
0-7803-2559-1/95 $4.00 © 1995 IEEE 2257

An Approach Towards the Verification of Hybrid Rule/Frame-based Expert Systems Using
Coloured Petri Nets

Simon C. K. SHIU*, James N. K. LIU, Daniel S. YEUNG
Department of Computing, Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
*Email : csckshiu@comp.polyu.edu.hk

ABSTRACT

High level Petri Nets have recently been used for many AI
applications, particularly for modelling traditional rule-based
expert systems. The major effect is to facilitate the analysis of the
knowledge inference during the reasoning process, and to support
the system verification which increasingly becomes an integral
part of expert system development. Nevertheless, there is not
much attention being put on systems other than the traditional
ones. In this paper, we described an approach to model hybrid
(rule- and frame-based) expert systems using Coloured Petri Nets
and the concept of controlled state tokens. The analysis of the
proposed model is by constructing and examining the reachability
tree spanned by the knowledge inference. Such methodology has
an implication for supporting the verification process in hybrid
systems.

1. INTRODUCTION

Expert Systems (ES) have reached the stage where they are
implemented and used in a wide variety of organizations and
industries, a selection of operational expert systems in US,
Europe, Canada and the Far East can be found in [9][10][15] and
[18]. There is increasing need for expert systems validation and
verification (V&V) because erroneous advice may lead to
invaluable economic loss and even fatal loss of life in some
domain applications. Traditionally, attention has been
concentrated on using verification techniques to tackle rule-based
systems [1][4][11][13][17]. However, these techniques exhibit a
limited range of applicability. They could not cope with the kind
of hybrid expert systems (HES), rule-based plus frame-based,
which many of today's expert systems are developed [3][14]. The
use of this hybrid approach integrates the power of organizing
data objects in a class hierarchy and reasoning about the objects
through user pre-defined logical associations. This advantage
accounts for many popular expert system developing software,
such as ADS, ART, EXSYS EL, KAPPA-PC, KBMS, Nexpert
Object, Level5 Object, ProKappa, ReMind, which combine some
sort of frame-based representation with a rule-based inference
engine. Although this approach benefits from the advantages of
both representation techniques, it complicates the V&V of the
expert systems.

Traditionally, there are a few approaches in modelling expert
systems, such as Normal Form approach, Decision Table
Method, Incidence Matrix Method, Truth Maintenance Systems
and Generic Rule Systems. One of the major criticisms of the
above techniques is that none or very little consideration is given
to allow for the dynamic checking of the knowledge inference.

On the other hand, Coloured Petri Nets (CPN)[6], can support a
formal description for modelling systems, which consists of
concurrent and synchronous activities. Besides, they also have a
graphical representation and a well-defined semantics, allowing
for dynamic analysis of the modelled system. In this paper, a
contribution is made to the modelling of hybrid rule/frame-based
expert systems. We will introduce an approach based on CPN
plus the concept of state tokens[12] for the representation of
knowledge inference in HES, thus enhancing the quality and
reliability of the modelled system. We will examine the transition
sequences and check against the properties of the network in
CPN for HES modelling. The paper has five main sections. Next
section describes the knowledge representation and inference of a
hybrid expert system, the third Section defines the errors and
anomalies of HES and Section four gives the definitions of CPN
and illustrates how HES can be modelled by CPN. Section five
discusses the methods for analyzing the CPN and the
implications of our approach to support formal verification of the
systems. The last Section gives the conclusion and discussion.

2. A HYBRID EXPERT SYSTEM

A Hybrid Expert System combines multiple representation
paradigms into a single integrated environment. For a Rule- and
Frame-based integration, it composes of the following key
features: Object Classes, Slot Attributes, Inheritance Relations,
Demons, Methods, Rules and Reasoning Strategies. These
features can be analysed using three conceptual views [5] of an
expert system, they are: (1) An Object View which encapsulates
a module of knowledge (or a concept). These knowledge
modules (concepts) are represented by Object Classes.
Inheritance Relations describe how these knowledge modules are
related. (2) A Function View which specifies the functional
behaviour of the objects within the expert system. These
functions are represented using Methods and Demons. (3) A
Control View which specifies the sequence of knowledge
inference in the expert system. These controls are represented in
terms of Rules and Reasoning Strategies.

In practical HES development [16], Frames are used to represent
domain objects, various kinds of Demons are used to implement
procedures attached to specific slots, Inheritance is used to inherit
Class properties among Object Classes, Message Passing is used
for interaction among different objects and Methods are used to
perform algorithmic actions or some array manipulation within
an object. Rules are used to describe heuristic problem-solving
knowledge, Forward and Backward chains are commonly used to
reason with rules. Therefore, in HES, the Frame base can be seen
as being used to define the vocabulary for the Rule base, i.e. the

 2258

possible values that slots can be defined and so specified, and the
literal used to construct rules must conform to the restrictions
imposed by what is available from the class hierarchy. The
Frame base is married together with the Rules designed to
manipulate it. The specific integration mechanisms of HES are as
follows:

• Rules with Message Passing : Rules send or receive

messages to and from objects for testing the Rules' premises.

• Rules with Inheritance : Rules directly read and write data

into slots in a parent object and through inheritance of this
slot's value to its children objects, trigger other rules to fire.

• Rules with Demons : Rules directly read and write data into

slots and cause the execution of the associated Demons,
which then trigger other rules to fire.

• Rules with Methods : Rules are embedded as part of an

object's methods. Since methods are arbitrary pieces of code
attached to an object, they can access the rules through
function calls.

• Rules with Instances : Rules can be used to create/delete an

instance of a specific Object Class.

Based on the above concepts of integration, a Hybrid Expert
System, therefore, can be formally defined as a tuple HES = (C,
A, I, In, D, M, R, S) satisfying the requirements below:

C = a finite set of object classes, where each object class is
 a Cartesian product of (A x D x M).
A = a finite set of attributes. Each attribute is of a simple
 type.
I = a specific object element from an object class C.
In = an inheritance relation. It is defined from the partially
 ordered relations in C.
D = a demon function. It is defined from A into an
 expression such that: ∀a∈A∧∀c∈C:a∧f(a)∈c. (This
 means the demon functions can only change a slot’s
 values within the same object instance).
M = a finite set of methods. It is defined as procedures in C.
R = a finite set of rules. Each rule is defined as a function
 from A such that a∧f(a)∈A. (This means the literal used
 to construct rules must come from the attribute set A).
S = a finite set of reasoning strategies.

Object class here is defined as having a set of attributes, demons
and methods. Each attribute is defined as of a simple data type:
e.g. string. Each specific object element is called an instance of
the Object Class and will have different attribute values.
Inheritance is defined as a partial order on the set Object Class, it
is a relation that is reflexive, antisymmetric and transitive:

• Reflexive : For every Object Class, it inherits the properties

from itself.

• Antisymmetric : For every Object Class, if A inherits from

B and if B inherits from A, it implies that A is B.

• Transitive : For every Object Class, if A inherits from B and

if B inherits from C, it implies that A inherits from C.
The above definition only covers simple inheritance, in the case
of multiple inheritance, more elaborate definition is required.

A Demon is defined as a function which is executed when a slot
value is either updated, or needed. Sometimes, a Demon can also
act like a validation trigger which checks the cardinality and/or
constraints imposed on a particular slot. The effects of a Demon
are confined always locally to the same Object Class.

Methods are procedures attached to an Object Class, that will be
executed whenever a signal is passed through. This way of
executing a method is known as Message Passing.

Rules will interact with the information contained in the slots of
the various Object Classes within the HES.

Finally, in HES, there should be a set of reasoning strategies.
Some common ones are :

• Backward Chain with Inheritance : Goal directed search

with inheritance as one of the means to establish the rule
chains which across different Object Classes.

• Forward Chain with Inheritance : Data directed search with

inheritance as one of the means to establish the rule chains
which across different Object Classes.

Other important inference strategies includes : Pattern Matching,
Unification, Resolution and Heuristic search.

Although the integration of a Rule- and Frame-based Expert
System can take the advantages of both representation paradigm,
this systems are not free from errors and anomalies. Therefore,
the traditional V&V of Rule-based expert systems will need to be
expanded in order to cover the additional anomalies caused by
inheritance, methods, demons and other constructs within the
object hierarchy. They will be discussed in the following Section.

3. SOME POTENTIAL ERRORS AND ANOMALIES

Subsumption anomalies of hybrid expert systems have recently
been discussed in [8]. They defined subsumption as: if literals
used in condition statements of a rule refer to objects which
inherit from their supersets referred to in literals used in
condition statements of another rule, they consider these two
statements to be in inheritance relations. For example, (1) IF X
has a sports car THEN insurance premium of X is high; (2) IF X
has a Prosche THEN insurance premium of X is high. These two
rules are in an inheritance relation, they can cause subsumption
anomalies because whenever rule 2 succeeds, rule 1 will always
succeed.

[8]’s definition of subsumption anomalies in hybrid expert
system is very useful for conceptual understanding. However,
their use of an Object as an unit of inference (Eg. IF X is
registered; IF X is younger than 25; IF X has a Master
Degree..etc.) is rather general for practical use. We would like to
extend the anomalies concepts in a hybrid expert system based on
attributes of objects. (Eg. IF X:Status is registered; IF X:Age is
younger than 25; IF X:Qualification is a Master Degree..etc.,
where Status, Age and Qualification are slot attributes of the
Object X.). Therefore, we would like to extend the definition of
errors and anomalies which due to the integration of Rules with
the Inheritance hierarchy of a hybrid expert system as follows:

Redundancy

 2259

In the case of rules which have identical conditions and actions,
this implies the existence of redundant rules.

 Rule 1 : A∧B⇒C
 Rule 2 : A’∧B’⇒C’

(A, B & C are slots in the parent object, A’, B’ and C’ are slots in
the child object and A=A’, B=B’, C=C’ because of inheritance).

 Rule 3 : A⇒C
 Rule 4 : A’⇒B’
 Rule 5 : B’⇒C

In the case of a chained inference, some rules could become
redundant if the same result could be inferred by alternative
transitions even the same input facts are given. Rule 3 could
become redundant as C could be inferred by an alternative
transition, Rule 5, via Rule 4. (A inherit its slot value to A’).

Dead End Rules (Missing Slots)
A value, slot or frame is missing if it appears as the premise or
conclusion in the rules but is not defined in the Frame hierarchy.
In this case, the antecedent part of the rule cannot be satisfied
because it contains a literal which cannot be matched to a fact or
a literal in the consequent part of any other rule.

Subsumption
If there are two or more rules which have identical antecedents
and consequents except for the order of the literal then the
situation is considered as absolute subsumption. When two rules
have duplicated consequents and the antecedent of one is a subset
of that of the other, or when two rules have duplicated
antecedents and the consequent of one is a subset of the
consequent of the other, or a mixture of these states, we consider
this as complex subsumption. In a chained inference, a set of rules
may be summarized by a single rule, we considered this as
compound subsumption [2]. In HES, we need to incorporate the
semantics of the object relations for identifying implicit
subsumption among rules. Thus, if we have two rules :

 Rule 6 : A∧B⇒C
 Rule 7 : A’∧B⇒C

If the value of slot A inherits to slot A' (i.e. A is the parent and A'
is the child), then Rule 7 subsumes Rule 6 because Rule 7 is just
a more specialised case of Rule 6. (i.e. whenever Rule 7
succeeds, rule 6 will always succeed.) In a complex frame
hierarchy which allows for multiple inheritance, checking for
subsumption becomes more difficult because of ambiguity in the
behaviour of multiple inherited subclasses.

Circular Rule Sets
If a circular loop can occur when a set of rules are fired, then
these rules are considered as a circular rule set. For example :

 Rule 8 : B⇒C
 Rule 9 : C’⇒B

If slot C is the parent of C', Rule 8 and Rule 9 will form a circular
loop. If more than one level of class hierarchy is involved, a
implicit cycle may exist where the loop is formed from several
rules and different frames' slots in the frame hierarchy.

Incompleteness
It exists if there are possible legal sets of facts in a frame's slot
from which no useful conclusion can be inferred even having an
exhaustive search of all relevant inference. Thus, if we have the
following four rules :

 Rule 10 : A(1)∧B(1)⇒C(1)
 Rule 11 : C(1)∧D(1)⇒E(1)
 Rule 12 : C(1)∧D(2)⇒E(2)
 Rule 13 : A(1)∧B(2)∧D(1)⇒E(3)

The Arabic numerals represent the Cardinality, the number of
possible values that may be placed in a particular slot, in the
Frame slots A, B, C, D and E. We can find out that nothing can
be inferred from {A(1) and B(2) and D(2), A(2) and B(2) and
D(1), A(2) and B(2) and D(2)}.

Similarly, if we have two rules :

 Rule 14 : A∧B(<10)⇒C
 Rule 15 : A∧B(>20)⇒D

The value in slot B is within a numeric range, e.g. from 0 to 100,
Rule 14 and Rule 15 is said to be incomplete because no
inference exists if B is greater or equal to 10 and less than or
equal to 20. In HES, Rule 14 and Rule 15 may be implemented
as Demons attached to the slot B.

Inconsistency
If two rules have duplicate antecedents but in the consequents a
clause is both affirmed and denied, we refer this as inconsistency.
(ie Rule 16 and Rule 17 contradict to one another directly).

 Rule 16 : A∧B⇒C
 Rule 17 : A’∧B’⇒¬C

4. MODELLING THE HES USING CPN

Definition of Coloured Petri Net
A Coloured Petri Net can be defined as a tuple CPN = (Σ, P, T,
A, N, C, G, E, I) satisfying the requirements below:

Σ = a finite set of non-empty types, called colour sets.
P = a finite set of places.
T = a finite set of transitions.
A = a finite set of arcs such that : P∩T=P∩A=T∩A=∅.
N = a node function. It is defined from A into PxT∪TxP.
C = a colour function. It is defined from P into Σ.
G = a guard function. It is defined from T into expressions
 such that: ∀t∈T :[Type(G(t))=B∧Type(Var(G(t)))⊆Σ]
E = an arc expression function. It is defined from A into
 expressions such that : ∀a∈A : [Type(E(a))=C(p(a))ms
 ∧Type(Var(E(a)))⊆Σ].
I = an initialization function. It is defined from P into
 closed expressions such that ∀p∈P :
 [Type(I(p))=C(p)ms].
The set of colour sets determines the types, operations and
functions that can be used in the net inscriptions. The places,
transitions and arcs are described by three sets P, T and A which
are required to be finite and pairwise disjointed. The node
function N maps each arc into a pair where the first element is
the source node and the second the destination node. The two
nodes have to be of different kind (i.e. one of the nodes must be a

 2260

place while the other is a transition). Several arcs may be allowed
to link between the same ordered pair of nodes. The colour
function C maps each place, p, to a colour set C(p). This means
that each token on p must have a token colour that belongs to the
type C(p). The guard function G maps each transition, t, to an
expression of type Boolean, i.e., a predicate. All variables in G(t)
must have types that belong to Σ . A guard is allowed to be a list
of Boolean expressions [Bexpr1, Bexpr2..etc]=B. This means that
the binding must fulfill each of the Boolean expression in the list.
The arc expression function E maps each arc, a, into an
expression which must be of type C(p(a))ms. This means that
each evaluation of the arc expression must yield a multi-set over
the colour set that is attached to the corresponding place. The
initialization function I maps each place, p, into a closed
expression which must be of type C(p)ms, ie a multi-set (a set
which may contain multiple occurrences of the same element)
over C(p).

HES Model

Frame data structure: Each framed data structure is
represented by a compound colour set, and each frame instance is
represented by a token in that set. For instance, if there are fifteen
sets of non-empty types or colour sets being used to represent
one frame data structure, i.e. Σ = AA,BB,....OO; Color AA may
be defined as text strings; Color BB may be as Boolean; ...and
Color OO may be defined from some already declared coloured
sets, i.e. Color OO = Product AA * BB * CC. Each frame
instance is declared as a variable of a particular colour set, i.e.
var Instance-1 : OO (var denotes variable declaration which
introduces one or more variables). Here we have one variable,
Instance-1, which is with colour OO. We may use var Instance-1,
Instance-2, Instance-3 : OO for declaring three different instances
of the same object class with colour OO. In the following
sections, we will use two variables, Object A, which is a
particular instance of an Object Class A and State which is the
state token with possible values of either Yes or No. (i.e. var
Object A : OO and var State with Yes | No.)

Rules with Message Passing: Places in the CPN are taken
to correspond to predicates of the production rules and the
transitions in corresponding to the implications of the rules. Since
the frame data structure is represented by the token of a particular
color set. We can define arc expression such that they directly
read and write data in the token's data slots. This will serve the
purpose of sending or receiving messages(data value) to and from
objects for testing the rules' premises.

Rules with Inheritance: Places in the CPN are taken to

correspond to two different elements in the HES. First, places are
taken to correspond to predicates of the production rules which
are pre-defined earlier by the user. Secondly, places are taken to
correspond to the Objects class in the HES's Frame hierarchy.
Similarly, transitions in the CPN correspond to two different
events in the HES. First, the transitions correspond to the
implications of the rules. Secondly, the transitions correspond to
the inheritance of the properties from Classes. The transition
operations are represented by the arc expression functions. (e.g.
A Rule R can be represented in CPN as shown in Figures 1a and
1b:)

�

Rule R : IF object A's slot-1 is 'X' THEN object A's slot-2 is 'Y'.

= an object A token

P1
T1

�

�
� = a state token

F(X)

F(Y)

In(Y)

P2

Class A

Figure 1a : Rule R with Inheritance (before firing) with an input
token Object A and a state token in P1 with 'Yes'.

�

Rule R : IF object A's slot-1 is 'X' THEN object A's slot-2 is 'Y'.

= an object A token

P1
T1

�

�
� = a state token

F(X)

F(Y)

In(Y)

P2

Class A

�

�
�

Figure 1b : Rule R with Inheritance (after firing) with an output
token Object A both in P2 and Class A. A state token is also
created in P2 and Class A with 'Yes' respectively.

P1, P2 and Class A are Places with the colour set that was used to
represent the data structure of Object A. T1 is a Transition which
is enabled iff the input arc expression F(X) is evaluated to be true
(i.e., the premise IF Object A's slot-1 is 'X' is true). If F(X) is true
then T1 is fired, it implies that Rule R is executed. All tokens
will be removed from P1 and a new token Object A will be
created in both P2 and Class A with new data values determined
by the output arc expression F(Y) and In(Y) (i.e. F(Y) will assign
'Y' to Object A's slot-2; In(Y) will assign 'Y' to Object A's slot-2
and inherit this 'Y' to Object A's Children, the subclasses,
through). A state token with 'Yes' value will also be created in P2
and Class A. It is used for further inference (if any) in P2, and is
used for further inheritance (if any) in Class A. In order to
preserve the state of the predicate in P1, a state token marked
with 'Yes' is created in P1 via the self-loop.

Rules with Demons: Similarly, a Rule with Demon can also
be represented by a Places/Transition tuple, e.g. if a demon is
attached with object A's slot-overtime, whenever the value of
slot-overtime is updated to 'Y' then the demon will execute and
compute the slot-salary value by the formula 1.2*basic salary.
This can be represented by Figure 2.

�
�

Rule R : IF object A's slot-day is 'Sat' THEN object A's slot-overtime is 'Y'.

= an object A token

P1
T1�

� = a state token

F(Sat)

F(Y) + D(Y)

In(Y) + D(Y)

P2

Class A

Demon R : IF object A's slot-overtime is 'Y'
 THEN object A's slot-salary =1.2*basic salary

Figure 2 : Rule R with Demon (before firing) with an input token
Object A and a state token in P1 with 'Yes'.

The demon function, D(Y), is represented as an arc expression.
The firing of Rule R will trigger the demon function to execute.

Rules with Methods: Methods are procedures attached to
an Object class, they can be represented by the Functions and

 2261

Operations declarations in CPN. The function takes a number of
arguments and returns a result. The arguments and the result have
a type which is a declared colour set, the set of all multi-sets over
a declared colour set. A declared function can be used in arc
expressions, guards and initialization expressions in the CPN. An
example function which tells whether the argument is even or not
might be as follow:

 fun Even(n:integers)=((n mod 2)=0)

Operations can also be used to represent Methods. In both
Functions and Operations declarations, different kinds of control
structures can be built. e.g. CASE; IF b is true THEN statement 1
ELSE statement 2; WHILE b is true DO; REPEAT statement 3
UNTIL b is true.

The Rules with Methods can thus be represented by CPN as
follow (Figure 3a, 3b, 3c and 3d, the self loops are omitted for
clarity reason)

= an object A token

�= a state token

Method is represented by : P1->P3->P5

�
�

P1�
�

�
�

�
�

P3 P5

P2 P4

T2

T1 T3

F1

F2

F4 F5

F7

F3 F6 F8

Rule is represented by : P2 -> P4

Figure 3a : Rule with Method (before firing) with an input token
Object A and a state token in P1 with 'Yes'.

= an object A token

�= a state token

Method is represented by : P1->P3->P5

�
�

P1�
�

�
�

�
�

P3 P5

P2 P4

T2

T1 T3

F1

F2

F4 F5

F7

F3 F6 F8

Rule is represented by : P2 -> P4

�

�

Figure 3b : Rule with Method (Rule is called by the Method).
The token Object A was passed to P2 and a state token in P1, P2
and P3 'Yes' respectively.

= an object A token

�
= a state token

Method is represented by : P1->P3->P5

�
�

P1��
��

�
�

�

P3 P5

P2 P4

T2

T1 T3

F1

F2

F4 F5

F7

F3 F6 F8

Rule is represented by : P2 -> P4

�

�� �

Figure 3c : Rule with Method (After firing). The token Object A
is in P4 and a state token in P1, P2 and P3 and P4 with 'Yes'
respectively.

= an object A token

�
�= a state token

Method is represented by : P1->P3->P5

�
�

P1

��
�
�

�
�

P3 P5

P2 P4

T2

T1 T3

F1

F2

F4 F5

F7

F3 F6 F8

Rule is represented by : P2 -> P4

�
�

��
��

�
�

�

Figure 3d : Rule with Method (Method resumes control). The
token Object A was passed to P5. A state token in P1, P2, P3, P4
and P5 with 'Yes' respectively.

P1 to P3 to P5 represent the main body of the Method. P2 to P4
represent the Rule embedded within the Method. F1 is the first
part of the Method which executes first, then control is passed to
the Rule by F2 which will create the Object A in P2. After firing
of the Rule (T2 is enabled and fired), P3 and P4 will allow T3 to
be fired. F8 represented the remaining part of the Method which
will act on Object A correspondingly. After execution of this
Rule with Method, a state token is deposited in all the Places, P1
to P5 for preservation of the states.

Rules with Instances: This is represented in CPN by the arc
expressions because the number of removed/ added tokens and
the colours of these tokens are determined by the value of the
corresponding arc expressions.

5. ANALYSIS OF COLOURED PETRI NETS

The major analysis technique, within the context of expert system
verification, is the use of reachability tree which represents the
reachability set of the CPN (or occurrence graph in Jensen's
terminology). The basic idea behind is to construct a tree/graph
containing a node for each reachable marking and an arc for each
occurring binding element. In expert system verification, it refers
to exhaustively exploring all the useful and relevant interactions
of predicates within the model. From a given initial state, all
possible transitions are generated, leading to a number of new
states. This process is repeated for each of the newly generated

 2262

states until no new states are generated. Obviously such a
tree/graph may become very large even for a small CPN.
However, research [7] has been taken to allow for a partial
examination of a subportion of the reachability graph, therefore
reduce the efforts in deriving possible solutions. For simplicity
reason, without taking any transition conditions or transition
operations into consideration, we concentrate our analysis by
enabling a specific transition and then check the reachability set
for any irregularities of the associated predicate places. The
checking of the irregularities explained in Section 3 can be done
exhaustively or heuristically by adequately initiation of the
sequence of transitions and closely examining the reachability
markings. The problems can be located through the trace of the
sequence of transitions which may provide alternative or multiple
marking effects.

6. CONCLUSION AND DISCUSSION

In this paper, we have described an approach to model hybrid
rule/frame based expert system using Coloured Petri Nets and the
concept in State Controlled Petri Nets. The frame data structures
are represented using colour tokens. The data value of each
colour token may be of an arbitrarily complex type, thus enabling
various classes of frames be represented. The rules and demons
are represented by a Place/Transition tuple with a self-loop in
order to preserve the state of the predicate. The analysis of the
CPN is by constructing and examining the reachability tree to
detect irregularities of the predicate places.

In a pure frame-based expert system, reasoning is by comparing
descriptions of incoming facts with the frames in the knowledge
base, and retrieving the class frame that best matches the
situation. The main inference mechanism or strategy for applying
general information to specific instances is inheritance. This
reasoning mechanism is rather limited in practical situations. In a
pure rule-based expert system, reasoning is by firing a sequence
of rules using incoming facts. Although this method is simple and
useful, complex domain knowledge could not be represented.
Our approach is useful to model systems that combined
rule/frame based representation techniques.

Future work will include formalizing our approach and
developing of algorithms to detect irregularities in the HES. We
would also like to investigate further the capability of the
methodology to handle fuzzy systems and the complexity
involved against the traditional approaches.

7. REFERENCES

[1] Beauvieux, A. A General Consistency Checking and
Restoring Engine for Knowledge Bases. In Proceedings of the
9th European Conference on Artificial Intelligence, Stockholm,
Sweden, 1990.

[2] Coenen, F. and Bench-Capon T., Maintenance of
Knowledge-Based Systems, Academic Press, 1993.

[3] Durkin, J. Expert Systems: Design and Development,
Macmillan Publishing Company, pp.12-23, pp.711-771, 1994.

[4] Evertsz, R. The Automated Analysis of Rule-based Systems
Based on their Procedural Semantics. In Proceedings of the
12th International Joint Conference on Artificial Intelligence.
Sydney, Australia, 1991.
[5] French, S.W. and Hamilton, D. A Comprehensive
Framework for Knowledge-Base Verification and Validation.
In International Journal of Intelligent Systems, Vol. 9, John
Wiley & Sons, Inc., pp.809-837, 1994.

[6] Jensen, K. Coloured Petri Nets : Basic Concepts, Analysis
Methods and Practical Use, Vol. 1, Springer-Verlag, 1992. Vol.
2, Springer-Verlag, 1995.

[7] Li, X., Lai, R. and Dillon, T.S. A New Decomposition
Method to Relieve the State Space Explosion Problem. In
Proceedings of the 5th International Conference on Computing
and Information, Sudbury, Ontario, Canada, pp.150-154, 1993.

[8] Lee, S. and O’Keefe, R.M., Subsumption Anomalies in
Hybrid Knowledge Bases. International Journal of Expert
Systems, Vol. 6, No. 3, pp.299-320, 1993.

[9] Lee, J.K., Yeung, D.S., Mizoguchi R. and Narasimhalu D.
Operational Expert System Applications in the Far East,
Published by Pergamon Press, 1991.

[10] Liebowitz, J. Operational Expert System Applications in
the United States, Published by Pergamon Press, 1991.

[11] Liu, N.K. and Dillon, T.S. An Approach Towards the
Verification of Expert Systems Using Numerical Petri Nets.
International Journal of Intelligent Systems, 6, pp. 255-276,
1991.

[12] Liu, N.K. Formal Description and Verification of Expert
Systems. Ph.D. Dissertation, La Trobe University, Bundoora,
Victoria, Australia, 1991.

[13] Nguyen, T.A., Perkins, W.A., Laffey, T.J. and Pecora, D.
Checking an expert system knowledge base for consistency and
completeness. In Proceedings of the 9th International Joint
Conference on Artificial Intelligence, Los Angeles, CA. 1985.

[14] O'Keefe, R.E. and O'Leary, D.E. Expert System
Verification and Validation: A Survey and Tutorial, Artificial
Intelligence Review 7, pp.3-42, 1993.

[15] Suen, C.Y. and Chinghal, R. Operational Expert System
Applications in Canada, Published by Pergamon Press, 1991.

[16] Shiu, S.C.K., Liu, J.N.K. and Yeung, D.S. Modelling
Hybrid Rule/Frame-based Expert Systems using Coloured Petri
Nets, In Proceedings of the 8th International Conference on
Industrial & Engineering Applications of Artificial Intelligence
and Expert Systems, IEA/AIE-95, Melbourne, June 6-8, pp.525-
531, 1995.

[17] Suwa, M., Scott, A.C. and Shortliffe, E.H. An Approach to
Verifying Completeness and Consistency in a Rule-based
Expert System. AI Magazine, pp.16-21, 1982.

[18] Zarri, G.P. Operational Expert System Applications in
Europe, Published by Pergamon Press, 1991.

