
An Approx imate Analysis of a Real-Time Database
Concurrency Control Protocol via Markov Model ing

O z g l i r U l u s o y
Department of Computer Engineering and Information Sciences

Bilkent University
06533 Bilkent, Ankara, TURKEY

1. In troduct ion

Transactions processed in a real-time database system (RTDB:S) are associated with real-time con-
straints typically in the form of deadlines. Computer-integrated manufacturing, the stock market,
banking, and command and control systems are several examples of RTDBS applications where the
timeliness of transaction response is as important as the consistency of data. Design of a RTDBS
requires the integration of concepts from both real-time systems and database systems to handle
the timing and consistency requirementstogether; i.e., to execute transactions so as to both meet
the deadlines and maintain the database consistency.

The general approach to the scheduling problem in RTDBS's is using existing techniques in CPU
scheduling, buffer management, 'IO scheduling, and concurrency control, and to apply time-critical
scheduling methods to observe the timing requirements of transactions. The timing constraints
of the RTDBS transactions are considered to be 'soft'; i.e., schedules guaxaxLteeing all transaction
deadlines cannot be provided due to the consistency requirement of the underlying database. The
performance goal in RTDBS scheduling is to minimize the number of transactions that miss their
deadlines. A priority order is established among transactions based on their deadlines.

Most of the recent research in RTDBS transaction scheduling has concentrated on development
and evaluation of concurrency control protocols. 'Priority Abort' is one of the most popular RTDB
concurrency control protocols proposed so fax [Abb88]. The Priority Abort protocol is based on the
two-phase locking scheme, and it aborts a low priority transaction when one of its locks is requested
by a higher priority transaction.

Performance studies concerning RTDB concurrency control protocols have appeared in the litera-
ture during the last couple of years. However, these studies were either based on simulation [Abb88,
Abb89, Hax90a, Hax90b, Sha91, Son90, Son92, and Ulu92], or carried out on a RTDBS testbed
[Hua91a, Hua91b]. To the best of our knowledge, no analytic performance study has been reported
involving the evaluation of concurrency control protocols in RTDBS's.

In this paper, we analyze the performance of a RTDB concurrency control protocol, namely the
Priority Abort protocol, via Maxkov modeling. The complexity of the concurrency control protocol
makes it practically impossible to find an exact analytic closed-form solution to the performance
evaluation problem. To simplify the problem, we will analyze an isolated individual transaction,
rather than capturing the states of all concurrent transactions. This method, proposed by [Che83],
was found to be fairly accurate in analyzing the performance of two-phase locking [Che83] and
timestamp-ordering algorithms [Sin91]. The model provided is able to reflect the impact of the
presence of other transactions on the performance of the isolated transaction. However, the analysis
is approximate since the average behavior of the transactions is modeled rather than their dynamic
behavior.

The remainder of the paper is organized as follows. The next section describes the pri0rity-based

Performance Evaluation Review Vol. 20 #3, March 1993 36

lock_request_handling(D,T) {
/* Transaction T requests a lock on data item D */
if (D was locked by a transaction T')

if (priority(T) > priority(T')) {
T' is aborted;
Lock on D is granted to T;

}
o t h e r w i s e

T is blocked by T';
o t h e r w i s e

Lock on D is granted to T;

Figure i: Lock request handling in Priority Abort protocol.

concurrency control protocol we studied. Section 3 provides the structure and characteristics of
a RTDBS model used in the evaluation of the concurrency control protocol. The analysis of the
performance of the protocol is presented in Section 4. Section 5 provides the results of some
experiments performed by using the proposed analytic model. Finally, Section 6 provides a brief
discussion of our work together with the future plans.

2. Description of the Priority Abort Protocol

In this protocol, the winner in the case of a lock conflict between two transactions is always the
higher priority transaction [Abb88]. In resolving a conflict, if the transaction requesting the lock
has higher priority than the transaction that holds the lock, the latter transaction is aborted and
the lock is granted to the former one. Otherwise, the lock-requesting transaction is blocked by the
higher priority lock-holding transaction (Figure i).

A high priority transaction never waits for a lower priority transaction. This condition prevents
deadlocks if it is assumed that the real-time priority of a transaction does not change during its
lifetime and that no two transactions have the same priority.

3. RTDBS Model

This section briefly describes the RTDBS model used in evaluating the performance of the Priority
Abort protocol. The model is based on a closed queuing model of a single site database system. It
contains one CPU resource shared by the transactions.

Each transaction submitted to the system is associated with a deadline, and is assigned a unique
real-time priority determined on the basis of its deadline. The 'slack time' of a transaction is
defined as the distance from the current time to the deadline of the transaction. The slack time of
a new transaction in our system is considered to be a factor of the estimated response time of the
transaction, and that factor is determined by the parameter S.

The basic unit of access (or locking) is referred to as a data item. The number of data items stored
in the database is denoted by the parameter D. Concurrent data access requests of the transactions
are controlled by using the Priority Abort protocol. Depending on its real-time priority, an access

37 Performance Evaluation Review Vol. 20 #3, March 1993

D Number of data items stored in the database
d Number of data items accessed by each transaction
t Number of transactions processed in the sys tem at any moment in t ime
#p Mean CPU service rate (transaction/msec)
S Slack factor used in assigning transaction deadlines

Table 1: Parameters of the RTDBS Model

request of a transaction is either granted or results in blocking of the transaction. If the access
request is granted, the transaction obtains a lock on the data i tem and starts processing it. The
processing time at the CPU is assumed to be exponentially distributed with mean l / u p . A blocked
transaction is not allowed to proceed until after the data lock it requires is released. A transaction
releases all the locks it holds after it has either been committed or aborted. A transaction can be
commit ted after it has processed the last data i tem in its access fist. An executing transaction can
be aborted due to any of the two basic reasons: whenever its deadline expires or one of its locks is
requested by a higher priority transaction.

The other primary assumptions adopted in our model simplifying the analysis are:

The transaction population :in the system (the level of mult iprogramming) is constant and
determined by the parameter t.

Each transaction accesses the same number of data items, which is specified by the parameter
d.

• Data items accessed by each transaction are uniformly distributed over all database.

• All data accesses are exclusi:ve (i.e., there are no shared locks).

• The shared database system is memory-resident; thus, an access to a data item does not
involve any disk: access.

Table 1 summarizes t:he parameters of the ttTDBS model.

4. P e r f o r m a n c e A n a l y s i s o f t h e P r i o r i t y A b o r t P r o t o c o l

All transactions processed in the system are assumed to be identical and exhibit the average steady-
state behavior. The execution of an isolated individual transaction :is modeled by a Markov chain
with 2d -f 1 states as shown in Figure 2. State (0) of the chain represents the initialization phase of
the transaction. It is assumed that the initialization phase is distributed exponentially with mean
1/#0. The other 2d states are labeled by a tuple (i,X), where i is an integer which can take any value
from the set {1, 2, ..., d}, and denotes that the transaction is accessing its i th data item. X can
take either of the two values: B or P. The access request of the transaction on a data i tem results
in either blocking of :the transaction (with probability Pb), or allowing it to acquire the lock on the
requested i tem (with probability 1 - Pb). State (i,B) represents the situation that the transaction
is blocked at its a t tempt to access its i th data item. The blocking times of the transaction are
assumed to be independent and identically distributed; the blocking delay at state (i,B) is assumed
to be exponentially distributed with mean 1/#S, for all i E {1, 2, ..., d} . Sections 4.1 and 4.2
provide the methods used in deriving Pb and #B, respectively. State (i,P), denotes the case that

Performance Evaluation Review Vol. 20 #3, March 1993 38

~'lr'

I .2

cd

1,4

/4

39 Performance Evaluation Review Vol. 20 #3, March 1993

the transaction is processing its ith data item. The lock on a data item is obtained right before
processing it. After processing a data item, the next data item to be accessed by the transaction
is chosen from a uniform distribution among all data items that have not already been accessed by
the transaction. The data conflict check for the first data access request of the transaction (which
will lead to either blocking of the transaction or granting the lock on the requested data item) is
performed in state (0), while that for the ith request (2 < i < d) is performed before leaving the
processing state (i - 1,P). At any state (i,X), it is possible that the transaction is aborted as a
result of a data conflict or due to the situation that its deadline has expired. An aborted transaction
releases all the locks it has been holding. The aborting probabilities in states (i,B) and (i,P) are
denoted by Pc,(i,B) and P,~(i,P), respectively. It is assumed that aborting a transaction at any state
does not take effect until the transaction leaves that state. An aborted transaction goes to state
(0) to be reinitialized and it returns to the system as a new transaction. As discussed before, the
number of transactions executing in the system at any moment in time is kept constant.

When the transaction completes processing d data items, it is said :to be committed and it goes to
state (0) to be initialized as a new transaction. A transaction cannot be aborted after processing
its last data item; i.e., Pa(d,P) = 0.

Let {P(O),P(1, B),P(1,P),P(2,B),P(2,P),.. . ,P(d,B),P(d,P)} be the steady-state distribution
of the Markov chain. The following system of linear equations can be given for this distribution:

P (1 , B)

P (1 , P)

P(2, B) =

P(2, P) =

P(3, B) =

P(3, P) =

P(i , B)

P (i , P)

= .-~.E pbP(0)
pB

= P--.E(i _ PbPao,B))P(O)
#P

-~.Epb(l - Pa(1,p))(1 - PbPa(1,B})P(O)
PB
/.to.. (1 - ebP.O,m)(1 -- P~(1,p))(1 - ebP=(2,m)P(O)
~P

-~E Pb(1 - Pa (1 ,p)) (1 - PbPa(1 ,m)) (1 - Pa (2 ,p)) (1 - P b P a (2 , B)) P (O)
PB
- ~ ' E (1 - PbP~(1,B})(1 - P~(i,p))(1 - PbP42,B))(1 - P=(2,p))(1 - PbP43,B))P(O)
~up

i - 1

= I I [(i - Po(k,pI)(1- PbP=(k,S))]P(O) i E {1, 2, ..., d}
/.~B k = l

i - 1

= -~---(1 - PbPa(1,B)) H [(i - - P=(k,p))(1- PbP4k+i,S))]V(0)
~ P k = l

(i)

i E {1, 2, ..., d} (2)

d

P (0) + ~ (P (i , B) + P (i , P)) = 1 (3)
i=1

The system can be solved by first determining P(0) by substituting Equations 1 and 2 in Equation
3, and then computing the other steady-state probabilities P (i ,B) , P (i , P) (1 < i _< d) from

Performance Evaluation Review Vol. 20 #3, March 1993 40

Equations 1 1 and 2. However, the solution to each of these probabifities is provided in terms of
Pb, #S, Pa(i,B), and Pa(i,P)" Computat ion of each of those variables is provided in the following
subsections.

4.1. Computation of Pb

Pb is the probabifity of blocking the transaction at its data access a t tempt at any point of its
execution. We assume that this probability is independent of the current state and the past history
of the transaction (i.e., the number of data locks held by the transaction). This assumption is
reasonable as long as D > > d. Pb is estimated by using the following formula:

Locks._H P
Pb--

D

Locks.TIP stands for the average number of locks held by transactions with Higher Priority. The
number of transactions that have higher priorities than the priority of the isolated transaction can
be 0, 1, 2, ..., (t - 1) with equal probability. That is, the average number of transactions with
higher priorities will be (0 + 1 + 2 + ... + (t - 1))/ t = (t - 1)/2. Let L denote the average
number of data items locked by the isolated transaction. L can be formulated as a function of the
steady-state distribution.

d
L = ~ [(i - 1)P(i, B) + iP(i ,P)]

i----1

Note that , the number of locks held by the transaction in state (i, B) is i - 1, while that number
is i in state (i, P). Based on these observations, we may write

Locks_tiP - (t - 1)L
2

Pb can then be expressed as
Pb = (t - 1)L

2D (4)

4.2. Computation of #B

When a transaction T is blocked by another transaction T ~ on a data item, transaction T is not
reactivated until after transaction T ~ releases the lock on that i tem (i.e.; until T t is committed or
aborted). The time period transaction T remains blocked is determined by the remaining lifetime
of blocking transaction T ~ and is independent of 2 the current state of T. In estimating the average
remaining lifetime of the blocking transaction, we use the same steady-state distribution and other
probabilities as the isolated transaction, because all transactions in the system are assumed to be
identical and exhibit the average steady-state behavior.

Given that the current state of a transaction is (i, X) , the average remaining time RT(ix) of the
transaction can be determined by the following formula

RT(ix) = PCOMMITI(i,x)D(i,X);COMMiT +

b

1Note that, the equations assume H f(i) = 1, i f a < b.
s a

(d,P)

Z . (Pa(J,Y)I(i,x)D(i,X);(J,Y))
(LY)=(i,x)

2Assuming that the number of locks h'eld by the transaction < < D (database size).

41 Performance Evaluation Review Vol. 20 #3, March 1993

IXll
B

P

PCOMMITI(i ,X)
d-1

(1 - Pa(i,B)) l~I[(1 - Pa(k,P))(1- PbPa(k+X,B))]
k=i

d

(1- po(~,p)) IX [(1- PbPo(k,.))(1- Po(k,P))]
k = i + l

Table 2: Probabili ty (PcoMMITI(i,X)) of committ ing, given that the current state is (i, X) .

Ix II D(i,X); COMMIT

I v [

Table 3: Average distance (D(i,X);COMMiT) from state (i, X) to commit.

IxlYII Pa(j,Y)l(i,x)

B B

B

j--1

(1 - P~(i,B))(1 - P~(i,p)) l~ [(1 - PbP=(k,S))(1 -- P~(k,P))]PbP~(j,B) i f j > i
k = i + l

P=(j,B) o t h e r w i s e (j = i)

P
j - 1

(1 - Pa(~,m)II[(1 - Pa(k,e))(1 - PbP~(~+~,m)]Po(~,P)
k=i

P B
j - 1

(1 - Pa(i,P)) ~I [(1 - PbPa(k,S))(1 -- Pa(k,P))]PbP~,(j,B) i f j > i
k= i+ l

Undefined o t h e r w i s e (j = i)

P P
j - 1

II[(1- p~(k,p))(1- PbP~,(k+l,m)]P=(~,p)
k=i

Table 4: Probabili ty (P(LY)l(i,x)) of aborting in state (j , Y), given that the current state is (i, X) .

[x l Y l l D(i,x);(j,Y)
B B l (j - i) (~ + P b ~)
B P ~ + (j - i) (P b ~ + ~)
P B P b ~ + (j - i - 1) (~ + P b ~) i f j > i

Undefined o t h e r w i s e (j = i)
P P (j - i) (P b ~ + ~)

Table 5: Average distance (D(i,x);(j,y)) from state (i,X) to state (j, Y).

Performance Evaluation Review Vol. 20 #3, March 1993 42

where, PCOMMITi(i,X) is the probability that the transaction will commit given that its current state
b

is (i ,X) (see Table 2; the implicit assumption in the formulas presented is r I f(i) = 1, i f a < b);
i=a

D(i,X);COMMiT is the average time distance between state (i, X) and the commit time (see Table
3); Pa(j,Y)l(i,x) is the probability that the transaction will be aborted in state (j, Y) given that its
current state is (i, X) (see Table 4); and D(i,x);(j,y) is the average time distance from state (i, X)
to state (j, Y) (see Table 5). Remember that abort of a transaction in a state takes place once the
transaction leaves that state. As discussed in the preceding section, it is assumed that a transaction
that has just completed processing its last data item cannot be aborted (i.e., Pa(a,P)= 0).
Using the average remaining lifetime of the blocking transaction, the average time in a blocked
state is estimated as

1
- - = P(1, P)RTo,p) + P(2, B)RT(2,B) + P(2, P)RT(2,p) + ... + P(d,B)RT(d,B) + P(d,P)RT(d,p)
#B

The set of states the blocking transaction can be in excludes state (1, B), since a blocking transaction
must be holding at least one lock. The average blocking time formula can be rewritten as

1 (d,P)
= ~ (P(i ,X)RT(i ,x)) (5)

#B (i,X)=(x,P)

The effects of chained blockings is reflected in this formula, since the calculation of the remaining
time (which determines the length of blocking delay) takes the delay of blockings into account. The
computation of #S requires numerical iteration as to be detailed in Section 5.

4.3. C o m p u t a t i o n of A b o r t P robab i l i t i e s

The transaction can be aborted at any state (i ,X) (where i E {t,2, ...,d}, and X E {B,P}) due
to any of the following two facts:

• a data conflict occurs (i.e., one of its locks is requested by a higher priori~ty transaction),

• deadline of the transaction expires.

Thus, two separate components, Pa(i,x)(1) and Pa(i,x)(2), are involved in the evaluation of the
abort probability at any state.

Pa(i,B) = Pa(i,B)(1) + Pa(i,B)(2) - P~(i,B)(1) * Pa(i,B)(2) i E {1, 2, ...,d} (6)

P=(i,P) = P=(i,p)(1) + Pa(i,v)(2) - P=(i,v)(1) * P=(i,p)(2) i E {1, 2, ..., d} (7)

where,
P~(i,B)(1): The probability that the transaction will abort at blocking state (i, B) due to a data
conflict.
P~(i,B)(2): The probability that the transaction will abort at blocking state (i, B) due to expiration
of its deadline.
Pa(i,p)(1): The probability that the transaction will abort at processing state (i, P) due to a data
conflict.

43 Performance Evaluation Review Vol. 20 #3, March 1993

Pa(i,P) (2): The probability that the transaction will abort at processing state (i, P) due to expiration
of its deadline.

T h e average data access rate of a transaction is 1/(Pb(1/#B)+l / lzp) (datai tems per unit time). The
average data access rate of all the transactions that have higher priority than that of the isolated
transaction is (t - 1) /2(Pb(1/#s) + 1/#p). Therefore, the average number of data items that are
accessed by all higher priority transactions during the blocking delay 1 /#s of the transaction is
(t - 1)/2#B(Pb(1/#B) + 1/#e) . Since the transaction in state (i ,B) holds i - 1 data locks, we
can specify the probability that one of the locks held by the transaction is requested by a higher
priority transaction as

Pa(i,m)(1) = (i - i) (t - 1)
D 2#m(Pb(1/pm)+ 1/#p)

#p (i - 1) (t - 1)

Pb#P + #B 2D
(8)

The same probability at a processing state can be specified in a similar way; however, in this case,
the number of locks held by the transaction in state (i, P) is i.

Pa(i,p)(1) = #B i (t - 1)
Pb#P + # B 2D (9)

It is assumed that D is assigned a value large enough to produce a sensible solution for the proba-
bilities (i.e., a solution within the range [0,1]).

In calculating the probability of transaction abort due to deadline expiration we employ the fol-
lowing approach. First, it is assumed that each transaction is assigned a deadline proportional to
its size (i.e., the number of data accesses required by the transaction). The slack time ST of a new
transaction (i.e., the time distance to its deadline) in our model is estimated as

S T = S * R E S = S (~ ° + d(Pb + ~p))

where S is the slack factor and R E S is the average transaction response time. Then, denoting the
average age of a transaction in state (i, X) by AGE(i,x),

P=(i,B)(2)- AGE(i,B)
S T

where,

Pa(i ,p)(2)- AGE(i,p)
S T

I i _1__) I
AGE(i,s) = - - + (i - 1)(Pb + + - -

#0 #B #P #S

1 i) AGE(i,p) = - - + i(Pb -~- +
#o #B #P

Substitution of the average age and slack time parameters yields

1 1_ + (i - + +
Po(, , ,) (2) = + + (i0)

Performance Evaluation Review Vol. 20 #3, March 1993 44

~0 (11) Po(,,p)(2) : + +

Abort probabilities Pa(i,B) and Pa(i,P) c a n be expressed in their final forms by substituting Equa-
tions 8, 9, 10, and 11 in Equations 6, and 7.

4.4. P e r f o r m a n c e M e t r i c s

We are primarily interested in the rate a transaction satisfies its deadline. The transaction com-
pletion rate would be a good performance measure because a transaction makes its deadline if and
only if it completes processing all data items in its access list (late transactions are aborted). The
completion (commit) rate 7 of a transaction can be computed from the steady-state distribution
of the system

7 = P(d ,P)#p

Another performance metric that can be used in evaluations is the ratio of the transaction comple-
tion rate over the transaction start rate. Denoting this metric by success_ratio,

success_ratio - 7

P(0)#0

This metric specifies the fraction of transactions that are able to commit successfully meeting their
deadlines.

5. Numerical Solution and Results

Figure 3 presents the procedure employed in solving the linear system of equations for the steady-
state distribution (i.e., Equations 1 through 3), blocking probability (i.e., Equation 4), average
blocking delay (i.e., Equation 5), and aborting probabilities (i.e., Equations 6 and 7). As men-
tioned before, a numerical iteration is needed in computing the value of the average blocking delay
(i/#B) because a choice for #B determines the steady-state probabilities which when substituted
in Equation 5 generates a new computed wlue for #B.

It was observed that under any set of reasonable parameter values, when the parameter E of iteration
is set to 0.001, the number of iterations to reach convergence never exceeds 4 with different initial
values of #B and Pb. In the computations of the following experiments, we used an initial average
blocking delay (1/#B) value of d/2#p, which corresponds to the average remaining lifetime of a
transaction in a system with no contention. The blocking probability Pb was initially assumed to
be (t - 1)d/4D by setting L (average number of locks held by a transaction) to d/2 in Equation 4.

In this section, we provide the results of two experiments that evaluated the performance of the
Priority Abort protocol, in terms of transaction completion rate (7), using the proposed analytic
solution model. The size of the database chosen for the analysis wasD = 1000 data items. With the
small database size value it was aimed to evaluate the protocol under high levels of data conflicts
among the transactions. This small database can be considered as the most frequently accessed
fraction of a larger database. The average service time at the CPU for processing a data item
was taken as 1/#p = 10 msec. We assumed that the average delay for transaction initialization is
the same as the average CPU service time (I/#0 = I/#p). Calculations in both experiments were
performed under three different multiprogramming levels; i.e., t = 5, 15, and 25 transactions.

The first experiment investigated the impact of varying average transaction size on the performance
of the Priority Abort protocol. The parameter d was varied from 5 to 15 in steps of 2. The slack

45 Performance Evaluation Review Vol. 20 #3, March 1993

solution_procedure {
= 0

initialize Pb,/zB
while (1~-~1 > e) {

#B
Compute Pao,x) = P~(i,x)(Pb,#s), i E {1,2, ...,d};X E {B,P}
Compute P(0) = P(0)(Pb, #B, Pa(jy)),

P(i ,X) = P(i,X)(Pb, pB, Pa(j,y))
i , j E {1,2,. . . ,d};X,Y E {B,P}

Pb = Pb(P(O),P(i,X)), i E {1,2, ...,d};X E {B,P}
I ~ = PB
US = #B(P~,P(O),P(i,X),Pb, Pa(j,y)), i , j E. {1,2, . . . ,d};X,Y E {B,P}

),

Figure 3: System solution by numerical iteration.

12.0

10.0- '\
O - - - O

8 . 0 - ' \ ~ \ ~ O e t : 2 5

" , N,

4.0 - "',L%- \

2 0 " ' " "

0.0 , , , ,

5 7 9 11 13 15

d

Figure 4: Transaction completion rate (transaction/second) vs d (average number of data items
accessed by each transaction).

Performance Evaluation Review Vol. 20 #3, March 1993 4 6

6.0

5.0

4.0

7 3.0

2.0

1.0

0.0

- : : t = 5
/

o - - ¢ t = 15 ~ - - ' "

o eL 2 5 / s ~ ~ ''°" -

/ / s J ~

/ , s SS
J s s S

s ~

I I I

2 4 6 8 10

S

Figure 5: Transaction completion rate (transaction/second) vs S (slack.factor that is used in
assigning deadline to a new transaction).

factor value used for this analysis was S = 5. Increasing the size of transactions corresponds to
increasing number of conflicts among the concurrent transactions. As displayed in Figure 4, the
transaction completion rate (or equivalently, the deadline satisfaction rate) decreases drastically as
the number of data items accessed by each transaction increases.

In the second experiment the value of parameter d was fixed at 10, and the effects of deadline
distribution on the performance of the protocol was evaluated. The value of the slack factor
parameter S was varied from 2 to 10. A small value of S corresponds to a tight deadline. Not
surprisingly, the performance of the protocol becomes better as the assigned deadlines get looser.
Also, the differences between the performances obtained with different mult iprogramming levels
increase in favor of low mult iprogramming levels as the deadlines becomes larger. The results of
this experiment are presented in Figure 5.

6. Discussion and Future Work

This paper provides an approximate analytic model for evaluating the performance of a priority-
based concurrency control protocol for real-time database systems. Each transaction processed
in the system is assumed to carry a priority based on its deadline. The protocol is based on the
two-phase locking method and it aborts a low priority transaction when one of its locks is requested
by a higher priority transaction. The evaluation of the protocol is provided in terms of the rate of
satisfying a transaction deadline. The results of some example experiments, performed using the
proposed analytic model, are presented in the paper.

The future work includes performing a variety of simulation experiments to evaluate the accuracy
of the provided analytic model. Also, planned as a future work is the relaxation of some of the basic
assumptions listed in Section 3 to extend our analysis to more general real-time database systems.

47 Performance Evaluation Review Vol. 20 #3, March 1993

References

[Abb88]: R. Abbott, H. Garcia-Molina 'Scheduling Real-Time Transactions: A Performance Eval-
uation', 14th International Conference on Very Large Data Bases, 1988, pp.l-I2.

[Abb89]: R. Abbott, H. Garcia-Molina 'Scheduling Real-Time Transactions with Disk Resident
Data', 15th International Conference on Very Large Data Bases, 1989, pp.385-396.

[Che83]: A. Chesnals, E. Gelenbe, I. Mitrani 'On the Modeling of Parallel Access to Shared Data',
Communications of the ACM, vol.26, no.3, 1983, pp.196-202.

[Har90a]: J.R. ttaritsa, M.J. Carey, M. Livny 'On Being Optimistic About Real-Time Constraints',
ACM SIGACT-SIGMOD-SIGART, 1990, pp.331-343.

[Harg0b]: J.R. Haritsa, M.J. Carey, M. Livny 'Dynamic Real-Time Optimistic Concurrency Con-
trol', 11th Real-Time Systems Symposium, 1990, pp.94-103.

[ttua91a]: J. Huang, J.A. Stankovic, K. Ramamritham, D. Towsley 'On Using Priority Inheritance
In Real-Time Databases', 12th Real-Time Systems Symposium, 1991, pp.210-221.

[Hua91b]: J. Huang, J.A. Stankovic, K. Ramamritham, D. Towsley 'Experimental Evaluation of
Real-Time Optimistic Concurrency Control Schemes', 17th International Con.ference on Very Large
Data Bases, 1991, pp.35-46.

[Sha91]: L. Sha, R. ttajkumar, S.H. Son, C.H. Chang 'A Real-Time Locking Protocol', IEEE
Transactions on Computers, vol.40, no.7, 1991, pp.793-800.

[Sin91]: M. Singhal 'Performance Analysis of the Basic Timestamp Ordering Algorithm via Markov
Modeling', Performance Evaluation, vol.12, 1991, pp.17-41.

[Son90]: S.H. Son, C.H. Chang 'Performance Evaluation of Real-Time Locking Protocols Using
a Distributed Software Prototyping Environment', lOth International Conference on Distributed
Computing Systems, 1990, pp.124-131.

[Son92]: S.H. Son, S. Park, Y.Lin 'An Integrated Real-Time Locking Protocol', 8th International
Conference on Data Engineering, 1992, pp.527-534.

[Ulu92]: O. Ulusoy, G.G. Belford 'Real-Time Lock Based Concurrency Control in a Distributed
Database System', 12th International Conference on Distributed Computing Systems, 1992, pp.136-
143.

Performance Evaluation Review Vol. 20 #3, March 1993 48

