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1. In troduct ion  

Transactions processed in a real-time database system (RTDB:S) are associated with real-time con- 
straints typically in the form of deadlines. Computer-integrated manufacturing, the stock market, 
banking, and command and control systems are several examples of RTDBS applications where the 
timeliness of transaction response is as important as the consistency of data. Design of a RTDBS 
requires the integration of concepts from both real-time systems and database systems to handle 
the timing and consistency requirementstogether; i.e., to execute transactions so as to both meet 
the deadlines and maintain the database consistency. 

The general approach to the scheduling problem in RTDBS's is using existing techniques in CPU 
scheduling, buffer management, 'IO scheduling, and concurrency control, and to apply time-critical 
scheduling methods to observe the timing requirements of transactions. The timing constraints 
of the RTDBS transactions are considered to be 'soft'; i.e., schedules guaxaxLteeing all transaction 
deadlines cannot be provided due to the consistency requirement of the underlying database. The 
performance goal in RTDBS scheduling is to minimize the number of transactions that miss their 
deadlines. A priority order is established among transactions based on their deadlines. 

Most of the recent research in RTDBS transaction scheduling has concentrated on development 
and evaluation of concurrency control protocols. 'Priority Abort' is one of the most popular RTDB 
concurrency control protocols proposed so fax [Abb88]. The Priority Abort protocol is based on the 
two-phase locking scheme, and it aborts a low priority transaction when one of its locks is requested 
by a higher priority transaction. 

Performance studies concerning RTDB concurrency control protocols have appeared in the litera- 
ture during the last couple of years. However, these studies were either based on simulation [Abb88, 
Abb89, Hax90a, Hax90b, Sha91, Son90, Son92, and Ulu92], or carried out on a RTDBS testbed 
[Hua91a, Hua91b]. To the best of our knowledge, no analytic performance study has been reported 
involving the evaluation of concurrency control protocols in RTDBS's. 

In this paper, we analyze the performance of a RTDB concurrency control protocol, namely the 
Priority Abort protocol, via Maxkov modeling. The complexity of the concurrency control protocol 
makes it practically impossible to find an exact analytic closed-form solution to the performance 
evaluation problem. To simplify the problem, we will analyze an isolated individual transaction, 
rather than capturing the states of all concurrent transactions. This method, proposed by [Che83], 
was found to be fairly accurate in analyzing the performance of two-phase locking [Che83] and 
timestamp-ordering algorithms [Sin91]. The model provided is able to reflect the impact of the 
presence of other transactions on the performance of the isolated transaction. However, the analysis 
is approximate since the average behavior of the transactions is modeled rather than their dynamic 
behavior. 

The remainder of the paper is organized as follows. The next section describes the pri0rity-based 
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lock_request_handling( D,T) { 
/* Transaction T requests a lock on data item D */ 
if  (D was locked by a transaction T') 

if  (priority(T) > priority(T')) { 
T'  is aborted; 
Lock on D is granted to T; 

} 
o t h e r w i s e  

T is blocked by T'; 
o t h e r w i s e  

Lock on D is granted to T; 

Figure i: Lock request handling in Priority Abort protocol. 

concurrency control protocol we studied. Section 3 provides the structure and characteristics of 
a RTDBS model used in the evaluation of the concurrency control protocol. The analysis of the 
performance of the protocol is presented in Section 4. Section 5 provides the results of some 
experiments performed by using the proposed analytic model. Finally, Section 6 provides a brief 
discussion of our work together with the future plans. 

2. Description of the Priority Abort Protocol 

In this protocol, the winner in the case of a lock conflict between two transactions is always the 
higher priority transaction [Abb88]. In resolving a conflict, if the transaction requesting the lock 
has higher priority than the transaction that holds the lock, the latter transaction is aborted and 
the lock is granted to the former one. Otherwise, the lock-requesting transaction is blocked by the 
higher priority lock-holding transaction (Figure i). 

A high priority transaction never waits for a lower priority transaction. This condition prevents 
deadlocks if it is assumed that the real-time priority of a transaction does not change during its 
lifetime and that no two transactions have the same priority. 

3. RTDBS Model 

This section briefly describes the RTDBS model used in evaluating the performance of the Priority 
Abort protocol. The model is based on a closed queuing model of a single site database system. It 
contains one CPU resource shared by the transactions. 

Each transaction submitted to the system is associated with a deadline, and is assigned a unique 
real-time priority determined on the basis of its deadline. The 'slack time' of a transaction is 
defined as the distance from the current time to the deadline of the transaction. The slack time of 
a new transaction in our system is considered to be a factor of the estimated response time of the 
transaction, and that factor is determined by the parameter S. 

The basic unit of access (or locking) is referred to as a data item. The number of data items stored 
in the database is denoted by the parameter D. Concurrent data access requests of the transactions 
are controlled by using the Priority Abort protocol. Depending on its real-time priority, an access 
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D Number of data items stored in the database 
d Number of data  items accessed by each transaction 
t Number of transactions processed in the sys tem at any moment  in t ime 
#p  Mean CPU service rate ( transaction/msec) 
S Slack factor used in assigning transaction deadlines 

Table 1: Parameters of the RTDBS Model 

request of a transaction is either granted or results in blocking of the transaction. If the access 
request is granted, the transaction obtains a lock on the data i tem and starts processing it. The 
processing time at the CPU is assumed to be exponentially distributed with mean l / u p .  A blocked 
transaction is not allowed to proceed until after the data lock it requires is released. A transaction 
releases all the locks it holds after it has either been committed or aborted. A transaction can be 
commit ted after it has processed the last data i tem in its access fist. An executing transaction can 
be aborted due to any of the two basic reasons: whenever its deadline expires or one of its locks is 
requested by a higher priority transaction. 

The other primary assumptions adopted in our model simplifying the analysis are: 

The transaction population :in the system (the level of mult iprogramming) is constant and 
determined by the parameter t. 

Each transaction accesses the same number of data  items, which is specified by the parameter  
d. 

• Data items accessed by each transaction are uniformly distributed over all database. 

• All data  accesses are exclusi:ve (i.e., there are no shared locks). 

• The shared database system is memory-resident; thus, an access to a data item does not 
involve any disk: access. 

Table 1 summarizes t:he parameters of the ttTDBS model. 

4. P e r f o r m a n c e  A n a l y s i s  o f  t h e  P r i o r i t y  A b o r t  P r o t o c o l  

All transactions processed in the system are assumed to be identical and exhibit the average steady- 
state behavior. The execution of an isolated individual transaction :is modeled by a Markov chain 
with 2d -f 1 states as shown in Figure 2. State (0) of the chain represents the initialization phase of 
the transaction. It is assumed that  the initialization phase is distributed exponentially with mean 
1/#0. The other 2d states are labeled by a tuple (i,X), where i is an integer which can take any value 
from the set {1, 2, ..., d}, and denotes that  the transaction is accessing its i th data item. X can 
take either of the two values: B or P.  The access request of the transaction on a data  i tem results 
in either blocking of :the transaction (with probability Pb), or allowing it to acquire the lock on the 
requested i tem (with probability 1 - Pb). State (i,B) represents the situation that  the transaction 
is blocked at its a t tempt  to access its i th  data  item. The blocking times of the transaction are 
assumed to be independent and identically distributed; the blocking delay at state (i,B) is assumed 
to be exponentially distributed with mean 1/#S,  for all i E {1, 2, ..., d} . Sections 4.1 and 4.2 
provide the methods used in deriving Pb and #B, respectively. State (i,P), denotes the case that  
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the transaction is processing its ith data item. The lock on a data item is obtained right before 
processing it. After processing a data item, the next data item to be accessed by the transaction 
is chosen from a uniform distribution among all data items that have not already been accessed by 
the transaction. The data conflict check for the first data access request of the transaction (which 
will lead to either blocking of the transaction or granting the lock on the requested data item) is 
performed in state (0), while that for the ith request (2 < i < d) is performed before leaving the 
processing state (i - 1,P). At any state (i,X), it is possible that the transaction is aborted as a 
result of a data conflict or due to the situation that its deadline has expired. An aborted transaction 
releases all the locks it has been holding. The aborting probabilities in states (i,B) and (i,P) are 
denoted by Pc,(i,B) and P,~(i,P), respectively. It is assumed that aborting a transaction at any state 
does not take effect until the transaction leaves that state. An aborted transaction goes to state 
(0) to be reinitialized and it returns to the system as a new transaction. As discussed before, the 
number of transactions executing in the system at any moment in time is kept constant. 

When the transaction completes processing d data items, it is said :to be committed and it goes to 
state (0) to be initialized as a new transaction. A transaction cannot be aborted after processing 
its last data item; i.e., Pa(d,P) = 0. 

Let {P(O),P(1, B),P(1,P),P(2,B),P(2,P),.. . ,P(d,B),P(d,P)} be the steady-state distribution 
of the Markov chain. The following system of linear equations can be given for this distribution: 

P ( 1 , B )  

P ( 1 , P )  

P(2, B) = 

P(2, P)  = 

P(3, B) = 

P(3, P)  = 

P( i ,  B) 

P ( i , P )  

= .-~.E pbP(0 ) 
pB 

= P--.E(i _ PbPao,B))P(O ) 
#P 

-~.Epb(l - Pa(1,p))(1 - PbPa(1,B})P(O) 
PB 
/.to.. (1 - ebP.O,m)(1 -- P~(1,p))(1 - ebP=(2,m)P(O) 
~P 

-~E Pb(1  - Pa (1 ,p ) ) (1  - PbPa(1 ,m)) (1  - Pa (2 ,p ) ) (1  - P b P a ( 2 , B ) ) P ( O )  
PB 
- ~ ' E ( 1  - PbP~(1,B})(1 - P~(i,p))(1 - PbP42,B))(1 - P=(2,p))(1 - PbP43,B))P(O) 
~up 

i - 1  

= I I [ ( i -  Po(k,pI)(1- PbP=(k,S))]P(O) i E {1, 2, ..., d} 
/.~B k = l  

i - 1  

= -~---(1 - PbPa(1,B)) H [ ( i  - -  P=(k,p))(1- PbP4k+i,S))]V(0) 
~ P  k = l  

(i) 

i E {1, 2, ..., d} (2) 

d 

P ( 0 ) + ~ ( P ( i , B ) +  P ( i , P ) )  = 1 (3) 
i=1 

The system can be solved by first determining P(0) by substituting Equations 1 and 2 in Equation 
3, and then computing the other steady-state probabilities P ( i ,B ) ,  P ( i , P )  (1 < i _< d) from 
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Equations 1 1 and 2. However, the solution to each of these probabifities is provided in terms of 
Pb, #S, Pa(i,B), and Pa(i,P)" Computat ion of each of those variables is provided in the following 
subsections. 

4.1. Computation of Pb 

Pb is the probabifity of blocking the transaction at its data access a t tempt  at any point of its 
execution. We assume that  this probability is independent of the current state and the past history 
of the transaction (i.e., the number of data locks held by the transaction). This assumption is 
reasonable as long as D > >  d. Pb is estimated by using the following formula: 

Locks._H P 
Pb-- 

D 

Locks.TIP stands for the average number of locks held by transactions with Higher Priority. The 
number of transactions that  have higher priorities than the priority of the isolated transaction can 
be 0, 1, 2, ..., (t - 1) with equal probability. That  is, the average number of transactions with 
higher priorities will be (0 + 1 + 2 + ... + (t - 1))/ t  = (t - 1)/2. Let L denote the average 
number of data items locked by the isolated transaction. L can be formulated as a function of the 
steady-state distribution. 

d 
L = ~ [ ( i -  1)P(i,  B) + iP(i ,P)] 

i----1 

Note that ,  the number of locks held by the transaction in state (i, B) is i - 1, while that  number 
is i in state (i, P).  Based on these observations, we may write 

Locks_tiP - ( t -  1)L 
2 

Pb can then be expressed as 
Pb = ( t -  1)L 

2D (4) 

4.2. Computation of #B 

When a transaction T is blocked by another transaction T ~ on a data item, transaction T is not 
reactivated until after transaction T ~ releases the lock on that  i tem (i.e.; until T t is committed or 
aborted). The time period transaction T remains blocked is determined by the remaining lifetime 
of blocking transaction T ~ and is independent of 2 the current state of T. In estimating the average 
remaining lifetime of the blocking transaction, we use the same steady-state distribution and other 
probabilities as the isolated transaction, because all transactions in the system are assumed to be 
identical and exhibit the average steady-state behavior. 

Given that  the current state of a transaction is (i, X) ,  the average remaining time RT(ix) of the 
transaction can be determined by the following formula 

RT(ix) = PCOMMITI(i,x)D(i,X);COMMiT + 

b 

1Note that, the equations assume H f(i ) = 1, i f  a < b. 
s a 

(d,P) 

Z .  (Pa(J,Y)I(i,x)D(i,X);(J,Y)) 
(LY)=(i,x) 

2Assuming that the number of locks h'eld by the transaction < <  D (database size). 
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IXll 
B 

P 

PCOMMITI( i ,X  ) 
d-1  

( 1 -  Pa(i,B)) l~I[( 1 - Pa(k,P))(1- PbPa(k+X,B))] 
k=i 

d 

(1- po(~,p)) IX [(1- PbPo(k,.))(1- Po(k,P))] 
k = i + l  

Table 2: Probabili ty (PcoMMITI(i,X)) of committ ing,  given that  the current state is (i, X) .  

Ix II D(i,X); COMMIT 

I v [ 

Table 3: Average distance (D(i,X);COMMiT) from state (i, X )  to commit.  

IxlYII Pa(j,Y)l(i,x) 

B B 

B 

j--1 

(1 - P~(i,B))(1 - P~(i,p)) l~ [(1 - PbP=(k,S))(1 -- P~(k,P))]PbP~(j,B) i f j  > i 
k = i + l  

P=(j,B) o t h e r w i s e  ( j =  i) 

P 
j - 1  

(1 - Pa(~,m)II[(1 - Pa(k,e))(1 - PbP~(~+~,m)]Po(~,P) 
k=i 

P B 
j - 1  

(1 - Pa(i,P)) ~I [(1 - PbPa(k,S))(1 -- Pa(k,P))]PbP~,(j,B) i f j  > i 
k= i+ l  

Undefined o t h e r w i s e  ( j  = i) 

P P 
j - 1  

II[(1- p~(k,p))(1- PbP~,(k+l,m)]P=(~,p) 
k=i 

Table 4: Probabili ty (P(LY)l(i,x)) of aborting in state (j ,  Y), given that  the current state is (i, X) .  

[ x l Y l l  D(i,x);(j,Y) 
B B l ( j - i ) ( ~ + P b ~ )  
B P ~ + ( j - i ) ( P b ~ +  ~ )  
P B P b ~ + ( j - i - 1 ) ( ~ + P b ~ )  i f j > i  

Undefined o t h e r w i s e  (j  = i) 
P P ( j - i ) ( P b ~ + ~ )  

Table 5: Average distance (D(i,x);(j,y)) from state (i,X) to state (j, Y). 
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where, PCOMMITi(i,X) is the probability that the transaction will commit given that its current state 
b 

is ( i ,X)  (see Table 2; the implicit assumption in the formulas presented is r I  f( i)  = 1, i f  a < b); 
i=a 

D(i,X);COMMiT is the average time distance between state (i, X)  and the commit time (see Table 
3); Pa(j,Y)l(i,x) is the probability that the transaction will be aborted in state (j, Y) given that its 
current state is (i, X)  (see Table 4); and D(i,x);(j,y) is the average time distance from state (i, X )  
to state (j, Y) (see Table 5). Remember that abort of a transaction in a state takes place once the 
transaction leaves that state. As discussed in the preceding section, it is assumed that a transaction 
that has just completed processing its last data item cannot be aborted (i.e., Pa(a,P)= 0). 
Using the average remaining lifetime of the blocking transaction, the average time in a blocked 
state is estimated as 

1 
- -  = P(1, P)RTo,p ) + P(2, B)RT(2,B) + P(2, P)RT(2,p) + ... + P(d,B)RT(d,B) + P(d,P)RT(d,p) 
#B 

The set of states the blocking transaction can be in excludes state (1, B), since a blocking transaction 
must be holding at least one lock. The average blocking time formula can be rewritten as 

1 (d,P) 
= ~ (P(i ,X)RT(i ,x))  (5) 

#B (i,X)=(x,P) 

The effects of chained blockings is reflected in this formula, since the calculation of the remaining 
time (which determines the length of blocking delay) takes the delay of blockings into account. The 
computation of #S requires numerical iteration as to be detailed in Section 5. 

4.3. C o m p u t a t i o n  of  A b o r t  P robab i l i t i e s  

The transaction can be aborted at any state ( i ,X)  (where i E {t,2,  ...,d}, and X E {B,P})  due 
to any of the following two facts: 

• a data conflict occurs (i.e., one of its locks is requested by a higher priori~ty transaction), 

• deadline of the transaction expires. 

Thus, two separate components, Pa(i,x)(1) and Pa(i,x)(2), are involved in the evaluation of the 
abort probability at any state. 

Pa(i,B) = Pa(i,B)(1) + Pa(i,B)(2) - P~(i,B)(1) * Pa(i,B)(2) i E {1, 2, ...,d} (6) 

P=(i,P) = P=(i,p)(1) + Pa(i,v)(2) - P=(i,v)(1) * P=(i,p)(2) i E {1, 2, ..., d} (7) 

where, 
P~(i,B)(1): The probability that the transaction will abort at blocking state (i, B) due to a data 
conflict. 
P~(i,B)(2): The probability that the transaction will abort at blocking state (i, B) due to expiration 
of its deadline. 
Pa(i,p)(1): The probability that the transaction will abort at processing state (i, P)  due to a data 
conflict. 
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Pa(i,P) (2): The probability that the transaction will abort at processing state (i, P)  due to expiration 
of its deadline. 

T h e  average data access rate of a transaction is 1/(Pb(1/#B)+l / lzp)  (datai tems per unit time). The 
average data access rate of all the transactions that have higher priority than that of the isolated 
transaction is (t - 1) /2(Pb(1/#s)  + 1/#p).  Therefore, the average number of data items that are 
accessed by all higher priority transactions during the blocking delay 1 /#s  of the transaction is 
(t - 1)/2#B(Pb(1/#B) + 1/#e) .  Since the transaction in state ( i ,B)  holds i - 1 data locks, we 
can specify the probability that one of the locks held by the transaction is requested by a higher 
priority transaction as 

Pa(i,m)(1) = ( i -  i) ( t -  1) 
D 2#m(Pb(1/pm)+ 1/#p) 

#p ( i -  1 ) ( t -  1) 

Pb#P + #B 2D 
(8) 

The same probability at a processing state can be specified in a similar way; however, in this case, 
the number of locks held by the transaction in state (i, P)  is i. 

Pa(i,p)(1) = #B i ( t -  1) 
Pb#P + # B  2D (9) 

It is assumed that D is assigned a value large enough to produce a sensible solution for the proba- 
bilities (i.e., a solution within the range [0,1]). 

In calculating the probability of transaction abort due to deadline expiration we employ the fol- 
lowing approach. First, it is assumed that each transaction is assigned a deadline proportional to 
its size (i.e., the number of data accesses required by the transaction). The slack time ST of a new 
transaction (i.e., the time distance to its deadline) in our model is estimated as 

S T  = S * R E S  = S ( ~  ° + d(Pb + ~p) )  

where S is the slack factor and R E S  is the average transaction response time. Then, denoting the 
average age of a transaction in state (i, X)  by AGE(i,x),  

P=(i,B)(2)- AGE(i,B) 
S T  

where, 

Pa(i ,p)(2)-  AGE(i,p) 
S T  

I i _1__) I 
AGE(i,s) = - -  + (i - 1)(Pb + + - -  

#0 #B #P #S 

1 i )  AGE(i,p) = - -  + i(Pb -~- + 
#o #B #P 

Substitution of the average age and slack time parameters yields 

1 1_ + ( i -  + + 
Po(, , , ) (2)  = + + (i0) 
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~0 (11) Po(,,p)(2) : + + 

Abort probabilities Pa(i,B) and Pa(i,P) c a n  be expressed in their final forms by substituting Equa- 
tions 8, 9, 10, and 11 in Equations 6, and 7. 

4.4. P e r f o r m a n c e  M e t r i c s  

We are primarily interested in the rate a transaction satisfies its deadline. The transaction com- 
pletion rate would be a good performance measure because a transaction makes its deadline if and 
only if it completes processing all data items in its access list (late transactions are aborted). The 
completion (commit) rate 7 of a transaction can be computed from the steady-state distribution 
of the system 

7 = P(d ,P )#p  

Another performance metric that  can be used in evaluations is the ratio of the transaction comple- 
tion rate over the transaction start rate. Denoting this metric by success_ratio, 

success_ratio - 7 

P(0)#0 

This metric specifies the fraction of transactions that are able to commit successfully meeting their 
deadlines. 

5. Numerical Solution and Results 

Figure 3 presents the procedure employed in solving the linear system of equations for the steady- 
state distribution (i.e., Equations 1 through 3), blocking probability (i.e., Equation 4), average 
blocking delay (i.e., Equation 5), and aborting probabilities (i.e., Equations 6 and 7). As men- 
tioned before, a numerical iteration is needed in computing the value of the average blocking delay 
(i/#B) because a choice for #B determines the steady-state probabilities which when substituted 
in Equation 5 generates a new computed wlue for #B. 

It was observed that under any set of reasonable parameter values, when the parameter E of iteration 
is set to 0.001, the number of iterations to reach convergence never exceeds 4 with different initial 
values of #B and Pb. In the computations of the following experiments, we used an initial average 
blocking delay (1/#B) value of d/2#p, which corresponds to the average remaining lifetime of a 
transaction in a system with no contention. The blocking probability Pb was initially assumed to 
be (t - 1)d/4D by setting L (average number of locks held by a transaction) to d/2 in Equation 4. 

In this section, we provide the results of two experiments that evaluated the performance of the 
Priority Abort protocol, in terms of transaction completion rate (7), using the proposed analytic 
solution model. The size of the database chosen for the analysis wasD = 1000 data items. With the 
small database size value it was aimed to evaluate the protocol under high levels of data conflicts 
among the transactions. This small database can be considered as the most frequently accessed 
fraction of a larger database. The average service time at the CPU for processing a data item 
was taken as 1/#p = 10 msec. We assumed that the average delay for transaction initialization is 
the same as the average CPU service time (I/#0 = I/#p). Calculations in both experiments were 
performed under three different multiprogramming levels; i.e., t = 5, 15, and 25 transactions. 

The first experiment investigated the impact of varying average transaction size on the performance 
of the Priority Abort protocol. The parameter d was varied from 5 to 15 in steps of 2. The slack 
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solution_procedure { 
= 0  

initialize Pb,/zB 
while (1~-~1 > e) { 

#B 
Compute Pao,x) = P~(i,x)(Pb,#s), i E {1,2, ...,d};X E {B,P} 
Compute P(0) = P(0)(Pb, #B, Pa(jy)), 

P( i ,X)  = P(i,X)(Pb, pB, Pa(j,y)) 
i , j  E {1,2,. . . ,d};X,Y E {B,P}  

Pb = Pb(P(O),P(i,X)), i E {1,2, ...,d};X E {B,P} 
I ~  = PB 
US = #B(P~,P(O),P(i,X),Pb, Pa(j,y)), i , j  E. {1,2, . . . ,d};X,Y E {B,P}  

), 

Figure 3: System solution by numerical iteration. 
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Figure 4: Transaction completion rate (transaction/second) vs d (average number of data items 
accessed by each transaction). 
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Figure 5: Transaction completion rate (transaction/second) vs S (slack.factor that is used in 
assigning deadline to a new transaction). 

factor value used for this analysis was S = 5. Increasing the size of transactions corresponds to 
increasing number of conflicts among the concurrent transactions. As displayed in Figure 4, the 
transaction completion rate (or equivalently, the deadline satisfaction rate) decreases drastically as 
the number of data items accessed by each transaction increases. 

In the second experiment the value of parameter d was fixed at 10, and the effects of deadline 
distribution on the performance of the protocol was evaluated. The value of the slack factor 
parameter S was varied from 2 to 10. A small value of S corresponds to a tight deadline. Not 
surprisingly, the performance of the protocol becomes better as the assigned deadlines get looser. 
Also, the differences between the performances obtained with different mult iprogramming levels 
increase in favor of low mult iprogramming levels as the deadlines becomes larger. The results of 
this experiment are presented in Figure 5. 

6. Discussion and Future Work 

This paper provides an approximate analytic model for evaluating the performance of a priority- 
based concurrency control protocol for real-time database systems. Each transaction processed 
in the system is assumed to carry a priority based on its deadline. The protocol is based on the 
two-phase locking method and it aborts a low priority transaction when one of its locks is requested 
by a higher priority transaction. The evaluation of the protocol is provided in terms of the rate of 
satisfying a transaction deadline. The results of some example experiments, performed using the 
proposed analytic model, are presented in the paper. 

The future work includes performing a variety of simulation experiments to evaluate the accuracy 
of the provided analytic model. Also, planned as a future work is the relaxation of some of the basic 
assumptions listed in Section 3 to extend our analysis to more general real-time database systems. 
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