 4 The OTF Computing process, involving end user, OTF provider and service providers.

detailed level, inexpert users are not able to describe all

details that are necessary for composing a solution that

exactly produces desired execution results. Most of the

time, indeed, user requests will likely be imprecise or

incomplete. A composition process is able to automati-

cally produce solutions that satisfy a user request. How-

ever, that does not necessarily mean that the composed

solution also produces execution results that satisfy the

user.

2.3.4 Divergent user preferences

In a market of composed services, users with different

preferences will occur. As a consequence, although users

specify the same request and provide the same data, the

actually desired functionality might still differ. Assum-

ing that users rate their satisfaction regarding the result

of a composition process, an OTF provider most likely

receives divergent feedback for identical requests. An

OTF provider has to analyse user feedback in order to

group user profiles according to similar preferences. New

requests have to be assigned to existing or new groups,

so that an OTF provider can compose a service according

to the specific preferences of a group. Handling this so-

called concept drift, however, is beyond the scope of this

paper.

3 Learning recommendation system
Recommendation systems are applied to provide users

with the most suitable services to their specific interests.

Chan et al., e.g., developed a recommendation system that

captures implicit knowledge by incorporating historical

usage data [21]. In their work, however, generated recom-

mendation values are neither used for automatic service

composition, nor do they evolve by learning from history.

In our work, we interpret service composition as

sequential application of composition steps such as

appending a service to a sequence (cf. Section 2.2). When-

ever alternative composition steps occur, our recom-

mendation mechanism supports the composition process

in identifying the most appropriate candidate. The rec-

ommendation strategy is adjusted over time based on

feedback. For adjusting the decision-making processes, we

apply RL [22] techniques.

RL addresses the problem faced by an autonomous

agent that must learn to reach a goal through sequen-

tial trial-and-error interactions with its environment. RL

techniques, however, do not try to reach a particular goal.

They try to maximize reward in the long run by identi-

fying optimal actions. Depending on its actions, an agent

receives reward values. These values are incorporated into

the decision-making process in order to adjust the future

action selection strategy.

In our context, the agent corresponds to the OTF

provider, who has the goal to compose a solution that

satisfies the user. A single action corresponds to a com-

position step. A sequence of composition steps generates

a composed service that can be executed by the user. The

reward values an OTF provider receives are provided by

users in terms of ratings.

3.1 Independent state models

Reinforcement Learning bases on the major assumption,

that the underlying decision-making process does not

depend on history, but is memoryless and can be modeled

as Markov Decision Process (MDP) [23]. The fundamen-

tal assumption behind modelling a sequential decision-

making problem as MDP is that the reward function is

Markovian [24]. All information needed to determine the

reward (and to choose an action) at a given state must

be encoded in the state itself, i.e., states have to satisfy

the Markov property. In case of the composition state

space shown in Figure 3, the Markov property is not

fulfilled, since not enough information is encoded in a

single state. To decide whether to append a service or

not heavily depends on previous composition steps. For

that reason, the composition model’s state space is auto-

matically transformed into a Markovian state space by

augmenting the composition model’s states with addi-

tional information in terms of the actual composition

structure. Roughly speaking, a Markov state encodes a

composition model’s state’s history. As a consequence,

the recommendation system can estimate the quality of a
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service as a function of the previous actions of the search

algorithm.

3.2 Markov model based on composition rules

From the recommendation system’s perspective, we inter-

pret a service composition step as an application of a com-

position rule that compactly describes a formally correct

modification during the composition process. The syntax

of composition rules is identical to the syntax of produc-

tion rules for specifying a formal grammar. A grammar

G is defined by the tuple (N ,�,P, S), where N denotes a

finite set of non-terminal symbols, � denotes a finite set

of terminal symbols, P denotes a finite set of production

rules, and S ∈ N denotes a distinguished start symbol.

In our context, non-terminal symbols correspond to func-

tionality that still has to be realized, i.e., the remaining

path in the search tree from the current node to the goal

node. Terminal symbols correspond to concrete services,

which cannot be replaced anymore. The start symbol cor-

responds to the formally specified request. In case of our

example, it corresponds to the path from initial state q0 to

goal state q∗.

Note: In this paper, we omit an introduction of the mathe-

matical basis as well as a formal description of the Markov

model, but present the basic idea only. A comprehen-

sive formal description of the underlying Markov model

was already introduced in our previous work [25,26].

In the paper at hand, we focus on the combination of

symbolic approaches and our learning recommendation

system.

Table 2 shows the right regular composition grammar

for our running example addressed by the forward search

algorithm. This grammar is automatically generated by

the recommendation system during the search process of

the composition algorithm (see Section 4.2 for an exam-

ple). In terms of composition rules, two formally correct

Table 2 Right regular composition grammar for producing

all solutions provided by the automaton in Figure 3

N : {V,W, X, Y, Z}

V = (q0 , . . . , q
∗) W = (q1 , . . . , q

∗) X = (q2 , . . . , q
∗)

Y = (q3 , . . . , q
∗) Z = (q4 , . . . , q

∗)

� : {si|1 ≤ i ≤ 4}

P : {ri|1 ≤ i ≤ 14}

r1 = V → s1W r2 = V → s3X r3 = V → s4X

r4 = W → s2Z r5 = W → s3Y r6 = W → s4Y

r7 = X → s3X r8 = X → s4X r9 = X → s1Y

r10 = Y → s3Y r11 = Y → s4Y r12 = Y → s2

r13 = Z → s3 r14 = Z → s4

S : V

solutions for our example correspond to the following two

derivations:

V
r1

−→ s1W
r6

−→ s1s4Y
r11

−→ s1s4s4Y
r12

−→ s1s4s4s2

(2)

V
r1

−→ s3X
r9

−→ s3s1Y
r12

−→ s3s1s2 (3)

Figure 5 depicts the graphical representation of the

Markovian state space, based on the composition gram-

mar defined in Table 2. Nodes correspond to states. Edges

correspond to possible actions that can be performed

in order realize a transition from one state to another.

A single state is equivalent to the current composition

structure described in terms of terminal and non-terminal

symbols. Performing an action is equivalent to applying

a composition rule. Initial states correspond to distin-

guished start symbols. States without any non-terminal

symbols are final states. The annotated quality values

Q(s, r) can be interpreted as an estimation of how good

it is to apply a composition rule r based on the current

composition structure. Roughly speaking, the higher a so-

called Q-value, the better the evaluation of an alternative

composition rule in a specific state. Adjusting these so-

called Q-values based on feedback is up to the applied RL

method.

3.3 Incorporating temporal difference learning

According to our idea of OTF Computing, OTF providers

do not know in advance which services are available on the

market. Hence, also the recommendation system’s compo-

sition rules must be created at runtime. A complete model

of the environment is not available a priori.

In such situations, Temporal-Difference (TD) learn-

ing can be used. TD learning is one central concept of

RL. It combines the advantages of Monte Carlo meth-

ods with the advantages of dynamic programming. Monte

Carlo methods allow for learning without relying on a

model of the environment. Dynamic programming pro-

vides techniques for estimating value functions in terms

of Q-values without waiting for a final outcome. Hence,

Q-values are already updated during the composition

process for adjusting the recommendation strategy in

an on-line manner, and not only after a user gave his

feedback.

In order to maximize the final reward in the long run,

TD learning algorithms try to identify the most appropri-

ate sequence of actions by trial-and-error. A fundamental

question in this context is how to choose an action when

there are multiple alternatives. If only the action with

the highest Q-value is always selected (exploitation), the

learning algorithm may be stuck in a local maximum. If,

in turn, Q-values are not considered at all but actions

are always selected randomly (exploration), the learning
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Figure 5 Snippet from the Markovian state space based on the composition grammar defined in Table 2. Terminal states with dashed

borders correspond to the solutions (2) and (3), respectively.

behaviour will never converge. There already exist dif-

ferent approaches to cope with this problem in the RL

domain, such as the ǫ-greedy strategy or softmax action

selection strategy [22].

4 Integration
Figure 6 shows the main components and interaction

processes of our combined approach. The service compo-

sition component and the service recommendation com-

ponent are two distinct modules that interact with each

other in order to generate service-based software solu-

tions that i) are formally correct with respect to user

requests and ii) approximate implicit user requirements

over time based on user ratings. Without any additional

information, the service composition component imple-

ments an uninformed search strategy [20]. In combination

with the recommendation system as learning evalua-

tion function, the composition component realizes an

informed search strategy.

Figure 6 Structural overview andmain interactions (circles) of the integrated approach.
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4.1 Conceptual overview

The service discovery encapsulates (and currently

abstracts) the functionality to discover services in a

market. For the remainder of this paper, we assume

the service discovery to work in a synchronous man-

ner; that is, services and their descriptions are kept in

stock in a local repository, while a discovery request is

answered by the service discovery in terms of a mes-

sage containing all possible candidates for a composition

step. In a distributed market environment with mul-

tiple service providers, however, the service discovery

has to be exchanged by an asynchronous approach, e.g.,

realized by means of publish/subscribe techniques. Fur-

thermore, an independent matching mechanism such

as [27] has to be integrated to ensure that an OTF

provider receives only appropriate services from service

providers.

The service compositionmodule implements a breadth-

first forward search algorithm [20]. It considers only for-

mal specifications in terms of pre- and postconditions

(effects). It does not only consider goals that exactly sat-

isfy a user’s postconditions, but also goals that are likely

to be the actual goal of a user, by accepting states as goal

states, that are supersets of the specified postconditions.

In contrast to the recommendation module, the compo-

sition module is memoryless. Each composition process

starts from scratch without relying on knowledge from

previous composition processes. In order to identify the

most up to date actions (services) during the search pro-

cess, the composition module interacts with the service

discovery.

Technically, the service recommendationmodule can be

interpreted as a learning evaluation function that supports

the composition module in deciding what action is best in

a specific context. The recommendation module consists

of two components: Composition Rule Manager (CRM)

and Temporal Difference Learner (TDL). The CRM gen-

erates and stores composition rules based on formally

correct actions identified by the composition module.

Composition rules are generated only once, are aggre-

gated over time, and represent all formally correct modi-

fications that were identified by the composition module

so far.

The TDL maintains the learned knowledge in form of

state transition values (Q-values) in a Markovian state

space. A state in the TDL corresponds to a composition

structure, and an action is equivalent to a rule that mod-

ifies the composition structure. Whenever the CRM gen-

erates a new composition rule, the TDL modifies the state

space. The TDL stores a Q-value for each state-action pair.

TheQ-values are adjusted during the composition process

and after a user has rated a solution – according to the

implemented learning algorithm and the corresponding

Q-value update function (see Section 4.3).

4.2 Automatic rule and state generation

Whenever a new composition process starts, the com-

position module notifies the recommendation module

by means of an initialization message (Interaction 1 in

Figure 6) containing the initial state and the goal state of

the composition task. The CRM identifies (or generates)

the non-terminal symbol that corresponds to the desired

functionality. Subsequently, the TDL marks the respec-

tive non-terminal as initial state for the upcoming search

process.

After initialization, the search process starts. For each

service returned by the service discovery, the composition

module sends a request to the recommendation module

in order to evaluate how good it is to apply the service

in the current context (Interaction 2 in Figure 6). Each

request comprises the search algorithm’s current state qn,

the respective service s and the next state qn′ ; we write

(qn, s,qn′). Based on this information, the CRM identi-

fies (or generates) a composition rule r. In case of forward

search, a rule corresponding to a right regular grammar is

constructed (cf. Section 3.2). If the rule is not yet assigned

to the current state within the Markov state space, the

TDL integrates the rule and the corresponding successor

state into its state space and assigns an initial Q-value. The

recommendation system returns the ids of the rule and the

two corresponding Markov states that reflect the search

algorithm’s composition step in the TDL state space. After

selecting a service, the composition module informs the

recommendation module about its decision by transmit-

ting the associated ids of the service’s related rule and

Markov states (Interaction 3 in Figure 6). Based on this

information, the recommendation module’s TDL updates

its internal state.

4.2.1 Forward search example

By way of illustration, let us consider our running exam-

ple. The composition problem is addressed by a forward

search algorithm. An initialization message comprising

initial state q0 and goal state q∗ is sent to the recommen-

dationmodule. The CRM cannot identify a corresponding

non-terminal symbol. Hence, it introduces a new symbol

V as a placeholder for the path from q0 to q∗; we write

V = (q0, . . . ,q
∗). The TDL then sets its initial state to V

(cf. Figure 7).

The composition module’s forward search now enters

its search loop. Three syntactically and semantically valid

services s1, s3, and s4 are discovered, resulting in three

successor nodes. Two of these successor nodes represent

the same state, namely q2, while the third node repre-

sents state q1 (cf. Figure 8). For each new search node,

the composition module formulates evaluation requests.

For request tuple (q0, s1,q1), a corresponding composi-

tion rule is not yet available.The CRM generates a new

composition rule r1 = V → s1W with W = (q1, . . . ,q
∗).
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Figure 7 Initialization of the integrated composition process.

Search tree (a) and TDL state space (b) after initialization.

The TDL extends its state space by incorporating rule r1
for performing a state transition from state V to a new

state s1W .

Analogously, two new composition rules r2 = V → s3X

and r3 = V → s4X with X = (q2, . . . ,q
∗) are generated

for tuple (q0, s3,q2) and tuple (q0, s4,q2), respectively, and

integrated into the TDL state space. Let us assume that

the composition module chooses service s1 over services

s3 and s4; that is, it selects node q1 as next search node.

The composition module notifies the recommendation

system, so that the TDL can update its internal state from

state V to state s1W by applying r1.

After two additional iterations, the sequence 〈s1, s4, s2〉

was identified as solution for our composition problem

(cf. Figure 9). During the composition process, the right

regular composition grammar shown in Table 2 was par-

tially generated. While the search tree is discarded, the

Markovian state space is preserved. In case of a similar

user request, the grammar as well as the state space will

be extended according to new alternative services that are

discovered or according to alternative search paths that

are explored by the search algorithm.

4.3 Prototypical realization

We implemented the presented concepts in terms of a

prototypical composition framework. Figure 10 depicts

the structural overview. The Service Composition compo-

nent controls the overall composition process. It imple-

ments the forward search algorithm. This algorithm

interacts with a Service Repository to get the most up to

date service specifications and associated executable ser-

vices that can be applied in the current search state. In

this context, a simple matching operator ensures syntac-

tically correct interconnections based on signature infor-

mation. The Learning Recommendation System provides

learned knowledge in order to support the composition

component. However, the recommendation system does

not dictate which search node should be visited next.

As the name implies, it only recommends a node selec-

tion strategy based on learned knowledge. In contrast to

the recommendation system, the composition component

is memoryless. Each search process starts from scratch

without relying on knowledge from previous search

processes

The CRM generates and maintains composition rules

that were identified by the composition component dur-

ing all search processes so far. The TDL implements the

relevant concepts for reinforced learning. Based on the

CRM and the behaviour of the composition component,

the TDL automatically constructs, extends and maintains

a Markovian state space. The TDL also maintains and

Figure 8 First search loop iteration of the integrated composition process. Forward search tree (a) and TDL state space (b) after choosing

service s1 over services s3 and s4 .
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Figure 9 The integrated composition process identified a solution. Forward search tree (a) and TDL state space (b) after solution 〈s1 , s4 , s2〉

was found.

updates Q-values based on reward given by theAutomatic

Evaluation component after automatically executing a

composed solution by means of the Service Execution

component.

4.3.1 Composition process

First of all, the composition component initializes the

recommendation system in order to set its initial state

to the corresponding start symbol. Subsequently, the

informed search algorithm enters its search loop. When-

ever a node is visited the first time, service candidates

are requested from the service repository and corre-

sponding child nodes are computed. Subsequently, the

recommendation system rates the candidates by two

mechanisms:

1. Each alternative child node is assigned its current

Q-value for enabling the search algorithm to select

the globally best candidate.

2. The complete list of the current node’s child nodes is

sorted according to the TDL’s action selection

strategy in order to enable the search algorithm to

select the locally best alternative. In case of ǫ-greedy,

with a probability 1 − ǫ, the list of alternatives is

sorted in a greedy manner, i.e., alternatives with the

highest Q-value are in the first place, whereas

Figure 10 Overall structure of our prototypical service composition framework.
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alternatives with the lowest Q-value are in the last

place (exploitation phase). With probability ǫ,

however, the list of alternatives is randomly shuffled

(exploration phase).

After choosing a node (either globally or locally) and

entering a new node, the composition module informs the

recommendation system to update both the current state

in the MDP and the corresponding Q-value. As soon as

a formally correct solution was identified, the framework

immediately proceeds with execution. Subsequently, the

execution result is automatically evaluated by comparing

it with the desired result (image). The evaluation result is

finally fed back as reward to the recommendation system

for a final update of the corresponding Q-value.

4.3.2 Search node selection strategy

As described in the previous section, alternative nodes can

be selected by the composition component either glob-

ally based on absolute Q-values, or locally by picking a

child node from a sorted list. On the one hand, when

only selecting globally, the TDL’s action selection strat-

egy is completely bypassed. The TDL’s action selection

strategy, however, is crucial for balancing exploitation of

already learned knowledge and exploration of new and

possibly better alternatives. On the other hand, when only

selecting locally, the search algorithm may be stuck in a

branch that does not contain a formally correct solution at

all. Only selecting nodes from all globally available nodes

enables the algorithm to leave such a branch again. As a

consequence, we allow the search algorithm to randomly

choose how to select the next search node. The weights κ ,

ν, and μ for selecting globally greedy, globally randomly,

and locally, respectively, have to be adjusted in advance.

4.3.3 Q-Learning as TDL implementation

In our prototype, we integrated Q-Learning to adjust

the Q-values over time based on user feedback [28]. Q-

Learning is a TD learning algorithm that directly approxi-

mates Q-values by means of its update function

Q(st , rt) ← Q(st , rt)

+ α

[

γ max
r

[Q(st+1, r)] − Q(st , rt)
]

,

(4)

with current state st , next state st+1, current composition

rule rt , next composition rule rt+1, discount factor γ , and

learning rate α.

Figures 11b,c,d,e illustrate the actual learning process

(with α = 0.9 and γ = 0.9) based on a right regular com-

position grammar, whereas the search nodes are selected

only locally (based on ǫ-greedy). Each figure shows the

Markovian state space and the associated Q-values after

a composition process was completed and a user rating

was incorporated as final reward. Thick arrows indicate

the chosen path from initial state to final state. Q-values

Q(X, r1), Q(s1Y , r2), and Q(s1Y , r3) are initialized with 0.

Figure 11b: Service s1s3 was composed and executed.

During the composition process, composition rule r3 was

chosen randomly. The execution result was rated with

value 0.5. The rating value was immediately integrated as

final reward by adjusting Q(s1Y , r3).

Note: Final reward is always incorporated unmodified

and replaces the Q-value of the lastly applied composition

rule.

Figure 11c: The composition process again produced

composed service s1s3. Composition rule r3, however, was

not selected randomly, but greedily based on Q(s1Y , r3),

which was modified in the previous composition pro-

cess. After selecting r3 and before transitioning to state

s1s3, update rule (4) is applied to adjust Q(X, r1). Q-value

Q(s1Y , r3) does not change, since it is equivalent to the

rating result, which is the same as before.

Figure 11d: Composition rule r2 was randomly selected

during the composition process. Executing composed ser-

vice s1s2 results in an image that is identical to the

desired result image. Hence, the rating value is 1. Q-value

Q(s1Y , r2) is immediately updated. During the composi-

tion process, however, this value was not yet available. Due

to the max operator in the Q-Learning update function,

Q(X, r1) was again updated based on Q(s1Y , r3).

Figure 11e: The composition process operated in a

greedy manner again. Furthermore, Q(X, r1) was updated

based onQ(s1Y , r2) this time. As a consequence, the value

significantly increased.

By consecutively applying the update rule when moving

through the state space and by continually incorporating

ratings of consecutive composition processes, user ratings

are propagated throughout the state space. In the most

general sense, the overall composition process adapts its

composition strategy to produce a composed service that

approximates the desired functionality, which is implicitly

determined by user feedback.

Note: Another TD learning algorithm that could be

applied is SARSA [29,30]. The off-policy Q-Learning

algorithm directly approximates the optimal Q-values –

independent of the action that was selected (max opera-

tor). The on-policy SARSA algorithm, in turn, does always

update Q-values based on the selected action.

5 Experiments and results
We conducted several experiments for investigating the

difference between a planning only (purely symbolic)

composition strategy (e1 in Table 3) and a combined
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Figure 11 Demonstration of the learning process in terms of Q-Learning. Based on the Markovian state space (a), user ratings are incorporated

as feedback and propagated throughout the state space dependent on the action selection strategy during each consecutive composition process

(b)-(e).

planning and learning strategy with only local search node

selection (e2 in Table 3). Selecting search nodes only

locally is possible in our example, since there exists no

branch in which the search algorithm might be stuck.

There is always the possibility to find a formally correct

solution and to terminate. Furthermore, we experimen-

tally investigated the influence of additionally selecting

search nodes globally based on Q-values (e3 in Table 3).

To investigate how good the three different strategies can

cope with imprecise request specifications, we repeated

experiments e1, e2, and e3 for three different request spec-

ifications (r1, r2, and r3 in Table 4). Technically, the amount

of valid goal states is increased by removing propositions

from the request’s postconditions.

We implemented the set of services described in

Section 2.2 based on OpenCV algorithms [18]. Service

s1 was implemented by exactly one executable service.

The functionality for service s2 was provided by 14 exe-

cutable services with different thresholding techniques

and threshold values. Both service s3 and service s4 were

each implemented by two executable services with differ-

ent kernel sizes. Furthermore, we added 10 additional ser-

vices that realize a morphological filtering functionality: 5

Table 3 Different search node selection settings

Search node selection

Global, greedy Global, random Local

Experiment ei κei νei µei

e1 0 1 0

e2 0 0 1

e3 1 0 1

services for dilating, and 5 services for eroding an image.

These services serve as optional functionality, that might

be selected by the composition algorithm to improve the

execution result.

The goal of the composition processes during the exper-

iments was to compose a service that solves our running

example; that is, a solution that approximates the desired

image (Figure 2b) as good as possible by processing the

original image (Figure 2a). Regarding the recommenda-

tion system, we chose a typical though static setting for

the Q-Learning update function and the ǫ-greedy action

selection mechanism; that is, α = 0.9, γ = 0.9, and

ǫ = 0.1.

We executed 30 independent simulation runs for each

of the nine combinations (experiments × requests). Each

simulation run involved 1000 consecutive composition

processes. We compare the quality of the composition

processes by means of the final reward per composition

process (smoothed mean value and 95% confidence inter-

val). Recall: The higher the final reward, the more similar

is the automatically produced image to the desired image

and consequently the higher the quality of the composed

solution.

Table 4 Requests with different level of precision

Semantic information

Request ri Preri Postri

r1 Colored Blurred, gray, threshold

r2 Colored Blurred, gray

r3 Colored Threshold
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5.1 Preliminary results

Across all following figures, red plots correspond to final

reward values of the purely planning composition strategy

(experiment e1). Search nodes are always selected ran-

domly from all available candidates. Blue plots represent

the results of the combined approach including planning

and learning with local search node selection only (experi-

ment e2). Next search nodes always correspond to the first

node in the list of child nodes as provided by the recom-

mendation system. In fact, this setting can be interpreted

as an informed depth first search strategy. The green plot

represents the results of the combined approach including

planning and learning with uniformly distributed weights

(experiment e3) for selecting search nodes either glob-

ally, based on their Q-values, or locally, as described

before.

Figure 12 shows the results for request r1; the original

request of our running example. Both composition strate-

gies that include learning clearly outperform the purely

planning based approach, whereas the strategy including

only local node selection performs best in the long run.

As expected, the purely planning approach is not able to

improve its composition strategy over time. The mean

values of the final reward almost always remain between

0.5 and 0.6. Furthermore, the randomness in selecting

search nodes is reflected by the confidence interval, which

is the widest of all depicted plots. The learning com-

position strategy with local node selection significantly

improves during the first 400 composition processes.

The benefit of our combined approach is clearly visible.

The benefit is also visible, when regarding the results of

the third composition strategy. However, selecting search

nodes also globally has a mostly negative influence to

the learning process. Although the composition strategy

improves the fastest during the first 170 composition pro-

cesses, it considerably worsen once in a while during the

following composition processes (e.g., between composi-

tion process 170 and 190). The relation between local and

global search node selection seems to be highly unbal-

anced – at least for our example. Identifying a good

balance (or even trying to do some dynamic balancing) is

beyond the scope of this paper. It needs a more thorough

investigation, based on examples that do not allow local

search node selection only.

Figure 13 shows the results for request r2; a reduced

version of the original request of our running example.

We removed the (most likely) most important proposi-

tion threshold from the postconditions. The effect of this

modification is clearly visible, when comparing the results

in Figure 13 with the corresponding results in Figure 12.

The mean value of the purely planning composition strat-

egy is significantly lower then before (≈ 0.1). The tighter

confidence interval indicates, that less different solutions

were composed by chance. Again, the second composition

strategy performs best. In this scenario, it performs even

significantly better than the third composition strategy.

However, the results from the previous scenario cannot

be achieved. Furthermore, the confidence interval is much

wider than before, meaning that more different solutions

where chosen by chance. Roughly speaking, the recom-

mendation system lacks the guidance of the search algo-

rithm based on the important threshold proposition. The

TDL counters this circumstance by increased exploration,

which, in turn, guides the search algorithm in identifying

Figure 12 Results of e1 (red; pure planning with random search node selection), e2 (blue; planning + learning with local search node

selection only), and e3 (green; planning + learning with global and local search node selection) for request r1.
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Figure 13 Results of e1 (red; pure planning with random search node selection), e2 (blue; planning + learning with local search node

selection only), and e3 (green; planning + learning with global and local search node selection) for request r2.

better solutions. This reciprocal relationship is exactly

what we intended to achieve. It can be interpreted as self-

balancing mechanism of the entire approach. However,

more experiments are necessary in order to investigate,

to which degree the recommendation system can counter

missing (formal) specifications. It may even be possible

to achieve better results in the long run by (dynamically)

adjusting the settings of the TDL module.

Figure 14 shows the results for request r3; an alter-

native, reduced version of the original request of our

running example. This time, all goal propositions except

for proposition threshold were omitted. The results are

indeed surprising. While the purely planning strategy per-

forms as good as in the r1 case, the two strategies including

learning perform even better. The composition strategy

including local and global node selection is even able to

catch up to the composition strategy including only local

node selection. Now, what general conclusions can be

drawn from these – to be honest – unexpected results?

First, there might be parts of a formal specification that

Figure 14 Results of e1 (red; pure planning with random search node selection), e2 (blue; planning + learning with local search node

selection only), and e3 (green; planning + learning with global and local search node selection) for request r3.
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are more important than others. This leads to the initial

idea of assigning, let’s say, statements about the impor-

tance or influence to single propositions (e.g., in terms of

fuzzy expressions). Second, precise formal specifications

are not always the best choice when search algorithms

are supported in decision-making by a learning evaluation

function.

6 Related work
In the last years, there has been an increasing amount of

research on automated service composition incorporating

Markov models and RL. However, we are not aware of any

approach that combines reinforced learning techniques

with symbolic techniques in order to realize adaptive

service composition for markets of composed services.

Ignoring feedback such as user ratings in the composition

process is troublesome, because a user might not be sat-

isfied with a solution even if it is formally correct. The

novelty of this paper is the integration of automated ser-

vice composition with a learning recommendation system

in order to narrow the gap between “what a user wants”

and “what a user gets”. To the best of our knowledge, such

an integration has not been done before.

The general idea of incorporating Markov models or RL

into service composition, however, is not new.Wang et al.,

e.g., propose an approach that enables composed services

to adapt to dynamic environments [31]. By modelling

composed services as MDPs, multiple alternative work-

flows and services are integrated into a composed service.

During execution, workflow selection is controlled by a

RL mechanism. Similar to our approach, there is no sepa-

ration between building abstract workflows and concrete,

composed services. In contrast to our work, however, the

composition process itself is not interpreted as MDP, but

the result of the process.

One approach that considers service composition and

RL at a time is proposed by Todica et al. [32]. They divide

service composition into abstract work-flow generation

and service instantiation. RL is then applied to the abstract

work-flow generation phase. Their motivation is identical

with ours, namely to improve the entire composition pro-

cess by involving learning from previous attempts. In our

work, however, RL is not applied for solving the service

composition problem directly, but to support it in terms

of a recommendation system during decision making. By

doing so, RL is not replacing but extending classical search

algorithms or AI planning approaches.

Kun et al. combine a MDP model and Hierarchical Task

Networks (HTN) planning to increase flexibility of auto-

matic service composition [33]. Their proposed model

enhances HTN planning in order to decompose a task

in multiple ways and to identify more than one possi-

ble solution. An evaluation mechanism then identifies a

composition out of the set of possible solutions that is

optimal with respect to non-functional properties. RL,

however, is not applied in their work. In contrast to our

work, again, the composition process itself is not mod-

elled as MDP, but the result of the composition process.

Similar to the work of Wang et al. [31], the identified

solutions are aggregated in a single model. In case of fail-

ures, e.g., alternative solutions enhance the probability of

a successful execution. In our work, we currently do not

compose solutions with alternative execution branches.

However, in our opinion, our approach would most likely

benefit from it. Similar to collecting knowledge from con-

secutive composition processes, an extended approach

would additionally collect knowledge from consecutive

execution processes of a composed service. This informa-

tion could then be integrated as additional learning sam-

ples into our recommendation system. As a consequence,

services that, e.g., were not reliable during execution,

would be considered less often during future composition

processes.

Moustafa and Zhang introduce two RL algorithms for

multi-objective optimization of competitive service prop-

erties during service composition [34]. Both approaches

mainly base on Q-Learning and allow for identifying

Pareto optimal solutions. The first approach addresses

each service property in a separate learning process. For

selecting a distinct service during the composition pro-

cess, the separate learning processes are coordinated. The

second approach is an extended version of the approach

that was originally proposed by Dehousse et al. [35]. In

comparison to the first approach, the second approach

considers a complete vector of all competitive service

properties in a single learning process. In our work, we

currently do not consider competitive service properties.

In fact, we do not consider non-functional (QoS, per-

formance) properties at all. Incorporating multi-objective

optimization of functional and non-functional properties,

however, is an important and necessary step for our future

work.

Two other composition approaches that incorporate

Q-Learning are proposed by Wang et al. [36] and

Yu et al. [37]. Wang et al. introduce a service compo-

sition concept based on a multi-agent Q-Learning algo-

rithm. Agents benefit from the experiences other agents

made before. As a consequence, the convergence speed

of the overall learning process is improved in compari-

son to independently learning agents and a single agent,

respectively, as it is currently realized in our approach.

When dealing with a market environment, however, we

won’t get out of including a similar mechanism. An OTF

provider will most likely receive similar requests at the

same time, leading to parallel learning processes that have

to be appropriately synchronized. Furthermore, different

OTF provider may want to cooperate and share their

individually learned knowledge.
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The work of Yu et al. [37] places special emphasis on the

advantages of Q-Learning (model-free RL) when compos-

ing services in a distributed and dynamic environment.

Their work confirms our design decision to select TD

learning for our market scenario.

Another promising approach towards adaptivity is the

dynamic reconfiguration of composed services during

runtime, as, e.g., proposed in [38-40]. In our current

OTF Computing context, we are separating composition

and execution phase, since both processes are embedded

in a market environment with strictly regulated interac-

tion processes between users, OTF providers, and service

providers. However, in our opinion, dynamic reconfigura-

tion is essential in order to realize our vision of OTF Com-

puting. Experience from consecutive execution processes

with pre-defined alternatives or alternatives identified by

invoking a composition process from within the execu-

tion process has to be aggregated in our recommendation

system, e.g., by assembling Q-values from independent

Markov models.

7 Conclusion and outlook
In this paper, we presented a service composition

approach that integrates planning and learning for coping

with functional discrepancy; a challenge that inevitably

emerge when dealing with markets of composed services

for users. An AI-based composition process represents a

symbolic approach that sequentially generates a service-

based software solution based on formal specifications.

To narrow the gap between the functionality desired

by a user and the actual functionality of the composed

solution, a learning recommendation system supports the

composition algorithm in decision-making problems that

cannot be solved on the symbolic level alone. The rec-

ommendation system adapts its recommendation strategy

over time based on user ratings from previous compo-

sition processes. The entire recommendation process is

modelled as MDP. Techniques from RL are then applied

to adjust the decision-making processes.

Throughout the entire paper, image processing served

as application domain. A running example was used to

motivate the problem and illustrate major processes. The

running example was also used for conducting exper-

iments and investigate different composition strategies.

Preliminary results demonstrate the benefit of combining

symbolic approaches and machine learning.

Before being of practical usage, however, several loose

ends have to be tied up and open challenges have to be

solved; conceptually and technically. For example, until

now, in order to concentrate on the main integration of

planning and learning, we always assumed a static con-

text; that is, we assumed that identical user requests

with identical concrete execution data and identical

user preferences are received in a sequential manner.

In reality, our approach has to be able to deal with

different scenarios (combinations of imprecise request

specifications, different execution data, and varying user

preferences) – simultaneously. For instance, identical

formal user requests might come along with different

execution data or different user preferences. In general,

independent as well as interrelated learning processes

(andMarkov models) have to be coordinated to encounter

this so called concept drift.

Furthermore, a mechanism for minimizing the state

space explosion problem on the recommendation mod-

ule’s side has to be developed. Consider the composition

state space of our running example. Each possible com-

bination produces a new distinct state within the recom-

mendation module, leading to an infinite amount of states

in the worst case. A state abstraction approach for rep-

resenting a set of concrete states by means of a single

abstract state is one possible solution to overcome this

issue. We are currently working on this issue and will

present a possible solution in the near future.

Future work also comprises more extensive experiments

(with a significantly bigger and dynamic service pool)

in order to investigate the scalability of our approach in

combination with a state abstraction mechanism. In this

context, we want to enable our composition approach to

not only compose sequences of services, but more com-

plex data and control flows. The recommendation system

has to be able to represent more complex composition

structures in order to consider them in its Markov model.

One possible solution is to substitute regular grammars

by graph grammars. Last but not least, non-functional

properties such as costs, performance values, reputation,

and reliability have to be considered during the compo-

sition process in order to drive our vision of On-The-Fly

Computing forward.

Regarding our future work, we are confident to say, that

the image processing application domain provides all nec-

essary ingredients for testing and evaluating developed

concepts in realistic scenarios.
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