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In the industry there are several commercial  routers 
which are based on the multistage interconnection 
networking fabric (e.g. the new CRS-1 Cisco Router [9]). 

Abstract— Multistage Interconnection Networks (MINs) are 
used to interconnect different processing modules in various 
parallel systems or on high bandwidth networks. In this 
paper an integrated performance methodology is presented. 
A new approximate performance model for self-routing 
MINs consisting of symmetrical switches which are subject 
to a backpressure blocking mechanism is analyzed. Based 
on this, the steady-state distribution of the queue utilization 
is estimated and then all important performance metrics are 
calculated. Moreover, a general evaluation factor which 
helps in choosing a better performance MIN in comparison 
with other similar MIN architecture specifications is 
defined. The model was exemplified for the case of 
symmetrical single- and double-buffered MINs. It provides 
accurate results and converges very quickly. The obtained 
results were validated by extensive simulations and were 
compared to existing related work in the literature.   

The performance evaluation of a MIN is of crucial 
importance. Thus, a lot of research has been devoted to 
the study of how these networks perform under various 
conditions through analytical or simulation methods [2, 
4–6, 8, 14, 15]. Detailed results can be found for specific 
cases of MINs which rely mainly on approximation 
methods for example [2, 8, 24]. 

The numerical simulation model is based on an 
analysis of the discrete time behavior of the system. In 
this case, a formula was derived from analysis of the 
formula that was extracted by considering the steady state 
of the MIN. The steady state describes the MIN situation 
in which the probability of staying in a particular state 
will not change. In contrast, the classic simulation model 
determines the system state of each state at each time slot. 
For instance, it determines how many packets are in a 
specific queue. If both simulation and mathematical 
modeling are feasible, then the optimum technique 
depends on the kind of investigation performed. The 
mathematical modeling method is a better choice when a 
lot of tests are required. While a numerical model is time-
consuming to create, it can then be used to generate 
results quickly. 

 
Index Terms— multistage interconnection networks, Banyan 
networks, blocking, performance analysis, switching 
networks  

I.  INTRODUCTION 

Multistage interconnection networks (MINs) are used 
as an efficient interconnection medium for 
multiprocessors, interconnection processors, and memory 
modules. The behavior of the interconnection networks 
plays an important role in the performance of 
multiprocessors. Therefore, to ensure an optimal design, 
it is necessary to analyze various configurations and 
constraints of the interconnection networks. A trade-off 
has to be made between a MIN’s complexity and the 
performance reduction caused by conflicts that might 
occur when two or more tasks occur simultaneously. 
However, MINs remain a satisfactory communication 
medium for parallel systems, in general.  

In this paper the focus is on a new analytical method 
which involves queuing theory, and moreover, is used as 
a simulator for results validation. So far, several MIN 
architectures have been proposed in the literature and a 
lot of work has been devoted to the study and evaluation 
of the MIN’s performance. 

The following showcases some of the previous work 
which has been taken into consideration in the search for 
a new approach. Most of the MIN analysis focuses on 
uniform traffic (i.e. packages) coming to a network with 
an equal probability of reaching output [6, 10, 21]. On the 
other hand, there are numerous non-uniform traffic 
patterns in real applications that require special treatment. 
Such non-uniform approximations can be seen in [3, 22].  

MINs are also a significant component of high speed 
networks such as Asynchronous Transfer Mode (ATM) 
networks.  
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The initial approach in studying MINs mainly 
considered the case where packets are lost when they try 
to enter the next stage. Bouras et al. [6] provided nearly 
tight upper bounds on the mean delays of the second 
stage and beyond (in the case of infinite buffers) and 
validated their results by simulations. Their analysis 
indicated that after the second stage there is no notable 
difference between the delay times, giving a partial 
positive answer to the conjecture and experimental results 
of [13]. Garofalakis et al. [5] analyzed banyan networks 
with finite buffers and came up with the exact solution of 
the steady-state distribution of the first stage. 

They also approximated the solution for the subsequent 
stages and presented the exact solution for all stages of 
MINs with single-buffered switches. This proved the well 
known formula of [5]. Approximations for the 
performance of packet switched MINs based on uniform 
traffic can also be found in [4]. Simulations of detailed 
contention-based network models (used for predicting 
parallel performance) are still quite challenging, but, 
relative to one-processor parallel time in [14], decent 
speedups have been achieved. 

Mathematical approaches [5, 8 ] were also used as a 
guide in constructing this new analytical model. In Tutsch 
and Hommel [2, 22], a system of equations was set up for 
performance estimation. During the set-up, some rules 
emerged for building such a system. These rules were 
created for automatic generation of systems of equations 
in Tutsch [21, 22], which coped with the multicast 
performance analysis of MINs consisting of switching 
elements larger than 2 × 2. Moreover, we have presented 
a solution for single buffer size MINs in [18], while in 
this work a general solution for MINs with finite buffers 
is given. 

In the literature there are a lot of publications that are 
based on different traffic distribution assumptions. For 
example, Lin and Kleinrock [15] proposed a model for 
specific hot spot patterns and uniform traffic. Also, Raja 
et al. [25] used a simulation approach dealing with two 
types of traffic: traditional Poisson and self-similar 
traffic. Koppelman et al. [11] conducted an analysis 
based on offered traffic that follows geometrical 
distributed message lengths on finite input buffered 
banyan networks. In 2006, another new solution using 
simulation was presented by Vasiliadis et al. [17].  

Parallel processing is an efficient form of information 
processing which emphasizes the exploitation of 
concurrent events in the computing process. To achieve 
parallel processing, it is necessary to develop more 
capable and cost-effective systems. Recently, new MIN 
designs have been introduced; for example an irregular 
class of fault tolerant MIN named a New Four Tree 
(NFT) Network was presented in [12]. Also, in [19] a 
new class of irregular fault tolerant MIN called Improved 
Four Tree (IFT) was introduced. Besides this, single-chip 
parallel processing requires high bandwidth between 
processors and on-chip memory modules. In [24] a hybrid 
Mess-of-Tree (MoT) buffered network that combines the 
MoT network with the area efficient butterfly network 
was introduced. Finally, in [23] the authors proposed a 

specific multistage architecture that uses PC-based 
routers as switching elements. This enables them to build 
a high-speed, large-size, scalable, and reliable software 
router. All the abovementioned multistage systems 
require special treatment in calculating performance 
evaluation issues. 

Furthermore, special solutions have been developed for 
very concrete problems. One such problem exemplified 
by [1] related to a new method developed for evaluating 
the residual broadcast reliability of fault-tolerant MINs.  

One weakness of existing analytical methods is that 
they are strictly for very concrete MIN structures and 
therefore are difficult to adapt to MIN architecture 
alterations. A new analytical method must be developed 
to evaluate the performance of similar MIN 
architecture’s. With the above issues in mind, an attempt 
was made to create an accurate and reliable calculation 
method. Furthermore, it has to be easily adapted and 
applied with small changes in some MINs modifying 
construction schemas.  

In this paper, a novel analytical model of a 
synchronous MIN with finite buffers is presented where 
this fabric is implemented to work with a backpressure 
blocking mechanism. An iterative method is proposed for 
solving the recurrence relationship that defines the 
equilibrium state probabilities. Various performance 
measures are derived from the solution and accurate 
results are presented.  

Our research contributes in the following ways: 

1. The proposed analytical method provides more 
accurate results than simulation experiments which 
require a more time-consuming process [8, 17, 22]. 

2. In addition, our analytical method converges in a 
smaller number of iterations than previous ones (e.g. 
[20]); less than 60 iterations is enough to ensure 
accurate results. 

3. The proposed performance analysis of MINs is 
robust and flexible. As such, this analysis includes all 
metrics sufficiently and accurately given various 
network sizes and buffer length configurations. This 
has the effect of making their study more detailed 
and efficient.  

4. A ‘combined performance factor’ for a multi-criteria 
evaluation of MINs is defined.  

5. This methodology is going to act as the basis for the 
calculation evaluating the performance of MINs in 
special modern MIN construction alterations. Using 
this methodology, the more complicated subject of 
networks as MINs with priorities or MINs which 
support multicast traffic, or even combinations of 
them, can be better understood. 

The easy adaptation of this analytical approach 
constitutes its sovereign advantage, particularly compared 
with Markovian analytical methods that can face more 
limited breadth in modern complicated MIN performance 
evaluation issues.  
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The remainder of this paper is organized as follows: In 
Section 2, all the required definitions and lemmas of our 
analysis are given as well as the first level MIN’s 
analytical approximation scheme. In Section 3, the 
approximate analytical formulae for evaluating the 
performance of MINs are presented (MINs are 
exemplified through single- and double-buffered 2 × 2 
switching elements). Section 4 provides some of the 
numerical results generated by our analytical 
approximation model. These were in turn compared with 
the results obtained by the simulation experiments. In 
section 5 the ‘combined performance factor’ is defined 
and in section 6 the methodology’s expandability is 
discussed. Finally, in Section 7, our conclusions and 
anticipated future work are presented. 

II.  PROPOSED APPROXIMATE ANALYTICAL MODEL 

A.  MIN analysis 
In general, an  MIN is constructed from 

 stages of 
NN ×

NL klog= kk ×  Switching Elements 

(SEs), where  is the degree of the SEs. Let  depict 
an arbitrary number of stages, where  can be escalated 
from 1 to . Generally, each SE consists of -input and 

-output ports. In the fabric, there are exactly  
SEs at each stage, so the total number of SEs of a MIN is 

 (Fig. 1). There are  
interconnections among all stages, unlike the crossbar 
network, which requires  SEs and links. There is 
a unique path from each processor (source node) to each 
memory module (sink node), and therefore the studied 
MIN belongs to the class of Banyan Networks (BNs). A 
k-input, k-output switch can receive packets at each of its 
k-input ports and send them through each of its k-output 
ports (Fig. 1). In each output port there is a buffer. We 
assume that the buffers may be of finite or zero length 
(single- or double-buffered switches). Such a network can 
be modeled as a labeled digraph where nodes are of the 
following three types: source nodes (indegree 0, 
outdegree 1), sink nodes (indegree 1, outdegree 0), or 
switches (positive indegree and outdegree). In this 
labeled digraph each edge represents one or more lines 
going from a node to its successor. 

k

L
k

log)/(( kN ⋅
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The whole network operates ‘synchronously’, which 
means that the time cycles refer to global clock ticks. The 
network clock cycle consists of two phases. In the first 
phase, flow control information passes through the 
network from the last stage to the first stage. In the 
second phase, packets flow from one stage to the next in 
accordance with the flow control information. 

The routing algorithm applied here, assumes that there 
is a fixed path which has to be followed by a packet 
throughout the network. The path can be encoded as a 
sequence of labels of the successive switch outputs of the 
path (path descriptor). More concretely, the SEs in 
multistage networks are digit-controlled crossbars. This is 
done by including a control sequence in the packet, 

named a packet control sequence. The control sequence is 
a series of digits allocated for each stage of the network. 
The digit indicates which output of the SE is to be 
connected to the input. Therefore, the control sequence 
represents the path to be taken by the message through 
the MIN. Packets are generated at each processor by 
independent, identically distributed random processes. In 
this analysis it is assumed that each processor generates a 
packet with probability (p) at each cycle and sends this 
with equal probability to any memory module (uniform 
access). The switches have a FIFO (First Input First 
Output) policy for their servers (outputs). Conflicts 
between packets simultaneously routed to the same 
output port are resolved by queuing the packet.  

Our analysis assumes that packets moving from stage 
 to stage i )1( +i  and finding the output buffer of stage 

)1( +i

i

 full will block the server (output) of their origin’s 
output (stage ).  The above, of course, does not apply to 
the processor’s feeding stage  (i.e. (p) remains the 
same in every cycle) or to the buffers of the last stage 

i
1=i

L= , which are not supposed to become blocked under 
any condition. Blocking of an output is interpreted as 
stopping its operation, that is, it cannot accept any 
packets for service (it cannot forward packets to the next 
stage).  

The service time of the output queues of each switch is 
assumed to be constant and equal to the network cycle 
time. The uniform access assumption allows us to 
represent any kk ×  switch as a system of k queues 
working in parallel, each with a deterministic server (of 
service time equal to 1).  

Any packet which enters any of the k inputs of the 
switch goes with probability k1  to any of the (output) 
queues of the switch. 
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Figure1An NN × single buffered MIN (Delta type) with L stages 

constructed by SEs with k=2 
 

In our analysis we assume that the buffer length (b) 
does not include the server (output). So, a single-buffered 
switch is assumed with 1=b . We assume that arrivals 
happen at the end of each cycle (thus first the queue is 
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served and then new packets arrive, if there are any). The 
routing logic at each switch is assumed to be fair, that is, 
conflicts are randomly resolved. In addition, it is worthy 
of reminder that our analysis is based on homogeneity, 
and thus all switches in a stage and, likewise, all outputs 
within a switch are statistically identical. 

B.  Basic definitions  
Let us consider stages i  and  (for 1+i 1=i  to 

). A particular output queue  of stage i  
will finally be able to send a packet (when it has one) 
only when it selects a queue of stage  which is not 
full.  

1−= Li )(i

1

OQ

+i

Definition 1 Let  be the steady-state probability that 

a particular output server of stage i  of the  switch 
network is busy. An output server is busy either because 
it is serving a packet or because it is blocked. This is the 
utilization in steady state of an output buffer of stage i  of 
the  switch network. An arbitrary queue of a MIN 
with buffer size (b) has a number (b) of possible utilized 
states. The probability of those distinct queue states is 
expressed as: . The  express the queue 
utilization by (j) packet population (j = 1, 2, ..., b). Also, 

the queue utilization is given: .   

)(iu

)(i
ju

kk ×

i
j

)

kk ×

)(i
ju

iu )( ∑
=

b

j
u

1

(=

Definition 2 Let  be the steady-state probability that 

a particular output server of stage i  of the  switch 
network is blocked. Obviously, .         

)(i
bp

kk ×
0=p )(L

b

Definition 3 Let  be the steady-state probability that 

a particular output server of stage i  of the  switch 
network is serving a packet.                                 

)(i
servp

kk ×

Definition 4 Let  be the steady-state probability that 

a particular output buffer of stage i  of the  switch 
network is empty. Obviously, . 

)(
0
ip

kk ×
)(

0
i)( 1i pu −=

Definition 5 Let  be the random variable denoting 
the number of packets arriving at an output buffer of a 

 switch of stage i ( ), of the network at the 
end of a cycle and  .     

)(i
kC

)(
,x i
ck

kk × Li ..1=
Pr( )(C i

k= )c=
Any queue in the system can be utilized by ‘normal’ or 

blocked packets. ‘Normal’ packets are the packets that 
have just arrived in the queue and are ready for service 
the next time, whereas blocked packets are the packets 
that have already tried to be serviced but have been 
blocked for any reason and therefore remain in the queue. 
Thus, the utilization in a queue can be expressed as:     
                             (1) )()()( i

b
i

serv
i ppu +=

C.. Performance metrics 

• Throughput of a MIN, hT , is defined as the number 
of packets delivered to their destinations per unit of time. 

Nevertheless, because the queues of the last stage are 
never blocked, the utilization of the last stage queues is 
equal to the MIN’s throughput.  So, h

L Tu =)( . 

• Normalized throughput of a MIN, hNT , is defined as 

a ratio of the average throughput hT to the network size 

N. Formally, hNT  is expressed by 
N
TT h

hN = . 

• Average latency D  is the average time a packet 
spends passing through the MIN. Formally, D  is 
expressed by    

 
)(

)(
lim

)(

1

tn
id

D
tn

i
t

∑ =

→∞
=       (2) 

where n(t) denotes the total number of packets accepted 
within t time slots and d(i) represents the total delay for 
the ith packet. Recall from Section 2 that the packets are 
routed by store and forward routing from one stage to the 
next by the backpressure mechanism. The d(i) is 
considered to be the sum of  and , where  denotes 
the total queuing delay for the ith packet waiting at each 
stage and  denotes the total transmission delay of the ith 
packet at each stage of the MIN. 

iq it iq

it

Consequently, taking into account that all queues are 
single-buffered, the average delay of a packet traversing 

the network can be calculated by , whereas the 

average probability of a packet being accepted n a queue 
of the first stage is equal to the utilization  of the 

last stage , because no packets are lost within the 
network and all packets are removed from their 
destinations immediately after arrival. Thus Equation (2) 

can be simplified to 

∑
=

L

i

iu
1

)(

)(Lu
L

)(
1

)(

L

L

i

i

u

u
D

∑
== . 

• Normalized latency ND  of packets traversing a MIN 
with L stages can be defined as the ratio of the average 
latency D  of packets to the minimum delay required by a 
packet to traverse the MIN without any blocking. This 
minimum delay depends on the number of stages that 
have a MIN. So, the normalized latency ND , can be 
expressed by the formula  

    
L
DDN =      (3)   

where D  is the average latency of packets traversing the 
MIN. 
 
 
D. First level approximation scheme 

The number of cycles needed for the output queue 
 to successfully send a packet after j trials can be )(iOQ
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approximated by ;  

that is,  operates with a geometric service time 

process of success probability . 

( ) ( )1(1)1()( 1Pr( +−+ −= ijii uuOQ

)1(1 +− iu

)1(
0
−− ip

)(L  for the d

i

))1

)1(
01 −− ip

i
)1−i

)(Lu
)1( −L

)
)(iOQ

1−
)1( −iu

p=

= Li

1( −

)1+i

In the spirit of the approximation for solving the stages 
beyond the first in Bouras et al. in [5], let us assume that 
stage  behaves as processors with packet generation 
probability . The boundary conditions 

are u  for the processors (stage 0) feeding the first 

stage of the MIN, and )1(L uu =+ estination 
of the packets beyond the MIN (i.e. the last stage is never 
blocked). 

i

)0(

1=

Because of the above assumptions, we now have: 
 
Remark A. A particular output queue of stage  (for 

 to ) can be approximated by a discrete 
queue of size b, of geometric service time, with exit 
probability , and of bulk arrivals, where the 
number of arrivals in any cycle is a Bernoulli of k trials 
and success probability ( )/k . Let us call such a 
queue a Be/G/1/b. For the last stage L, the queues are 
Be/D/1/b, that is, the service time is assumed to be 
constant and equal to the network cycle time (with value 
1), since the last stage is never blocked.  

1=i 1−

( +iu

Notice, however, that in the general case, in order to 
get the parameters of the arrival process and service time 
of a queue at stage , one has to know the solutions of 
stages  and ( . (

Thus, our approximation scheme is now a convergence 
procedure where the following two phases are repeated 
until the queue utilizations do not change any more. The 
scheme is initialized by letting all queue utilizations be 
equal to 0.      
Iterative algorithm 
PHASE A (backward solution of the MIN). Starting from 
the last stage L, solve for  to get the parameter of the 

geometric service process of stage . Repeat until 
stage 1 is reached. 
PHASE B (forward solution of the MIN). Starting from 
the first stage, with input parameter p and geometric 
service as found from phase A, find its utilization. Use 
this as input parameter for stage 2, and so on, until the 
last stage is reached. 

In Sections 4, 5 and in Appendix A, we present this 
mathematical convergence method for the single- and 
double-buffered MINs with variable network sizes.  

E.  Additional Definitions 
For the general case of an L-stage MIN, consisting of 

 switches, with output buffers of length b (kk × ∞<b ) 
in all stages, we have: 
Definition 6 The arrival process of packets at the output 
queues of the first stage of the network is given by a 

binomial distribution bin(k, p/k), where p is the fixed 
probability of a packet being generated by a processor in 
each cycle. Therefore: 
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Definition 7 The arrival process of packets at the output 
queues of stage  (for i 2=i  to )  of the network, 
is approximated by a binomial distribution 
bin(

Li =

kuk i )1(, − ), where  is the utilization of an 

arbitrary queue of stage 

)1−(iu
1−i , which we assume to play 

the role of the fixed probability of packets which are 
generated by processors at each cycle, feeding stage i. 
Therefore: 
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Definition 8 The state of an arbitrary output queue of 
stage i at the end of cycle n is a two-dimensional variable, 
with 12 +b  possible values: {(0,0), (1,0), (2,0) …, (b,0), 
(1,1), (2,1), …, (b,1)}, where in (x,y) x is the number of 
packets in the output buffer, and y can take two values: 0 
when the output queue is not blocked, or 1 when it is. 
Definition 9 Let  be the random variable 
denoting the state of an arbitrary output queue of stage i 
at the end of cycle n, where q is the number of packets in 
the output buffer and s is 0 if the output queue is not 
blocked, or 1 when it is. Let  be the steady-state 

limit of . 

))((),( ni
ksq

( )(), i
ksq

))((),( ni
ksq

Definition 10 Let  be the number of packets that 
are entering an arbitrary output queue of stage i at the 
end of cycle n, and let  be the steady-state limit of 

. It holds that  at each cycle n. 
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when the queue is not blocked and 1 when it is blocked 
be the distribution of  in the steady state. So, 

 is the utilization of an 
arbitrary queue of stage i. 
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H. Lemmas 
Lemma 1 For ),min(0 kbm ≤<  and for all stages i 

of the network: For q, s from  it holds that: )1−)((),( ni
ksq

⎪
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where: )()( sq Δ−Δ  is the departure of a packet from 
an arbitrary output queue of stage i at the end of cycle n if 
there is a packet and if the output server is not blocked. 
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For , for any .  

Obviously, for , . 

)(
0,

))(( )0Pr(,0 i
k
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k xvm ===

),min( kbm > Pr( )((v i
k

q

0)) == mn

The proof of this lemma is similar to the proof of the 
related lemma in Bouras et al. [5]. In summary, it states 
that an output buffer of stage  will accept as many 
packets as there are vacancies in the buffer. The 
remaining packets will block their origin’s output queues. 

)(i

Lemma 2 Relating blocking probabilities with 
utilization. In a MIN with blocking, for all stages except 
the last one, the probability of blocking in stage i (where i 
= 1 … (L – 1)) is equal to the difference in the 
probabilities of utilization in stage i and the utilization in 
the last stage (L).  

)()()( Lii
b uup −=     (7) 

Proof In every queue except the queues of the last 
stage we have from Equation (1): 

)()()( i
b

i
serv

i ppu +=     (8) 
We use the following operational argument: 
Let  be the total service time spent in stage  by 

all packets traversed through the MIN; i = 1, ..., L; that is 
, where  is the total number of packets 

generated during T which were not lost on entering stage 
1, since service time = 1. Due to homogeneity, for a 

queue of stage , the total service time is 
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So, because all the entering packets in the MIN are not 
lost: 
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But because in the last stage we do not have blocking, 
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III. THE APPROXIMATE SOLUTION FOR MIN WITH 

22×  SES 

A. The general approximate solution for b-buffered MIN 
with 2x2 SEs  

In order to demonstrate the approximation scheme and 
the underlying analytical assumptions and techniques, we 
start by applying the scheme to the general case, with 
MINs consisting of switches, with finite buffer 
size . Let state (s) represents the state of an arbitrary 

queue of MIN when its packet population is equal to s 
(where s=0...b). The total number of possible states for 
each queue is (b+1). These distinct states of an arbitrary 
i-stage are denoted by the probabilities: and . 

22×
)(b
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0
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)

)( =i
s

−+⋅
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su

+⋅

-  )(
0
ip  is the queue probability of being empty, and 

-  )(i
su is the utilization of queue when it holds ( s ) 

number of packets (where s =1..b).  
Consequently, the aggregate utilization of an i-stage 

queue is given by: . The aggregate 

probability of all states is:            (11) 
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According to lemma 1, (b+1) equations can be applied; 
one for each distinct state, providing the following system 
of equations: 

⋅+⋅−++⋅⋅+⋅⋅≈
⋅+

−⋅
⋅

⋅⋅+⋅−+⋅⋅+⋅⋅≈

++⋅⋅+⋅−+⋅⋅+⋅⋅≈
−−+⋅⋅+⋅−+⋅⋅+⋅≈

⋅−⋅+⋅−+⋅⋅+⋅≈
⋅−⋅+⋅≈

+++
−

+
−

++
−

++
−

+
−− −+⋅

⋅−
⋅+⋅

+

++

1(
1(

)1
1(]

)(
0,2

)1

()(
0,2

)(
1,2

)1(

)(
3,

)(
1,2

ii

i
b

i

ii
b

i
b

i

++++

+++

−−+

+

[])1()([][
)[])1([][

............................................
]([])1([][

)1([])1([
)1(])1([

)1(

(()(
)(

)(
2,2

)1()(
2,2

)(
1,2

)1()(
)1(

)(
2,2

)1()(
)2(

)(
)(

)1)1()(
)1(

)(
2,2

)1()(
1,2

)1()(
)2(

)(
2,2

)1()(
)3(

)(
)1(

)(
0,2

)1()(
3

)(
2,2

)1()(
1,2

)1()(
2

)(
2,2

)1()(
1

)(
3

)1()(
0,2

)1()(
2

)(
2,2

)1()(
1,2

)()(
1

)(
2,2

)(
0

)(
2

)(
0,2

)1()(
2

)(
1,2

)1()(
0,2

)1()(
1

)(
1,2

)(
0

)(
1

)(
0,2

)1()(
1

)(
0,2

)(
0

)(
0

i
bb

i
b

ii
b

iii
b

i
b

ii
b

i
b

i
b

i
b

i
b

ii
b

ii
b

i
b

ii
b

i
b

i
b

ii
b

iii
b

ii
b

iii
b

ii

i
b

ii
b

iii
b

ii
b

iiii

ii
b

iii
b

ii
b

iiii

ii
b

iiii

+

()
]

1(
)

)(
1,2

)1

)()(
1,2

()(
4

)(
0,2

)1(

i

i
b

i

i
b

i

ii
b

xx
ux

p
x

ppuxpxxpuxpuu
puxpxpuxpuu

uxpuxpxpuxpuu
ppxpuxpxpuxpu

xpuxpxpuxpu
xpuxpp

x
px

xp
ux (12) 

In fact, the above system (12) of ( ) equations is a 
linear and homogenous system.  Combining the first (b) 
equations of the system (12) with the equation (11) forms 
a new linear system (but not homogenous) of (b+1) 
equations with (b+1) unknowns. This general system of 
(

1+b

1+b ) equations (for buffer size=b) has the following 
linear structure:  
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All coefficients  are expressions of and  
where: 
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bp  is the blocking probability of the successive 

stage and  
- )(

,2
i

jx  is the probability of packet arrivals at the current 
stage, where j={0,1,2} denotes the probability of that j 
packets arrive from the previous stage. 

Thus, all the coefficients are expressions, 

i.e. , , 

, etc. Furthermore: 
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precedent stage )( )1(   )(

,2
−= i

j
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j ufx
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Since there is no preceding stage, the probability of 
packet arrivals to the inputs , is the offered load to 

the network inputs. So, u   

)( p
p=)0(

- According to lemma 2, the blocking probability  
of the successive stage (i+1) is also a function of the 
utilization according to the lemma 2.  

)1( +i
bp

Thus, all the coefficients  are a utilization function: 

 That means all factors 
include exclusive utilization metrics. 

ija

))(L,,( )1()1( ii
uij uuufa +−=

The above system of equations (13) can be solved by 
applying Cramer’s theorem, as follows: 
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can be estimated by:  
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The aggregate queue utilization can be calculated by: 
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The formula (15) is in fact a recursive formula because 
both matrices, , and , include only utilization 
metrics. In particular, the utilization of the previous, 
current, successive and last stage queues are included. 
Thus,  , and 

, and then the 
aggregate utilization of an i-stage queue is: 
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This is the reason why an iterative algorithm is used for 
approaching the solution of the general recurrence 
relationship (15). The convergence of this recursive 
algorithm will define the equilibrium state utilization’s 
probabilities. Thus, applying this convergent algorithm 
(which is demonstrated in the following section, 4.2), a 
convergence at a fixed point is required. 
In order to evaluate the probabilities above, we make the 
assumption of approximate interstage independence 
(which seems to be more accurate, as b is getting 
smaller). Actually, Kruskal and Snir in [13] derive the 
same equation for , i = 1, 2,.., L, as we do, for the 
single buffered MIN without blocking (a case clearly 
with interstage independence), giving evidence that our 
assumption is approximately true for small b, when 
packets are lost. In our case of blocking, there is of course 
a stronger dependence among stages, which is taken into 
account in some extent by adopting Remark A. 
Comparison to simulation results later here, show that 
this assumption is a reasonable one. 

)(iu

Boundary conditions: The requirements for the first and 
last stage are as follows:  

• For the first stage, 0=i : 

• For the last stage, :Li =  
A packet at an output port of the last stage can always 
proceed. However, buffers in the SEs of the last stage can 
not proceed in the blocked state. Thus: 

0)( =L
bp ⇔ )()()1( L

serv
LL puu ==+  

The convergence algorithm: Using a fixed-point 
iteration (ε< ) over the state utilization, a steady 
state is reached from which performance metrics of 
interest are determined. The convergent algorithm is 
presented in Appendix A. The illustrated algorithm in 
Appendix A includes the formulas for the utilization. 
Evaluation of the blocking probabilities can be calculated 
similarly. 

410−

Β. Case Studies: Single and double buffered MINs 

Β.1 Approximate solution for single buffered MIN with 
2x2 SEs  

The above demonstrated approximate convergent 
method is exemplified here for MINs, consisting of 

22×  single buffered ( ) SEs. The steady-state 
distribution in this case consists of two distinct states: 

1=b
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, the probability of the queue being empty and 

, is the probability that the output queue 
utilizes a packet.  
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1

iu=

When we have a small buffer size, the above general 
equation (15) has a solution which is expressed by a 
closed formula, as shown here.  

Using the analysis derived from the aforementioned 
sub-section 4.1 (which is based on lemma 1), it can be 
approximated by the following: 
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By solving the above set of equations (16), we get: 

 )1()(
0,2

)(
0,2)(

0
)(

1
1

1 +⋅−
−

≈−= i
b

i

i
ii

px
x

pu                 (17)              

Using equation (3) of definition (8), we arrive at: 

2
)1(

)(
0,2 )

2
1(

−

−≈
i

i ux  (utilization’s expression) and 

applying lemma 2 for ( ) stage, we arrive at: 
 (utilization’s expression) 

1+i
)()1()1( Lii

b uup −= ++

For stage , the above equations (17), can be replaced 
by: 

)(i

)()
2

1(1

)
2

1(1

)()1(2
)1(

2
)1(

)(

Li
i

i

i

uu
u

u

u
−⋅−−

−−
≈

+
−

−

,           (18) 

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 3, MARCH 2010 253

© 2010 ACADEMY PUBLISHER



Boundary conditions: remains the same as is suggested 
in sub-section 4.1, above. 

The formula (18) (also known as the utilization’s 
expression) is the recursive formula for an single buffered 
case of MIN. For stages and , the same 
formula (18), using the relevant boundary conditions, is 
used. Boundary Conditions: remains the same as is 
suggested in sub-section 4.1, above. 

1=i Li = The convergence algorithm: is the same algorithm as is 
demonstrated in Appendix A. However, the current 
formula (20) is used to demonstrate this special case 
study, instead of the general formula (15). 

The convergence algorithm: is the same algorithm as is 
demonstrated above in sub-section 4.2. However, the 
current formula (18) is used to demonstrate this special 
case study, instead of the general formula (15). 

IV. APPLYING THE ARITHMETIC CONVERGENT METHOD 
AND SIMULATION 

This arithmetic convergent method is presented and 
exemplified through its application on a MIN consisting 
of 2 × 2 single- or double-buffered (b = 1 or 2) SEs under 
various network sizes. A number of different experiments 
were performed. In each experiment, less than 60 
iterations were used to achieve a convergence 
( ). The probability (p) of packets arriving at the 
inputs of the MIN ranked from 0.2 to 1.  

410−<ε

Β.2 Approximate solution for double buffered MIN with 
2x2 SEs  

Also the above demonstrated approximate convergent 
method is exemplified here for MINs, consisting of 

 double buffered ( ) SEs. 22× 2=b
The steady-state distribution in this case consists of 

two distinct states: 
A simulator was also constructed and applied under the 

same MIN conditions in order to validate the results 
given by the analytical method. All performance metrics 
obtained from the simulation ran for  clock cycles. 
The number of simulation runs was adjusted to ensure a 
steady-state operation condition for the MIN. 

510
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ip  , the probability of the queue being empty, 

  , is the probability that the output queue utilizes a 
packet and 
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iu

  ,is the probability that the output queue utilizes two 

packets.  Thus,  
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)( iii uuu += All performance metrics such as utilization, latency, 
service, and blocking probabilities were recorded for each 
queue in all stages. It is clear that all statistics obtained by 
simulation experiments verified the numerical results of 
our novel approximate mathematical solution. Also, all 
the data that are presented in sub-sections 5.2 and 5.3 are 
evaluated using the Relative Statistical Error (RSE) 
indicator.  

Using the analysis derived from the aforementioned 
sub-section 4.1 (which is based on lemma 1), it can be 
approximated by the following: 
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The definition of RSE is: %100⋅
Δ

=
y
yRSE .   
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• y is the performance metric under study (e.g. 
normalized throughput, average packet latency),  

• ε gives the expected error (here, 310−=ε ), 
• 2s  expresses the variance of a finite number of 

values, and  
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==   • 2/1,1 ε−−nt  gives the quantile of the t -distribution 

with 1−n  degrees of freedom. 
The RSE gives the absolute statistical error. The 

estimated RSE is closely related to the confidence level.  
Our simulations were performed using an accuracy of 

 and RSEs in all cases of our experiments were less 
than 4% (
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A. Model verification And finally,                (20) )(

0
)( 1 ii pu −=

1) Compare normalized throughput The formula (20) (also a utilization’s expression) is the 
recursive formula for the double buffered case of MIN. The proposed novel analytical model was also 

validated by four older classic models:  Jenq’s model [7],  
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Mun’s model [16], Theimer’s model [20], and Yoon’s 
model.  

i) Compare the results of a single-buffered MIN. 
The proposed novel analytical model was also 

validated by three older classic models: Jenq’s model [7], 
Mun’s model [16], and Theimer’s model [20].  

Figure 2 depicts the normalized throughput of a six-
stage single-buffered MIN (64 × 64) versus the offered 
load. It is worth noting that all models are accurate at low 
loads, but their accuracy decreases as the packet arrivals 
at inputs increase. According to Figure 2, the accuracy of 
Jenq’s model is less sufficient under moderate and high 
traffic conditions (p > 0.4) because many packets are 
blocked, mainly at the first stages of the MIN, especially 
at high traffic rates. 

Mun’s model improves the accuracy by introducing a 
‘blocked’ state. Moreover, Theimer et al. introduce the 
dependencies between the two buffers for each switching 
element, improving their model and approaching the 
simulation experiments better than Mun’s model. 
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Figure 2. Normalized throughputs versus probability of packet 

arrivals for a six-stage MIN 
 

  Finally, our novel analytical method achieves better 
approaches than all previous models (Fig. 2) using a very 
fast convergence (less than 60 iterations).  

ii) Compare the results of a double-buffered MIN. 
The proposed analytical model was also validated by 

two older classic models: Mun’s model [16] and Yoon 
and colleagues’ model [25]. Figure 3 depicts the 
normalized throughput of a six-stage double-buffered 
MIN (64 × 64) versus the offered load. It is worth noting 
that all models are accurate at low loads, but their 
accuracy decreases as the packet arrivals at inputs 
increase.  
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Figure 3. Normalized throughputs versus probability of arrivals at 

inputs in a six-stage double-buffered MIN 
 

The plots clearly verify that our model is more 
accurate than the other two models. The Yoon model is 
the worst case since it does not consider the blocked state 

and the rest of its assumptions are simple. Also, Mun’s 
model gives less accurate results owing to the 
probabilistic complexity of the model.  Both models give 
a throughput overestimation in final stages. That 
overestimation happens because in the later stages both 
models’ calculated values of blocking probabilities 
underestimate their real values. Actually, with high 
traffic, many packets can be blocked even from the first 
stage.  

In conclusion, comparisons with other existing models 
revealed that the proposed model is considerably more 
accurate, irrespective of the network size, buffer size, or 
offered load.  

Finally, according to Figures 2 and 3 the normalized 
throughput of a six-stage MIN is close to 40% for single- 
and 56% for double-buffered MIN configurations 
respectively, under full offered load conditions. 
Consequently, the extra buffer availability leads in turn to 
far fewer blockings, and thus the throughput gain was 
found to be very significant (40%). 

 
2) Compare average packet latency of single- and 

double-buffered MIN. 
Figure 4 depicts the average packet latency of a six-

stage MIN (64 × 64) versus the offered load. The solid 
curves illustrate results for the single-buffered case while 
the dotted curves depict results for the corresponding case 
of a double-buffered MIN. It is worth noting that all 
models are accurate at low loads, but their accuracy 
decreases as the packet arrivals at inputs increase.  

According to this figure, the results obtained by our 
analytical model were in close agreement with those of 
our corresponding simulation experiments for both 
configuration set-ups ( b  = 1, 2), again demonstrating the 
accuracy of our proposed analytical method. 
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Figure 4. Average packet latency versus probability of packet 

arrivals for single- and double-buffered six-stage MINs 
 

It is also noticed that using double-buffered queues 
leads to more delays’. This behavior becomes perceptible 
even at low loads ( p  = 0.4), while the delay increment 
becomes apparent at medium and high loads ( p  ≥ 0.6). 

 

B. Performance of single-buffered MINs 
1) Normalized throughput for single-buffered MINs 
Figure 5 represents the normalized throughput of a 

single-buffered i-stage MIN, where i = 3, 4, 6, 8, 10, 
versus the probability of packet arrivals. In the diagram, 
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curves Num-L = i and Simu-L = i depict the normalized 
throughput of a single-buffered i-stage MIN estimated by 
the analytical model and by a simulation respectively. 

From Figure 5 it is obvious that the normalized 
throughput deteriorates as the network size increases. 
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Figure 5 Normalized throughput of an i-stage MIN versus probability of 

arrivals according to the analytical model and the simulation 
 

It is worth noting that the numerical results of both 
methods have been found to be in close agreement 
(differences were less than 1%). 

 
2) Blocking probabilities for single-buffered MINs 

Figure 6 illustrates the blocking probabilities (Pb) per 
stage versus the probability of packet arrivals (p) at 
inputs. In the diagram, curves L = X-Num and L = X-
Simu depict the blocking probabilities (Pb) at layer X, 
where X = 1, 2, …, 8 of an single-buffered eight-stage 
MIN estimated by the analytical model and simulation 
respectively. 

According to this diagram, the blocking probabilities 
(Pb) in the first layers are greater, while in the last layer 
there is no blocking. The numerical results of the two 
methods have been found again to have the same close 
agreement. The blocking probability decreases with the 
number of stages. So, the use of an asymmetric buffer 
size can be proposed. An implementation that is with a 
buffer size that is larger in the first layer and becomes 
gradually smaller during the following stages can be used 
as an optimal cost-effective solution. This technique may 
also improve the performance of the MINs. So, this 
configuration can be applied in the design of large scale 
MINs, in order to develop high-speed networks.  
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Figure 6. Blocking probabilities (Pb)/stage of a eight-stage (256 × 256) 

MIN versus probability of arrivals according to the analytical model and 
simulation  

 
Altering this special analytical method, the calculation of 
the performance evaluation of the above described 
asymmetric – with respect to the buffer size – MIN can 

be achieved more easily.  In this case it is only necessary 
to write the utilization equation per stage. Then, putting 
them in the ‘forward’ and ‘backward’ sections of the 
iterative method easily obtains the steady-state of queues’ 
utilization.    

3) Normalized packets latency on single-buffered 
MINs 

Similarly, Figure 7 represents the normalized packet 
latency of a single-buffered i-stage MIN, where i = 3, 4, 
6, 8, 10, versus the probability of packet arrivals 
according to both analytical model and simulation. It is 
seen that the normalized  latency becomes higher as the 
network size increases. 
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Figure 7.  Normalized packets latency of an i-stage MIN versus 

probability of arrivals according to analytical model and simulation 
 

Low values of packet latency are observed for relevant 
low values of packet arrivals. This happens because the 
packet population is low in numbers and therefore the 
number of blocking packets observed is also low. Then, 
as the offered load rises, the packet latency follows this 
augmentation due to the increment in the backpressure 
phenomenon. The results obtained by the two methods 
were again found to be in the same close agreement. 

 
4) Utilization per stage in single-buffered MINs 
Finally, Figure 8 presents the utilization (u) per stage 

versus the probability of arrivals (p) at inputs for an 
eight-stage (256 × 256) MIN, where the numerical results 
obtained by the two methods have again been found to be 
in the same close agreement. It is worth noting that the 
utilization of the last stage depicts the throughput of the 
MIN because there is no blocking at the last stage. 
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Figure 8. Divergence of utilization/stage versus probability of packet 

arrivals for an eight-stage MIN 
 

The throughput of a MIN is one of the two most 
significant performance factors – the other is the latency 
– making the multistage fabric suitable for the core and 
backbone networks which typically provide high capacity 
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communication facilities. The curves shown in Figures 6 
and 8 clearly show that the increment in the offered load 
provides higher utilization and thus blocking 
probabilities. It is also noteworthy that these probabilities 
have lower values at later stages due to the fact that the 
last stages are subject to lighter loads, when blocking is 
heavier. 

 
5) Results for lost and serviced packets’ probabilities  
The lost packets at inputs of the MIN are correlated 

with the serviced packets which have finally been 
accepted by the system in comparison with the total 
number of packets arriving at inputs. The probabilities of 
serviced packets (or the population of serviced packets) 
remain constant in each stage, as all the packets lead from 
the input to the output, because packets cannot be lost in 
the intermediate stages. Figure 9 presents the service 
probabilities for a single-buffered i-stage MIN where i = 
4, 10 and for variable cases of arriving traffic. As can be 
seen, the service probability remains constant in all stages 
and that confirms the analysis of Lemma 2, Formula (9).  
Moreover, the loss probability of packets at the MIN’s 
inputs is studied. Thus, Figure 9 illustrates the lost 
packets at inputs of the MIN versus the probability of 
packets arriving at inputs of an i-stage MIN where i = 4, 
10. As can be seen, the loss probability is increased as the 
arrival rate of packets increases. In the case of low traffic, 
the values of lost packets remain low. On the other hand 
when traffic is high (p > 0.7) the probability of packets 
being lost is over 30%. Furthermore, the equation 

 is confirmed by arithmetic solution, as 
expected. 
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Figure 9. Probabilities of serviced and lost packets for a single-buffered 

MIN consisting of 2 × 2 SEs 
 

Thus in Figure 9, if we add the values of the curves 
 to the corresponding numbers of the curves 

, then we obtain the numbers of  the  
curve, which is an indirect confirmation of our results.   

lostp

servicedp arrivedp

 

C. Performance of double-buffered MINs 
6) Normalized throughput for double-buffered MINs 

Figure 10 represents the normalized throughput of a 
double-buffered i-stage MIN, where i = 3, 4, 6, 8, 10, 
versus the probability of packet arrivals. In the diagram, 
curves Num-L = i and Simu-L = i depict the normalized 

throughput of a double-buffered i-stage MIN estimated 
by the analytical model and by simulation respectively. 
From Figure 10 it is obvious that the normalized 
throughput deteriorates as the network size increases. 
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Figure 10 Normalized throughput of an i-stage double-buffered MIN 
versus probability of arrivals according to the analytical model and 

simulation 
 

Comparing the values of Figure 10 with the 
corresponding values of Figure 3, it is obvious that the 
throughput values of double-layer MINs are higher than 
those of single-buffered MINs with the same 
configuration set-up. 

 

V. COMBINED  PERFORMANCE  FACTOR  

A. Combined performance factor for multi-criteria 
evaluation of MINs 

In general, performance evaluation factors can be 
divided into two major sets: factors to be maximized (e.g. 
throughput) and factors to be minimized (e.g. latency, 
cost, etc.). Let the first maximized set be 

}...,,{ max,max,,2max,1max μxxxx =  of normalized 
performance metrics and let the minimized set of 
normalized performance metrics be 

}..,,{ max,max,,2max,1max νyyyy = , where νμ,  are the 
numbers of factors to be maximized and minimized 
respectively.  

Nevertheless, it is interesting to have a general 
evaluation using only one factor. This factor must suggest 
better overall performance, that is, when the first factor’s 
set is maximized and the second factor’s set is minimized 
simultaneously. We call this factor the Combined 
Performance Factor (CPF) and it is given by the 
following formula:  
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In any multi-criteria decision-making problem, 

however, the importance of each criterion is a design 
problem. Therefore, when it is of interest to give a weight 
(concerning the importance in the network) to each 
separate metric then the above formula can be replaced 
by:  
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where ,  are the corresponding weights of the 
normalized system’s parameters. According to this 
equation, when the  metrics become larger and/or 

the  metrics become smaller, the CPF becomes 
larger. The reference value domain of CPF ranges from 0 
to 1. 

iw

min,

jw

max,ix

iy Figure 11. CPF versus (p) probability of packet arrivals at i-stage MINs 
( 2=thw , ) 1=dw

 
In the first diagram the throughput factor is considered 

to be of double importance ( , ), while in 
the second diagram the latency factor is assumed to be of 
twofold significance (

2=thw

1

1=dw

=thw , ). 2=dw

The main condition which must be satisfied when the 
CPF factor is applied is the assumption that 0min, ≠jy . 
Besides this, all the measured factors must be calculated 
and manipulated as inter-individual metrics.  

In Figure 11, where throughput is more important, two 
areas may be identified: the first one spans the ‘light 
input load’ segment of the x-axis in which single-buffer 
configurations offer slightly better overall performance, 
and the second one spans the ‘medium- and high-load’ 
segment of the x-axis in which the gain for the CPF 
metric of double-buffered MINs is considerable. 

In this paper, we use the most important performance 
indicators of normalized thoughput  and 

normalized latency (

)( hNT

ND ). It is obvious that the 
performance of a MIN is considered optimal when 

 is maximized while )( hNT ND is minimized. 
Consequently, the formula for computing the CPF acts so 
that the overall performance metric follows that rule. 
Formally, CPF can be simplified to: 
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where  and  denote the corresponding weights of 
the two performance metrics participating in the overall 
performance factor CPF, designating its importance for 
the corporate environment. According to this equation, 
when the throughput metric becomes larger and/or the 
latency becomes smaller, the CPF becomes larger. The 
reference value domain of CPF ranges from 0 to 1. 
Consequently, as the CPF becomes higher, the 
performance of the MIN is considered to improve.  

Thw Dw

Figure 12. CPF versus (p)  probability of packet arrivals at i-stage MINs 
( 1=thw , ) 2=dw

 
On the other hand, when the latency is assumed to be 

of twofold significance (Figure 12), it is seen that all 
single-buffered set-ups exhibit improved overall 
performance compared with the corresponding double-
buffered ones. Consequently, the findings of this metric 
can be used by network designers for drawing optimal 
configurations while setting up MINs to best meet the 
overall performance and cost requirements under the 
anticipated traffic load and quality of service 
specifications, where performance prediction before 
actual network implementation can also minimize 
deployment cost and rollout time. 

 

B. Applying the Combined performance factor 

The role of buffer size in MINs 
Figures 11 and 12 depict the behavior of the CPF for 

single- and double-buffered MINs correlated with the 
offered load under various network sizes, where different 
weights for each factor participating in the CPF are 
considered, thus designating that factor’s importance in 
the corporate environment; for example, for batch data 
transfers throughput is more important, whereas for 
streaming media the latency must be optimized.  
According to these figures, solid curves SB-L = i 
represent the overall performance metric CPF for single-
buffered i-stage MINs, while dotted curves DB-L = i 
stand for the corresponding double-buffered 
configurations where i = 4, 6, 8.  

VI. METHODOLOGY’S EXPANDABILITY 
This methodology can be extended to deal with 

performance calculations in modern, more complicated 
MIN architectures [19, 22] which are directed at new 
types of applications. 

The general idea of performance calculations is as 
follows. Because MINs have a compound structure, they 
can be analyzed in stages or modules (usually buffers). 
Every module can be studied in an arbitrary time cycle of 
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Then, in the same way, as shown in Section 4.1, a 
utilization formula can be extracted and in consequence 
the same iterative algorithm can be applied. 

its operation. From this study an equation is extracted 
which describes the state and the state transitions in 
question (e.g. a utilization equation). Afterwards, the 
equations of the sequence stages (with their relevant 
boundary conditions) are put into the sections of the 
iterative method. The convergence of the algorithm gives 
values of performance indicators that underpin the system 
when it is in a state of equilibrium. 

Some examples which exploit this fast arithmetical 
convergent method are presented in the following cases: 

1) MINs that support traffic with two or more priority 
classes  

In this case the packets entering the fabric are distinct 
in two or more priority classes. The higher priority 
classes always earn the memory space in comparison 
with other packets with lower class priority.  

The packet priority processes of packet forwarding can 
be modeled by parallel queues’ pipelines. There are as 
many parallel processes as there are priority classes. Each 
parallel process behaves as a single priority model (like 
the presented model). The current Lemma 2 remains the 
same for each priority class inasmuch as the packets 
entering the fabric cannot be lost while they are 
forwarded to the outputs.  

A noteworthy point here is the blocking probabilities at 
the last stage. In the last stage, the packets with highest 
class priority do not suffer from blocking. Contrary to 
this, the packets of a lower priority class may have been 
blocked owing to the existence of higher priority traffic. 
The blocking probability of a lower class of priority 
traffic in the last stage is calculated by the proliferation of 
queue utilization of each last-stage upper class’s priority. 
This is the relation which connects the packet priority 
classes. Afterwards, the equations are formed on the basis 
of the sub-section 4.1 analysis, taking into account the 
blocking probabilities which appeared in the last stage.  

The extracting equations are put within the iterative 
algorithm’s sections. Running the algorithm until it 
converges provides indicators about the state of 
equilibrium. This method gives a solution to the issue of a 
large number of priority classes.   

2) MINs supporting multicast traffic 

3) MINs with variable buffer sizes among the stages 
In this case the utilization formulae do not remain the 

same for all stages. Therefore, following the analysis 
described above in sub-section 4.1 we can obtain relevant 
utilization formulae for each stage. In consequence, the 
(‘forward’ and ‘backward’) sections of iterative 
algorithms are compounded stage by stage, putting the 
stage’s utilization equations with their boundary 
conditions. The convergence of the iterative algorithm 
also gives the equilibrium value of the utilization metric.  

Finally, Markov processes are often proposed for 
modeling and evaluating MINs in parallel or distributed 
systems. Simulation based on Markov chains provides a 
powerful method for performance evaluation. But it 
comes with a huge drawback: it often requires long run 
times until accurate results are determined with high 
confidence levels.  

On the other hand, the adaptation, accuracy, and fast 
convergence are the main advantages of the method 
presented above, particularly compared with Markovian 
analytical approaches.  

The exemplification of the current arithmetical method 
is not limited. This approximate method can be applied 
even in other cases of modern MIN architectures, making 
their performance evaluation attainable. 

VII. CONCLUSIONS AND FUTURE WORK 
Today’s gigabit Ethernet and ATM switches, terabit 

routers, multiprocessor systems, and general parallel 
systems are typical applications of interconnection 
networks which have been identified as efficient 
components in communication structures.  

In this paper, a performance methodology for 
Multistage Interconnection Networks (MINs) is 
presented. The performance methodology goals were 
threefold. Firstly, it incorporates an analytical method 
which gives fast and accurate results based on an iterative 
algorithm which converges quickly, giving performance 
metrics as separate factors in the state of equilibrium. 
Secondly, it is accompanied by a general evaluation 
factor which helps us in choosing MINs which perform 
better in comparison with other similar MIN architectural 
specification and design goals. Thirdly, it presents 
expandability of several MIN architectural requirements.  

Most important in this case is that in a stage of the 
MIN the packets increment which appears is caused by 
the multicasting operation. Thus, the basic condition of 
Lemma 2 cannot be true because the fabric does not act 
as a pipeline, since the number of entering packets does 
not remain the same as they are forwarded from stage to 
stage. The last stage has a high density of packets and this 
amount is reduced to that of the preceding stages by a 

factor which is equal to
w+1

1
, where  is the 

multicast ratio which denotes the multicast packets 
population divided by the total packet population in a 
stage. This factor is considered to be fixed for all stages.   

)(w

The methodology was exemplified for the case of 
symmetrical MINs comprising 2 × 2 single- or double- 
buffered SEs. This model represents a real type of 
blocking (backpressure) which is a very common 
phenomenon for SEs. This new approximate analytical 
method verifies the anticipated fact that the blocking 
probability and the utilization will get smaller when 
moving from the first stage to the last one (the last stage 
has zero blocking probability).  

Taking into account the packet reduction from the last 
stage to the first and working in the same way as in 
Lemma 2 of this paper, we extract a modifying Lemma 2.    

The results obtained by a thorough study are confirmed 
by simulation. It was found that the results of our 
approximate method are in close agreement (differences 
are less than 2%) with the corresponding simulation 
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BEGIN     experiments. Additionally, the results in some cases were 
validated by existing related work in the literature.   Calculate:     (formulae (15)) /*for stages (L-1),.., 2*/ )(

][
i

m u
Moreover, the performance factor which is defined for 

multi-criteria evaluation of MINs can play a significant 
role in decision-making for MIN selection.  

END FOR 

 Calculate: (formulae (15), using packet  )1(
][ um

The process and results which are obtained by this 
performance analysis can be a useful tool for analyzing 
communication, especially in the area of parallel systems, 
and moreover it can be a useful tool for designers or 
teams evaluating, monitoring, or optimizing systems. 

                                            arrivals ( p ))   /*for stage 1 */ 
/* End of PHASE A (Backward Solution) */ 

UNTIL for all stages  to L ε<− − )( )(
]1[

)(
][

i
m

i
m uu 1=i

Set    to the values of    for all stages )(iu )(
][

i
m u 1=i   to L 

The main advantage of the proposed performance 
evaluation methodology is its flexibility, owing to its 
ability to be adapted easily to MINs’ various architectural 
requirements and their operations. Therefore, it could be 
the main platform for testbed and performance analysis in 
some special modern subjects like MINs supporting 
traffic with priorities or multicast traffic, or MINs which 
operate with retransmission packets.  

Calculate ,)(i
bp D , ND  

REFERENCES 

[1] Ranjan Kumar Dash, Nalini Kanta Barpanda, and Chita 
Ranjan Tripathy, “A New and Efficient method to Evaluate 
Residual Broadcast Reliability of Fault-tolerant Multistage 
Interconnection Networks”, IJCSNS International Journal 
of Computer Science and Network Security, VOL.8 No.9, 
September 2008. 

In future work we will consider such cases and will 
make efforts to provide MIN designers with metrics that 
will support them in choosing the best MIN 
configuration, taking into account the applications (e.g. 
multimedia streaming versus file transfer) that the MIN 
will support. 

[2] Kumar, S., “Mathematical Modelling and Simulation of a 
Buffered Fault Tolerant Double Tree Network”, Advanced 
Computing and Communications, 2007. ADCOM 2007. 
International Conference on Volume , Issue , 18-21 Dec. 
2007 Page(s):422 – 433 

[3] Atiquzzaman M. and M.S. Akhatar, “Efficient of Non-
Uniform Traffic on Performance of Unbuffered Multistage 
Interconnection Networks”, IEE Proceedings Part-E, 
1994.  

APPENDIX A   

CONVERGENT ALGORITHM  
[4] Bouras C., Garofalakis J., Spirakis P., Triantafillou V., “A 

general performance model for multistage inteconnection 
networks”, Euro-Par’97. August 25-29. 

Let  be the value of  during the m-th 
iteration of the following algorithm: 

)(
][

i
m u )(iu

[5] Bouras C., Garofalakis J., Spirakis P., Triantafillou V., “An 
analytical performance model for multistage 
interconnection networks with finite, infinite and zero 
length buffers, in Performance Evaluation 34(1998) 169-
182.  

Algorithm I 
BEGIN 
 m := 0 

/*Start of PHASE A (Initialize Backward Solution)*/ 
 DO [6] Bouras C., Garofalakis J., Spirakis P., Triantafillou V., 

“Queuing delays in differed multistage interconnection 
networks”, in Proc. 1987 ACM Simetrics Conf., May 11-
14, 1987, Banff, Alberta, Canada, pp. 111-121. 

BEGIN  

   Initialize:          /* for stages L,…,1*/ pu i =:)(
]0[

 END FOR [7] Y.-C. Jenq, “Performance analysis of a packet switch 
based on single –buffered banyan networks”, IEEE Journal 
Selected Areas of Commun. SAS-1(6) (1983), 1014-1021 

 /* End of PHASE A */ 
 

 REPEAT [8] Garofalakis J., P. Spirakis, “The performance of multistage 
interconnections networks with finite buffers”, in :Proc. 
ACM SIGMETRICS Conf., 1990, short paper. 

 m:= m + 1 
/* Start of PHASE B (Forward Solution) */ 

    Calculate: (formulae (15), using packets arrivals )1(
][ um [9] Cisco Systems, 

http://newsroom.cisco.com/dlls/2004/next_generation_net
works_and_the_cisco_carrier_routing_system_overview.p
df  .  

                                   ( p ))    /*for stage 1 */  
  FOR i = 2 TO L-1 DO 

BEGIN [10] Hsiao S.H. and Chen R. Y., “Performance Analysis of 
Single-Buffered Multistage Interconnection Networks”, 
3rd IEEE Symposium on Parallel and Distributed 
Processing, pp. 864-867, December 1-5, 1991.   

Calculate:  (formulae (15)) /*for stages 2,…, L-1 */ )(
][

i
m u

END FOR 

     Calculate: (formulae (15), with ) )(
][

L
m u 0)1( =+i

bp [11] I-Pyen Lyen, David M. Koppelman, “An Analysis of 
Banyan Networks Offered Traffic with Geometrically 
Distributed Message Lengths”, IEE Proceedings – 
Communications Volume 142, Issue 5, October 1995 p. 
285-291.  

                                    /*for stage L */ 
 /* End of PHASE B (Forward Solution) */ 
m := m + 1 

/* Start of PHASE A (Backward Solution) */ [12] Sandeep Sharma, P.K.Bansal, Karanjit Singh Kahlon  “On 
a class of multistage interconnection network in parallel 
processing”, IJCSNS International Journal of Computer 
Science and Network Security, VOL.8 No.5, May 2008 

Calculate:  (formulae (15), with )           

/*for stage L */   

)(
][

L
m u 0)1( =+i

bp

FOR i = L-1 DOWNTO 2 DO 

260 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 3, MARCH 2010

© 2010 ACADEMY PUBLISHER

http://newsroom.cisco.com/dlls/2004/next_generation_networks_and_the_cisco_carrier_routing_system_overview.pdf
http://newsroom.cisco.com/dlls/2004/next_generation_networks_and_the_cisco_carrier_routing_system_overview.pdf
http://newsroom.cisco.com/dlls/2004/next_generation_networks_and_the_cisco_carrier_routing_system_overview.pdf


He is responsible and scientific coordinator of several recent 
European and national IT and Telematics Projects (ICT, 
INTERREG, etc.). 

[13] Kruskal C.P., Sinir M., The performance of multistage 
interconnection networks for multiprocessors, IEEE Trans. 
Comput. C-32 (1983) 1091-1098. 

His publications include more than 100 articles in refereed 
International Journals and Conferences. His research interests 
include Web and Mobile Technologies, Performance Analysis 
of Computer Systems, Computer Networks and Telematics, 
Distributed Computer Systems, Queuing Theory. 

[14] G. Zheng, T.Wilmarth, P. Jagadishprasad, and L. V. Kale. 
“Simulation-based performance rediction for large parallel 
machines”, In International Journal of Parallel 
Programming, number to appear, 2005 

[15] Lin T., Kleinrock L., “Performance Analysis of Finite-
Buffered Multistage Interconnection Networks with a 
General Traffic Pattern”, Joint International Conference 
on Measurement and Modeling of Computer Systems, 
Proceedings of the 1991 ACM SIGMETRICS conference 
on Measurement and modeling of computer systems, San 
Diego, California, United States, Pages: 68 - 78,  1991.  

 
Eleftherios Stergiou is lecturer in the 
department of Information Technology 
and Telecommunications, at Epirus 
Institute of Technology in Greece since 
2000. He is also a research fellow at the 
University of Patras. He received the 
B.S. degree in electrical engineering 
from NTUA, Athens Greece, and he 
finished his postgraduate studies at the 

computer science department of the University of Sheffield 
(1998).  

[16] H. Mun and H.Y. Youn, “Performance analysis of finite 
buffered multistage interconnection networks”, IEEE 
Trans. Comput. 43(2) (1994), 153-161.   

[17] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis “Performance 
Analysis of blocking Banyan Switches”, Proceedings of 
the IEEE sponsored CISSE 06, December, 2006.  

[18] John Garofalakis, El. Stergiou “An analytical performance 
model for multistage interconnection networks with 
blocking” Sixth Annual Conference on Communication 
Networks and Services Research (CNSR2008) Halifax, 
Nova Scotia, Canada. May 5 - 8, 2008. 

His research interests on performance evaluation of networks 
integrate by publishing papers in international journals.  
Among these interests, computing analytical methods, 
interconnection networks, parallel and distributed systems, 
high-speed networks, are included. Mr E. Stergiou is member of 
IEEE Computer Society. [19] Sandeep Sharma, K.S. Kahlon, P.K. Bansal and Kawaljeet 

Singh, “Irregular Class of Multistage Interconnection 
Network in Parallel Processing”, Journal of Computer 
Science, 01-MAR-2008 

 
 
 

[20] Theimer T.H., Rathgeb E. P., and Huber M.N., 
“Performance Analysis of Buffered Banyan Networks”, 
IEEE Transactions on Communications, vol. 39, no. 2, pp. 
269-277, February 1991.  

 

[21] D. Tutsch, M. Brenner. “A Multistage Interconnection 
Network Simulator”. In 17th European Simulation 
Multiconference: Foundations for Successful Modelling & 
Simulation (ESM’03); Nottingham, SCS, pp. 211. 216, 
2003.  

[22]  D. Tutsch, G. Hommel. “Generating Intrconnection 
Network Simulator. Generating Systems of Equations for 
Performance Evaluation of Buffered Multistage 
Interconnection Networks”. Journal of Parallel and 
Distributed Computing, 62, no. 2: pp. 228..240,2002   

[23] Bianco Andrea, Finochietto Jorge, Mellia Marco, and Neri 
Fabio, “Multistage Switching Architectures for Software 
Routers”. IEEE Network –July/August 2007. 

[24] Aydin O. Balkan, Gang Qu, Uzi Vishkin, “An Area-
Efficient High-Throughput Hybrid Interconnection 
Network for Single-Chip Parallel Processing”, Design 
Automation Conference, 2008. DAC 2008, 45th ACM/IEEE 
Publication Date: 8-13 June 2008 

[25] Raja J., S. Shanmugavel, “Performance Studies of Banyan 
ATM Switching Networks using RS Codes”, IE Journal-
CP, Vol 84, May 2003.. 

 
 

John Garofalakis 
(http://athos.cti.gr/garofalakis/index_e

n.htm) is Associate Professor at the 
Department of Computer Engineering 
and Informatics, University of Patras, 
Greece, and Director of the applied 
research department "Telematics 
Center", of the Research Academic 
Computer Technology Institute 
(RACTI).  

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 3, MARCH 2010 261

© 2010 ACADEMY PUBLISHER

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4547421
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4547421
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4547421
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4547421
http://athos.cti.gr/garofalakis/index_en.htm
http://athos.cti.gr/garofalakis/index_en.htm

