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Abstract 
 

The aim of this work was to study a distribution and lot-sizing problem that considers costs with 
transportation to a company warehouse as well as, inventory, production and setup costs. The logistic costs 
are associated with necessary containers to pack produced items. The company negotiates a long-term 
contract in which a fixed cost per period is associated with the transportation of the items. On the other hand, 
a limited number of containers are available with a lower cost than the average cost. If an occasional demand 
increase occurs, other containers can be utilized; however, their costs are higher. A mathematical model was 
proposed in the literature and solved using the Lagrangian heuristic. Here, the use of the Lagrangian/ 
surrogate heuristic to solve the problem is evaluated. Moreover, an extension of the literature model is 
considered adding capacity constraints and allowing backlogging. Computational tests show that Lagrangian/ 
surrogate heuristics are competitive, especially when the capacity constraints are tight. 
 

Keywords:  lot-sizing; transportation costs; Lagrangian/surrogate relaxation. 
 
 

Resumo 
 

Neste trabalho estuda-se um problema de dimensionamento de lotes e distribuição que envolve além de 
custos de estoques, produção e preparação, custos de transportes para o armazém da empresa. Os custos 
logísticos estão associados aos contêineres necessários para empacotar os produtos produzidos. A empresa 
negocia um contrato de longo prazo onde um custo fixo por período é associado ao transporte dos itens, em 
contrapartida um limite de contêineres é disponibilizado com custo mais baixo que o custo padrão. Caso 
ocorra um aumento ocasional de demanda, novos contêineres podem ser utilizados, no entanto, seu custo é 
mais elevado. Um modelo matemático foi proposto na literatura e resolvido utilizando uma heurística 
Lagrangiana. No presente trabalho a resolução do problema por uma heurística Lagrangiana/surrogate é 
avaliada. Além disso, é considerada uma extensão do modelo da literatura adicionando restrições de capa-
cidade e permitindo atraso no atendimento a demanda. Testes computacionais mostraram que a heurística 
Lagrangiana/surrogate é competitiva especialmente quando se têm restrições de capacidade apertada. 
 

Palavras-chave: dimensionamento de lotes; custos de transporte; relaxação Lagrangiana/surrogate. 
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1. Introduction 

Transportation costs account for a substantial part of the total logistics costs of a product. 
Nevertheless, they are often neglected in the literature regarding lot-sizing. In general, the 
costs considered by lot-sizing models are restricted to production, inventory and setup. Some 
recent reviews of lot-sizing problems can be found in Karimi et al. (2003) and Brahimi et al. 
(2006). 

Vroblefski et al. (2000) say that transportation costs are one of the highest costs in the 
logistics of distributed warehousing. According to them, these costs are volume-dependent. 
Baumol & Vinod (1970) use the inventory theory to analyze some trade-offs among 
transportation attributes: freight rates, speed, dependability (variance in speed) and en-route 
loss. Lee (1989) considered a dynamic lot-sizing model allowing multiple setup costs 
including a fixed charge cost and a freight cost, where a fixed single container type with 
limited carrying capacity is considered and the freight cost is proportional to the number of 
containers used. Lee et al. (2005) extend the previous paper (Lee, 1989) considering multiple 
items. These authors proposed a heuristic based on the representation of the problem as a 
network flow model. Norden & Velde (2005) argue that the freight rates depend on the kind 
of contract established with the logistics service, i.e., they are not exclusively dependent on 
the volume to be transported. 

The model proposed by Norden & Velde (2005) takes into account a real problem of a 
European company with heavily fluctuating monthly shipments between its manufacturing 
plant and its central warehouse. The company has a long-term contract, which combines two 
buying strategies: systematic (to cover longer-term needs) and spot (to cover immediate 
needs). The contract has a fixed cost per period and a limited number of lower cost 
containers. The limited number of containers is based on demand. If the demand increases, 
extra containers can be used, but at a higher price. The aim is to minimize production and 
distribution costs. The authors propose a Lagrangian heuristic to solve the problem. 

The studies mentioned above deal with both distribution and production problems in an 
integrated way. Erenguç et al. (1999) and Rizk & Martel (2001) present a general review of 
integrated production/distribution problems and Bertazzi & Speranza (1999) present a review 
considering extensions of the classical lot-sizing model for transportation cost models. 

Here, we investigate and propose a new solution method to the problem studied by Norden & 
Velde (2005). The proposed method consists of a Lagrangian/surrogate heuristic and the 
computational results are comparable to the Lagrangian heuristic presented by Norden & 
Velde (2005). Moreover, the model proposed by Norden & Velde (2005) is extended adding 
capacity constraints and allowing backorders. 

This paper is structured as follows: Section 2 introduces the extended modeling of the 
problem proposed by Norden & Velde (2005). Section 3 describes the proposed heuristics. In 
Section 4, we discuss the computational results. Conclusions and directions for further 
research are presented in Section 5. 

 
2. Mathematical Formulation 

The model studied is based on the model proposed by Norden & Velde (2005) where the 
transportation contract established consists of three kinds of costs: a monthly fixed cost of 
the contract; cost per unit of the first R containers used (R is defined in the contract and is 
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determined based on the item demand estimation); cost per unit of the remaining containers. 
Based on these values, the cost function to use r containers can be expressed by: 

0 1

0 1 2
( )

( )
c r c if r R

f r
c R c r R c otherwise
+ ≤⎧

= ⎨ + + −⎩
 

where: 

c0 – monthly fixed cost of the contract; 

c1 – cost per unit of the first R containers used; 

c2 – cost per unit of the remaining containers. 

 
The model parameters and variables are defined below. 
 
Parameters: 

i = 1, 2, ..., n Number of distinct items to be produced; 

t = 1, 2, ..., T Number of periods in the planning horizon; 

sit  Setup cost for the production of item i in period t; 

ith+   Cost for holding a unit of item i in period t; 

ith−   Penalty for delaying a unit of item i in period t; 

dit  Demand of item i in period t; 

bi  Time required to produce an unit of item i; 

qi  Setup time for production of item i; 

Capt  Production capacity in period t; 

M  A large positive integer number. 

 
Decision variables: 

Xit Quantity of units of the item i to be produced in period t; 

itI +  Quantity of units of the item i held at the end of period t; 

itI −  Quantity of units of the item i delayed at the end of period t; 

Yit Binary variable that indicates the setup for producing item i in period t; 
 (Yit = 1  if  Xit > 0  and  Yit = 0, otherwise); 

At Number of containers transported in period t with fee 1c  (variable); 

Bt Number of containers transported in period t with fee 2c  (variable). 

 
The problem is to determine the production of item i (i=1, 2, ..., n) for each period t 
(t=1, 2, ..., T) in the planning horizon in order to satisfy a pre-established demand dit . A fixed 
setup cost (sit) occurs whenever item i is produced in period t, i.e. 0itX > . The goal is to 
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develop a production plan to minimize the sum of storage ( ith+ ), delays ( ith− ), preparations 
and transportations (c0, c1 and c2) costs. In addition, the required time to produce items 

1

n

i it
i

r X
=
∑  plus the preparation time spent 

1

n

i it
i

q Y
=
∑  should be smaller than the capacity Capt 

in each period t. In the model, the authors consider that each container (they are all of the 
same size) can fit P unities of each item, i.e. the items also have the same size. Furthermore, 
they assume that the orders are placed at the beginning of each period and the items can be 
used to meet a demand in the same period they are produced. The initial stock and delays of 
every product are equal to zero. i.e. 0ioI + =  and 0ioI − = , i∀ . 

The mathematical model is presented below. 

( ) ( )0 1 2
1 1 1

, 1 , 1

1

min  (1)

1,... ; 1,..., ; (2)
0 1,... ; 1,..., ; (3)

( ) 1,..., ; (4)
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P
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= = =
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The objective function (1) minimizes the sum of the inventory, delay, setup, and 
transportation costs. Constraints (2) ensure that the demand is met. Constraints (3) ensure 
that the setup cost is considered if production occurs. Constraints (4) are capacity constraints. 
Constraints (5) make enough number of containers to transport the items feasible. 
Constraints (6) limit the use of containers with a lower cost according to the contract. 
Constraints (7) set the initial inventory and delay to zero and constraints (8) ensure that the 
variable production, inventory, and delay are non-negative. Finally, constraints (9) restrict 
the values of the binary and integer variables. 

Since the cost 0
1

T

t
c

=
∑  is constant and does not depend on the decision made, it will be 

omitted. For this model, M will be fixed as the sum of the demands of all items in the 

planning horizon, i.e., 
1 1

T n

it
t i

M d
= =

= ∑ ∑ . Norden & Velde (2005) proved that the model 

without capacity constraints is NP-hard. 
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3. Solution Method 

A heuristics based on Lagrangian relaxation combined with Surrogate relaxation was 
developed in order to solve transportation cost lot-sizing problems (LSP) discussed earlier. 
Narciso & Lorena (1999) provide a theoretical development of the combined Lagrangian/ 
surrogate relaxation. 

Lagrangian relaxation, introduced by Held & Karp (1971) (see also the classic work of Geoffrion 
(1974) and Fisher (1981)) has been widely used in different areas including lot-sizing (see 
Trigeiro et al., 1989; Lozano et al., 1991; Diaby et al., 1992; and Toledo & Armentano, 2006). 

Glover (1965) and Glover (1968) introduced the surrogate relaxation and theoretical studies 
were published by Greenberg & Pierskalla (1970), Greenberg & Pierskalla (1973) and 
Glover (1975). Due to the successes of Lagrangian relaxation and to the difficulties to obtain 
limits for surrogate relaxation, the latter has been less commonly used than the former. 
Nevertheless, Greenberg & Pierskalla (1970) present an important result ensuring that the 
surrogate relaxation duality gap is equal to or less than the Lagrangian relaxation duality gap. 
This fact has motivated several researchers to keep on studying the surrogate relaxation. 
Hence, there have been studies on the integrated Lagrangian/surrogate relaxation (Karwan & 
Rardin, 1979). Narciso (1998) proposed Lagrangian/surrogate relaxation and applied it to the 
generalized assignment problem and to the travelling salesman problem. This relaxation 
consists of two steps: in Step 1, the surrogate relaxation is applied to a set of constraints, to 
which surrogate multipliers are associated resulting in only one surrogate constraint; in Step 
2, the Lagrangian relaxation is applied to the surrogate constraint with an associated 
Lagrangian multiplier. The result is a Lagrangian problem with a one-dimensional multiplier. 
Other applications of the Lagrangian/surrogate relaxation were reported by Narciso & 
Lorena (1999) who studied the one-dimensional generalized assignment problem; Senne & 
Lorena (2000) who dealt with the p-Median problem; Lorena & Pereira (2002) who 
considered the maximal covering problem; and Oliveira & Morabito (2006) who focused on 
the container loading. However, no application of the Lagrangian/surrogate relaxation to the 
lot-sizing problem was found in the literature. 

 
3.1 Lagrangian/surrogate relaxation 

Initially the model (1)-(9) is considered and the Surrogate relaxation for the constraints 
sets (4) and (5) is proposed. Next, the Lagrangian relaxation of the surrogate constraint 
is made. To obtain the surrogate relaxation of problem (1)-(9), the multipliers 

( )1 1 2 2
1 1, , , , , 0T Tλ λ λ λ λ= ≥  were used associated to the constraints (4) and (5) and the 

following surrogate relaxation is obtained: 

( ) ( )

( )

0 1 2
1 1 1

1
2 1 2

1 1 1

( ) min  (1)

(2) (3); (6) (9)

( ) ( ) (10)

n T T

it it it it it it t t
i t t

T n T
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t i it i it t t t t t
t i t
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P

λ
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λ λ λ
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∑∑ ∑
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Constraint (10) is a relaxation of the number of containers required to transport the items and 
of the capacity required to produce the items in each period. However, it ensures that the 
total sum of the containers and capacity is sufficient for transporting and producing all the 
items in the planning horizon. The outcome of surrogate relaxation is not easy to solve since 
the decision variables Xit remain integrated by the knapsack constraint (10), and therefore it 
cannot be separated into independent subproblems preventing the application of well-known 
methods of the literature. In order to obtain a solution, the Lagrangian relaxation of the 
surrogate constraint (10) of the relaxation problem is proposed. Therefore, after relaxing the 
surrogate constraint, the Lagrangian/surrogate is obtained as follows: 

( ) ( )* * * 1 1
1 2

1 1 1
( ) min ( ) ( ) (11)

(2) (3); (6) (9).

n T T

it it it it it it t t t t
i t t

V L Su h I h I s Y c A c B C

subject to

µ λ µλ µλ+ + − −

= = =

= + + + − + − +

− −

∑∑ ∑
 

where: 
1

2 2

1 1
( )

T n
t

it t i t t
t i

C d b Cap
P
λ

µ λ λ
= =

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑  

1 1
* 2 21

1( )t t
it it i t th h b

P
µλ µλ µ λ λ+ + +

+
−

= + + −   and  1 2
1 1 0T Tλ λ+ += = . 

1 1
* 2 21

1( )t t
it it i t th h b

P
µλ µλ µ λ λ− − +

+
−

= + + −   and  1 2
1 1 0T Tλ λ+ += = . 

* 2
it it t is s qµλ= +  

The value of the objective function (11) of the relaxed problem ( )V L Suµ λ  gives a lower 
bound for the original problem. Given a certain value µ, the outcome is a Lagrangian 
problem that can be solved using the subgradient method. It is worth mentioning that if 
µ = 1, the Lagrangian relaxation of the original problem is obtained. The decision variables 
Xit in the problem ( )V L Suµ λ  are no longer integrated (as in the Norden & Velde (2005) 

problem). Therefore, for the fixed values of µ and ( )1 1 2 2
1 1, , , , ,T Tλ λ λ λ  it can be 

separated into two independent subproblems: the lot-sizing subproblem and transportation 
subproblem. 

 
3.1.1 Lot sizing subproblem 

The first subproblem, obtained using the Lagrangian/surrogate relaxation, is a lot-sizing 
problem without capacity constraints. The objective function costs are defined by the 
Lagrangian multiplier and surrogate multipliers. This problem can be divided into one lot-
sizing problem for each item as shown below. The optimum solution (V(Sub1i) can be easily 
obtained using the Zangwill (1969) algorithm. 
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( )

{ }

* * *
1

1
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0 0

( ) min 

1,..., ;
0 1,..., ;

0, 0,

0, 0, 0 1,..., ;
0,1 1,..., .
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i it it it it it it
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it it

i i

it it it

it

V Sub h I h I s Y

subject to
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I I
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=
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+ −

+ −
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3.1.2 Transportation subproblem 

The transportation subproblem, obtained after applying Lagrangian/surrogate relaxation, can 
be expressed as follows: 

( )1 1
2 1 2

1
( ) min ( ) ( )

0 1,... ;
, 1,... .

T

t t t t
t

t

t t

V Sub c A c B

subject to
A R t T

A B t T

µλ µλ
=

= − + −

≤ ≤ =
∈Ν =

∑

 

The resolution of V(Sub2) can be obtained by inspection, that is, if 1
1(( ) 0tc µλ− <  for some 

period t, then let At = R, otherwise, let At = 0. Moreover, if 2
2(( ) 0tc µλ− <  for some 

period t, then let Bt → ∞, otherwise let Bt = 0. However, if t exists with 2
2(( ) 0tc µλ− < , 

then the bound obtained by this procedure will be not be useful (-∞). 

In order to improve the quality of these lower bounds, Norden & Velde (2005) propose 
bounds for variables Bt and some valid inequalities. However, due to the generalizations 
considered in the model (1)-(9) (backlogging and capacity constraints), the bounds for the 
variables Bt and the inequalities proposed by Norden & Velde (2005) are no longer valid for 
the model of this paper. Next, we present a new bound for the variables Bt and a new valid 
inequality. 
 
• Upper bounds on Bt variables 

Consider restriction (5) again: 
1

1 n

t t it
i

B A X
P =

+ ≥ ∑ . 

Observe that in the considered production process, the whole production of a given period 
must be transported by the containers. Moreover, no item in the stock to be transported exists 
coming from a previous period. This implies that the quantity of containers needed in a given 
period will never exceed the quantity required for the transportation of all the items produced 
in this period. 
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The basic idea in the bounds proposed by Norden & Velde (2005) consists of limiting Bt 
based on the demand in period t until the end of the time horizon. As there is no backlog, the 
maximal production in period t is bonded according to this value. However, as we admit 
delays in the model (1)-(9), the production of a given period may be equal to the sum of the 
demand of the whole time horizon. In order to determine a bound for Bt, consider UD as the 
number of containers needed to transport the demand of all the items in all the periods: 

1 1

T n
it

t i

dUD
P= =

⎡ ⎤
= ⎢ ⎥
⎢ ⎥
∑∑ . 

Then, Bt can be limited by (UD – R), where R is the maximal number of lower rate 
containers which can be used in period t. In this work, the capacity of production is restricted 
then we know that the quantity produced in a given period is also limited. Then, in order to 
obtain a bound for Bt , let qmin be the least between the setup times for items i (i=1,...,n.), that 
is, qmin = min{qi | i=1,..., n}. Let also bmin be the least production time, that is, 
bmin = min{bi | i=1,..., n}. Define UCt  to be the upper bound for the maximal number of 
containers required in period t: 

1,...,

t min

min
t

Cap q
b

UC t T
P

⎡ ⎤−
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥

 

This bound is valid, once that, in a period where some item is produced, the production 
capacity Capt will be reduced by the setup time of this item. Since it is not possible to know 
which is the produced item (nor how many items are being produced), we consider a unique 
setup referring to the item with a minimal setup time, resulting in (Capt – qmin). In order to 
convert the production capacity into the number of items, we divide (Capt – qmin) by the time 
required to produce a unit of the selected item. In order to ensure the upper bound, we again 
choose the bmin.. We have the fact that the maximal number of items that can be produced in 
a period t is given by (Capt – qmin) / bmin. Dividing this value by the number of items which fit 
in a container (P) and taking the least larger integer, we obtain the maximal number of 
containers required for period t. Therefore, we obtain Bt ≤{UCt – R}. 

Considering both bounds for Bt we obtain: 

 { }min , 1,...,t tB UD R UC R t T≤ − − =  (12) 

 
• Valid Inequality 
The inequality (13), adapted from Norden & Velde (2005) and presented below, ensures that 
the whole demand will be transported, by means of the lower and high rate containers. 

 
1

( )
T

t t
t

A B UD
=

+ ≥∑  (13) 

The algorithm for the solution of V(Sub2) with the inequalities (12) and (13) is summarised 
below. 

FSt  –  Number of containers with lower rate unused in period t; 
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Step 0 FSt=R ; At=0, Bt=0     t = 1, ..., T 

Step 1 for t = 1,..., T 
  if 1

1( )tc µλ− < 0 then 
                 At = R; 
                 FSt = 0; 
                 UD = UD – At; 
    if 2

2( )tc µλ− < 0 then 
                 Bt = UCt; 
                 UCt = 0; 
                 UD = UD – Bt; 

Step 2 Define the set in increasing order as follows: 
NC = 1 2

1 2{( ), 1, , } {( ), 1, , }t tc t T c t Tµ µλ λ− = ∪ − =… …  

Step 3 Select the first element of the set (for a given t) 
while UD > 0 do 
If the element is considered the first subset 
     If the selected element comes from the first subset 
 then  At = At + min{ UD, FSt, UCt } 
  UD = UD – min{ UD, FSt, UCt } 
  FSt = FSt – min{ UD, FSt, UCt } 
  UCt = UCt – min{ UD, FSt, UCt } 
 else  Bt = Bt + min{ UD, UCt } 
  UD = UD – min{ UD, UCt } 
  UCt = UCt – min{ UD, UCt } 
    if UD <= 0 
            then stop, the solution is found. 
            Else choose the next element from set NC. 
end while. 

Step 4 Return the values of At and Bt. 

 

In this paper, the Lagrangian/surrogate problem will be solved as proposed by Narciso 
(1998). The author proposes the application of the subgradient method for k iterations for the 
Lagrangian/surrogate problem with a fixed value for the multiplier µ. Once a solution is 
found, a local search is applied to update the value of the multiplier µ, which is kept for more 
k iterations of the subgradient method. These steps are conducted successively until a stop 
criterion is reached. This algorithm is described below. 
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Step 1. Initialization 
 Define the initial value for µ and for 1

tλ  and 2
tλ ,  t = 1, 2, ..., T. 

 Let k = 1 and cont = 0. 

Step 2.  Solution to the Problem 
 Solve the n lot-sizing subproblems. 
 Solve the transportation subproblem. 
 if the solution found is better than the current lower bound 
  then  Update the current lower bound and let cont = 0; 
  else  Let cont = cont + 1. 
 Calculate the subgradient. 
 if the solution obtained is feasible 
  then  Update the upper bound; 
   If the solution obtained is optimum then Stop. 
  else  Apply the smoothing heuristic. 

Step 3.  Apply 3 iterations of the one-dimensional search as proposed by Narciso (1998) 
 to update the value of µ . 

Step 4.  If cont = 15 then update the subgradient step. 
 Update the values of  1

tλ , t = 1, 2, ..., T. 
 Let k = k + 1. 
 If k < num_Max_iterations 
  then  Go back to Step 2. 
  else  Stop. 

 
The subgradient algorithm proposed by Held et al. (1974) was implemented in this study 
using the following criteria to update the subgradient step: 

2

( )k
k

k

UB V(L Su )

CX
µ λη −

θ =  

where v(L Su )µ λ  is the value of the objective function of the Lagrangian/surrogate relaxation 
in iteration k, UB is an upper bound for the optimum solution to the problem (1)-(9), i.e., 
a feasible solution and kη  is constant. The initial η  value is 1.75. This value is kept for 15 
iterations, and then it is divided by 2 and so on successively. 

 
3.2 Proposed Heuristic 

A heuristic based on the Lagrangian/surrogate relaxation was proposed for the solution of the 
problem studied. Given a feasible solution obtained via minimizing the Lagrangian/ 
surrogate problem, a smoothing heuristic is applied based on production transferring 
movements between periods to find a feasible solution to the problem. If a feasible solution 
is found, an improvement heuristics is applied. The smoothing heuristic is applied to each 
step of the subgradient algorithm. Changing Step 2 of the second algorithm presented in 
Section 3.1 for the following Step 2, we obtain our proposed heuristic. 
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Step 2.  Solution to the Problem 
 Solve the n lot-sizing subproblems. 
 Solve the transportation subproblem. 
 if the solution found is better than the current lower bound 
  then  Update the current lower bound and let cont = 0; 
  else  Let cont = cont + 1. 
 Calculate the subgradient. 
 if the solution obtained is feasible 
  then  Update the upper bound; 
   If the solution obtained is optimum then STOP. 
  else  Apply the smoothing heuristic 
   If the current solution is feasible 
    then Apply the improvement heuristic. 

 

3.2.1 Smoothing Heuristic 

The smoothing heuristic is divided into two parts: the first is related to the capacity 
constraints, and the second is related to the container constraints. 
 
Smoothing procedure: Capacity constraints 

If the solutions found violate the set of capacity constraints at any period, it is necessary to 
transfer the production excess to a period with non-tight capacity. This transfer can be 
summarized in four steps: 

• First step: it starts in the last period, focusing on transferring the production of items 
from periods with violated capacity to earlier periods. 

• Second step: it also consists of transferring the production of items from periods, for 
which the capacity constraints are not met, but in this case, it starts at the first period 
and keeps going towards the period before the last period. 

• These two steps are repeated once more and the capacity constraints are checked. 

The transfer choice criterion to obtain a feasible solution is based on Toledo & Armentano 
(2006) and consists of: giving the production excess in a period, a certain quantity of some 
item should be transferred to another period. The quantity to be transferred is calculated by 
taking, for that period, the minimum between the production excess and the quantity of the 
item produced. This calculation is done for every item and period that allows the transfer. 
The selection of the item and the period at which the production transfer occurs is obtained 
minimizing a function that considers the transfer costs and the production excess reduction. 
When a feasible solution is not found, a factor focuses on the excess reduction and gives less 
importance to the minimization of the transfer costs. 
 
Smoothing procedure: Container constraints 

The smoothing procedure used here was proposed by Norden & Velde (2005). In each 
iteration of the relaxation algorithm, the transportation subproblem is used for coming up 
with a feasible solution. The goal is to find At and Bt that meet constraints (5) and (6). For 
each period, the items produced are allocated inside low cost containers whenever possible. 
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The remaining items are allocated in high cost containers. Let *
itX  (i=1,..., n and t=1,...,T) be 

an optimum solution for the lot-sizing subproblem. This is a feasible solution to the original 
problem if we use *

tA  low cost containers and *
tB  high cost containers where: 

* *

1

1min ,
it

n

t
i

A R X
P =

⎧ ⎫⎡ ⎤
= ⎨ ⎬⎢ ⎥

⎢ ⎥⎩ ⎭
∑  and * *

1

1max 0,
it

n

t
i

B X R
P =

⎧ ⎫⎡ ⎤
= −⎨ ⎬⎢ ⎥

⎢ ⎥⎩ ⎭
∑  for 1, ,t T= . 

 
3.2.2 Improvement Heuristic 

Two improvement heuristics were used. One is related to the transportation of containers and 
the other is related to lot-sizing. 
 
Improvement Procedure: Transportation of Containers 

Having a feasible solution, two steps are taken aiming at improving the solution without 
feasibility loss. In the first step, the periods are processed in increasing order, i.e., it can be 
observed from the first period to the last one in the planning horizon whether there is any 
period t where Bt > 0, which indicates the use of containers at period t with cost c2 . Next, the 
focus is to find a period t’ after t, in which there are low cost (c1) containers that are not used 
at full capacity (At’ < R). For a certain item i produced in period t, the quantity to be 
transferred is calculated by taking the minimum between: the produced quantity of item i in 
that period t; the quantity of items that can fit inside the low cost containers not used in the 
later period t’; the quantity of items that can fit inside the high cost containers used in the 
later period t; and the remaining production capacity in period t’. 

After these evaluated transfers, we have a transfer possibility that keeps the solution 
feasibility. For a given possible transfer, the cost variation is calculated considering that the 
transfer actually occurs. To calculate the cost variation, the following can be considered: 
possible holding cost reduction; possible reduction or increase in the setup costs considering 
period t and t’; and possible reduction in the transportation costs. If the cost variation is 
negative, this item transfer is executed and if Bt is still positive after the transfer, another 
item produced in the same period t is searched for and a new transfer possibility is evaluated. 
If, after a transfer, Bt is not positive, the next period is evaluated, and so on, searching for 
periods in which containers with cost c2 are being used. 

The second step is similar to the first step, but it starts in the last period and moves towards 
the first one. 
 
Improvement Procedure: Lot-sizing 

Considering the Lagrangian relaxation of a problem, a solution of a relaxed problem is an 
optimum solution of the original problem, if this solution satisfies the complementary 
slackness conditions (Geoffrion, 1974). Thus, based on Araujo & Arenales (2000), an 
improvement procedure was adapted focusing on solutions that are about to satisfy the 
complementary slackness conditions. Therefore, the production transfer from one period to 
another is made according to the following criteria: the transfer is made from period t, in 
which the Lagrangian multiplier 2

tλ  is equal to zero, for a period k in which 2
kλ  is different 

from zero and with a slack of capacity. The transfer will occur only if the new solution is 
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better than the earlier one and it takes place in two steps. The first one starts in the last period 
and moves towards the second. The second step starts in the first period and moves towards 
the period before the last period. The choice of the items and periods to do the transfer is 
made according to the values that maximize the following function: 

Value before − After value 

where: 
– Value before: objective function value up to that moment; 
– After value is the objective function value with the transfer of a certain item from 
period t to period k. 

The quantity (w) to be transferred is: 

w = min{slack(k) + (1 − Yik) sik,  Xit} 

where slack(k) is the non used capacity in period k. 

 
4. Computational Tests 

The computational tests were divided into two steps. In the first one, the model proposed by 
Norden & Velde (2005) was considered, which does not have capacity constraints and does 
not allow backorder. The Lagrangian heuristic, developed by Norden & Velde (2005), is 
compared to the Lagrangian/surrogate heuristic developed in this study. It can be noted that 
some modifications in the heuristic described in Section 3 should be considered, because in 
Norden and Velde’s model capacity constraints and backlog are not considered. In the 
second one, the model (1)-(9) was considered and the capacity constraint effect was analyzed. 
 
4.1 Results for Norden & Velde (2005)’s Model 

The Lagrangian heuristic proposed in the Norden & Velde (2005) and the Lagrangian/ 
surrogate heuristic proposed in Section 3 were implemented using C language and compiled 
using the Borland C++ version 5. The tests were run on a Pentium 4, 3GHz, 512MB RAM, 
under the operational system Windows XP. In order to obtain the optimum solutions used as 
a benchmark, the CPLEX 10.0 was used. The instances were generated based on the paper 
Norden & Velde (2005). Hence, for all instances: P=100, n=20, T=12 (corresponding to the 
planning horizon of one year) and setup costs sit=100 for all items and periods. 

Demands dit were generated uniformly in the interval ,i iED 3ED
2 2

⎡ ⎤⎢ ⎥ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

, where EDi is the 

average demand generated uniformly in the interval [40,700]. In the process of data 
generating, there are demand peaks in the fifth and tenth period, where demand dit is 
multiplied by 1.5. Two different combinations of transportation costs were generated: c1 = 50 
and c2 = 200 and a more expensive combination given by c1 = 150 and c2 = 500. The 
maximum number of low cost containers, i.e. value R is calculated according to the demand 
fraction that will be transported with cost c1. Value FR means that R should be generated in 
such a way that for FR of the periods, the demand should be less than R*P. The values of FR 
used are 1/4 and 1/6. The holding costs are the same for all items and constants within the 
planning horizon. Two costs were considered: the low holding costs, h = 1, and the high 
holding costs, h = 3. 
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For the procedures based on the Lagrangian relaxation and on Lagrangian/surrogate, a 
maximum number of iterations equal to 800 is considered. For the Lagrangian/surrogate, the 
initial Lagrangian multiplier value is 1µ =  and for each subgradient iteration the one-
dimensional search is applied during three iterations. For statistical analyses, 100 instances 
were generated for the computational tests considering each set of parameters (FR, h, c1, c2). 
Considering the combination of some of these parameters, four groups of examples with the 
following characteristics were considered: 

• Group 1: The first one with the total demand fraction equal to 1/6 ( 1FR
6

= ) and 

transportation costs equal to c1 = 50 and c2 = 200; 

• Group 2: The second group has the same demand fraction of the first group ( 1FR
6

= ) 

and the transportation costs considered are c1 = 150 and c2 = 500; 

• Group 3: The third group has the total demand fraction equal to 1/4 ( 1FR
4

= ) and 

transportation costs equal to c1 = 50 and c2 = 200; 

• Group 4: Lastly, the fourth group has the total demand fraction equal to 1/4 ( 1FR
4

= ) 

and transportation costs equal to c1 = 150 and c2 = 500. 
 
The results obtained were analyzed considering: 
 

UBLag The best feasible solution value found by the Lagrangian heuristic; 
UBLsur The best feasible solution value found by the Lagrangian/surrogate heuristic; 
LBLag Lower bound value found by Lagrangian relaxation; 
LBLsur Lower bound value found by Lagrangian/surrogate relaxation; 
GapLag Average value of 100 x (UBLag-LBLag)/LBLag; 
GapLsur Average value of 100 x (UBLsur-LBLsur)/LBLsur; 
GapOLag Average value of 100 x (UBLag-OC)/OC, where OC is the best solution 

obtained by CPLEX after a time limit; 
GapOLsur Average value of 100 x (UBLsur-OC)/OC; 
AgapLag Average value of 100 x (UBLag-OC)/OC; 
AgapLsur Average value of 100 x (UBLsur-OC)/OC; 
ANITLag Average number of Lagrangian heuristic iterations; 
ANITLsur Average number of Lagrangian/surrogate heuristic iterations; 
CTLag Average Lagrangian heuristic computational time; 
CTLsur Average Lagrangian/surrogate heuristic computational time; 
CT Average CPLEX computational time; 
SD Standard Deviation of the computational time. 
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Table 1 shows the heuristic procedure results. The Lagrangian/surrogate heuristic presents 
solutions with average deviations smaller than the Lagrangian heuristic. Nevertheless, it 
cannot be said that the Lagrangian/surrogate heuristic is the best procedure for the problem 
since for both heuristics the stabilization and solution quality are quite similar despite the 
small improvement. Thus, it can be said that both approaches are competitive. In addition, 
Table 1 shows that the procedures have better gaps when more expensive transportation costs 
are considered (Groups 1 and 3). 

The holding costs also affect the results found by the procedures and they are analyzed in 
Table 2, where group 3 is considered with various values for the holding cost. 
 

Table 1 – Computational Results for Different parameters. 

  Lagrangian Lagrangian/surrogate CPLEX
Prob.  h  GapLag AgapLag CTLag ANITLag GapOLag GapLsur AgapLsur CTLsur ANITLsur GapOLsur CT 

Group 1 1 0.99 1.77 0.08 714.14 8.10 0.99 1.77 0.21 722.08 8.10 299.85
Group 1 3 0.81 1.37 0.09 426.85 8.73 0.71 1.25 0.22 399.70 8.83 300.19
Group 2 1 1.05 1.70 0.08 651.55 3.32 1.06 1.70 0.21 657.31 3.32 300.26
Group 2 3 0.96 1.56 0.08 556.88 3.71 0.92 1.75 0.21 542.52 3.73 300.18
Group 3 1 1.04 1.65 0.09 734.41 8.30 1.04 1.70 0.22 738.51 8.29 298.75
Group 3 3 0.75 1.16 0.11 425.02 9.34 0.71 1.50 0.24 359.55 9.38 299.33
Group 4 1 1.11 1.97 0.09 729.92 3.41 1.12 1.91 0.22 726.54 3.41 300.22
Group 4 3 0.93 1.56 0.10 598.83 4.17 0.92 1.75 0.23 583.86 4.19 300.22

Average 0.96 1.59 0.09 604.70 6.14 0.93 1.67 0.22 591.26 6.16 299.88
 

Table 2 shows that for both procedures, it can be observed that the lower the holding costs 
(h), the higher the average deviation, and the gaps found by the Lagrangian/surrogate 
heuristic (GapLsur) are better than the gaps from the Lagrangian heuristic (GapLag). Norden 
& Velde (2005) already highlighted this holding cost effect. When considering the holding 
cost equal to zero, the heuristics developed determine, on average, better quality solutions 
than the CPLEX. However, for elevated holding costs, CPLEX obtain better quality solutions 
than the heuristic proposed. It is worth mentioning that the time limit for the CPLEX to obtain 
a solution was set to 300 seconds for the results presented in Tables 1 and 2. 
 

Table 2 – Computational Results for Different Holding Cost Values. 

  Lagrangian Lagrangian/surrogate CPLEX
Prob. h GapLag AgapLag CTLag ANITLag GapOLag GapLsur AgapLsur CTLsur ANITLsur GapOLsur CT 

Group 3 0 2.75 4.29 0.15 794.98 -0.51 2.70 4.17 0.30 794.74 -0.47 300.25
Group 3 0.5 1.12 1.85 0.10 779.64 7.56 1.07 1.81 0.23 777.21 7.57 300.26
Group 3 1 1.04 1.65 0.09 734.41 8.29 1.04 1.70 0.22 738.51 8.29 298.82
Group 3 2 0.86 1.50 0.09 629.73 9.07 0.86 1.53 0.23 588.45 9.08 298.73
Group 3 3 0.75 1.16 0.11 425.02 9.35 0.71 1.50 0.23 359.55 9.38 299.30
Group 3 5 0.78 1.23 0.11 289.99 9.44 0.72 1.29 0.24 225.89 9.50 300.17
Group 3 10 0.78 1.31 0.11 274.33 9.49 0.59 1.28 0.24 270.83 9.70 295.31

Average 1.15 1.86 0.11 561.16 7.53 1.10 1.90 0.24 536.45 7.58 298.98
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4.2 Results for Model (1)-(9) 

The software used in these computational tests was the same used in the tests presented in 
Section 4.1. However, the computer used was a Pentium 4 3GHz, 1GHHz RAM. 

The new data related to capacity restrictions were generated based on Trigeiro et al. (1989). 
The other data are similar to those described in Section 4.1. The production capacity in each 
period is generated depending on the production times and setup according to the following 
equation: 

1 1
( )

1,...,

n T

i ik i
i k

t

b d q
Cap t T

Tα
= =

⎢ ⎥
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⎢ ⎥= =
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⎣ ⎦

∑∑
; 

where α is a parameter for slackness capacity control and two variations are considered: 
α = 1 and α = 0.85 representing, respectively, the tight and normal capacities. 

For all items, the time required to produce a unit of item i are given by bi = 1 and the setup 
times (qi) were generated randomly in the intervals [10,50] and [30,150]. Finally, there are 
three possibilities for delay penalties ( ith− ): 5, 10, or 50 times the stock cost ( ith+ ) that was 
fixed in 1 or 3. 

Considering the parameters defined in this section and the ones defined in Section 4.1, for 
each parameter combination, 100 examples are generated. A total of 9,600 examples were 
generated in this second step of the computational tests. 

The following two tables show the results of the tests run. The problems are shown in groups 
with the same characteristics of Groups 1, 2, 3, and 4 described in Section 4.1. However, 
each group represents a 12 parameter combination (two different stock costs combined with 
three types of delay penalties combined with two types of different setup times). Hence, for 
each relative line to a group, an average of 12 combinations of these groups is presented (100 
examples for each combination are generated). 

For the procedures based on the Lagrangian and Lagrangian/surrogate relaxation a maximum 
number of 800 iterations was considered. For Lagrangian/surrogate, the initial Lagrangian 
multiplier 1µ =  is considered and for each subgradient iteration, three iterations are applied 
in one-dimension searched. 

Each table shows the resolution time (CPLEX was limited to 180 s in these tests), the best 
value obtained by CPLEX 10.0 optimization package in the time limit, the average number 
of iterations that the heuristics need to obtain the best solution, and the distance obtained by 
the heuristics in relation to the optimization. 

Tables 3 and 4 show that both heuristics were again quite similar. The problem (1)-(9) can be 
considered more complicated due to capacity constraints and backlogging, the computational 
time and gap increased. A new column was included to compare the Standard Deviation 
(SD) of the computational time and both heuristics showed to be stable. 

As expected, the heuristic needs less solution time than CPLEX. In addition, since the 
Lagrangian/surrogate heuristic has to make one-dimension search iterations, it needs more 
time than the Lagrangian heuristic. 
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Table 3 – Results – Problems with tight capacity (α = 1). 

  Lagrangian Lagrangian/surrogate 
Prob. GapLag AgapLag CTLag SD ANITLag GapOLag GapLsur AgapLsur CTLsur SD ANITLsur GapOLsur

Group 1 30.63 44.83 16.89 1.81 173.84 29.77 28.69 47.95 17.50 2.08 165.36 28.44 
Group 2 25.82 35.13 14.21 1.80 275.82 25.25 24.87 36.60 14.82 1.75 267.47 24.87 
Group 3 31.23 48.33 16.31 1.34 177.36 30.22 29.47 52.48 16.78 1.34 148.82 29.07 
Group 4 26.48 37.91 14.27 1.79 274.11 25.82 25.50 40.11 14.88 1.79 268.88 25.44 
Average 28.54 41.55 15.42 1.69 225.28 27.77 27.13 44.28 16.00 1.74 212.63 26.95 
 

Considering the normal capacity (Table 4), it can be seen that the heuristics need less 
iterations to obtain the upper bound and it obtains a better upper bound. The results for the 
other data variations follow the same pattern of the results of the tight capacity problems. 
 

Table 4 – Results – Problems with normal capacity (α = 0, 85). 

  Lagrangian Lagrangian/surrogate 
Prob. GapLag AgapLag CTLag SD ANITLag GapOLag GapLsur AgapLsur CTLsur SD ANITLsur GapOLsur

Group 1 22.12 31.73 10.81 2.31 69.86 19.89 21.48 32.49 12.13 1.67 34.31 19.94 
Group 2 22.28 28.37 10.22 2.21 113.82 21.17 22.13 29.87 11.01 2.02 77.57 21.20 
Group 3 22.92 41.74 10.78 2.20 60.97 20.42 22.23 41.30 11.98 1.52 30.11 20.42 
Group 4 22.93 30.85 10.23 2.16 114.25 21.58 22.76 31.50 11.06 1.90 66.60 21.61 
Average 22.56 33.17 10.51 2.22 89.73 20.77 22.15 33.79 11.54 1.78 52.15 20.79 
 

As seen in Section 4.1 to the problem proposed by Norden & Velde (2005), the heuristics are 
competitive and the heuristic Lagrangian/surrogate produce gaps lower than the Lagrangian. 
However, we can not say that the Lagrangian/surrogate procedure is the best procedure for 
the problem (1)-(9), i.e., the analysis remains valid to the procedures outlined in Section 4.1. 

 
5. Conclusions 

The aim of this study was to evaluate the efficiency of the Lagrangian/surrogate approach for 
the integrated lot-sizing and distribution problem. The problem studied involves production 
and transportation planning of various items in a planning horizon of T periods. The 
objective is to minimize setup, production, inventory and transportation costs. Transporting 
items involves a contract established for the whole planning horizon and it has a fixed cost, a 
reduced cost for a fixed number of contracted containers, and the possibility of contracting 
additional containers at an elevated cost. The number of contracted containers is estimated 
based on the planning horizon demand forecast. 

The model proposed is an extension of a literature model considering delays in meeting the 
demand and capacity constraints. A heuristic based on the Lagrangian/surrogate relaxation 
was proposed for solving the problem. Initially, the results obtained were compared to the 
Lagrangian heuristic proposed by Norden & Velde (2005) for the problem originally 
proposed by these authors. The two heuristics results are similar in the deviation of the 
optimum solution to the problems. In a second step of the computational tests, the model 
extension proposed was studied and the results indicate that in the case of tight capacity 
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constraints, the results of the Lagrangian/surrogate heuristic are better than the Lagrangian 
heuristic results. It can be concluded that the approach proposed is competitive, which 
stimulates the study of its application in other lot-sizing and distribution problems. 
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