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Abstract For the spare parts stocking problem, generally METRIC type methods are used
in the context of capital goods. A decision is assumed on which components to discard
and which to repair upon failure, and where to perform repairs. In the military world, this
decision is taken explicitly using the level of repair analysis (LORA). Since the LORA
does not consider the availability of the capital goods, solving the LORA and spare parts
stocking problems sequentially may lead to suboptimal solutions. Therefore, we propose
an iterative algorithm. We compare its performance with that of the sequential approach
and a recently proposed, so-called integrated algorithm that finds optimal solutions for two-
echelon, single-indenture problems. On a set of such problems, the iterative algorithm turns
out to be close to optimal. On a set of multi-echelon, multi-indenture problems, the iterative
approach achieves a cost reduction of 3 % on average (35 % at maximum) as compared to the
sequential approach. Its costs are only 0.6 % more than those of the integrated algorithm on
average (5 % at maximum). Considering that the integrated algorithm may take a long time
without guaranteeing optimality, we believe that the iterative algorithm is a good approach.
This result is further strengthened in a case study, which has convinced Thales Nederland to
start using the principles behind our algorithm.
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1 Introduction

Capital goods are physical systems that are used to produce products or services. They are
expensive and technically complex, and they have high downtime costs. Examples of capital
goods are manufacturing equipment, defense systems, and medical devices. Before capital
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Fig. 1 Examples, with our naming convention in bold text (adapted from van der Heijden et al. 2012, p. 2)

goods are deployed, several tactical level questions concerning their corrective maintenance
need to be answered: which components to repair upon failure and which to discard, where
to perform the repairs, and which amount of spare parts to stock at which locations in the
repair network. These questions should be answered such that a target availability of the
capital goods (the installed base) is achieved against the lowest possible costs.

Due to the high downtime (unavailability) costs of capital goods, a defective capital good
will usually be repaired by replacement of a component by a functioning spare part. In the
defense industry, the components that are replaced are called LRUs or line replaceable units.
It should be decided for each (type of) LRU whether it will be repaired or discarded upon
failure, with discard implying that a new LRU needs to be acquired. Furthermore, it should
be decided how many spare parts to stock for each LRU.

In general, the problem is more complicated due to two reasons. The first reason is that
if LRUs are repaired, this is typically done by replacement of a subcomponent, called SRU
or shop replaceable unit. Such an SRU may itself consist of subcomponents, called parts.
This means that spare parts need to be stocked both to enable quick repairs of the capital
goods (by stocking spare LRUs) and to enable quick repairs of LRUs and SRUs (by stocking
spare SRUs and parts, respectively). Figure 1a gives an example of a multi-indenture product
structure, including the naming convention that we use. We use the terms component and
subcomponent if the indenture level is irrelevant.

The second complication is due to the fact that repairs and discards may be performed at
various echelon levels in the multi-echelon repair network, an example of which is shown
in Fig. 1b, including the naming convention that we use. Notice that in general, there may
be any number of indenture levels and echelon levels.

To be able to perform repairs, discards, or movements of components from one echelon
level to the next, resources may be required. Resources include test, repair, and transporta-
tion equipment, but one time training of service engineers may also be considered as a
resource for which a one-time investment is required.

The level of repair analysis (LORA) can be used to make the above mentioned LORA
decisions:

1. which components to repair upon failure and which to discard;
2. at which locations in the repair network to perform the repairs and discards; and
3. at which locations to deploy resources.

The first two sets of decisions are called the repair/discard decisions.
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The LORA is typically modeled as a deterministic integer linear optimization problem
(see, e.g., Basten et al. 2009, 2011a). Including the waiting times for spare parts (unavailabil-
ity of the capital goods) would lead to non-linear constraints. Since the spare parts stock-
ing problem in itself is already hard to solve to optimality (see, e.g., Sherbrooke 2004;
Muckstadt 2005), it is improbable that such a non-linear model can be solved easily, or that
the non-linear constraints can be linearized in a meaningful way (especially in the case of
multi-echelon, multi-indenture problems).

As a result, only an estimate of the spare parts holding costs may be considered in the
LORA problem, and often those costs are ignored completely. Instead, the other relevant
costs are considered, consisting of both fixed costs and costs that are variable in the number
of failures. Fixed costs are due to the resources. They result from a certain repair/discard de-
cision, but are incurred no matter how often components are actually repaired or discarded,
for example, costs for training of service engineers and depreciation costs of repair equip-
ment. Variable costs may include transportation costs, working hours of service engineers,
and usage of bulk items.

Using the LORA decisions as an input, the spare parts stocking problem is solved to de-
cide which components to put on stock at which location(s) in the repair network in which
quantity, such that a target availability of the capital goods is achieved against minimum
holding costs. A well-known method to solve this problem is (VARI-)METRIC (see, e.g.,
Sherbrooke 2004; Muckstadt 2005), which is a greedy heuristic that is known to find solu-
tions that are close to optimal (see also Sect. 2.2).

Performing the LORA first and then the spare parts stocking analysis, the sequential ap-
proach, may lead to a solution that is not optimal. For example, if repairs are performed at
the operating sites, each operating site requires a resource, whereas only one resource may
be required in total if repairs are performed at the central depot. As a result, the LORA of-
ten recommends to perform repairs at the central depot (repairing centrally leads to higher
transportation costs of components, but these costs are generally low compared to costs for
resources in a high-tech environment). The LORA neglects the fact that when repairs are
performed centrally, the repair lead times (including transportation lead times) are higher
than when repairs are performed at the operating sites, thus leading to higher spare parts
requirements. This is especially problematic if the holding costs make up a large percent-
age of the total costs, as we have observed in a case study in the defense industry (see
Sect. 6).

We propose an iterative algorithm to solve the joint problem of LORA and spare parts
stocking. The basic idea is to first solve a LORA, next use VARI-METRIC to solve the
spare parts stocking problem, and then use the results of VARI-METRIC to add an estimate
of the holding costs to the LORA inputs and start a second iteration. We continue in this
way until we do not find a different solution anymore. We compare our results with the
sequential solution (this is the solution of the first iteration of our algorithm) and with the
solutions resulting from an algorithm that was recently proposed by Basten et al. (2012) for
two-echelon, single-indenture problems. Their so-called integrated algorithm finds optimal
solutions, or in fact, efficient points on the curve of costs versus expected number of back-
orders (see Sect. 2.2). The integrated algorithm can be extended to multi-echelon, multi-
indenture problems, but Basten et al. (2012, Appendix) explain that in that case, finding
efficient points cannot be guaranteed. However, the integrated algorithm still finds solutions
that are close to optimal (see Sect. 5.2.1). The key drawback of the integrated algorithm
is that it is very slow because it implicitly enumerates all possible solutions. For example,
we are able to solve a case study (see below) using our iterative algorithm in less than one
minute, whereas the integrated algorithm requires almost two days.
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We perform an extensive numerical experiment to test the performance of our algorithm.
On a set of two-echelon, single-indenture problems, the iterative algorithm achieves a cost
reduction of 3.80 % on average compared with the sequential approach, whereas the inte-
grated approach achieves a cost reduction of 5.07 % on average. This means that the iterative
algorithm closes most of the optimality gap of the sequential approach. Using a set of multi-
echelon, multi-indenture problems, we find that the iterative algorithm is much faster than
the integrated algorithm, while its solution value is on average only 0.58 % higher than that
of the integrated algorithm (5.26 % higher at maximum). Compared with the sequential pro-
cedure, the iterative algorithm achieves a cost reduction of 2.85 % on average and 34.69 %
at maximum. In a case study at Thales Nederland, a manufacturer of naval sensors and naval
command and control systems, we show that solving the joint problem iteratively instead of
sequentially leads to a cost reduction of almost 10 %, which is worth a couple of millions of
euros over the life time (over 20 years) of twelve sensor systems. Because of these results,
the principles behind our algorithm are now in use at Thales Nederland.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the related
literature. We outline our model for the joint problem of LORA and spare parts stocking in
Sect. 3, and in Sect. 4, we present the iterative algorithm. In Sect. 5, we show the results
of our numerical experiment, and we then present the results of the case study that we
performed in Sect. 6. We give conclusions and recommendations for further research in
Sect. 7.

2 Literature review

We discuss the literature on LORA, spare parts stocking, and the joint problem of LORA
and spare parts stocking in Sects. 2.1, 2.2, and 2.3, respectively.

2.1 Level of repair analysis

Barros (1998) proposes a multi-echelon, multi-indenture LORA model in which decisions
are taken per echelon level. So, if it is decided to repair a certain component at a certain
operating site, it is also repaired at all other operating sites. Barros further assumes that all
components at a certain indenture level require the same resource and that resources are
uncapacitated. The latter means that there is no downtime waiting for resources, and either
zero or one resource is located at each location. As in all papers on LORA, Barros formulates
her model as an integer programming model. She solves it using CPLEX. Barros and Riley
(2001) use the same model as Barros does and solve it using a branch-and-bound approach.

Saranga and Dinesh Kumar (2006) make the same assumptions as Barros (1998), except
that the former assume that each component requires its own unique resource. They use a
genetic algorithm to solve the model. Basten et al. (2009) generalize the two aforementioned
models by allowing for components requiring multiple resources and multiple components
requiring the same resource. As in the remaining three papers in this section, Basten et al.
(2009) use CPLEX to solve the model.

Basten et al. (2011a) generalize the model of Basten et al. (2009) by allowing for different
decisions at the various locations at one echelon level. They show that the LORA problem
can be modeled efficiently as a generalized minimum cost flow model. Basten et al. (2011b)
propose a number of extensions to the model of Basten et al. (2011a) so that, for example, a
probability of unsuccessful repair can be modeled, or capacitated resources. The latter does
not mean that waiting times are incorporated.
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Brick and Uchoa (2009) use similar assumptions as Basten et al. (2011a), except that the
former assume that resources have a maximum capacity (as Basten et al. 2011b, do). They
further consider one echelon level only and effectively assume two indenture levels. Inte-
grated in their LORA is the decision of which facilities to open (facility location problem).

2.2 Spare parts stocking

In the area of capital goods, the paper of Sherbrooke (1968) is generally seen as the seminal
paper on the multi-item spare parts stocking problem. Sherbrooke develops the METRIC
model (Multi-Echelon Technique for Recoverable Item Control), which is the basis for a
huge stream of METRIC type models. These models can be used both for repairable and
for consumable parts. The goal is to find the most cost effective allocation of spare parts in
a network, such that a target availability of the capital goods is achieved. This is achieved
by focusing on the expected number of backorders (EBO): if a spare part is requested, but
not available yet, this is called a backorder. As an approximation, the number of backo-
rders of LRUs at operating sites equals the number of systems that are unavailable waiting
for spares. The METRIC type methods focus on minimizing the expected number of backo-
rders, instead of maximizing the availability, because this allows for decomposing the overall
problem into subproblems per LRU. A marginal analysis approach is used to construct an
EBO-curve. Each point on this curve shows the spare parts holding costs versus expected
number of backorders resulting from an allocation of a set of spare parts to one or various
locations. Construction of the curve is stopped as soon as the number of backorders has
decreased enough to achieve the target availability. Generally, the achieved availability is
somewhat higher than the target availability since the EBO-curve consists of a discrete set
of points. This is called overshoot.

One key assumption in these models is that demand at the operating sites follows a Pois-
son process. A second key assumption is that an (S −1, S) continuous review inventory con-
trol policy is used. This means that if a spare part is requested from a stock point, this stock
point immediately requests a spare part at the next higher echelon level (or immediately
orders a new component or repairs the broken component, depending on the repair/discard
strategy that is used). As a result, demand at higher echelon levels follows a Poisson pro-
cess as well, and the number of components in repair or in the replenishment loop (after
discard) at the highest location is thus Poisson distributed. However, the number of backo-
rders at that location is not Poisson distributed if there is a positive number of spare parts
located there. As a result, analysis of the so-called pipeline at the lower echelon levels gets
complicated, the pipeline being the number of components that is sent upwards for repair or
discard, and not replaced by a functioning component yet, plus the number of components
in the repair loop at the current location. Sherbrooke (1968) chooses to approximate the
number of items in the pipeline by assuming that it is also Poisson distributed. Muckstadt
(1973) extends the work by Sherbrooke (1968); the latter considers single-indenture prod-
uct structures only, whereas the former develops a multi-echelon, multi-indenture model,
called MOD-METRIC. The development of the VARI-METRIC models (Graves 1985;
Sherbrooke 1986) has been the next important step forward: a two-moment approxima-
tion is used for the pipelines. It is also possible to evaluate the model exactly (Graves 1985;
Rustenburg et al. 2003), but this is computationally intensive, and VARI-METRIC is known
to give small errors only. Furthermore, backorders at higher echelon levels are not the only
cause of delays; backorders for subcomponents can delay repairs of components in a way
that is similar to what we described above.



126 Ann Oper Res (2015) 224:121–145

2.3 Joint problem of level of repair analysis and spare parts stocking

We are aware of two papers in which a method is presented to solve the joint problem of
LORA and spare parts stocking: Alfredsson (1997) and Basten et al. (2012).

Alfredsson (1997) assumes a single-indenture product structure and a two-echelon repair
network. He further assumes that each component requires exactly one tester (resource) and
that all components that require the same tester are repaired at the same location. Further-
more, one multi-tester exists. It can be used for the repair of a number of components, and
adapters can be added in a fixed order to enable the multi-tester to be used for the repair of
additional components. If the multi-tester can be used to repair a certain component, then
this component necessarily uses the multi-tester instead of the original resource that it used.
Resources are capacitated, which means that multiple resources of the same type may be
required at one location. System downtime includes the waiting times for the resources, the
repair times, and the waiting times for spares. The problem is modeled as a non-linear in-
teger programming model and Alfredsson uses a decomposition method that sequentially
decomposes the overall problem into smaller subproblems to solve the model.

Basten et al. (2012) also consider single-indenture, two-echelon problems, but they al-
low for more general component-resource relations: components may share resources and
a component may require multiple resources simultaneously. This substantially complicates
the problem. The basic idea of their so-called integrated algorithm is to recursively decom-
pose the problem in a smart way such that all possible solutions are enumerated without
taking too much time. For the single-indenture, two-echelon problem, Basten et al. (2012)
find convex EBO-curves consisting of efficient points. This means that it is not possible
to achieve a lower expected number of backorders for the costs that they find. They also
show that it cannot be guaranteed that efficient points are found for general multi-indenture
problems.

3 Model

In this section, we outline the model that we use. We present our assumptions in Sect. 3.1,
and in Sect. 3.2, we give the mathematical model formulation.

3.1 Assumptions

A key assumption is that we make the same (LORA and stocking) decisions at all locations
at one echelon level for each component and resource. This implicitly means that we assume
symmetrical repair networks, i.e., we have the same costs, demand rates, lead times, et cetera
at all locations at one echelon level, and the same number of locations being replenished
from a location at the next higher echelon level. In such a network, taking the same decision
at all locations at one echelon level is an optimal strategy, except that the overshoot increases
(see Sect. 2.2). We discuss relaxation of this assumption in Sect. 7.

The remaining assumptions that we make are commonly made for the LORA problem
(see, e.g., Basten et al. 2011a) and in the METRIC type models (see, e.g., Sherbrooke 2004;
Muckstadt 2005). We assume that:

– Components fail according to a Poisson process with a constant rate.
– Replacement of a defective LRU by a functioning one takes zero time. This effectively

means that we focus on the supply availability, not on the operational availability that also
includes the actual replacement time (see, e.g., Sherbrooke 2004, p. 38).
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After a component is replaced by a function spare part, if one is available, the defective
component may either be repaired at the operating site, discarded at the operating site, or be
shipped to the next higher echelon level (move option). At that echelon level, the same three
options are available (only at the central depot, there is no move option). We assume that:

– Discarding a component implies that its subcomponents are discarded as well.
– The replenishment lead times for (the newly purchased replacements of) discarded com-

ponents are independent and identically, generally distributed random variables. The re-
plenishment lead time is the time between failure of the component and reception of the
newly purchased component from an external source at the discard location.

– Each subcomponent may cause the failure of a component (otherwise, this subcomponent
need not be modeled), so repairing a component may result in replacement of any one
subcomponent. As a result, if it is decided to repair a component at a certain echelon
level, a further decision needs to be taken for each subcomponent at the same echelon
level (repair, discard, or move the subcomponent).

– A failure in a component is caused by a failure in at most one subcomponent. In other
words, a component cannot fail due to failure of two or more subcomponents simultane-
ously.

– Repairs are always successful.
– The repair lead times are independent and identically, generally distributed random vari-

ables that include the time used for sending the failed component to the repair location
and for diagnosing the failure cause.

– A failed (sub)component may not be shipped to a lower echelon level. So, if a component
is repaired at echelon level e by replacing a subcomponent, this subcomponent may only
be repaired at an echelon level f ≥ e.

– The move lead time (to move a functioning, repaired or newly purchased, component
from a location to one of its child locations) is deterministic.

– Resources are uncapacitated, meaning that at most one resource of a certain type needs to
be installed at each location.

– Minimizing the expected number of backorders is a good approximation of maximizing
the availability (see Sect. 2.2).

– There are no lateral transshipments between locations at the same echelon level or emer-
gency shipments from locations at a higher echelon level; functioning spare parts are only
supplied from one specific location at the next higher echelon level.

– For each component at each location, an (S − 1, S) continuous review inventory control
policy (one for one replenishment) is used (see Sect. 2.2).

To ease the presentation in the remainder of this paper and to decrease the problem size,
we make three additional assumptions. Our algorithm is easily modified such that these
assumptions can be removed:

– There is no commonality, so a subcomponent may not be part of two different compo-
nents.

– Since resources that are required to enable discard or movement do not occur frequently
in practice, e.g., not in our case study, we assume that resources may be required to enable
repair only.

– Since the discard costs mainly consist of the costs of acquiring a new component, and
since those costs are generally much higher than move costs, we consider discard at the
highest echelon level only. If newly purchased components can enter the repair network
at the central warehouse only, then this assumption does not influence the replenishment
times.
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3.2 Mathematical model

In Sect. 3.2.1, we introduce the notation that we use and we give the mathematical model in
Sect. 3.2.2.

3.2.1 Notation

Let C be the set of all components, with C1 ⊆ C being the set of LRUs. Γc is the (possibly
empty) set of subcomponents of component c ∈ C at the next higher indenture level.

The set E consists of all echelon levels, the highest echelon level being emax. The set
D consists of the possible decisions that can be made: D = {discard, repair,move}. The set
of options that is available at echelon level e ∈ E is De . For e ∈ E \ emax, De = D, and
Demax = {discard, repair}.

Let R be the set of resources. Ωr ⊆ C is the set of components that require resource r

in order to be repaired (if component c requires two resources, r1 and r2, then c ∈ Ωr1 and
c ∈ Ωr2 ).

We define the following decisions variables:

Xc,e,d =
{

1, if for component c ∈ C at echelon level e ∈ E decision d ∈ De is made,
0, otherwise;

Yr,e =
{

1, if resource r is located at echelon level e,

0, otherwise;
Sc,e = the number of spare parts of component c located at each location at echelon

level e.

Furthermore, we denote X as the three-dimensional array with entries Xc,e,d and S as the
two-dimensional array with entries Sc,e.

For each component c ∈ C, we define λc (> 0) as the total annual failure rate over all
operating sites. We define three cost types. For component c ∈ C at echelon level e ∈ E,
vc,e,d (≥ 0) are the variable costs of making decision d ∈ D. Since we have chosen, without
loss of generality, to minimize the total annual costs with our definition of λc , we define
fr,e (≥ 0) to be the annual fixed costs to locate resource r ∈ R at echelon level e ∈ E and
we define h′

c,e (> 0) to be the annual costs of holding one spare of component c ∈ C at each
location at echelon level e (we use the prime to ease notation later on).

3.2.2 Mathematical model formulation

We define our model as follows:

minimize
∑
c∈C

∑
e∈E

∑
d∈De

vc,e,d · λc · Xc,e,d +
∑
r∈R

∑
e∈E

fr,e · Yr,e +
∑
c∈C

∑
e∈E

h′
c,e · Sc,e (1)

subject to: ∑
d∈D1

Xc,1,d = 1, ∀c ∈ C1, (2)

Xc,e,move ≤
∑

d∈De+1

Xc,e+1,d , ∀c ∈ C, ∀e ∈ E \ emax, (3)

Xc,e,repair ≤
∑
d∈De

Xb,e,d , ∀c ∈ C, ∀b ∈ Γc, ∀e ∈ E, (4)
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Xc,e,repair ≤ Yr,e, ∀r ∈ R, ∀c ∈ Ωr, ∀e ∈ E, (5)

availability(X , S) ≥ target availability, (6)

Xc,e,d , Yr,e ∈ {0,1}, (7)

Sc,e ∈ N. (8)

Constraints (2) to (5) are the ‘LORA constraints’ and define the same model as Basten et al.
(2011a) use, except that they do not necessarily take the same decision at each location
at one echelon level. Constraint (2) assures that for each LRU a decision is made at the
operating sites. If a component is discarded, no further decisions need to be made for that
component or its subcomponents. If a component is moved, Constraint (3) assures that a
decision is made for that component at the next higher echelon level, and if a component is
repaired, Constraint (4) assures that a decision is made for each of its subcomponents. Some
options are only available if all resources are present, which is guaranteed by Constraint (5).
Finally, Constraint (6) assures that the target availability is met; this is the only ‘spare parts
stocking constraint’. As explained in Sect. 2.2, given the annual demand for spare parts at the
various locations, enough spare parts need to be stocked throughout the network to achieve
such expected number of backorders that the availability of the capital goods is higher than
the target availability. Since the availability is a non-linear function of all repair/discard
decisions X and all spare parts decisions S , our model cannot be solved using an ILP solver.
Therefore, we propose an iterative algorithm in Sect. 4. Notice that in Constraint (6), the
various lead times play a role (we have not introduced notation for those lead times).

4 Iterative algorithm

As mentioned in Sect. 1, the joint problem of LORA and spare parts stocking analysis is
in practice usually solved sequentially. First, a LORA is performed, focusing on achieving
the lowest possible costs, consisting of both fixed costs (

∑
r∈R

∑
e∈E fr,e · Yr,e), and costs

that vary with the number of failures (
∑

c∈C

∑
e∈E

∑
d∈D vc,e,d · λc · Xc,e,d ). Next, given the

decisions that result from the LORA, a spare parts stocking problem is solved (e.g., using
VARI-METRIC) that determines where to locate spare parts in the repair network, such that
a target availability of the capital goods is achieved against the lowest possible spare parts
holding costs (

∑
c∈C

∑
e∈E h′

c,e · Sc,e).
We propose an iterative algorithm that uses in each iteration the same two building blocks

as the sequential approach (see Fig. 2). After the first iteration, we therefore have the solution
of the sequential method. The spare parts holding costs are then used to adapt the LORA
inputs so that a second iteration of LORA and spare parts stocking may be performed. The
key idea is that, as an approximation, we may decompose the holding costs into holding
costs per component, so that for each component c the holding costs are

∑
e∈E h′

c,e · Sc,e .
The implicit assumption is that the holding costs that result from a repair/discard decision are
independent of the decisions taken for the other components. Of course, this assumption is
violated, since VARI-METRIC is a multi-item approach (an example is given below, with the
data presented in Table 1). Although our iterative algorithm is somewhat similar to Bender’s
decomposition (Benders 1962) in that we use a master problem (the LORA problem) and
a subproblem (the spare parts stocking problem), there are two key differences: (1) our
algorithm is a heuristic, whereas Bender’s decomposition is guaranteed to find the optimal
solution, and (2) we are not adding constraints or cuts to the master problem, but we are
changing the coefficients in the constraints.
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Fig. 2 Iterative algorithm

Notice that the move decisions can be seen as ‘intermediate’ decisions; the decision to
repair or discard a component is the ‘final’ decision. Therefore, we need to adapt the costs
for the repair and discard decisions only. We define hi

c,e,d as the spare parts holding costs
that are added to the variable costs of component c ∈ C for decision d ∈ {discard, repair}
at echelon level e ∈ E in iteration i ≥ 1. So, the variable costs that are used in the LORA
for component c ∈ C at echelon level e ∈ E in iteration i are vc,e,d + hi

c,e,d for decision
d ∈ {repair,discard}, and vc,e,d for decision d = move. In the first iteration, h1

c,e,d = 0 for
all tuples (c, e, d). For each tuple (c, e, d) for which Xc,e,d = 1 in iteration i − 1 (i > 1),

we set hi
c,e,d =

∑
f ∈E h′

c,f
·Sc,f

λc
(Sc,f resulting from iteration i − 1; division by λc because

vc,e,d + hi
c,e,d is multiplied by λc in the objective function). For all other possible repair

and discard decisions (Xc,e,d = 0 in iteration i − 1), we set hi
c,e,d = hi−1

c,e,d . This means that
the holding costs that we include in the LORA inputs are changed in iteration i only if
the related repair/discard decision was chosen in iteration i − 1. In this way, we gradually
find an estimate for the resulting holding costs for all relevant repair/discard decisions and
the algorithm will eventually find a LORA solution that leads to low total costs: LORA
costs (excluding the added holding costs) plus holding costs resulting from the spare parts
stocking analysis. We stop the algorithm as soon as the LORA solution is identical in two
consecutive iterations. If in the second of these iterations, two different LORA solutions
exist that lead to the same costs, we choose the one we also had in the previous iteration
so that the algorithm terminates. In Appendix B, we show that the algorithm cannot cycle
between two solutions and that it therefore necessarily terminates after a finite number of
iterations.

We use an example to illustrate the feedback mechanism. We consider a radar system that
consists of two components (C = {A,B}). The radar system is installed at two ships (echelon
level 1), which are supported by a depot (echelon level 2, so E = {1,2}). LRUs A and B both
require a unique resource in order to enable repair (R = {r1, r2}, Ωr1 = {A}, Ωr2 = {B}), the
fixed annual costs of which are €10,000 and €25,000, respectively (fr1,1 = 20,000, fr1,2 =
10,000, fr2,1 = 50,000, fr2,2 = 25,000). For both LRUs (c ∈ {A,B}), the annual failure rate
per ship is 1 (λc = 2), the discard costs are €15,000 (vc,2,discard = 15,000), the variable repair
costs are €6,000 (vc,e,repair = 6,000), and the move costs are €0 (vc,1,move = 0).

In the first iteration, holding costs of zero are included in the LORA problem. Therefore,
the repair/discard options with the lowest LORA costs are chosen for both LRUs (see Table 1
for an overview of all resulting costs): A is repaired at depot, which leads to annual costs
of €22,000 (variable repair costs are 2 times €6,000 and a resource at the depot costs
€10,000), and B is discarded, which leads to annual discard costs of €30,000. Next, the
spare parts stocking problem is solved, which results in stocking spare parts at both the
ships and the depot, leading to annual holding costs of €16,000 for A and €30,000 for B.
In the second iteration, the LORA is solved with modified inputs. The LORA chooses to
discard A, since that leads to costs of €30,000, whereas repair at depot leads to total costs
of €22,000 + €16,000 = €38,000. For B, repair at depot is the most cost effective option.
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Table 1 Costs in the LORA problem (×€1,000)

Decision LORA costs
(vc,e,d ·λc +fr,e)

Spare parts holding costs (hi+1
c,e,d

)
after

iteration 1 iteration 2 iteration 3

LRU LRU LRU LRU

A B A B A B A B

Repair at ship 32 62 0 0 0 0 4 0

Repair at depot 22 37 16 0 16 20 16 15

Discard 30 30 0 30 20 30 20 30

Total costs
(LORA and spares)

98 107 88

We next find holding costs of €20,000 for both LRUs. Notice that the total costs in the
second iteration (€107,000) are higher than those in the first iteration (€98,000). In the
third iteration, it is decided to repair A at ship, and B at depot. This results in annual holding
costs of €4,000 for A and €15,000 for B.

Notice that the holding costs for B change, although the repair/discard decision for B
does not change. This is a result of the system approach that is used in VARI-METRIC: a
change in the repair/discard decision for one LRU (A) may change the number of spare parts
that should be stocked of another LRU (B). We simply replace the old costs by the newly
calculated costs. Notice furthermore that for A, we found the holding costs estimate related
to ‘repair at depot’ when ‘discard’ was chosen for LRU B. This value may be lower if B is
repaired at ship or at depot and as a result, in the optimal solution, we may have to repair
A at depot. However, the solution in the next iterations will be to repair A at ship and to
repair B at depot. This risk of using holding costs that are too high is the key drawback of
our approach and it may result in not selecting a cost-effective option anymore. As a result,
we may end up with a non-optimal solution.

It is possible to slightly improve the feedback algorithm. For example, instead of replac-

ing an old value (hi−1
c,e,d ) by a new value (hi

c,e,d =
∑

f ∈E h′
c,f

·Sc,f

λc
), we may take a weighted

average of the old and new value (hi
c,e,d = α ·

∑
f ∈E h′

c,f
·Sc,f

λc
+ (1 −α)hi−1

c,e,d , with 0 < α < 1).
However, such improvements require setting additional values (what is a good value for α?),
they make the algorithm more difficult to grasp and implement, and they lead to higher com-
putation times because the values hi

c,e,d converge slowly to their correct value. Therefore,
we do not consider them here. Basten (2010) shows the results of implementing three such
improvements.

5 Numerical experiment

We design a numerical experiment that we present in Sect. 5.1. In Sect. 5.2, we discuss the
results of our tests by answering the following questions:

1. What cost reduction can be achieved by solving the joint problem of LORA and spare
parts stocking iteratively instead of sequentially?

2. How does the iterative algorithm perform compared with the integrated algorithm?
3. Which model parameters influence the cost reductions that may be achieved by solving

the joint problem using the integrated or iterative algorithm instead of sequentially?
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4. How do the repair strategies change when solving the joint problem using the integrated
or iterative algorithm instead of sequentially?

For the two-echelon, single-indenture problem, Question 2 effectively means comparison
of the iterative algorithm with the optimal solution. Therefore, our experiment consists of
a set of two-echelon, single-indenture problem instances, and a set of multi-echelon, multi-
indenture problem instances. For the latter set, we have extended the algorithm by Basten
et al. (2012).

The algorithms are implemented in Delphi 2007 and problems instances are solved on an
Intel Core 2 Duo P8600@2.40 GHz, with 3.5 GB RAM, under Windows XP SP 3. For the
iterative and sequential algorithm, the LORA building block consists of the model of Basten
et al. (2009) (but implemented using the minimum cost flow model of Basten et al. 2011a).
Optimization in the spare parts stocking building block is done using the greedy heuristic
that is typically used, and is described, for example, by Muckstadt (2005) and Basten et al.
(2012). Evaluation is done using the two-moment approximation of Graves (1985) (VARI-
METRIC, extended to the general multi-echelon, multi-indenture problem as described by
Rustenburg et al. 2003) for two reasons. For multi-echelon, multi-indenture problems:

1. exact evaluation is known to be computationally intensive (see Sect. 2.2); and
2. using the greedy heuristic, it is not guaranteed to find optimal base stock levels, as shown,

for example, in the appendix of Basten et al. (2012).

For the two-echelon, single-indenture test set, we also show the results for the integrated
algorithm using the exact evaluation of Graves (1985) (the resulting solution of the greedy
heuristic is optimal in this case). We can thus show that the difference between the exact and
approximate evaluation is minor, which suggests that the (approximate) integrated algorithm
will find solutions that are close to optimal for the multi-echelon, multi-indenture problem
as well.

5.1 Design

A detailed description of how we generate the problem instances can be found in Ap-
pendix B; here we only give an overview.

We use the same generator as Basten et al. (2012) use to generate a set of 1,280 two-
echelon, single-indenture problem instances. In each problem instance there are 100 LRUs,
10 resources, and 5 operating sites. Using a full factorial design, we vary the costs of each
component and resource, the holding costs, and the discard, repair, and move lead times. We
further vary the number of components that require the same resource. For each combination
of parameter settings, we generate ten problem instances, in order to obtain a variety of
problem instances. Each problem is solved using a target availability of 95 %.

The generator that we use to generate multi-echelon, multi-indenture problem instances
is an extended version of the former generator. We have three sets of problem instances,
each having its own focus:

1. Varying the problem size, the holding costs, and the lead times.
2. Varying the attractiveness of acquiring resources by changing the annual demand rate

and the costs of resources and components (resulting in different variable repair, discard,
and move costs).

3. Varying the component-resource relations.

In total, sets 1, 2, and 3 consists of 1,280, 160, and 80 problem instances, respectively.
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Table 2 Overview of the results for the two-echelon, single-indenture problem instances

Algorithm Approximate
or exact

Average
achieved
availability

Cost reduction compared with
sequential (approximate)

average maximum

Sequential approximate 95.14 % – –

Iterativea approximate 95.07 % 3.80 % 35.46 %

Integrated approximate 95.11 % 5.07 % 43.26 %

Integrated exact 95.11 % 5.07 % 43.26 %

aThe average number of iterations is 6.6, with a minimum of 5 and a maximum of 11

Table 3 Overview of the results for the multi-echelon, multi-indenture problem instances

Computation
time in seconds

Achieved
availability

Cost reduction compared with

sequential iterative

average maximum average maximum average maximum average maximum

Sequential 0.18 1.83 95.25 % 96.32 % – – – –

Iterativea 4.50 41.09 95.11 % 96.12 % 2.85 % 34.69 % – –

Integrated 155.81 10,456.37 95.20 % 96.24 % 3.40 % 36.88 % 0.58 % 5.26 %

aThe average number of iterations is 8.9, with a minimum of 5 and a maximum of 18

5.2 Results

We address the questions that we posed at the start of Sect. 5. In Sect. 5.2.1, we compare
the results of the iterative algorithm with those of the sequential approach and the integrated
algorithm of Basten et al. (2012) at a high level, and in Sect. 5.2.2, we analyze how repair
strategies change and which parameters influence the results.

5.2.1 Comparison of sequential, iterative, and integrated algorithms

Table 2 gives an overview of the results on the two-echelon, single-indenture test set of
Basten et al. (2012). Compared with solving the two problems sequentially, solving the
joint problem using the integrated algorithm results in a cost reduction of 5.07 % on average
and more than 43 % at maximum. Notice that both exact and approximate versions of the
integrated algorithm produce nearly identical solutions (it differs in 2 of the 1,280 problem
instances only). The iterative algorithm achieves most of the cost reductions that may be
achieved in this test set.

We are mainly interested in the multi-echelon, multi-indenture problem instances. For a
fair comparison, we use the approximate evaluation for all three algorithms here. Table 3
gives an overview of the results over the three test sets. A key observation is that the results
are in line with the results on the two-echelon, single-indenture problem instances. This
suggests that the integrated algorithm finds solutions that are still close to optimal and that
the iterative algorithm is very robust. The iterative algorithm achieves a cost reduction of
2.85 % on average and almost 35 % at maximum compared with the sequential approach.
In 9.5 % of the problem instances, a cost reduction of over 10 % is achieved (not shown in a
table). The gap with the integrated algorithm is less than 2.5 % in over 95 % of the problem
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Table 4 Cost reduction for important parameter settings (multi-echelon, multi-indenture problem instances)

Test
set

Parameter Setting Average cost reduction

iterative
versus
sequential

integrated
versus
sequential

integrated
versus
iterative

1 # LRUs 50 4.35 % 4.98 % 0.69 %

100 1.10 % 1.46 % 0.37 %

Move lead time [0.5/52; 4/52] 4.59 % 5.29 % 0.76 %

[2/52; 4/52] 0.86 % 1.15 % 0.30 %

2 Demand per LRU [0.01; 0.10] 10.96 % 12.06 % 1.20 %

[0.01; 0.25] 2.47 % 2.73 % 0.27 %

[0.01; 0.50] 1.32 % 2.77 % 1.47 %

[0.01; 1.00] 3.09 % 4.61 % 1.56 %

instances, which means that chances of being a few percent off are very small using the
iterative algorithm.

The integrated algorithm requires on average about 35 times as much computation time as
the iterative algorithm, due to the integrated algorithm’s enumerative approach (see Table 3).
At maximum, the integrated algorithm requires almost three hours, which is more than 250
times as much as the iterative algorithm. This clearly shows that the iterative algorithm
scales much better (this effect is even stronger for the case study, see Sect. 6.3).

There are some problem instances for which the integrated algorithm yields higher costs
than the iterative approach, at most 2.76 % (not shown in a table). This is due to the overshoot
problem (see Sects. 2.2 and 6.3, especially Fig. 4). The integrated algorithm yields a higher
availability in these cases as well. There are no problem instances on which the iterative
algorithm yields both lower costs and a higher availability than the integrated algorithm.

5.2.2 Detailed analysis of repair strategies and important parameters

Here, we focus on the multi-echelon, multi-indenture problem instances only. For the com-
putation times, all results are as may be expected. Computation times increase using either
of the three approaches when the number of indenture levels, number of LRUs, number of
echelon levels, or the demand increases. For the integrated algorithm, the computation times
also increase when components require more resources on average.

Table 4 gives the cost reductions for those parameter settings that substantially impact
the cost reductions that we achieve. We discuss the results below, including a discussion of
the changes in the repair strategies. The other parameters that we varied in test sets 1, 2,
and 3 do not have a substantial impact on the achieved cost reductions.

We see that if the difference between the integrated and the sequential algorithm in-
creases, then the difference between the integrated and the iterative algorithm increases as
well, but not as fast. This is interesting, since it means that if it becomes more important to
solve the two problems of LORA and spare parts stocking jointly, then the performance of
the iterative algorithm relative to the integrated algorithm improves. This suggests that it is
quite safe to use the iterative algorithm instead of the integrated algorithm.

Table 5 gives some more detailed results on the problem instances consisting of either 50
or 100 LRUs. Before we discuss the differences that result from the difference in number of
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Table 5 Detailed results on (multi-echelon, multi-indenture) problem instances consisting of 50 or 100 LRUs

Number
of LRUs

% of the demand for
LRUs that is repaired

% spare LRUs
that is located

at echelon level in
total

at echelon level in
total1 2 3 1 2 3

Sequential 50 90.4 % 0.0 % 3.6 % 94.0 % 97.7 % 0.7 % 1.6 % 100 %

100 93.4 % 0.0 % 3.3 % 96.7 % 99.0 % 0.2 % 0.7 % 100 %

Iterative 50 82.6 % 3.2 % 8.0 % 93.8 % 94.3 % 2.6 % 3.1 % 100 %

100 90.2 % 2.7 % 3.7 % 96.6 % 97.8 % 1.2 % 1.0 % 100 %

Notice: Some problem instances consist of two echelon levels only (echelon levels 1 and 3)

LRUs, we first discuss how the repair strategies change when using the iterative algorithm
instead of the sequential approach.

Notice that in the sequential solution, repairs are never performed at the intermediate
depots (in test set 1). The reason is that resources are never located at the intermediate
depot, probably because they are so expensive that they are interesting only at the central
depot. As a result, repairs can be performed at the operating site if no resources are required
(why pay more to ship them to the intermediate depot?) or at the central depot if resources
are required and available there. Using the iterative algorithm, the numbers change, due to
two reasons:

1. More resources are located at the central depot (26% and 7% more for 50 and 100 LRUs,
respectively; not shown in a table), which means that some components that are discarded
in the sequential solution, are now repaired. As a result, the lead time decreases for those
components and less spare parts are required.

2. If repairs of a certain component are performed at the operating sites, then spare compo-
nents may only be located at the operating sites as well. As a result, some components
that do not require any resource in order to be repaired, are repaired at a more central
location in the solution of the integrated solution so that risk pooling effects may be
used (a spare part can now be located at a more central location and be used at various
operating sites).

Reason 1 above partly explains the difference in achieved cost reduction for the problem
instances with 50 and 100 LRUs (see Table 4): we do not vary the number of resources
in our problem instances, which means that in problem instances with 50 LRUs a higher
percentage of LRUs requires a resource in order to be repaired than in problem instances
with 100 LRUs. As a result, there is more to be gained (relatively) when there are 50 LRUs
only.

Next, we notice that if we increase the target availability for the problem instances with
50 LRUs to 97.5 % (not shown in a table), the achieved cost reduction reduces to about
2 %. A target availability of 97.5 % for 50 LRUs leads to a target availability per LRU of
99.95 % (= 1 − (1 − 0.975)1/50). This is almost equal to the target availability per LRU in
problem instances consisting of 100 LRUs and having a target availability of 95 %: 99.95 %
(= 1 − (1 − 0.95)1/100). This means that if the target availability per LRU increases, the po-
tential cost reduction decreases. This also partly explains why the cost reduction in problem
instances with 50 LRUs is higher than in the problem instances with 100 LRUs.

We then look at the achieved cost reductions for two values of the move lead time (see
Table 4). A relatively low move lead time (compared with the repair and discard lead times)
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means that on average the sequential approach leaves a lot of room for improvement for the
iterative (and integrated) algorithm. The reason is that the total lead time (repair lead time
plus move lead time) when repairing at a higher echelon level is only slightly higher than
the repair lead time when repairing at the operating sites. As a result, the disadvantage of
repairing at a higher echelon level is relatively small, and the advantage of being able to use
risk pooling effects outweighs more often that disadvantage.

If we finally look at the cost reductions that may be achieved for the various values of
the demand per LRU (see Table 4), we see that it is lowest for our second lowest setting
([0.01; 0.25]); it is higher when the demand is either lower or higher. It appears that multiple
effects (e.g., target availability and demand per LRU) interact, as a result of which there is
sometimes a lot to be gained from solving the two problems jointly instead of sequentially,
and sometimes not. We are not able to state beforehand which of the two cases will happen.

6 Case study at Thales Nederland

We perform a case study on a sensor system (combined radar and electro-optical surveillance
system) manufactured by Thales Nederland. The goal of this study is to find out which
cost reduction we may obtain in practice and which advantages and drawbacks of our joint
approach we can identify for application in practice. Thales Nederland is part of the Thales
Group, which is a high-technology company active in aerospace, space, defense, security,
and transportation. Thales Nederland is a manufacturer of naval sensors and naval command
and control systems. Since Thales Nederland is active in the defense industry, it is a perfect
company for a case study because both the LORA problem and the spare parts stocking
problem have been well known in the military world for decades. Thales’ customers include
many navies, e.g., the Royal Netherlands Navy. If such a navy acquires a set of sensor
systems, it also demands a plan on how to maintain the systems, which includes a LORA and
a recommended spares list. Although Thales has to supply this plan, it should be optimized
for the navy.

In Sect. 6.1, we discuss how a logistic engineer at Thales Nederland solves the LORA
and spare parts stocking problems, and the associated difficulties. We give the technical
details of the case study in Sect. 6.2, and in Sect. 6.3, we compare the results of the iterative
algorithms with those of the sequential and integrated algorithms, and those of the logistic
engineer.

6.1 Current practice

The logistic engineer at Thales Nederland first conducts a so-called non-economic LORA.
The goal of this non-economic LORA is to exclude unrealistic repair or discard options and
to simplify the problem. Questions that are posed are, for example:

– Is the component prone to failure? For example, casings do not usually fail under normal
circumstances and are therefore not considered in the LORA.

– Does the customer prescribe the maintenance policy for the component? If so, this policy
is followed.

– Does the value of the component exceed a certain threshold? If not, it can be discarded
by default, since it is not worth repairing.

The result is that for some components, repair/discard options are excluded. If one option
only remains, no decision needs to be taken in the LORA problem for that component, but
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the component is still taken into account in the spare parts stocking problem, because of
its influence on the availability. Furthermore, only part of the resources are included in the
LORA, mainly the expensive ones.

After the input data has been structured and filtered, the logistic engineer finds a first
solution, using decisions made for previous products, his experience, and spreadsheet cal-
culations. Then, he uses a spare parts stocking tool (INVENTRI, based on VARI-METRIC
and the work of Rustenburg 2000) to stock spare parts. Analyzing the results, he finds com-
ponents for which holding costs are very high. If he thinks that it might help to change the
LORA decision for these components, he does so and calculates the new LORA costs and
solves a spare parts stocking problem. So in fact, the logistic engineer tries to perform a few
manual iterations (less than ten), which has as its drawbacks that it is:

– time consuming, since such an analysis takes up to a few days after all data has been
acquired;

– hard, if not impossible, to replicate, because of the judgmental feedback loop;
– error sensitive, since the engineer may easily overlook an opportunity for cost reduction.

Usage of the iterative (or integrated) algorithm would take away these drawbacks.

6.2 Case: a sensor system

Although the actual product structure of the sensor system consists of six indenture lev-
els, we consider only three indenture levels, as a result of the non-economic LORA (see
Sect. 6.1). For the same reason, although the product structure consists of over 1,500 com-
ponents, only slightly more than 200 turn out to be relevant, of which 40 % are LRUs. For
about one third of the components, only one repair/discard option remains, and for an ad-
ditional one third, the repair/discard options that can be chosen are restricted. The repair
network consists of twelve ships, attached to two intermediate depots, a central depot and
Thales Nederland, the OEM (spare parts may not be stocked at the OEM and if repairs are
performed at the OEM, then the variable repair costs per repair action are higher, but an
investment in resources is not required for the navy). There are 54 resources.

The costs of the various components can be up to one million euros, and the costs of the
various resources can be up to a couple of million euros. These costs are not used directly.
Instead, there are three types of costs in the joint problem of LORA and spare parts stocking:
variable costs per repair or discard action, fixed annual costs for locating resources, and
annual spare parts holding costs. For each type of costs, we include the most important cost
factors:

– Variable repair costs (customer’s network): working hours (e.g., locating failure, exchang-
ing subcomponents, and performing direct repair), variable costs for using resources (e.g.,
energy consumption and wear), and usage of additional parts (e.g., bulk items such as
screws and wires).

– Variable repair costs (OEM and outsourced in general): listed repair price.
– Variable discard costs: procurement price for the component that replaces the discarded

component and disposal costs or a residual value of the discarded component.
– Variable move costs: transportation, handling, and administrative costs.
– Fixed resource costs: depreciation costs, costs of capital, a risk factor (e.g., insurance

against damage and theft), fixed operating costs (e.g., a location to operate the equipment),
and maintenance costs of the resource. Resources may have a residual value after their
economic lifetime.
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Fig. 3 Costs for Thales case (normalized)

Fig. 4 Availability as a function of total costs for the case study

– Spare parts holding costs: costs of capital, a risk factor, and storage costs. Spares may
have a residual value after the lifetime of the product.

The case study is solved for a target expected availability of 95% per ship.

6.3 Results

Figure 3 shows the results for the case study. We see that the iterative algorithm finds the
best solution with a cost reduction of 9.7 %. The reason that the solution of the integrated
algorithm leads to higher costs is the overshoot problem, as can be seen in Fig. 4. The figure
shows the curve of availability versus costs that results from applying marginal analysis in
the integrated algorithm, plus the solution that results from applying the iterative algorithm.
We see that the latter solution lies below the curve, so that it is not an efficient point. Still,
it is much closer to the target availability than the solution of the integrated algorithm, so
that the resulting costs are much lower than those resulting from applying the integrated
algorithm. We also see that some parts of the curve are quite dense, whereas others are not.
This means that if we would have aimed for an availability of, for example, 94.8 %, the
overshoot of the integrated algorithm would be very low.

The iterative algorithm requires less than one minute (11 iterations), whereas the inte-
grated algorithm requires almost two days due to its enumerative approach. This means that
for usage at Thales Nederland, the iterative algorithm fits best.

The cost reductions are achieved as follows. More resources are installed and more re-
pairs are performed in the customer’s network and in total. This leads to higher resource



Ann Oper Res (2015) 224:121–145 139

costs and higher variable costs, but also to much lower holding costs. The cost reduction is
achieved by:

– installing two resources at the depot that are not installed in the sequential solution;
– installing one resource at both intermediate depots instead of one at the central depot;
– installing one resource at all ships instead of one at each of the two intermediate depots.

The other resources are installed at the same echelon level in both solutions. The logistic
engineer at Thales Nederland achieves about a quarter of the cost reduction that we achieve
using the iterative algorithm: his solution is a combination of our iterative and sequential
solution.

7 Conclusions and further research

In this paper, we presented an iterative algorithm for the joint problem of LORA and spare
parts stocking for multi-indenture, multi-echelon problem instances with very mild restric-
tions on the resource-component relations.

We conclude that the iterative algorithm performs very well on average, and compared
with the integrated algorithm, we observe cost differences of a few percent only in rare cases.
This holds both for the approximate and exact version of the integrated algorithm since
the difference between them is very small. We further conclude that the iterative algorithm
scales very well; computation time is not a problem, whereas it is a huge problem for the
integrated algorithm. This means that the iterative algorithm can be used in practice and it
leads to a substantial cost reduction compared to solving the two problems sequentially. As
a result, the principles behind our algorithm have been adopted by Thales Nederland.

The iterative algorithm can easily be extended if extensions do not affect the feedback
mechanism. Examples of this are certain flexibility options in the spare parts stocking anal-
ysis, e.g., lateral transshipments or emergency shipments, or introduction of a probability of
unsuccessful repair. Such extensions may be interesting from a business point of view, but
probably not from an academical point of view. Our recommendations for further research
are as follows.

First, the model may be extended so that the exact repair network can be modeled. The
current model, in which completely symmetrical networks are assumed, can easily be ex-
tended such that we only require the same number of echelon levels in every part of the
network. In other words, locations may be connected only to locations that are at the next
higher or next lower echelon level. For instance, an operating site (echelon level 1) may not
be connected directly to a central depot (echelon level 3). In this extended model, the LORA
decisions should still be the same at all locations at one echelon level for each component
and resource, but the spare parts stocking decisions may differ. This is often sufficient in
practice. For example, in a naval environment, it is convenient that at each ship the same re-
pair/discard decisions are taken, even if the demand rates differ due to their different mission
profiles.

Allowing for different LORA decisions in one network or allowing for completely asym-
metrical networks is more difficult. The key problem is how to decompose the holding costs
that result from the spare parts stocking problem so that they can be fed back to the LORA.
The holding costs for spares that are stocked at the central depot should be allocated to de-
cisions made for failures originating at multiple operating sites. It may be possible to do this
based on the failure rate at each operating site. The performance of the iterative heuristic
will probably decline, since an additional approximation has to be introduced in the feed-
back mechanism.
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Second, finite repair capacities may be introduced in the model. This is already difficult
for the spare parts stocking problem alone, but there is some literature available (see, e.g.,
Sleptchenko et al. 2002). The feedback mechanism changes since the holding costs will not
be fed back to one possible repair/discard decision, but to a possible repair/discard decision
including a number of resources (in case of repair). However, we do not expect too much
problems with this change in the feedback mechanism.

With all possible extensions, it will be hard to compare the iterative algorithm with the
integrated algorithm, since the computation time of the latter algorithm will explode.
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Appendix A: Termination of the iterative algorithm

We prove that the iterative algorithm necessarily converges in a finite number of iterations.
We do so by showing that the number of possible solutions is finite and that it is not possible
to have a cycle (a number of iterations after which we find exactly the same solution). In our
proof we assume that the discard option is available at each echelon level to decrease the
notational complexity. The proof is straightforwardly adapted if discard is available at the
central depot only.

Lemma 1 The number of possible solutions is finite.

Proof If there are |E| echelon levels, then each resource can be located at the various eche-
lon levels in 2|E| ways. Since there are |R| resources, the total number of combinations for
the resource locations is 2|E||R|

.
Each component may be repaired or discarded at any of the |E| echelon levels, so there

are 2 · |E| repair/discard options per component. Since there are |C| components, there
are (2 · |E|)|C| options in total. In fact, there are generally less combinations, since some
repair/discard options are unavailable for a subcomponent given the repair/discard decision
for its parent component.

Combining the options for the resources and the components shows that there are at most
2|E||R| · (2 · |E|)|C| possible solutions for the LORA problem. Due to the exact allocation of
resources to echelon levels, some repair options may not be available for certain compo-
nents.

Since a given solution for the LORA problem leads to one specific allocation of spare
parts in the spare parts stocking problem, there are also at most 2|E||R| · (2 · |E|)|C| solutions
for the joint problem. �

We define Hi as the three-dimensional array with entries hi
c,e,d in iteration i.

Corollary 1 Hi can be filled in at most (|C| · |E| · 2)1+2|E||R| ·(2·|E|)|C|
ways.
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Proof As a result of Lemma 1, each entry hi
c,e,d in Hi can be filled in at most 2|E||R| ·

(2 · |E|)|C| ways in each iteration i (i > 1). In addition, each h1
c,e,d = 0. Since there are

|C| · |E| · 2 values to be filled, Hi can be filled in at most (|C| · |E| · 2)1+2|E||R| ·(2·|E|)|C|

ways. �

We now show that cycling cannot occur, which is formalized in Lemma 2. In iteration i,
an estimate of the spare parts holding costs is included in the inputs for the LORA problem
(Hi ). The iteration starts with solving the LORA problem, leading to a certain LORA so-
lution LSi (the repair/discard decisions and resource locations) with resulting LORA costs
LCi (variable and fixed costs) and resulting estimated holding costs ECi . Next, the spare
parts stocking problem is solved. The total costs of the solution in iteration i are now the
LORA costs (excluding the estimated holding costs) LCi plus the holding costs resulting
from the spare parts stocking problem SCi . In iteration i + 1, the estimates of the holding
costs in the LORA inputs are adapted again (to Hi+1) and a new LORA solution is found
LSi+1, with associated costs LCi+1 + ECi+1. The proof of Lemma 2 states that cycling can
occur only if LCi+1 + ECi+1 is equal to LCi + SCi . In other words, the solution that is found
in iteration i + 1 may be different from the solution that is found in iteration i, but they lead
to the same costs using the LORA inputs in iteration i + 1 (including Hi+1). Therefore, we
could just as well pick solution LSi again and terminate the algorithm, which is what we
describe in Sect. 4.

Lemma 2 The iterative algorithm cannot cycle between a number of realizations of Hi .

Proof We define Xi
c,e,d , Y i

r,e , and Si
c,e as the realization in iteration i of Xc,e,d , Yr,e , and Sc,e ,

respectively. Then, we define LCi = ∑
c∈C

∑
e∈E

∑
d∈De

vc,e,d ·λc ·Xi
c,e,d +∑

r∈R

∑
e∈E fr,e ·

Y i
r,e , ECi = ∑

c∈C

∑
e∈E

∑
d∈{discard,repair} h

i
c,e,d ·λc ·Xi

c,e,d , and SCi = ∑
c∈C

∑
f ∈E h′

c,f ·Si
c,f .

ECi represents the estimated holding costs in the LORA solution in iteration i, whereas SCi

represents the actual holding costs resulting from solving the spare parts stocking problem
in iteration i. Remember from Sect. 4 that for each tuple (c, e, d) (with d ∈ {repair,discard})
for which Xi−1

c,e,d = 1, we set hi
c,e,d =

∑
f ∈E h′

c,f
·Si−1

c,f

λc
. Therefore SCi = ∑

c∈C

∑
f ∈E h′

c,f ·
Si

c,f = ∑
c∈C

∑
e∈E

∑
d∈{discard,repair} λc · hi+1

c,e,d · Xi
c,e,d . Finally, we define Δi as the difference

between SCi and ECi , so Δi = SCi − ECi = ∑
c∈C

∑
e∈E

∑
d∈{discard,repair}(h

i+1
c,e,d − hi

c,e,d ) ·
λc · Xi

c,e,d .
If LCi+1 + ECi+1 = LCi + SCi , we know that LSi+1 = LSi and the algorithm termi-

nates. So, in a cycle of length n (n > 1) it should hold that LCi+1 + ECi+1 < LCi + SCi =
LCi +ECi +Δi . For iteration i+2 it then holds that LCi+2 +ECi+2 < LCi+1 +ECi+1 +Δi+1,
so LCi+2 + ECi+2 < LCi+1 + ECi+1 + Δi+1 < LCi + ECi + Δi + Δi+1. For the nth itera-
tion, we get LCi+n + ECi+n < LCi + ECi + ∑n−1

k=0 Δi+k . In a cycle of length n (n > 1),
we also know that LCi+n = LCi and ECi+n = ECi , so it should hold that

∑n−1
k=0 Δi+k > 0.

However,
∑n−1

k=0 Δi+k = ∑n−1
k=0

∑
c∈C

∑
e∈E

∑
d∈{discard,repair}(h

i+k+1
c,e,d − hi+k

c,e,d ) · λc · Xi+k
c,e,d =∑

c∈C

∑
e∈E

∑
d∈{discard,repair}

∑n−1
k=0(h

i+k+1
c,e,d − hi+k

c,e,d ) · λc · Xi+k
c,e,d . We know that if Xi+k

c,e,d =
0, then hi+k+1

c,e,d = hi+k
c,e,d . We also know that hi+n

c,e,d = hi
c,e,d . It is now easily seen that∑n−1

k=0(h
i+k+1
c,e,d −hi+k

c,e,d ) ·λc ·Xi+k
c,e,d = 0 for all c ∈ C, e ∈ E, d ∈ {discard, repair} and therefore∑n−1

k=0 Δi+k = 0. We have shown that a cycle cannot occur if we only pick another LORA
solution in iteration i +1 if that leads to a strictly better result than using the LORA solution
of iteration i again. Therefore, the iterative algorithm cannot cycle. �
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Table 6 Deterministic values in the multi-echelon, multi-indenture test setsa

Parameter Default value Additional value(s) Varied in test set

Network structure 1 × 2 × 10 1 × 5 1

Product structure 50 × 100 × 200 50 × 100 1

100 × 200 × 400

100 × 200

# Resources 10 – –

# Component types 4 3 3

% Resources used by 1 component 50 % 0 % 3

aFor example, the product structure is fixed to the default one (50 LRUs, 100 SRUs, and 200 parts) in all
problem instances in test sets 2 and 3, whereas in test set 1 it is varied; four different product structures are
used, including the default one and including two two-indenture product structures

Theorem 1 The iterative algorithm always terminates after a finite number of iterations.

Proof This holds since the number of possible matrices Hi is finite, as stated in Corol-
lary 1, and the algorithm cannot cycle between a number of realizations of Hi , as stated in
Lemma 2. �

Appendix B: Problem instances generator

In this appendix, we supply the details of how we generate the problem instances that we use
in our numerical experiment. Since the generator that we use to generate the multi-echelon,
multi-indenture problem instances is an extended version of the generator that we use to
generate the two-echelon, single-indenture problem instances, we find it more convenient
to discuss the former generator first. For the latter generator it then suffices to show the
parameter values only.

B.1 Multi-echelon, multi-indenture problem instances

We use three sets of problem instances, each having its own focus:

1. Varying the problem size, the holding costs, and the lead times.
2. Varying the attractiveness of acquiring resources by changing the annual demand rate

and the costs of resources and components (resulting in different variable repair, discard,
and move costs).

3. Varying the component-resource relations.

Tables 6 and 7 give the exact parameter settings that we use in each of the test sets; the
meaning of the parameters will be explained below. If we give a range for a parameter
(Table 7), we randomly draw values from the given range. These values are the same for
all settings of the other parameters. We use a full factorial design for each set: we test each
possible combination of parameter settings. For each combination of parameter settings, we
generate ten problem instances, in order to obtain a variety of problem instances. In total,
sets 1, 2, and 3 consists of 1,280, 160, and 80 problem instances, respectively. Sets 2 and 3
are kept smaller than set 1, since the problem instances in the former sets require on average
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Table 7 Stochastic values in the multi-echelon, multi-indenture test setsa

Parameter Default range Additional range(s) Varied in test set

Annual demand per
LRU

[0.01; 0.25] [0.01; 0.10] 2

[0.01; 0.50]

[0.01; 1.00]

Net cost of component [1,000; 10,000] [1,000; 100,000] 2

Discard costs [0.75; 1.25] – –

Repair costs [0.25; 0.75] – –

Move costs [0.01; 0.01] – –

Annual holding costs [0.20; 0.20] [0.20; 0.40] 1

Annual cost of resource [10,000; 100,000] [10,000; 500,000] 2

Discard lead time (in years) [1/10; 1/2] [1/4; 1/2] 1

Repair lead time (in years) [0.5/52; 4/52] [2/52; 4/52] 1

Move lead time (in years) [0.5/52; 4/52] [2/52; 4/52] 1

# Components per resource [2; 6] [2; 3] 3

aFor example, the annual demand per LRU is in the default range ([0.01; 0.25]) for all problem instances in
test sets 1 and 3, whereas in test set 2 it is varied; four different ranges are used, including the default one

about ten times as much computation time as those in set 1. A full factorial design over all
three test sets would have led to a set that is too large (163,840 problem instances). Each
problem is solved using a target availability of 95 %.

Since each parameter setting has a default value (or range) that is the same in each test
set, there are ten problem instances that are part of each set. The parameter settings for these
ten problem instances are used below to explain how we generate problem instances. In the
explanation below, we do not mention which values are varied; this is shown in the tables.

The (symmetrical) repair network consists of a central depot, two intermediate depots,
and ten operating sites. The discard lead time (in years) is drawn from a (continuous) uni-
form distribution in the range [1/10; 1/2] and differs per component. The repair lead time
is in the range [0.5/52; 4/52] and differs per component, but is equal for all echelon levels.
The move lead time is in the range [0.5/52; 4/52] and differs per echelon level, but is equal
for all components. For a definition of the lead times, see Sect. 3.1.

The three-indenture product structure consists of 50 LRUs, 100 SRUs, and 200 parts.
Each subcomponent is randomly assigned to one of the components at the next lower in-
denture level. As a result, in general, the number of subcomponents per component differs
for the various components. The annual demand for a component is equal to the annual de-
mand of its subcomponents (if any exist). We achieve this by drawing the annual demand
of each part from a uniform distribution on the interval [0.01/(#subcomp. per comp.)2;
0.25/(# subcomp. per comp.)2], and recursively calculating the annual demand of the SRUs
and LRUs. The demand for SRUs or LRUs without subcomponents is drawn from the same
interval as the demand for parts.

For each component, we draw a net price from a shifted exponential distribution with
shift factor 1,000 and rate parameter 7/(10,000 − 1,000). As a result, we do not have com-
ponents with a price below 1,000, since they are typically discarded by default. Furthermore,
there are considerably more cheap components than expensive ones. On average 1� of the
components get a value larger than 10,000, but we draw a new price for these components



144 Ann Oper Res (2015) 224:121–145

Table 8 Deterministic values in
the two-echelon, single-indenture
test set

Parameter Value(s)

Network structure 1 × 5

# LRUs 100

# Resources 10

Table 9 Stochastic values in the
two-echelon, single-indenture
test seta

aFor example, the net cost of
each component is in the range
[1,000; 10,000] in half of the
problem instances, and in the
range [1,000; 100,000] in the
other half of the problem
instances

Parameter Range(s)

Annual demand per LRU [0.01; 0.10]

Net cost of component [1,000; 10,000] & [1,000; 100,000]

Discard costs [0.75; 1.25]

Repair costs [0.25; 0.75]

Move costs [0.01; 0.01]

Annual holding costs [0.20; 0.20] & [0.20; 0.40]

Annual cost of resource [10,000; 100,000] & [10,000; 500,000]

Discard lead time (in years) [1/10; 1/2] & [1/4; 1/2]

Repair lead time (in years) [0.5/52; 4/52] & [2/52; 4/52]

Move lead time (in years) [2/365; 4/52] & [1/52; 4/52]

# Components per resource [2; 3] & [2; 6]

to avoid odd problem instances. The annual costs of the resources are drawn from a shifted
exponential distribution with shift factor 10,000 and rate parameter 7/(100,000 − 10,000).
To avoid odd problem instances, we draw a new value if we have drawn a value higher than
100,000.

Using these prices, we calculate the variable costs as follows:

– repair costs are a fraction of the net component price. This fraction is drawn from a uni-
form distribution in the range [0.25; 0.75] and differs per component;

– the price of each subcomponent is added to the price of its parent to get the gross compo-
nent price of the parent;

– discard costs are a fraction of the gross component price. This fraction is in the range
[0.75; 1.25] and includes the costs for acquiring a new component;

– move costs are 1 % ([0.01; 0.01]) of the gross component price;
– annual costs of holding one spare part of a component are 20 % ([0.20; 0.20]) of the

gross component price. These holding costs cover, for example, interest, storage costs,
insurance costs, and obsolescence costs.

There are ten resources and their annual costs are in the range [10,000; 100,000]. Those
costs are generated analogous to how the net price of each component is generated. 5 re-
sources (50 % of the total) are required by one component only, the other are required by a
number of components that is drawn from a discrete uniform distribution in the range [2; 6].
We distinguish 4 ‘component types’, for example electronic and mechanical components.
Each resource and each LRU family (an LRU including all its subcomponents at any in-
denture level) is randomly assigned to one of the component types, so that resources of one
component type do not interact with resources of another component type, which is realistic
in practice.
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B.2 Two-echelon, single-indenture problem instances

To generate a set of two-echelon, single-indenture problem instances, we use the generator
that Basten et al. (2012) use. Since the generator that we have described in Appendix B.1
is an extended version of that generator, it suffices to only give the parameter settings here,
in Tables 8 and 9. In total this set consists of 10 · 27 = 1,280 problem instances. Notice that
this set is disjoint with the set described in Sect. B.1.

References

Alfredsson, P. (1997). Optimization of multi-echelon repairable item inventory systems with simultaneous
location of repair facilities. European Journal of Operational Research, 99, 584–595.

Barros, L. L. (1998). The optimization of repair decisions using life-cycle cost parameters. IMA Journal of
Mathematics Applied in Business and Industry, 9, 403–413.

Barros, L. L., & Riley, M. (2001). A combinatorial approach to level of repair analysis. European Journal of
Operational Research, 129(2), 242–251.

Basten, R. J. I. (2010). Designing logistics support systems. Level of repair analysis and spare parts invento-
ries. PhD thesis, University of Twente, Enschede, The Netherlands.

Basten, R. J. I., Schutten, J. M. J., & van der Heijden, M. C. (2009). An efficient model formulation for level
of repair analysis. Annals of Operations Research, 172(1), 119–142.

Basten, R. J. I., van der Heijden, M. C., & Schutten, J. M. J. (2011a). A minimum cost flow model for level
of repair analysis. International Journal of Production Economics, 133(1), 233–242.

Basten, R. J. I., van der Heijden, M. C., & Schutten, J. M. J. (2011b). Practical extensions to a minimum cost
flow model for level of repair analysis. European Journal of Operational Research, 211(2), 333–342.

Basten, R. J. I., van der Heijden, M. C., & Schutten, J. M. J. (2012). Joint optimization of level of re-
pair analysis and spare parts stocks. European Journal of Operational Research, 223(3), 474–483.
doi:10.1016/j.ejor.2012.05.045.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik, 4(1), 238–252.

Brick, E. S., & Uchoa, E. (2009). A facility location and installation or resources model for level of repair
analysis. European Journal of Operational Research, 192(2), 479–486.

Graves, S. C. (1985). A multi-echelon inventory model for a repairable item with one-for-one replenishment.
Management Science, 31(10), 1247–1256.

Muckstadt, J. A. (1973). A model for a multi-item, multi-echelon, multi-indenture inventory system. Man-
agement Science, 20(4), 472–481.

Muckstadt, J. A. (2005). Analysis and algorithms for service parts supply chains. New York: Springer.
Rustenburg, W. D. (2000). A system approach to Budget-Constrained spare parts. PhD thesis, Eindhoven

University of Technology, Eindhoven, The Netherlands.
Rustenburg, W. D., van Houtum, G. J., & Zijm, W. H. M. (2003). Exact and approximate analysis of multi-

echelon, multi-indenture spare parts systems with commonality. In J. G. Shanthikumar, D. D. Yao, &
W. H. M. Zijm (Eds.), Stochastic modelling and optimization of manufacturing systems and supply
chains (pp. 143–176). Boston: Kluwer.

Saranga, H., & Dinesh Kumar, U. (2006). Optimization of aircraft maintenance/support infrastructure using
genetic algorithms—level of repair analysis. Annals of Operations Research, 143(1), 91–106.

Sherbrooke, C. C. (1968). METRIC: a multi-echelon technique for recoverable item control. Operations Re-
search, 16(1), 122–141.

Sherbrooke, C. C. (1986). VARI-METRIC: improved approximations for multi-indenture, multi-echelon avail-
ability models. Operations Research, 34, 311–319.

Sherbrooke, C. C. (2004). Optimal inventory modelling of systems. Multi-echelon techniques (2nd ed.). Dor-
drecht: Kluwer.

Sleptchenko, A., van der Heijden, M. C., & van Harten, A. (2002). Effects of finite repair capacity in multi-
echelon, multi-indenture service part supply systems. International Journal of Production Economics,
79, 209–230.

van der Heijden, M. C., Alvarez, E. M., & Schutten, J. M. J. (2012). Inventory reduction in spare part
networks by selective throughput time reduction. International Journal of Production Economics.
doi:10.1016/j.ijpe.2012.03.020.

http://dx.doi.org/10.1016/j.ejor.2012.05.045
http://dx.doi.org/10.1016/j.ijpe.2012.03.020

	An approximate approach for the joint problem of level of repair analysis and spare parts stocking
	Abstract
	Introduction
	Literature review
	Level of repair analysis
	Spare parts stocking
	Joint problem of level of repair analysis and spare parts stocking

	Model
	Assumptions
	Mathematical model
	Notation
	Mathematical model formulation


	Iterative algorithm
	Numerical experiment
	Design
	Results
	Comparison of sequential, iterative, and integrated algorithms
	Detailed analysis of repair strategies and important parameters


	Case study at Thales Nederland
	Current practice
	Case: a sensor system
	Results

	Conclusions and further research
	Acknowledgements
	Appendix A: Termination of the iterative algorithm
	Appendix B: Problem instances generator
	Multi-echelon, multi-indenture problem instances
	Two-echelon, single-indenture problem instances

	References


