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ABSTRACT 
 

High level Petri Nets have recently been used for many AI 
applications, particularly for modelling traditional rule-based 
expert systems. The major effect is to facilitate the analysis of the 
knowledge inference during the reasoning process, and to support 
the system verification which increasingly becomes an integral 
part of expert system development. Nevertheless, there is not 
much attention being put on systems other than the traditional 
ones. In this paper, we described an approach to model hybrid 
(rule- and frame-based) expert systems using Coloured Petri Nets 
and the concept of controlled state tokens. The analysis of the 
proposed model is by constructing and examining the reachability 
tree spanned by the knowledge inference. Such methodology has 
an implication for supporting the verification process in hybrid 
systems. 
 

1. INTRODUCTION 
 
Expert Systems (ES) have reached the stage where they are 
implemented and used in a wide variety of organizations and 
industries, a selection of operational expert systems in US, 
Europe, Canada and the Far East can be found in [9][10][15] and 
[18]. There is increasing need for expert systems validation and 
verification (V&V) because erroneous advice may lead to 
invaluable economic loss and even fatal loss of life in some 
domain applications. Traditionally, attention has been 
concentrated on using verification techniques to tackle rule-based 
systems [1][4][11][13][17]. However, these techniques exhibit a 
limited range of applicability. They could not cope with the kind 
of hybrid expert systems (HES), rule-based plus frame-based, 
which many of today's expert systems are developed [3][14]. The 
use of this hybrid approach integrates the power of organizing 
data objects in a class hierarchy and reasoning about the objects 
through user pre-defined logical associations. This advantage 
accounts for many popular expert system developing software, 
such as ADS, ART, EXSYS EL, KAPPA-PC, KBMS, Nexpert 
Object, Level5 Object, ProKappa, ReMind, which combine some 
sort of frame-based representation with a rule-based inference 
engine. Although this approach benefits from the advantages of 
both representation techniques, it complicates the V&V of the 
expert systems. 
 
Traditionally, there are a few approaches in modelling expert 
systems, such as Normal Form approach, Decision Table 
Method, Incidence Matrix Method, Truth Maintenance Systems 
and Generic Rule Systems. One of the major criticisms of the 
above techniques is that none or very little consideration is given 
to allow for the dynamic checking of the knowledge inference. 

On the other hand, Coloured Petri Nets (CPN)[6], can support a 
formal description for modelling systems, which consists of 
concurrent and synchronous activities. Besides, they also have a 
graphical representation and a well-defined semantics, allowing 
for dynamic analysis of the modelled system. In this paper, a 
contribution is made to the modelling of hybrid rule/frame-based 
expert systems. We will introduce an approach based on CPN 
plus the concept of state tokens[12] for the representation of 
knowledge inference in HES, thus enhancing the quality and 
reliability of the modelled system. We will examine the transition 
sequences and check against the properties of the network in 
CPN for HES modelling. The paper has five main sections. Next 
section describes the knowledge representation and inference of a 
hybrid expert system, the third Section defines the errors and 
anomalies of HES and Section four gives the definitions of CPN 
and illustrates how HES can be modelled by CPN. Section five 
discusses the methods for analyzing the CPN and the 
implications of our approach to support formal verification of the 
systems. The last Section gives the conclusion and discussion. 
 

2. A HYBRID EXPERT SYSTEM 
 
A Hybrid Expert System combines multiple representation 
paradigms into a single integrated environment. For a Rule- and 
Frame-based integration, it composes of the following key 
features: Object Classes, Slot Attributes, Inheritance Relations, 
Demons, Methods, Rules and Reasoning Strategies. These 
features can be analysed using three conceptual views [5] of an 
expert system, they are: (1) An Object View which encapsulates 
a module of knowledge (or a concept). These knowledge 
modules (concepts) are represented by Object Classes. 
Inheritance Relations describe how these knowledge modules are 
related. (2) A Function View which specifies the functional 
behaviour of the objects within the expert system. These 
functions are represented using Methods and Demons. (3) A 
Control View which specifies the sequence of knowledge 
inference in the expert system. These controls are represented in 
terms of Rules and Reasoning Strategies. 
 
In practical HES development [16], Frames are used to represent 
domain objects, various kinds of Demons are used to implement 
procedures attached to specific slots, Inheritance is used to inherit 
Class properties among Object Classes, Message Passing is used 
for interaction among different objects and Methods are used to 
perform algorithmic actions or some array manipulation within 
an object. Rules are used to describe heuristic problem-solving 
knowledge, Forward and Backward chains are commonly used to 
reason with rules. Therefore, in HES, the Frame base can be seen 
as being used to define the vocabulary for the Rule base, i.e. the 
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possible values that slots can be defined and so specified, and the 
literal used to construct rules must conform to the restrictions 
imposed by what is available from the class hierarchy. The 
Frame base is married together with the Rules designed to 
manipulate it. The specific integration mechanisms of HES are as 
follows: 
 
• Rules with Message Passing : Rules send or receive 

messages to and from objects for testing the Rules' premises. 
 
• Rules with Inheritance : Rules directly read and write data 

into slots in a parent object and through inheritance of this 
slot's value to its children objects, trigger other rules to fire. 

 
• Rules with Demons : Rules directly read and write data into 

slots and cause the execution of the associated Demons, 
which then trigger other rules to fire. 

 
• Rules with Methods : Rules are embedded as part of an 

object's methods. Since methods are arbitrary pieces of code 
attached to an object, they can access the rules through 
function calls. 

 
• Rules with Instances : Rules can be used to create/delete an 

instance of a specific Object Class. 
 
Based on the above concepts of integration, a Hybrid Expert 
System, therefore, can be formally defined as a tuple HES = (C, 
A, I, In, D, M, R, S) satisfying the requirements below: 

C = a finite set of object classes, where each object class is 
 a Cartesian product of (A x D x M). 
A =  a finite set of attributes. Each attribute is of a simple 
 type. 
I = a specific object element from an object class C. 
In = an inheritance relation. It is defined from the partially 
 ordered relations in C. 
D = a demon function. It is defined from A into an 
 expression such that: ∀a∈A∧∀c∈C:a∧f(a)∈c. (This 
 means the demon functions can only change a slot’s 
 values within the same object instance). 
M = a finite set of methods. It is defined as procedures in C. 
R = a finite set of rules. Each rule is defined as a function 
 from A such that a∧f(a)∈A. (This means the literal used 
 to construct rules must come from the attribute set A). 
S = a finite set of reasoning strategies. 
 
Object class here is defined as having a set of attributes, demons 
and methods. Each attribute is defined as of a simple data type: 
e.g. string. Each specific object element is called an instance of 
the Object Class and will have different attribute values. 
Inheritance is defined as a partial order on the set Object Class, it 
is a relation that is reflexive, antisymmetric and transitive: 
 
• Reflexive : For every Object Class, it inherits the properties 

from itself. 
 
• Antisymmetric : For every Object Class, if A inherits from 

B and if B inherits from A, it implies that A is B. 
 
• Transitive : For every Object Class, if A inherits from B and 

if B inherits from C, it implies that A inherits from C. 
The above definition only covers simple inheritance, in the case 
of multiple inheritance, more elaborate definition is required. 

 
A Demon is defined as a function which is executed when a slot 
value is either updated, or needed. Sometimes, a Demon can also 
act like a validation trigger which checks the cardinality and/or 
constraints imposed on a particular slot. The effects of a Demon 
are confined always locally to the same Object Class. 
 
Methods are procedures attached to an Object Class, that will be 
executed whenever a signal is passed through. This way of 
executing a method is known as Message Passing. 
 
Rules will interact with the information contained in the slots of 
the various Object Classes within the HES. 
 
Finally, in HES, there should be a set of reasoning strategies. 
Some common ones are : 
 
• Backward Chain with Inheritance : Goal directed search 

with inheritance as one of the means to establish the rule 
chains which across different Object Classes. 

 
• Forward Chain with Inheritance : Data directed search with 

inheritance as one of the means to establish the rule chains 
which across different Object Classes. 

 
Other important inference strategies includes : Pattern Matching, 
Unification, Resolution and Heuristic search. 
 
Although the integration of a Rule- and Frame-based Expert 
System can take the advantages of both representation paradigm, 
this systems are not free from errors and anomalies. Therefore, 
the traditional V&V of Rule-based expert systems will need to be 
expanded in order to cover the additional anomalies caused by 
inheritance, methods, demons and other constructs within the 
object hierarchy. They will be discussed in the following Section. 

 
3. SOME POTENTIAL ERRORS AND ANOMALIES 

 
Subsumption anomalies of hybrid expert systems have recently 
been discussed in [8]. They defined subsumption as: if literals 
used in condition statements of a rule refer to objects which 
inherit from their supersets referred to in literals used in 
condition statements of another rule, they consider these two 
statements to be in inheritance relations. For example, (1) IF X 
has a sports car THEN insurance premium of X is high; (2) IF X 
has a Prosche THEN insurance premium of X is high. These two 
rules are in an inheritance relation, they can cause subsumption 
anomalies because whenever rule 2 succeeds, rule 1 will always 
succeed.  
 
[8]’s definition of subsumption anomalies in hybrid expert 
system is very useful for conceptual understanding. However, 
their use of an Object as an unit of inference (Eg. IF X is 
registered; IF X is younger than 25; IF X has a Master 
Degree..etc.) is rather general for practical use. We would like to 
extend the anomalies concepts in a hybrid expert system based on 
attributes of objects. (Eg. IF X:Status is registered; IF X:Age is 
younger than 25; IF X:Qualification is a Master Degree..etc., 
where Status, Age and Qualification are slot attributes of the 
Object X.). Therefore, we would like to extend the definition of 
errors and anomalies which due to the integration of Rules with 
the Inheritance hierarchy of a hybrid expert system as follows: 
 
Redundancy 
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In the case of rules which have identical conditions and actions, 
this implies the existence of redundant rules. 
 
 Rule 1 : A∧B⇒C 
 Rule 2 : A’∧B’⇒C’ 
 
(A, B & C are slots in the parent object, A’, B’ and C’ are slots in 
the child object and A=A’, B=B’, C=C’ because of inheritance). 
 
 Rule 3 : A⇒C 
 Rule 4 : A’⇒B’ 
 Rule 5 : B’⇒C 
 
In the case of a chained inference, some rules could become 
redundant if the same result could be inferred by alternative 
transitions even the same input facts are given. Rule 3 could 
become redundant as C could be inferred by an alternative 
transition, Rule 5, via Rule 4. (A inherit its slot value to A’). 
 
Dead End Rules (Missing Slots) 
A value, slot or frame is missing if it appears as the premise or 
conclusion in the rules but is not defined in the Frame hierarchy. 
In this case, the antecedent part of the rule cannot be satisfied 
because it contains a literal which cannot be matched to a fact or 
a literal in the consequent part of any other rule. 
 
Subsumption 
If there are two or more rules which have identical antecedents 
and consequents except for the order of the literal then the 
situation is considered as absolute subsumption. When two rules 
have duplicated consequents and the antecedent of one is a subset 
of that of the other, or when two rules have duplicated 
antecedents and the consequent of one is a subset of the 
consequent of the other, or a mixture of these states, we consider 
this as complex subsumption. In a chained inference, a set of rules 
may be summarized by a single rule, we considered this as 
compound subsumption [2]. In HES, we need to incorporate the 
semantics of the object relations for identifying implicit 
subsumption among rules. Thus, if we have two rules : 
 
 Rule 6 :  A∧B⇒C 
 Rule 7 :  A’∧B⇒C 
 
If the value of slot A inherits to slot A' (i.e. A is the parent and A' 
is the child), then Rule 7 subsumes Rule 6 because Rule 7 is just 
a more specialised case of Rule 6. (i.e. whenever Rule 7 
succeeds, rule 6 will always succeed.) In a complex frame 
hierarchy which allows for multiple inheritance, checking for 
subsumption becomes more difficult because of ambiguity in the 
behaviour of multiple inherited subclasses. 
 
Circular Rule Sets 
If a circular loop can occur when a set of rules are fired, then 
these rules are considered as a circular rule set. For example : 
 
 Rule 8 : B⇒C 
 Rule 9 : C’⇒B 
 
If slot C is the parent of C', Rule 8 and Rule 9 will form a circular 
loop. If more than one level of class hierarchy is involved, a 
implicit cycle may exist where the loop is formed from several 
rules and different frames' slots in the frame hierarchy. 
 

Incompleteness 
It exists if there are possible legal sets of facts in a frame's slot 
from which no useful conclusion can be inferred even having an 
exhaustive search of all relevant inference. Thus, if we have the 
following four rules : 
 
 Rule 10 :  A(1)∧B(1)⇒C(1) 
 Rule 11 :  C(1)∧D(1)⇒E(1) 
 Rule 12 :  C(1)∧D(2)⇒E(2) 
 Rule 13 : A(1)∧B(2)∧D(1)⇒E(3) 
 
The Arabic numerals represent the Cardinality, the number of 
possible values that may be placed in a particular slot, in the 
Frame slots A, B, C, D and E. We can find out that nothing can 
be inferred from {A(1) and B(2) and D(2), A(2) and B(2) and 
D(1), A(2) and B(2) and D(2)}. 
 
Similarly, if we have two rules : 
 
 Rule 14 : A∧B(<10)⇒C 
 Rule 15 : A∧B(>20)⇒D 
 
The value in slot B is within a numeric range, e.g. from 0 to 100, 
Rule 14 and Rule 15 is said to be incomplete because no 
inference exists if B is greater or equal to 10 and less than or 
equal to 20. In HES, Rule 14 and Rule 15 may be implemented 
as Demons attached to the slot B. 
 
Inconsistency 
If two rules have duplicate antecedents but in the consequents a 
clause is both affirmed and denied, we refer this as inconsistency. 
(ie Rule 16 and Rule 17 contradict to one another directly). 
 
 Rule 16 : A∧B⇒C 
 Rule 17 : A’∧B’⇒¬C 
 

4. MODELLING THE HES USING CPN 
 
Definition of Coloured Petri Net 
A Coloured Petri Net can be defined as a tuple CPN = (Σ, P, T, 
A, N, C, G, E, I) satisfying the requirements below: 
 
Σ = a finite set of non-empty types, called colour sets. 
P =  a finite set of places. 
T =  a finite set of transitions. 
A = a finite set of arcs such that :  P∩T=P∩A=T∩A=∅. 
N = a node function. It is defined from A into PxT∪TxP. 
C = a colour function. It is defined from P into Σ. 
G = a guard function. It is defined from T into expressions 
 such that: ∀t∈T :[Type(G(t))=B∧Type(Var(G(t)))⊆Σ]  
E = an arc expression function. It is defined from A into 
 expressions such that : ∀a∈A : [Type(E(a))=C(p(a))ms
 ∧Type(Var(E(a)))⊆Σ]. 
I = an initialization function. It is defined from P into 
 closed expressions such that ∀p∈P : 
 [Type(I(p))=C(p)ms]. 
The set of colour sets determines the types, operations and 
functions that can be used in the net inscriptions. The places, 
transitions and arcs are described by three sets P, T and A which 
are required to be finite and pairwise disjointed. The node 
function N maps each arc into a pair where the first element is 
the source node and the second the destination node. The two 
nodes have to be of different kind (i.e. one of the nodes must be a 
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place while the other is a transition). Several arcs may be allowed 
to link between the same ordered pair of nodes. The colour 
function C maps each place, p, to a colour set C(p). This means 
that each token on p must have a token colour that belongs to the 
type C(p). The guard function G maps each transition, t, to an 
expression of type Boolean, i.e., a predicate. All variables in G(t) 
must have types that belong to Σ . A guard is allowed to be a list 
of Boolean expressions [Bexpr1, Bexpr2..etc]=B. This means that 
the binding must fulfill each of the Boolean expression in the list. 
The arc expression function E maps each arc, a, into an 
expression which must be of type C(p(a))ms. This means that 
each evaluation of the arc expression must yield a multi-set over 
the colour set that is attached to the corresponding place. The 
initialization function I maps each place, p, into a closed 
expression which must be of type C(p)ms, ie a multi-set (a set 
which may contain multiple occurrences of the same element) 
over C(p). 
 
HES Model 

Frame data structure: Each framed data structure is 
represented by a compound colour set, and each frame instance is 
represented by a token in that set. For instance, if there are fifteen 
sets of non-empty types or colour sets being used to represent 
one frame data structure, i.e. Σ = AA,BB,....OO; Color AA may 
be defined as text strings; Color BB may be as Boolean; ...and 
Color OO may be defined from some already declared coloured 
sets, i.e. Color OO = Product AA * BB * CC. Each frame 
instance is declared as a variable of a particular colour set, i.e. 
var Instance-1 : OO (var denotes variable declaration which 
introduces one or more variables). Here we have one variable, 
Instance-1, which is with colour OO. We may use var Instance-1, 
Instance-2, Instance-3 : OO for declaring three different instances 
of the same object class with colour OO. In the following 
sections, we will use two variables, Object A, which is a 
particular instance of an Object Class A and State which is the 
state token with possible values of either Yes or No. (i.e. var 
Object A : OO and var State with Yes | No.) 
 

Rules with Message Passing: Places in the CPN are taken 
to correspond to predicates of the production rules and the 
transitions in corresponding to the implications of the rules. Since 
the frame data structure is represented by the token of a particular 
color set. We can define arc expression such that they directly 
read and write data in the token's data slots. This will serve the 
purpose of sending or receiving messages(data value) to and from 
objects for testing the rules' premises.  

 
Rules with Inheritance: Places in the CPN are taken to 

correspond to two different elements in the HES. First, places are 
taken to correspond to predicates of the production rules which 
are pre-defined earlier by the user. Secondly, places are taken to 
correspond to the Objects class in the HES's Frame hierarchy. 
Similarly, transitions in the CPN correspond to two different 
events in the HES. First, the transitions correspond to the 
implications of the rules. Secondly, the transitions correspond to 
the inheritance of the properties from Classes. The transition 
operations are represented by the arc expression functions. (e.g. 
A Rule R can be represented in CPN as shown in Figures 1a and 
1b:) 

 

�

Rule R : IF object A's slot-1 is 'X' THEN object A's slot-2 is 'Y'.

= an object A token  

P1
T1

�

�
� = a state token  

F(X)

F(Y)

In(Y)

P2

Class A

Figure 1a : Rule R with Inheritance (before firing) with an input 
token Object A and a state token in P1 with 'Yes'. 
 

�

Rule R : IF object A's slot-1 is 'X' THEN object A's slot-2 is 'Y'.

= an object A token  

P1
T1

�

�
� = a state token  

F(X)

F(Y)

In(Y)

P2

Class A

�

�
�

Figure 1b : Rule R with Inheritance (after firing) with an output 
token Object A both in P2 and Class A. A state token is also 
created in P2 and Class A with 'Yes' respectively. 
 
P1, P2 and Class A are Places with the colour set that was used to 
represent the data structure of Object A. T1 is a Transition which 
is enabled iff the input arc expression F(X) is evaluated to be true 
(i.e., the premise IF Object A's slot-1 is 'X' is true). If F(X) is true 
then T1 is fired, it implies that Rule R is executed. All tokens 
will be removed from P1 and a new token Object A will be 
created in both P2 and Class A with new data values determined 
by the output arc expression F(Y) and In(Y) (i.e. F(Y) will assign 
'Y' to Object A's slot-2; In(Y) will assign 'Y' to Object A's slot-2 
and inherit this 'Y' to Object A's Children, the subclasses, 
through). A state token with 'Yes' value will also be created in P2 
and Class A. It is used for further inference (if any) in P2, and is 
used for further inheritance (if any) in Class A. In order to 
preserve the state of the predicate in P1, a state token marked 
with 'Yes' is created in P1 via the self-loop. 
 

Rules with Demons: Similarly, a Rule with Demon can also 
be represented by a Places/Transition tuple, e.g. if a demon is 
attached with object A's slot-overtime, whenever the value of 
slot-overtime is updated to 'Y' then the demon will execute and 
compute the slot-salary value by the formula 1.2*basic salary. 
This can be represented by Figure 2. 

 

�
�

Rule R : IF object A's slot-day is 'Sat' THEN object A's slot-overtime is 'Y'.

= an object A token  

P1
T1�

� = a state token  

F(Sat)

F(Y) + D(Y)

In(Y) + D(Y)

P2

Class A

Demon R : IF object A's slot-overtime is 'Y' 
    THEN object A's slot-salary =1.2*basic salary

Figure 2 : Rule R with Demon (before firing) with an input token 
Object A and a state token in P1 with 'Yes'. 
 
The demon function, D(Y), is represented as an arc expression. 
The firing of Rule R will trigger the demon function to execute. 

Rules with Methods: Methods are procedures attached to 
an Object class, they can be represented by the Functions and 
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Operations declarations in CPN. The function takes a number of 
arguments and returns a result. The arguments and the result have 
a type which is a declared colour set, the set of all multi-sets over 
a declared colour set. A declared function can be used in arc 
expressions, guards and initialization expressions in the CPN. An 
example function which tells whether the argument is even or not 
might be as follow: 
 
 fun Even(n:integers)=((n mod 2)=0) 
 
Operations can also be used to represent Methods. In both 
Functions and Operations declarations, different kinds of control 
structures can be built. e.g. CASE; IF b is true THEN statement 1 
ELSE statement 2; WHILE b is true DO; REPEAT statement 3 
UNTIL b is true. 
 
The Rules with Methods can thus be represented by CPN as 
follow (Figure 3a, 3b, 3c and 3d, the self loops are omitted for 
clarity reason) 
 

= an object A token  

�= a state token  

Method is represented by : P1->P3->P5 

�
�

P1�
�

�
�

�
�

P3 P5

P2 P4

T2

T1 T3

F1

F2

F4 F5

F7

F3 F6 F8

Rule is represented by : P2 -> P4

Figure 3a : Rule with Method (before firing) with an input token 
Object A and a state token in P1 with 'Yes'. 
 

= an object A token  

�= a state token  

Method is represented by : P1->P3->P5 

�
�

P1�
�

�
�

�
�

P3 P5

P2 P4

T2

T1 T3

F1

F2

F4 F5

F7

F3 F6 F8

Rule is represented by : P2 -> P4

�

�

Figure 3b : Rule with Method (Rule is called by the Method). 
The token Object A was passed to P2 and a state token in P1, P2 
and P3 'Yes' respectively. 
 

= an object A token  

�
= a state token  

Method is represented by : P1->P3->P5 

�
�

P1��
��

�
�

�

P3 P5

P2 P4

T2

T1 T3

F1

F2

F4 F5

F7

F3 F6 F8

Rule is represented by : P2 -> P4

�

�� �

Figure 3c : Rule with Method (After firing). The token Object A 
is in P4 and a state token in P1, P2 and P3 and P4 with 'Yes' 
respectively. 
 

= an object A token  

�
�= a state token  

Method is represented by : P1->P3->P5 

�
�

P1

��
�
�

�
�

P3 P5

P2 P4

T2

T1 T3

F1

F2

F4 F5

F7

F3 F6 F8

Rule is represented by : P2 -> P4

�
�

��
��

�
�

�

Figure 3d : Rule with Method (Method resumes control). The 
token Object A was passed to P5. A state token in P1, P2, P3, P4 
and P5 with 'Yes' respectively. 
 
P1 to P3 to P5 represent the main body of the Method. P2 to P4 
represent the Rule embedded within the Method. F1 is the first 
part of the Method which executes first, then control is passed to 
the Rule by F2 which will create the Object A in P2. After firing 
of the Rule (T2 is enabled and fired), P3 and P4 will allow T3 to 
be fired. F8 represented the remaining part of the Method which 
will act on Object A correspondingly. After execution of this 
Rule with Method, a state token is deposited in all the Places, P1 
to P5 for preservation of the states. 
 

Rules with Instances: This is represented in CPN by the arc 
expressions because the number of removed/ added tokens and 
the colours of these tokens are determined by the value of the 
corresponding arc expressions. 

 
5. ANALYSIS OF COLOURED PETRI NETS 

 
The major analysis technique, within the context of expert system 
verification, is the use of reachability tree which represents the 
reachability set of the CPN (or occurrence graph in Jensen's 
terminology). The basic idea behind is to construct a tree/graph 
containing a node for each reachable marking and an arc for each 
occurring binding element. In expert system verification, it refers 
to exhaustively exploring all the useful and relevant interactions 
of predicates within the model. From a given initial state, all 
possible transitions are generated, leading to a number of new 
states. This process is repeated for each of the newly generated 
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states until no new states are generated. Obviously such a 
tree/graph may become very large even for a small CPN. 
However, research [7] has been taken to allow for a partial 
examination of a subportion of the reachability graph, therefore 
reduce the efforts in deriving possible solutions. For simplicity 
reason, without taking any transition conditions or transition 
operations into consideration, we concentrate our analysis by 
enabling a specific transition and then check the reachability set 
for any irregularities of the associated predicate places. The 
checking of the irregularities explained in Section 3 can be done 
exhaustively or heuristically by adequately initiation of the 
sequence of transitions and closely examining the reachability 
markings. The problems can be located through the trace of the 
sequence of transitions which may provide alternative or multiple 
marking effects. 
 

6. CONCLUSION AND DISCUSSION 
 

In this paper, we have described an approach to model hybrid 
rule/frame based expert system using Coloured Petri Nets and the 
concept in State Controlled Petri Nets. The frame data structures 
are represented using colour tokens. The data value of each 
colour token may be of an arbitrarily complex type, thus enabling 
various classes of frames be represented. The rules and demons 
are represented by a Place/Transition tuple with a self-loop in 
order  to preserve the state of the predicate. The analysis of the 
CPN is by constructing and examining the reachability tree to 
detect irregularities of the predicate places. 
 
In a pure frame-based expert system, reasoning is by comparing 
descriptions of incoming facts with the frames in the knowledge 
base, and retrieving the class frame that best matches the 
situation. The main inference mechanism or strategy for applying 
general information to specific instances is inheritance. This 
reasoning mechanism is rather limited in practical situations. In a 
pure rule-based expert system, reasoning is by firing a sequence 
of rules using incoming facts. Although this method is simple and 
useful, complex domain knowledge could not be represented. 
Our approach is useful to model systems that combined 
rule/frame based representation techniques. 
 
Future work will include formalizing our approach and 
developing of  algorithms to detect irregularities in the HES. We 
would also like to investigate further the capability of the 
methodology to handle fuzzy systems and the complexity 
involved against the traditional approaches. 
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