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While substantial research has been done on meth-
ods for solving the network revenue management
problem, much less work has been done in solving
the version where customers choose among avail-
able network products. Usually, when airlines open
up a menu of fares for a given set of flights, cus-
tomers will make substitutions between those avail-
able, or purchase nothing. Although incorporating
customer choice is important in practice, methodolog-
ically is more difficult than the independent demand
case, which already suffers from Bellman’s “curse of
dimensionality.”
Recently, Liu and van Ryzin (2008) studied a lin-

ear programming formulation, which they call the
choice-based linear program. In essence, their linear pro-
gramming formulation is the choice equivalent of the
widely used deterministic linear program (DLP) for
network revenue management. It approximates the
original stochastic problem by replacing stochastic
demand with its expected value. They provide a col-
umn generation algorithm to solve the problem for
the multinomial logit choice model with disjoint consid-
eration sets (MNLD). The linear programming formu-
lation is the same as the model proposed in Gallego
et al. (2004), where the focus is on analyzing so-called
flexible products.
The purpose of this paper is to extend the approx-

imate dynamic programming approach of Adelman

(2007) to the customer choice setting, and compare
it to Liu and van Ryzin (2008). This is an emerging
approach to a wide variety of problems in operations
research, for which a lot of active research is ongoing
(see, e.g., de Farias and Van Roy 2003). The idea is to
formulate the underlying dynamic program as a linear
program, and then make an affine functional approx-
imation to the value function to obtain dynamic bid-
prices in which marginal resource values change as a
function of time. In the independent demand setting,
these dynamic bid-prices perform better, in terms of
both the bound and policy obtained, than the static
bid-prices obtained from the standard linear program.
We discover in this paper that this statement remains
true when the method is extended to the choice set-
ting. In fact, the gap between the bounds obtained
empirically can be as much as 50%.
In addition to the parallel results to Adelman (2007),

there are two unique contributions in this paper. First,
we provide a way to solve the column generation sub-
problem. Unlike in Adelman (2007), the column gen-
eration subproblem for solving our linear program is a
nontrivial nonlinear integer programming problem for
general discrete choice models. For the MNLD choice
model, the subproblem belongs to the class of integer
generalized fractional programs. General algorithms for
efficient solution of such problems are not currently
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available (Schaible and Shi 2003). However, we show
that when the resource consumption matrix is a 0-1
matrix, the subproblem is equivalent to a linear mixed
integer programming problem, which can be solved
effectively.
Second, we provide new theory and results on the

decomposition heuristic, which was extended by Liu
and van Ryzin (2008) to the choice setting. (See Talluri
and van Ryzin 2004b for a discussion of the decom-
position heuristic for network revenue management.)
In this scheme, the network problem is decomposed
into many tractable single-leg problems, which then
give single-leg value functions that are both time and
capacity dependent. These are then substituted into
the right-hand side of Bellman’s equation to construct
a control policy. We show that, as a by-product of the
decomposition heuristic, we obtain a statewise upper
bound on the optimal value function, which we call
the decomposition bound. When constructed using
our dynamic bid-prices, the decomposition bound
is tighter than the upper bound obtained from our
approximate linear program, which, in turn, is tighter
than the bound from the choice-based linear program.
This new and improved bound was not known in the
revenue management literature. Up to this point, it is
customary to use the objective value from the DLP (or
choice-based linear program when choice is involved)
as the benchmark in numerical studies (see, for exam-
ple, Liu and van Ryzin 2008). Hence the decomposi-
tion bound is a provably better benchmark than has
been used previously.
Empirically, we find that the decomposition heuris-

tic with dynamic bid-prices gives superior policy per-
formance as compared with the version using static
bid-prices in Liu and van Ryzin (2008). This is signif-
icant in practice, because the decomposition heuris-
tic with static bid-prices is generally regarded as one
of the best strawmen available, and is widely used
in industry. It should be noted that the dynamic bid-
prices are generated by solving a much harder linear
program problem. Our numerical experiments show
that doing so is feasible for reasonably sized problems.

Brief Review of Literature
Our work is closely related to the revenue manage-
ment and approximate dynamic programming litera-
tures. For a comprehensive review of revenue man-
agement literature, see Talluri and van Ryzin (2004b).
Many researchers have realized the deficiency of inde-
pendent demand models, and therefore have studied
problems with rich customer choice activities.
Brumelle et al. (1990) consider seat allocations for

a two-class single-leg revenue management problem
when the demand for the two classes are stochastically
dependent because of consumer buy-up. Belobaba and
Weatherford (1996) investigate variations to some well

known heuristics to account for customer diversion
among customer classes. Zhao and Zheng (2001) con-
sider a two-class seat allocation model with passenger
diversion. Talluri and van Ryzin (2004a) consider cus-
tomer choice among fare classes on a single-leg flight.
Zhang and Cooper (2005, 2009) consider seat alloca-
tion and pricing issues for multiple flights on the same
origin and destination. Van Ryzin and Vulcano (2004)
introduce a simulation-based optimization approach
for network revenue management under a fairly gen-
eral choice scheme. Gallego et al. (2004) propose a
linear program to analyze revenue management for
flexible products, which was subsequently adopted by
Liu and van Ryzin (2008) to study network revenue
management with customer choice. Bront, Mendez-
Diaz, and Vulcano (2007) extend the work of Liu and
van Ryzin (2008) to allow for overlapping consider-
ation sets in the choice model. Jiang and Miglionico
(2006) consider a network revenue management prob-
lem with consumer buy-up and explore several solu-
tion approaches. Subsequent to our paper, Kunnumkal
and Topaloglu (2008) solve the same problem as ours
using a Lagrangian approach to approximate dynamic
programming (ADP).
The body of literature on ADP is relatively small

but growing (see Bertsekas and Tsitsiklis 1996; Powell
2007 for a review). Our approach is most closely
related to the approach for dynamic programs. Puter-
man (1994) gives an excellent review of the area. The
functional approximation idea was first considered by
Schweitzer and Seidmann (1985).

Organization of the Paper
The rest of the paper is organized as follows. Sec-
tion 2 considers the affine functional approximation
and the resulting, which we call approximate. Sec-
tion 3 provides a column generation algorithm to
solve the approximate for the MNLD choice model.
Section 4 introduces heuristics from solutions of the
approximate. Section 5 reports numerical results.

1. Problem Formulation
In this section, we provide the basic formulations
used in the paper. The Markov decision process
(MDP) formulation in §1.1 is essentially the same as
the one presented in Liu and van Ryzin (2008). The
linear program formulation in §1.2 was first studied
by Gallego et al. (2004) and later considered by Liu
and van Ryzin (2008).

1.1. MDP Formulation
For ease of exposition, we use airline terminology
throughout the paper. Consider a flight network with
m legs and the set of capacities c = �c1� � � � � cm�, where
ci is the capacity of leg i. There are n products offered,
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where a product is a flight itinerary and fare class
combination. Let N = �1� � � � �n� be the set of products.
The fare for product j is fj . The consumption matrix
is an (m × n)-matrix A ≡ �aij �. The entry aij represents
the integer amount of resource i required by a class
j customer. The ith row Ai is the incidence vector for
leg i, and the jth column Aj is the incidence vector
for product j . There are � discrete time periods that
are counted forward, so period � is the last period.
To simplify notation, we reserve the symbols i, j , and t
for legs, products, and time, respectively.
In each period, there is one customer arrival with

probability 	, and no customer arrival with proba-
bility 1− 	. When a customer arrives, the firm must
decide what products to offer. Let S ⊆ N be the offer
set of the firm. Note that S = � means that no prod-
uct is offered. Given offer set S, the customer chooses
the product j ∈ S with probability Pj�S�, and makes no
purchase with probability P0�S� = 1−∑

j∈S Pj�S�.
The state at the beginning of any period t is an

m-vector of unsold seats x. So the state space is X =
�0� � � � � c1� × · · · × �0� � � � � cm�. Let vt�x� be the max-
imum total expected revenue over periods t� � � � � �
starting at state x at the beginning of period t. The
optimality equation is

vt�x� = max
S⊆N�x�

{∑
j∈S

	Pj�S��fj + vt+1�x − Aj��

+ �	P0�S� + 1− 	�vt+1�x�

}

= max
S⊆N�x�

{∑
j∈S

	Pj�S�
fj − �vt+1�x� − vt+1�x − Aj���

}

+ vt+1�x� ∀ t� x� (1)

The boundary conditions are v�+1�x� = 0 for all x. In
the above, the set

N�x� = �j ∈ N� x ≥ Aj�

is the set of products that can be offered when the
state is x.
The value function at the initial state c can be com-

puted by the following linear program:

�D0� min
v�·�

v1�c�

vt�x� ≥∑
j∈S

	Pj�S��fj + vt+1�x − Aj��

+ �	P0�S� + 1− 	�vt+1�x�

∀ t� x�S ⊆ N�x�

with decision variables vt�x� ∀ t� x. It can be shown
by induction that any feasible solution 	v�·� to (D0) is
an upper bound on vt�·�. See also Adelman (2007) for
relevant discussions.

1.2. Choice-Based Linear Programming
Formulation

We now review the Liu and van Ryzin (2008) model;
see also Gallego et al. (2004). Let S denote the firm’s

offer set. Customer demand (viewed as continuous
quantity) flows in at rate 	. If the set S is offered, prod-
uct j is sold at rate 	Pj�S� (i.e., a proportion Pj�S� of
the demand is satisfied by product j). Let R�S� denote
the revenue from one unit of customer demand when
the set S is offered. Then

R�S� =∑
j∈S

fjPj �S��

Note that R�S� is a scalar. Similarly, let Qi�S� denote
the resource consumption rate on flight i, i = 1� � � � �
m, given that the set S is offered. Let Q�S� = �Q1�S��
� � � �Qm�S��T . The vector Q�S� satisfies Q�S� = AP�S�,
where P�S� = �P1�S�� � � � � Pn�S��T is the vector of pur-
chase probabilities.
Let h�S� be the total time the set S is offered. Because

the demand is deterministic as seen by the model
and the choice probabilities are time homogeneous,
only the total time a set is offered matters; i.e., we do
not care about the order in which different offer sets
are used. The objective is to find the total time h�S�
each set S should be offered to maximize the firm’s
revenue. The linear program can be written as follows:

�LP� zLP =max
h

∑
S⊆N

	R�S�h�S�

∑
S⊆N

	Q�S�h�S� ≤ c (2)

∑
S⊆N

h�S� = � (3)

h�S� ≥ 0� ∀S ⊆ N�

Note that � ⊆ N , so that the decision variable h���
corresponds to the total time that no products are
offered. In the no-choice case, i.e., when Pj�S� = pj

∀ j ∈ S and Pj�S� = 0 otherwise, it can be shown that
(LP) is equivalent to the DLP model in the revenue
management literature. In this sense, the (LP) model
is an extension of (DLP) to the choice case.

2. Functional Approximation
The formulation (D0) has a huge number of decision
variables and constraints, making its exact solution
impractical for moderately sized problem instances.
One way to reduce the size of the problem is
to approximate vt�·� by a set of preselected basis
functions. One potential approach is to use a linearly
parameterized function class

vt�x� ≈
K∑

k=1

Vt�k
k�x�� (4)

where 
k�x� is a prespecified basis function and Vt�k

is the weight on 
k�x�. After plugging (4) into (D0),
the weights can then be determined by solving the
resulting linear program. In this paper, we consider
an affine functional approximation, which is a special
case of (4).
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2.1. Formulation
Consider the affine functional approximation

vt�x� ≈ �t +
∑

i

Vt� ixi� (5)

where Vt� i estimates the marginal value of a seat on
flight i in period t, and �t is a constant offset. We
assume ��+1 = 0 and V�+1� i = 0 ∀ i.

Plugging (5) into (D0), we obtain

�D1� min
��V

�1+
∑

i

V1�ici (6)

�t −�t+1+
∑

i

(
Vt�ixi −Vt+1�i

(
xi −

∑
j∈S

	Pj�S�aij

))

≥∑
j∈S

	Pj�S�fj ∀ t�x�S ⊆N�x�� (7)

The dual of (D1) is

�P1� zP1=max
Y

∑
t�x�S⊆N�x�

(∑
j∈S

	Pj�S�fj

)
Yt�x�S

∑
x�S⊆N�x�

xiYt�x�S

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci if t=1

∑
x�S⊆N�x�

(
xi −

∑
j∈S

	Pj�S�aij

)
Yt−1�x�S

∀t=2������

∀i�t (8)

∑
x�S⊆N�x�

Yt�x�S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if t=1∑
x�S⊆N�x�

Yt−1�x�S

∀t=2������

Y ≥0�

(9)

The constraint (9) can be replaced by∑
x�S⊆N�x�

Yt�x�S = 1 ∀ t� (10)

Therefore we can interpret the decision variables Yt�x�S

as approximated state-action probabilities; i.e., Yt�x�S

is the probability that the state is x and the set S is
offered at time t. The constraint (8) is a flow balance
constraint, which says that the mass of each resource i
flowing into time t must equal that flowing out.

2.2. Relationship to (LP)
To derive (LP) from (P1), define

h�S� ≡∑
t� x

Yt�x�S ∀S ⊆ N� (11)

Note that Yt�x�S = 0 ∀S � N�x�. Since Yt�x�S can be
interpreted as the probability that the state is x and

the set S is offered in period t, the right-hand side
of (11) can be interpreted as the total time the set S is
offered throughout the time horizon, which is exactly
the interpretation of decision variable h�S� in (LP).
Then, the objective function in (P1) can be written as

∑
S⊆N

(∑
j∈S

	Pj�S�fj

)
h�S� = ∑

S⊆N

	R�S�h�S��

Summing (8) over t, we obtain∑
t� x�S⊆N

xiYt�x�S

= ci +
�∑

t=2

∑
x�S⊆N

(
xi −

∑
j∈S

	Pj�S�aij

)
Yt−1�x�S ∀ i�

Canceling terms and rearranging, we obtain

ci =
�−1∑
t=1

∑
x�S⊆N

∑
j∈S

	Pj�S�aijYt�x�S + ∑
x�S⊆N

xiY��x�S� (12)

If Yt�x�S > 0, we must have xi ≥ aij ∀ i� j ∈ S; so xi ≥∑
j∈S 	Pj�S�aij . It then follows that∑

x�S⊆N

xiY��x�S ≥ ∑
x�S⊆N

∑
j∈S

	Pj�S�aijY��x�S�

Hence (12) implies that

ci ≥
∑

t� x�S

∑
j∈S

	Pj�S�aijYt�x�S = ∑
S⊆N

	Qi�S�h�S��

Summing (9) over t, we get∑
S⊆N

h�S� = ��

The arguments above show that zLP ≥ zP1. Further-
more, similar to Proposition 1 in Adelman (2007), we
can show that any feasible solution to (D0) gives an
upper bound to the optimal value from the dynamic
program. Since (D1)–(P1) gives a feasible solution to
(D0), it follows that zP1 ≥ v1�c�. We summarize the
results in the following proposition.

Proposition 1. Any feasible solution to (P1) yields a
feasible solution to (LP) having the same objective value.
Hence zLP ≥ zP1 ≥ v1�c�.

Theorem 1 in Adelman (2007) shows that a simi-
lar relation holds when there is no customer choice
among products for a classic revenue management
problem. Liu and van Ryzin (2008) show that the
bound zLP is asymptotically optimal, i.e., converges
to v1�c�, as demand, capacity, and time horizon
scale linearly. It follows from Proposition 1 that the
bound zP1 is also asymptotically optimal.
We note that solutions to (P1) overcome some of the

difficulties encountered when trying to use solutions
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of (LP) in the dynamic setting of (1); namely, a solu-
tion to (LP) only gives the time duration for which
each offer set should be used, but does not specify an
order in which the sets should be used. The solution
to (P1), however, allows different sets to be used at
different times. In fact, from constraint (9), the deci-
sion variable Yt�x�S may be interpreted as approximate
state-action probabilities.
Next, we show that there exists an optimal solution

�V ∗� �∗� to (D1) that is time monotonic. Given a feasi-
ble solution Y to (P1), define the first-time resource i
is used by

t∗
i = argmin

{
t ∈ �1� � � � � ��� ∃x�S with

Yt�x�S > 0�
∑
j∈S

Pj�S�aij > 0
}

� (13)

We have the following monotonicity result.

Theorem 1. Assume ci > 0 ∀ i. There exists an optimal
solution ��∗�V ∗� of (D1) and a set of indices �t̃∗

i � ∀ i� such
that

�∗
t ≥ �∗

t+1 ∀ t (14)

V ∗
t� i = V ∗

t+1� i ∀ i� t = 1� � � � � t̃∗
i − 1 (15)

V ∗
t� i ≥ V ∗

t+1� i ∀ i� t = t̃∗
i � � � � � � (16)

V ∗� �∗ ≥ 0� (17)

Proof. The proof follows Adelman (2007) (see the
online appendix available at http://trsc.pubs.informs.
org/ecompanion.html). �
In the proof, t̃∗

i = t∗
i when t∗

i exists; otherwise, t̃∗
i = � .

Conditions (15)–(16) show that V ∗ is nonincreasing
over time. Since V ∗

t� i can be interpreted as the approxi-
mate marginal value of resource i at time t, this result
is intuitively appealing, because as time moves for-
ward, we have less opportunities to sell.

3. Column Generation Algorithm
3.1. General Case
The program (P1) has a large number of variables
but relatively few constraints, so it can be poten-
tially solved via column generation. In this section,
we develop such an algorithm.
First, it is easy to find an initial feasible solution to

start the column generation algorithm. There is one
corresponding to closing all products in each period;
i.e., let

Yt�x�S =
{
1 if x = c� S = �
0 otherwise

∀ t� x�S�

At a given iteration, suppose the dual solution
is (V ��). Let �t�x�S be the reduced profit of the column

corresponding to x�S in period t. The maximum
reduced profit can be computed by solving

max
t�x�S⊆N�x�

�t�x�S

= max
t�x�S⊆N�x�

∑
j∈S

	Pj�S�fj

−∑
i

(
Vt�ixi −Vt+1� i

(
xi −

∑
j∈S

	Pj�S�aij

))
−�t +�t+1

= max
t�x�S⊆N�x�

∑
j∈S

	Pj�S�

[
fj −

∑
i

aijVt+1� i

]

−∑
i

�Vt�i −Vt+1� i�xi −�t +�t+1�

If the objective value is greater than 0, then we add
the column corresponding to the optimal solution to
the existing set of columns for (P1); otherwise, opti-
mality is attained. For fixed t ≥ 1, we need to solve
the following optimization problem:

�S0� max
x�S

∑
j∈S

	Pj�S�

[
fj −

∑
i

aijVt+1� i

]

−∑
i

�Vt�i −Vt+1� i�xi −�t +�t+1

xi ≥aij ∀ i� j ∈S (18)

xi ∈�0�����ci� ∀ i�

The effectiveness of a column generation algorithm
hinges on efficient solution of the column generation
subproblems. For general choice probability P , (S0) is
potentially a nonlinear integer constrained optimiza-
tion problem, which is quite difficult to solve. Because
of constraint (18), the optimization problem is not sep-
arable in x and S. Even if x is fixed, the optimiza-
tion on S is a combinatorial optimization, which is
potentially difficult by itself. For the MNLD, Liu and
van Ryzin (2008) develop an efficient ranking proce-
dure to solve the optimization on S; see also Gallego
et al. (2004). However, such a procedure cannot be
extended to solve (S0) because it also optimizes over x.

3.2. MNLD
In MNLD, each customer is interested in a subset
of the products. Let L = �1� � � � � l̄� be the set of cus-
tomer segments. We assume that customer segment
l ∈ L has consideration set Nl ⊆ N . We assume ∀ l1 �= l2,
Nl1

∩ Nl2
= �; i.e., different customer segments have

disjoint consideration sets. Within each segment, cus-
tomer choice follows a multinomial logit (MNL)
model. Under MNL, the choice probability can be
defined by a choice vector. To completely specify the
choice probability, we need to specify the preference
value vlj for l ∈ L� j ∈ Nl, and the no-purchase value
vl0 for l ∈ L. In general, a choice set S can also be
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represented by an availability vector. We use a binary
vector ul to denote the product availability for seg-
ment l such that ulk = 1�k ∈ S�. For convenience, we
use vector and set notations interchangeably. Then,
the probability a segment l customer purchases prod-
uct j ∈ Nl is

�Plj �ul� = uljvlj∑
j∈Nl

uljvlj + vl0
�

To accommodate the MNLD choice model in the
framework of §1.1, we can assume an arriving cus-
tomer first chooses which segment he belongs to, and
then chooses products within the given segment. In
particular, we assume the probability an arriving cus-
tomer belongs to segment l is 	l/	, where

∑
l 	l = 	.

It then follows that for j ∈ Nl,

Pj�S� = 	l
�Plj �ul�S��

	
�

where ulk�S� = 1�k ∈ S� for all k ∈ Nl.

3.3. Column Generation for MNLD
In the following, we show that for MNLD, (S0) can
be reduced to a linear integer program, the solution
of which is relatively easy. Let 	l ∀ l ∈ L be such that∑

l∈L 	l = 	, where 	l is the probability of a customer
arrival in segment l for a given period. Plugging in
the MNLD choice probabilities, (S0) becomes

�S-MNLD� max
x�u

∑
l∈L

(
	l

∑
j∈Nl

uljvlj 
fj −
∑

i aijVt+1�i�∑
j∈Nl

uljvlj +vl0

)

−∑
i

�Vt�i −Vt+1�i�xi −�t +�t+1

xi ≥aijulj ∀i�j ∈Nl�l∈L

xi ∈�0�����ci� ∀i

ul ∈�0�1��Nl � ∀l∈L�

If the integrality constraints are relaxed, the optimiza-
tion problem above belongs to a class of optimization
problems called generalized linear-fractional programs
(see, e.g., Boyd and Vandenberghe 2004). A general
approach to solve such a problem efficiently is not
available. See Schaible and Shi (2003) for a recent
review of literature on this subject.
In the following, we show that (S-MNLD) can be

reduced to an equivalent linear integer program by
exploiting the structure of the problem. In particular,
we use the fact that the consideration sets are disjoint
and that ulj is binary.
Let

zlj = ulj∑
j∈Nl

vljulj + vl0
∀ j ∈ Nl� l ∈ L (19)

�l =
1∑

j∈Nl
vljulj + vl0

∀ l ∈ L� (20)

It follows from the definition of zlj and �l that∑
j∈Nl

vljzlj + vl0�l = 1 ∀ l ∈ L

�l ≥ 0 ∀ l�
(21)

Plugging (19)–(21) into (S-MNLD), we obtain

�S-MNLD1� max
x�z��

∑
l∈L

∑
j∈Nl

	lvlj

[
fj −

∑
i

aijVt+1� i

]
zlj

−∑
i

�Vt� i − Vt+1� i�xi − �t + �t+1

xi ≥
aijzlj

�l

∀ i� j ∈ Nl� l ∈ L (22)

xi ∈ �0� � � � � ci� ∀ i

zlj ∈ �0��l� ∀ j ∈ Nl� l ∈ L (23)∑
j∈Nl

vljzlj + vl0�l = 1 ∀ l ∈ L (24)

�l ≥ 0 ∀ l� (25)

Lemma 1. (S-MNLD) is equivalent to (S-MNLD1);
i.e., both optimization problems have the same optimal
objective value and an optimal solution to one can be
obtained from an optimal solution of the other.

Proof. Since (S-MNLD1) is obtained from
(S-MNLD) through change of variables, it can be
shown that an optimal solution to (S-MNLD) is a solu-
tion to (S-MNLD1) and both optimization problems
have the same objective value at the solution.
Suppose (	x� 	z� 	�) is an optimal solution to

(S-MNLD1). From (23)–(24), we must have 	�l > 0 for
all l. Let ûlj = 	zlj/ 	�l ∀ l� j . Then �	x� û� clearly satisfies
the constraints in (S-MNLD). Furthermore, ∀ l� j ,

ûlj∑
j∈Nl

ûljvlj + vl0
= ûlj 	�l∑

j∈Nl
ûljvlj 	�l + vl0 	�l

= 	zlj∑
j∈Nl

	zljvlj + vl0 	�l

= 	zlj�

where the last equation follows by using (24). It then
follows that the two optimization problems have the
same objective value at the given solution. This com-
pletes the proof. �
From Lemma 1, it suffices to solve (S-MNLD1).

There is potentially one difficulty in solving the prob-
lem (S-MNLD1): the constraint (22) is nonlinear. How-
ever, we show that if vl0 > 0 ∀ l ∈ L and aij ∈ �0�1� ∀ i� j ,
it can be replaced by an equivalent linear constraint.

Theorem 2. Suppose vl0 > 0 for all l ∈ L and
aij ∈ �0�1�. We only need to solve the following linear inte-
ger program to find the maximum reduced profit for each
t ≥ 1:

�S-MNLD2� max
x�z��

∑
l∈L

∑
j∈Nl

	lvlj

[
fj −

∑
i

aijVt+1� i

]
zlj

−∑
i

�Vt�i −Vt+1� i�xi −�t +�t+1
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xi ≥aijvl0zlj ∀ i�j ∈Nl� l∈L (26)

xi ∈�0�����ci� ∀ i

zlj ∈�0��l� ∀ j ∈Nl� l∈L (27)∑
j∈Nl

vljzlj +vl0�l =1 ∀ l∈L

�l ≥0 ∀ l�

Proof. We will show that the feasible region does
not change before and after replacing the con-
straint (22) by (26). From (24),

1∑
j∈Nl

vlj + vl0
≤ �l ≤

1
vl0

∀ l ∈ L� (28)

It then follows from (22) that

xi ≥
aijzlj

�l

≥ aijvl0zlj ∀ i� j ∈ Nl� l ∈ L�

Hence, all feasible solutions to (S-MNLD1) sat-
isfy (26). Next, we show that all feasible solutions
to (S-MNLD2) satisfy (22). Let (	x� 	z� 	�) be a feasible
solution to (S-MNLD2). For fixed i, if 	xi = 0, then
	zlj = 0 from (26) for all j such that aij > 0; if 	xi ≥ 1, then
	xi ≥ 1 ≥ aij 	zlj/ 	�l since 	zlj/ 	�l ∈ �0�1� and aij ∈ �0�1�;
note that from (28) 	�l > 0 for all l. This completes the
proof. �
Subsequently, we will refer to (S-MNLD2) as the

column generation subproblem. Note that some exist-
ing linear programming solvers, such as CPLEX, pro-
vide ways to handle (27) directly. In our numerical
study, we assume A is binary. However, our theoretical
results that follow do not depend on this assumption.

4. Policies from Functional
Approximation

In this section, we show how to use the value function
approximations to construct control policies.

4.1. Direct Use of Dynamic Bid-Prices
Let (V ∗� �∗) be the optimal solution for (D1). Using
the approximation

vt�x� − vt�x − Aj� ≈∑
i

aijV
∗
t� i�

a control policy in period t and state x can be com-
puted by solving for each l

max
ulj∈�0�1�x≥Aj ��∀ j∈Nl

∑
j∈Nl

vljulj 
fj −
∑

i aijV
∗
t+1� i�∑

j∈Nl
vljulj + vl0

� (29)

The constraint ulj ∈ �0�1�x≥Aj �� in (29) incorporates the
constraint on capacity. The heuristic is motivated by
the dynamic programming recursion (1). The maxi-
mization in (29) can be solved efficiently using a sim-
ple ranking procedure (see Liu and van Ryzin 2008;
Gallego et al. 2004). The resulting policy is called
approximate dynamic programming (ADP) in §5.

4.2. Decomposition Based on Solutions to (D1)
We can also use an optimal solution (V ∗� �∗) to (D1)
in a decomposition approach. Given i, we use the fol-
lowing approximation:

vt�x� ≈ vi
t�xi� +∑

k �=i

V ∗
t� kxk ∀ t� x� (30)

where vi
t�·� is the value function for the leg-i problem.

Substituting (30) into (D0), we obtain

�LPi� min
vit�·�

vi
1�ci�+

∑
k �=i

V ∗
1�kck

vi
t�xi�+

∑
k �=i

V ∗
t�kxk ≥∑

j∈S

	Pj�S�

·
[
fj +vi

t+1�xi −aij �+
∑
k �=i

�xk −akj �V
∗
t+1�k

]

+�	P0�S�+1−	�

[
vi

t+1�xi�+
∑
k �=i

xkV
∗
t+1�k

]

∀ t�x�S ⊆N�x�� (31)

Proposition 2 relates the objective value from (LPi)
to zLP, zP1, and the MDP value.

Proposition 2. For each i, let �vi
t�·�� and �v∗i

t �·�� be a
feasible solution and an optimal solution to (LPi), respec-
tively. We have
(i) mini�v

i
t�xi� +∑

k �=i V
∗
t� kxk� ≥ vt�x� ∀ t� x;

(ii) zLP ≥ zP1 ≥ maxi�v
∗i
1 �ci� + ∑

k �=i V
∗
1� kck� ≥

mini�v
∗i
1 �ci� +∑

k �=i V
∗
1� kck� ≥ v1�c�.

Proof. (i) We only need to prove vi
t�xi� +∑

k �=i V
∗
t� kxk ≥ vt�x� for all i� t� x. We prove the result

by induction. For t = � , we note from (31) that

vi
��xi� +∑

k �=i

V ∗
��kxk ≥∑

j∈S

	Pj�S�fj ∀x�S ⊆ N�x��

It follows that

vi
��xi� +∑

k �=i

V ∗
��kxk ≥ max

S⊆N�x�

∑
j∈S

	Pj�S�fj = v��x��

This shows that the result holds for t = � . Next,
assume the result holds for t + 1. Then, by (31) and
the inductive assumption for all x�S, we have

vi
t�xi� +∑

k �=i

V ∗
t� kxk ≥ ∑

j∈S

	Pj�S��fj + vt+1�x − Aj��

+ �	P0�S� + 1− 	�vt+1�x��

From the optimality equation for period t, we obtain

vi
t�xi� +∑

k �=i

V ∗
t� kxk ≥ vt�x��
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(ii) The first inequality is established in Proposi-
tion 1, and the third inequality is immediate. The last
inequality is implied by part (i). So, we will only need
to show the second inequality. It suffices to show zP1 ≥
vi
1�ci�+∑

k �=i V
∗
1� kck ∀ i. Let (V ∗� �∗) be an optimal solu-

tion to (D1). From the feasibility of �V ∗� �∗� to (D1),
vi

t�xi� = �∗
t + V ∗

t� ixi ∀ t� xi is a feasible solution to (LPi).
Because (LPi) is a minimization problem, this estab-
lishes the inequality. �
Part (ii) in Proposition 2 shows that mini�v

∗i
1 �ci� +∑

k �=i V
∗
t�1ck� is a tighter bound of v1�c� than zP1. Such

a bound is useful because it provides a better bench-
mark in numerical studies.
(LPi) has the same number of constraints as (D1)

but more decision variables. So solving (LPi) is poten-
tially even harder than solving (D1), although it is
possible to solve the program via column generation.
Instead, we consider the following dynamic program:

	vi
t�xi�

= max
x−i�S⊆N�x�

{∑
j∈S

	P�S�

[
fj − 	vi

t+1�xi�+ 	vi
t+1�xi −aij �

−∑
k �=i

V ∗
t+1�kakj

]
−∑

k �=i

�V ∗
t�k −V ∗

t+1�k�xk

}
+ 	vi

t+1�xi� (32)

with boundary conditions vi
�+1�xi� = 0 ∀xi� i. In the

above, x−i denotes the vector x without the i-th com-
ponent. We can use the backward recursion algorithm
for dynamic programs to solve for 	vi

t�·�. In each iter-
ation, the maximization problem in (32) is almost the
same as the column generation subproblem (S0). The
only difference is that here in each iteration, the value
of xi is fixed. As discussed in §3, for MNLD choice
model, we only need to solve a linear mixed-integer
program. Proposition 3 shows that 	vi

1�ci� from (32) is
equal to vi

1�ci� from (LPi).

Proposition 3. v∗i
1 �ci� = 	vi

1�ci� ∀ i.

Proof. We first show that v∗i
t �xi� ≥ 	vi

t�xi�. The proof
is by induction and is similar to the proof of part (i)
in Proposition 2. It then follows that v∗i

1 �ci� ≥ 	vi
1�ci�.

Furthermore, by (32), 	vi
t�·� satisfies the constraints in

(LPi), and is therefore feasible for (LPi). Hence 	vi
1�ci� ≥

v∗i
1 �ci�. This completes the proof. �
After 	vi

t�·� is determined for each i, we can use the
approximation

vt�x� − vt�x − Aj� ≈
m∑

i=1

�	vi
t�xi� − 	vi

t�xi − aij ��

to compute a heuristic policy for (1) by solving

max
S⊆N�x�

{∑
j∈S

	Pj�S�

[
fj −

m∑
i=1

�	vi
t�xi� − 	vi

t�xi − aij ��

]}
�

This optimization again can be done effectively for
MNLD choice model. The resulting policy is called
ADPD in §5.

4.3. Linear Programming Decomposition
Let �∗ be the vector of dual values of the resource
constraints in (LP). The vector �∗ can also be used in
a decomposition approach similar to the one in §4.2.
Given i, we use the following approximation:

vt�x� ≈ ṽi
t�xi� +∑

k �=i

�∗xk ∀ t� x� (33)

where ṽi
t�·� is the value function for the leg-i problem

that is obtained when (33) is substituted into (D0);
for more details, see Liu and van Ryzin (2008). This
policy is called LPD in §5. We finish this section by
showing the following result.

Proposition 4. ṽi
t�xi� +∑

k �=i �
∗
k xk ≥ vt�x� ∀ i.

Proof. Note that ṽi
t�·� is the solution to the lin-

ear program (D0) with vt�x� replaced by ṽi
t�xi� +∑

k �=i �
∗
k xk. The proof is similar to the proof for part (i)

in Proposition 2 and is omitted. �
Proposition 4 shows that linear programming

decomposition produces a bound for the value func-
tion of the problem. Although decomposition heuris-
tic is studied in much of existing literature (see, e.g.,
Talluri and van Ryzin 2004b), the bound in Proposi-
tion 4 is new.

5. Numerical Experiments
We conducted numerical experiments to study the per-
formance of the proposed solution approach for (P1),
the relationships among the different bounds, and the
performance of the proposed policy approaches.
In the no-choice (independent demand) setting,

Adelman (2007) shows that the performance of poli-
cies based on dynamic bid-prices depends heavily on
the (nominal) load factor. Because demand depends
on the offer set, the notion of load factor is not imme-
diately clear for network choice problems. Given
choice probability P , let

S∗ ∈ argmax
S⊆N

∑
j∈S

Pj�S�fj �

Note that S∗ is a revenue-maximizing set of open
products when there is ample capacity of each
resource. We call

� = 	
∑�

t=1
∑

j∈S∗
∑m

i=1 aijPj �S
∗�∑m

i=1 ci

(34)

the (nominal) load factor. In the no-choice setting
S∗ = N and the load factor defined in (34) is the same
as the one commonly used in the literature (see, e.g.,
Adelman 2007).

5.1. Computational and Bound Performance
We study the performance of the proposed algorithm
to solve (P1) on randomly generated hub-and-spoke
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Figure 1 Network Structure for HS1 Instances with K = 4

network instances. We implemented the solution
methods using C++ and CPLEX on an Intel Xeon
3.6 GZ workstation. In the column generation algo-
rithm for (P1), the objective value of the restricted
problem plus the sum over time of the maximum
reduced profit in each period serves as an upper
bound for the optimal objective value (see Adelman
2007). In this subsection, we use a 5% optimality toler-
ance; that is the column generation procedure termi-
nates when the sum of the maximum reduced profit
in each period over time is within 5% of the objec-
tive value of the restricted problem. In our imple-
mentation, we added the monotonicity constraints
suggested by Theorem 1, which often speed up the
solution considerably. The same phenomenon was
observed in Adelman (2007).
We consider a set of hub-and-spoke network

instances with K ∈ �2�4�8�12� nonhub locations. This
set of instances is called HS1, subsequently. Figure 1
shows the network structure when K = 4, where each
arc in the network represents a flight leg. Half of
the nonhub locations each have two parallel flights
to the hub, and the other half each have two par-
allel flights from the hub. There are 2K flights in
total. Table 1 shows key statistics for HS1 instances.
For K = 12, there are 48 customer segments and 336
products. We assume that all products with the same
origin and destination belong to the same segment,
so the number of segments is the same as the num-
ber of origin-destination (O-D) pairs. Two classes,

Table 2 Load Factor, Capacity, and CPU Seconds for HS1

Number of nonhub locations, resources, and products

2, 4, 16 4, 8, 48 8, 16, 160 12, 24, 336

Load Capacity CPU Load Capacity CPU Load Capacity CPU Load Capacity CPU
� factor per leg seconds factor per leg seconds factor per leg seconds factor per leg seconds

50 1�37 10 0�33 1�31 6 1�98 1�42 3 18�74 1�54 2 332�77
100 1�35 21 0�85 1�39 11 2�66 1�47 6 35�15 1�53 4 150�42
200 1�36 38 1�24 1�39 22 5�87 1�46 12 55�04 1�37 9 270�63
400 1�35 79 3�59 1�42 45 12�31 1�43 25 164�98 1�43 17 557�12
800 1�40 156 6�73 1�38 88 24�93 1�42 49 239�12 1�43 34 1�432�72

Table 1 Statistics of Hub-and-Spoke Test Instances HS1 and HS2

Case HS1 HS2

No. of nonhub locations K ∈ �2�4�8�12� K ∈ �2�4�8�16�
No. of O-D pairs (segments) K + K 2/4 2K + K�K − 1�
No. of Resources 2K 2K
No. of Itineraries 2K + K 2 2K + K�K − 1�
No. of Products 4K + 2K 2 4K + 2K�K − 1�

a high-fare class and low-fare class, are offered for
each possible itinerary. The high-class fares of local
itineraries to the hub are drawn from the Poisson
distribution with mean 30; the corresponding low
fares are drawn from the Poisson distribution with
mean 10. All other high fares are drawn from the
Poisson distribution with mean 300, and all other
low fares are drawn from the Poisson distribution
with mean 100. Choice parameters for high- and low-
fare products are drawn from the Poisson distribution
with mean 50 and 200, respectively. The no-purchase
weight for each segment is drawn from the Poisson
distribution with mean 10. To randomly generate the
arrival rate for each customer segment, we draw El

from the Poisson distribution with mean 20 for each
l and set 	l = 0�9El/

∑
l′ El′ . Note that the total arrival

rate in each period is 0.9. We generated problem
instances with � ∈ �50�100�200�400�800�.
Table 2 shows the load factor and capacity per leg

for the problem instances. The capacity across legs
is taken to be the same for each instance. The CPU
seconds to solve (P1) is also reported. The biggest
instance with 12 nonhub locations and 800 periods
takes about 24 minutes to solve, which is practical in
real application. Also the CPU seconds increase as �
and K increase. This observation is not surprising,
because the size of (P1) increases with both � and K.
Table 3 reports the CPU seconds for HS1 instances

except for half the load factor. The load was cut in
half by cutting the arrival rate in each period in half.
The table shows that it is 3.63 times faster on aver-
age to solve these problems with a range of 1.18–7.88.
This speedup can be explained by the fact that as the
load factor decreases, the combination of a few offer
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Table 3 CPU Seconds to Solve (P1) for HS1 with Half the Load Factor

Locations

� 2 4 8 12

50 0�24 0�33 6�15 104�42
100 0�42 0�99 5�09 29�31
200 0�86 2�14 22�16 34�36
400 1�18 3�83 42�19 100�14
800 5�72 7�46 50�35 525�17

sets provides near-optimal performance. In particular,
when there is enough capacity to accept all customer
requests, the policy that only offers the revenue maxi-
mization set S∗ is optimal. As a result, fewer columns
need to be added when solving (P1).
Table 4 reports the approximate relative difference

zLP/zP1 for HS1. Because (P1) is not solved to opti-
mality, the relative difference presented in the Table is
optimistic. As observed in Adelman (2007), we expect
the objective value to be close to zP1, and therefore the
results to be representative. For this set of instances,
the difference is relatively small, with the largest dif-
ference about 8% for the case with � = 50 and K = 12.
However, we use another set of instances to

show that the relative difference zLP/zP1 can be
huge. We consider hub-and-spoke networks with K ∈
�2�4�8�16� nonhub locations. This set of instances is
called HS2, subsequently. There are flights to and from
the hub for each nonhub location. Figure 2 shows
the network structure when K = 4. One product is
offered for each itinerary. The fare is generated from
a uniform distribution with range 
75�250�, which is
denoted by �
75�250�. The choice parameter value for
each product is three times a random number drawn
from the Poisson distribution with mean 20. The no-
purchase value for each segment is set to 1. We draw
El from the uniform distribution with range 0.1–0.7
for each l and set 	l = 0�8El/

∑
l′ El′ . We generated

problem instances with � = �20�50�100�200�400�800�.
Capacity is taken to be the same across legs in each
instance. Table 5 reports load factor and capacity for
the instances. Table 6 shows the approximate relative
difference zLP/zP1 for HS2. For � = 20 and K = 16,
the relative difference is about 53%. This shows that

Table 4 Approximate Upper Bounds and Relative Difference for HS1

Locations

2 4 8 12

� zLP zP1 zLP/zP1 zLP zP1 zLP/zP1 zLP zP1 zLP/zP1 zLP zP1 zLP/zP1

50 4�769�99 4�685�68 1�02 7�829�55 7�681�12 1�02 8�865�23 8�400�01 1�06 8�756�77 8�125�07 1�08
100 10�400�20 10�286�70 1�01 14�512�40 14�304�70 1�01 17�906�80 17�343�90 1�03 17�266�10 16�648�40 1�04
200 16�996�20 16�748�40 1�01 28�820�00 28�540�00 1�01 34�230�40 33�448�50 1�02 38�154�10 37�198�00 1�03
400 39�471�10 39�334�40 1�00 59�009�30 58�415�30 1�01 70�714�00 69�336�90 1�02 73�638�30 72�106�40 1�02
800 69�810�90 69�079�90 1�01 114�076�00 112�267�00 1�02 137�934�00 135�953�00 1�01 144�887�00 142�255�00 1�02

Figure 2 Network Structure for HS2 Instances with K = 4

zP1 can serve as a much better revenue bound. The
magnitude of difference reported here is similar to that
reported in Adelman (2007).
In both Tables 4 and 6, the approximate relative

difference increases as the horizon length decreases.
This behavior can be explained by the result of Liu
and van Ryzin (2008), which shows that LP is asymp-
totically optimal as the problem scales up linearly
in capacity and time. The difference also appears to
be bigger for problems with more complex network
structure.

5.2. Description of Simulated Instances
We studied the relative performance of four differ-
ent heuristic policies. ADP was introduced in §4.1,
and ADPD was introduced in §4.2. LP is the same as
ADP where the dual values from LP are used instead
of dynamic bid-prices. Linear program decomposi-
tion (LPD) was introduced in §4.3. In addition, we
also tested each heuristic where (LP) and (P1) are re-
solved five times for equally spaced time intervals.
Each heuristic is simulated 100 times using the same
arrival streams. We tested the heuristics on four sets
of instances. Table 7 reports the capacity configura-
tion and load factor of the test instances, and Table 8
summarizes key statistics of the simulated instances.
These test instances cover a wide variety of cases with
different network structure and randomly generated
choice parameters. For each set of instances, we con-
sider � ∈ �20�50�100�200�400�.

PF1 (Four Parallel Flights). Parallel flights are
scheduled flights on the same origin and destination
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Table 5 Load Factor and Capacity for HS2

Number of nonhub locations, resources, and products

2, 4, 12 4, 8, 40 8, 16, 144 16, 32, 544

Load Capacity Load Capacity Load Capacity Load Capacity
� factor per leg factor per leg factor per leg factor per leg

20 1�81205 3 1�57753 2 1�79335 1 0�92483 1
50 1�57180 8 1�54017 5 1�47362 3 2�29805 1
100 1�59299 19 1�60150 10 1�46147 6 1�53856 3
200 1�58430 34 1�58113 20 1�59850 11 1�54098 6
400 1�58434 68 1�60127 40 1�61746 22 1�66522 11
800 1�58774 126 1�58524 81 1�57865 43 1�62501 23

on the same day. In practice, substitution among
parallel flights is widely observed. We randomly
generated instances with four parallel flights. A sin-
gle class is offered on each flight. All the products
belong to the same segment, and the arrival proba-
bility 	 is 0.9 in each period. The fare is generated
from �
10�100�. The MNL choice parameter for prod-
uct j , vj , is generated from the Poisson distribution
with mean 100. The no-purchase weight, v0, equals
0�5

∑n
j=1 vj ; hence when all products are open, the no-

purchase probability is 1/3.

PF2 (Eight Parallel Flights). This set of instances is
the same as PF1 except there are eight instead of four
parallel flights.

HS3 (Hub-and-Spoke Network with Two Nonhub
Locations). There are four parallel flights from loca-
tion 1 to the hub, and four parallel flights from the
hub to location 2. The fare from location 1 to the
hub is generated from �
1�10�, and the fare from the
hub to location 2 is generated from �
10�100�. Each
through itinerary fare is 0.95 times the corresponding
sum of local itinerary fares. There are three disjoint
product segments, one for location 1 to the hub, one
for the hub to location 2, and one for the through
itinerary (location 1–location 2). The arrival rates are
0.45, 0.225, and 0.225, respectively. The MNL choice
parameter for product j , vlj , is generated from the
Poisson distribution with mean 100. The no-purchase
weight for segment l, vl0, equals 0�5

∑
j∈Nl

vlj .

Table 7 Load Factor and Capacities for Simulated Instances

PF1 PF2 HS3 HS4

Load Load Load Load
� Capacity factor Capacity factor Capacity factor Capacity factor

20 1 1 3 3 1�11 1 1 1 1 1 1 1 1 1�26 1 1 1 1 1 1 1 1 1�56 2 2 2 2 2 2 2 2 1�52
50 4 4 8 8 1�12 2 2 2 2 4 4 4 4 1�10 2 2 4 4 2 2 4 4 1�41 5 5 5 5 5 5 5 5 1�48
100 8 8 16 16 0�59 4 4 4 4 8 8 8 8 1�04 4 4 8 8 4 4 8 8 1�25 11 11 11 11 11 11 11 11 1�35
200 20 20 30 30 1�09 9 9 9 9 16 16 16 16 1�09 9 9 15 15 9 9 15 15 1�48 21 21 21 21 21 21 21 21 1�42
400 40 40 60 60 1�20 20 20 20 20 30 30 30 30 1�09 17 17 31 31 17 17 31 31 1�48 43 43 43 43 43 43 43 43 1�36

Table 6 Approximate Relative Difference for HS2

Locations

� 2 4 8 16

20 1�05 1�17 1�41 1�53
50 1�02 1�05 1�12 1�35
100 1�01 1�03 1�07 1�13
200 1�01 1�02 1�04 1�07
400 1�01 1�02 1�03 1�05
800 1�00 1�02 1�03 1�04

HS4 (Hub-and-Spoke Network with Four Non-
hub Locations). This set of instances is generated the
same way as HS1 except for the arrival rates. We
assume the locations are marked 1–4. Locations 1 and
2 each have two parallel flights to the hub, and loca-
tions 3 and 4 each have two parallel flights from the
hub. All products with the same origin and destina-
tion belong to the same segment, so there are 8 seg-
ments. Segments 1–4 correspond with local itineraries
for locations 1–4, respectively. Segments 5–8 contain
through itinerary products. The arrival rates for seg-
ments 1–8 are 0.2, 0.2, 0.05, 0.05, 0.1, 0.1, 0.1, and 0.1,
respectively.

5.3. Policy Results
The bounds and simulated averages for the test
instances are reported in Tables 9–12. To make it easy
to compare the bounds and performance, we also
report the relative difference of bounds and policy
performance in Tables 13–14.
We report four different bounds. (LP) is solved to

optimality in all the examples, and the objective value
zLP is reported in the LP-bound column. The value
mini�ṽ

i
1�ci�+∑

k �=i �
∗
k ck� is reported in the LPD-bound

column. The objective value from (P1) is reported in
P1-bound column. (P1) is solved to 0.5% of optimality.
The value mini�v

i
1�ci� +∑

k �=i V
∗
1� kck� is reported in the

ADPD-bound column. Note that because (P1) is not
solved to optimality, the ADPD bound inherits errors
from the solution of (P1). Consequently, the reported
ADPD bound is not always tighter than P1 bound, as
suggested by Proposition 2.
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Table 8 Statistics of Simulated Test Instances

Case PF1 PF2 HS3 HS4

No. of nonhub locations — — 2 4
No. of O-D pairs (segments) 1 1 3 8
No. of resources 4 8 8 8
No. of itineraries 4 8 24 24
No. of products 4 8 24 48

Our numerical results indicate that ADP can outper-
form LP with a revenue difference of up to 440%. Even
with re-solving, ADP beats LP by up to 8%. Such a
difference in revenue performance is quite significant
for revenue management applications. We postulate
that the difference in performance is because of the
fact that (P1)–(D1) gives better bid-prices, which are
time dependent. We also note that the bid-price of one
resource affects the set of products offered; even prod-
ucts that do not use this particular resource can be
affected because of customer choice among products.
This should be contrasted with the bid-price controls
for the independent demand case, where the bid-price
of a particular resource only affects the controls of
products that use this resource. We also note that the
performance difference between LP and ADP tends
to, although not always, be smaller for problems with
longer time horizon. This behavior can be attributed
to the asymptotic result of Liu and van Ryzin (2008).

5.4. Decomposition
LPD and ADPD are both based on decomposition of
the network problem into many leg-based problems.
Liu and van Ryzin (2008) report that LPD performs
consistently better than LP. It is also our experience
that decomposition-based approaches, including LPD
and ADPD, usually perform better than naive bid-
price controls.
We are, however, more interested in the relative

performance of LPD and ADPD. Tables 13–14 show
that without re-solving ADPD, it can perform up to
9% better than LPD. With re-solving, the difference
can still be as high as 6%. Of course, to use ADPD,

Table 9 Bounds and Simulated Average Revenue for PF1

LP LPD P1 ADPD
Re-solving � bound bound LP Stdev LPD Stdev bound bound ADP Stdev ADPD Stdev

1 20 305�499 304�261 128�56 �6�41� 286�95 �36�93� 301�918 300�085 295�74 �19�72� 289�28 �31�14�
50 1�734�610 1�733�540 378�69 0�00 1�589�82 �153�29� 1�728 1�721�080 1�666�95 �123�85� 1�642�89 �117�78�
100 1�609�690 1�609�630 1�422�97 �194�74� 1�486�29 �110�67� 1�608�83 1�608�620 1�462�21 �163�93� 1�551�98 �83�33�
200 3�550�270 3�550�270 3�075�73 �266�17� 3�341�04 �173�92� 3�550�24 3�550�350 3�526�60 �56�33� 3�460�37 �137�83�
400 7�359�560 7�359�560 3�393�99 0�00 7�175�14 �232�30� 7�359�56 7�377�720 7�351�05 �42�54� 7�295�36 �144�87�

5 20 281�49 �34�32� 290�44 �28�18� 296�18 �22�04� 296�11 �23�19�
50 1�566�05 �155�77� 1�636�20 �118�83� 1�670�61 �114�00� 1�666�27 �102�39�
100 1�546�57 �77�32� 1�531�20 �76�06� 1�564�52 �74�23� 1�575�57 �50�46�
200 3�385�39 �132�20� 3�433�37 �115�59� 3�525�36 �55�95� 3�518�41 �70�71�
400 6�932�41 �283�70� 7�232�18 �152�03� 7�318�45 �128�24� 7�338�04 �67�18�

we need to solve (P1) and the harder dynamic pro-
gramming recursion outlined in §4.2.
The relative performance of LPD and ADPD is

affected by several factors. First, it depends on the
decomposability of a particular problem. The basic
decomposition idea is to decompose the dynamic pro-
gramming value function vt�x� so that

vt�x� ≈
m∑

i=1

vi
t�xi� ∀ t� x (35)

for a set of functions �vi
t�·��∀ t� i. We say a problem

is fully decomposable if the approximation in (35)
is exact. To gain insights into the performance of
decomposition heuristics, consider the following two
problems:
(1) One flight with multiple fare classes;
(2) A parallel flight problem with independent

demand for each flight.
The first problem is a single-leg problem and the

second problem can be trivially decomposed into
single-leg problems. Consequently, the decomposition
heuristics actually give an optimal policy for both
problems. In fact, the bid-prices from (LP) and (P1)
are not needed for the decomposition.
Now, consider two modified problems:
(3) A hub-and-spoke network problem with one

flight for each local itinerary and very low arrival
rates for through itineraries;
(4) A parallel flight problem where only a small

portion of customers switch flights if their most pre-
ferred flight is not offered.
Both problems listed above are clearly not fully

decomposable because of a network effect and a
customer choice effect, in contrast to problems 1–2,
respectively. However, we expect that decomposition-
based approaches work well for these problems,
because the network and customer choice effects are
weak. On the other hand, we observed from our
experience that the relative performance difference
between LPD and ADPD is bigger for problems with
a stronger network effect or customer choice effect.
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Table 10 Bounds and Simulated Average Revenue for PF2

LP LPD P1 ADPD
Re-solving � bound bound LP Stdev LPD Stdev bound bound ADP Stdev ADPD Stdev

1 20 424�272 422�495 166�18 �14�04� 390�77 �40�86� 399�752 399�925 395�81 �36�65� 395�04 �38�32�
50 1�177�180 1�172�820 1�071�83 �107�29� 1�001�83 �125�58� 1�149�930 1�135�450 1�106�87 �87�33� 1�094�14 �99�16�
100 2�498�590 2�498�590 1�573�23 �21�80� 2�249�15 �174�79� 2�493�980 2�496�900 2�443�76 �78�10� 2�397�51 �119�18�
200 6�263�010 6�262�970 4�596�93 �520�95� 5�294�28 �400�87� 6�250�530 6�260�750 6�040�58 �213�50� 5�998�74 �297�17�
400 12�620�300 12�620�300 11�500�01 �454�43� 11�427�90 �651�68� 12�618�300 12�663�700 12�543�88 �161�25� 12�354�94 �370�28�

5 20 360�35 �55�75� 389�41 �39�64� 391�99 �41�23� 393�57 �38�61�
50 1�047�74 �96�35� 1�069�40 �90�52� 1�105�67 �91�97� 1�114�75 �82�59�
100 2�276�78 �135�91� 2�346�49 �128�18� 2�449�23 �71�97� 2�445�00 �70�29�
200 5�867�58 �238�17� 5�899�84 �251�61� 6�145�10 �136�46� 6�116�54 �182�68�
400 12�029�51 �393�85� 12�131�83 �336�61� 12�496�28 �182�70� 12�520�95 �163�59�

Table 11 Bounds and Simulated Average Revenue for HS3

LP LPD P1 ADPD
Re-solving � bound bound LP Stdev LPD Stdev bound bound ADP Stdev ADPD Stdev

1 20 282�75 276�20 198�47 �69�10� 215�59 �61�70� 250�24 250�49 235�58 �51�41� 235�58 �51�23�
50 885�26 873�80 708�21 �133�30� 728�02 �131�93� 854�10 843�17 772�03 �109�20� 779�50 �113�09�
100 936�57 931�79 828�25 �107�30� 849�25 �96�11� 923�70 920�54 847�81 �72�71� 881�78 �70�62�
200 3�322�46 3�316�06 2�787�66 �277�20� 3�110�89 �242�15� 3�307�20 3�314�41 2�894�62 �275�36� 3�134�01 �220�60�
400 6�680�41 6�674�38 6�123�25 �403�73� 6�393�09 �319�41� 6�664�83 6�681�96 6�226�28 �305�55� 6�480�61 �275�52�

5 20 219�84 �61�51� 223�02 �60�54� 237�25 �48�66� 237�17 �48�05�
50 748�63 �113�22� 768�14 �99�57� 785�59 �98�27� 791�82 �93�28�
100 844�74 �81�24� 875�66 �74�21� 877�89 �73�81� 885�71 �62�41�
200 3�088�68 �184�74� 3�169�09 �167�84� 3�166�23 �176�80� 3�229�29 �122�21�
400 6�368�18 �242�72� 6�486�49 �222�64� 6�432�14 �278�87� 6�522�37 �214�97�

Table 12 Bounds and Simulated Average Revenue for HS4

LP LPD P1 ADPD
Re-solving � bound bound LP Stdev LPD Stdev bound bound ADP Stdev ADPD Stdev

1 20 2�534�41 2�501�63 1�790�82 �386�52� 1�975�15 �367�98� 2�371�81 2�369�42 2�053�02 �328�91� 2�095�84 �338�19�
50 6�418�83 6�388�56 3�965�17 �753�34� 5�478�94 �579�81� 6�300�67 6�292�95 5�626�97 �558�80� 5�783�79 �462�26�

100 13�889�00 13�877�90 11�110�40 �1�115�40� 12�933�26 �728�68� 13�660�20 13�671�60 12�848�76 �716�39� 12�912�86 �736�21�
200 26�454�40 26�422�00 22�504�33 �1�341�46� 24�437�91 �1�243�38� 26�347�20 26�413�10 24�319�58 �1�261�57� 25�081�66 �1�095�66�
400 55�660�10 55�611�30 51�122�14 �2�409�41� 53�684�53 �1�666�95� 55�409�80 55�541�50 51�638�53 �2�300�02� 53�712�35 �1�654�14�

5 20 1�963�30 �379�91� 2�054�06 �332�89� 2�095�46 �312�13� 2�082�81 �313�85�
50 5�398�34 �537�58� 5�642�24 �460�03� 5�769�49 �486�50� 5�793�13 �459�11�
100 12�279�58 �862�97� 12�929�16 �687�85� 12�805�56 �796�65� 12�980�10 �690�57�
200 24�357�47 �1�169�01� 24�901�04 �947�68� 24�783�93 �1�060�12� 25�117�72 �946�74�
400 51�863�12 �1�961�96� 53�722�25 �1�315�53� 52�225�56 �1�864�89� 53�855�08 �1�369�68�

Table 13 Relative Difference in Bounds and Policy Performance for Parallel Flights Instances PF1 and PF2

PF1 (%) PF2 (%)

LP bound/ LPD bound/ LP bound/ LPD bound/
Re-solving � P1 bound ADPD bound ADP/LP ADPD/LPD P1 bound ADPD bound ADP/LP ADPD/LPD

1 20 101�19 101�39 230�04 100�81 106�13 105�64 238�18 101�09
50 100�38 100�72 440�19 103�34 102�37 103�29 103�27 109�21
100 100�05 100�06 102�76 104�42 100�18 100�07 155�33 106�60
200 100�00 100�00 114�66 103�57 100�20 100�04 131�40 113�31
400 100�00 99�75 216�59 101�68 100�02 99�66 109�08 108�11

5 20 105�22 101�95 108�78 101�07
50 106�68 101�84 105�53 104�24
100 101�16 102�90 107�57 104�20
200 104�13 102�48 104�73 103�67
400 105�57 101�46 103�88 103�21
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Table 14 Relative Difference in Bounds and Policy Performance for Hub-and-Spoke Network Instances HS3 and HS4

HS3 (%) HS4 (%)

LP bound/ LPD bound/ LP bound/ LPD bound/
Re-solving � P1 bound ADPD bound ADP/LP ADPD/LPD P1 bound ADPD bound ADP/LP ADPD/LPD

1 20 112�99 110�27 118�70 109�27 106�86 105�58 114�64 106�11
50 103�65 103�63 109�01 107�07 101�88 101�52 141�91 105�56
100 101�39 101�22 102�36 103�83 101�67 101�51 115�65 99�84
200 100�46 100�05 103�84 100�74 100�41 100�03 108�07 102�63
400 100�23 99�89 101�68 101�37 100�45 100�13 101�01 100�05

5 20 107�92 106�34 106�73 101�40
50 104�94 103�08 106�88 102�67
100 103�92 101�15 104�28 100�39
200 102�51 101�90 101�75 100�87
400 101�00 100�55 100�70 100�25

The impact of the customer choice effect is demon-
strated by the results of PF1–PF2. PF2 has more pro-
nounced customer choice effect because more flights
are involved. Table 13 shows the difference between
LPD and ADPD is much larger for PF2 than PF1 cases.
This suggests that the benefit of using dynamic over
static bid-prices increases as the problem becomes
less decomposable. We suspect that this is because
time-dependent interactions among resources become
more complex.
Other factors that affect the relative performance

between LPD and ADPD include load factor and
capacity asymmetry. When load factor is very high
or very low, the performance difference is usually
small. This is not surprising because effective revenue
management control is most needed when the load
factor is in an intermediate range. We also observe
that when flights differ significantly in their capacity,
the performance difference is usually bigger. When
flight capacity is asymmetric, it is more likely that
some resources are more critical than others. Hence,
it is more important to use accurate bid-prices in such
cases. Our observation is derived from our experi-
ence when designing and conducting the numerical
experiments. The observation is useful because it can
give some guidelines on experimental design if it is
of interest to compare our approach to other related
approaches.
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