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Abstract

In this paper we introduce a new method to approximate Markov perfect equilibrium in large scale
Ericson and Pakes (1995)-style dynamic oligopoly models that are not amenable to exact solution due
to the curse of dimensionality. The method is based on an algorithm that iterates an approximate best
response operator using an approximate dynamic programming approach. The method, based on linear
programming, approximates the value function with a linear combination of basis functions. We provide
results that lend theoretical support to our approach. We introduce a rich, yet tractable set of basis
functions and test our method on important classes of models. Our results suggest that the approach we
propose significantly expands the set of dynamic oligopoly models that can be analyzed computationally.

1 Introduction

In a pioneering paper, Ericson and Pakes (1995) (hereafter, EP) introduced a framework to model a dynamic

industry with heterogeneous firms. The stated goal of that work was to facilitate empirical research analyzing

the effects of policy and environmental changes on things like market structure and consumer welfare in

different industries. Due to the importance of dynamics in determining policy outcomes, and also because

the EP model has proved to be quite adaptable and broadly applicable, the model has lent itself to many

applications.1 With the introduction of new estimation methods (see Pesendorfer and Schmidt-Dengler
∗Acknowledgments: We have had very helpful conversations with Allan Collard-Wexler, Uli Doraszelski, Ariel Pakes, and

Carlos Santos, as well as seminar participants at Columbia Business School, IIOC, Informs, MSOM Conference, the Econometric
Society Summer Meeting, and the NYU-Kansas City Fed Workshop on Computational Economics. The third author would like
to thank Lanier Benkard and Ben Van Roy for discussions that initially stimulated this project and for useful feedback. We thank
the Editor Phil Haile and two anonymous referees for suggestions that greatly improved the paper. The research of the first
author was supported, in part, by the Solomon Buchsbaum Research Fund. Correspondence: vivekf@mit.edu, dsaure@pitt.edu,
gweintraub@columbia.edu

1Indeed, recent work has applied the framework to studying problems as diverse as advertising, auctions, collusion, consumer
learning, environmental policy, firm mergers, industry dynamics, limit order markets, network externalities, and R&D investment
(see Doraszelski and Pakes (2007) for an excellent survey).
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(2008), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007), Aguirregabiria and Mira

(2007)) this has also become an active area for empirical research.

There remain, however, some substantial hurdles in the application of EP-style models in practice. Be-

cause EP-style models are typically analytically intractable, their solution involves numerically computing

their Markov perfect equilibria (MPE) (e.g., Pakes and McGuire (1994)). The practical applicability of EP-

style models is severely limited by the ‘curse of dimensionality’ this computation suffers from. Note that

even if it is possible to estimate the model parameters without computing an equilibrium, as in the papers

listed above, equilibrium computation is still required to analyze the effects of a policy or other environmen-

tal change. Methods that accelerate these equilibrium computations have been proposed (Judd (1998), Pakes

and McGuire (2001) and Doraszelski and Judd (2010)). However, in practice, computational concerns have

typically limited the analysis to industries with just a few firms (say, two to six) which is far fewer than the

real world industries the analysis is directed at. Such limitations have made it difficult to construct realistic

empirical models.

Thus motivated, we introduce in this paper a new method to approximate MPE in EP-style dynamic

oligopoly models based on approximate dynamic programming. Our method opens up the door to solving

problems that, given currently available methods, have to this point been infeasible. In particular, our

method offers a viable means to approximating MPE in dynamic oligopoly models with large numbers of

firms, enabling, for example, the execution of counterfactual experiments. We believe this substantially

enhances the applicability of EP-style models.

In an EP-style model, each firm is distinguished by an individual state at every point in time. The

value of the state could represent a measure of product quality, current productivity level, or capacity. The

industry state is a vector encoding the number of firms with each possible value of the individual state

variable. Assuming its competitors follow a prescribed strategy, a given firm must, at each point in time,

select an action (e.g., an investment level) to maximize its expected discounted profits; its subsequent state

is determined by its current individual state, its chosen action, and a random shock. The selected action

will depend in general on the firm’s individual state and the industry state. Even if firms were restricted to

symmetric strategies, the computation entailed in selecting such an action quickly becomes infeasible as the

number of firms and individual states grow. For example, in a model with 30 firms and 20 individual states

more than two million gigabytes would be required just to store a strategy function. This renders commonly

used dynamic programming algorithms to compute MPE infeasible in many problems of practical interest.

The first main contribution of the paper is to introduce a tractable algorithm to approximate MPE in

large scale EP-style dynamic oligopoly models. Our approach is based on an algorithm that iterates an

‘approximate’ best response operator. In short, the value function is approximated by a linear combination

of basis functions and in each iteration we compute an approximation to the best response value function via

the ‘approximate linear programming’ approach (de Farias and Van Roy (2003) and de Farias and Van Roy

(2004)). We repeat this step until no more progress can be made. Our method can be applied to a general

class of dynamic oligopoly models and we numerically test our method on important classes of EP-style
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models. Our algorithm runs in the order of minutes to hours on a modern workstation, even in models with

tens of firms and tens of individual states per firm.

Our scheme relies on approximating the best response value function with a linear combination of basis

functions. The set of basis functions is an input for our algorithm and choosing a ‘good’ set of basis

functions (which we also refer to as an approximation architecture) is a problem specific task. It requires

understanding what features of the state may have the largest impact on the value function and optimal

strategy, and a fair amount of trial and error. We discuss how numerical experiments and economic intuition

can help in the process of selecting good basis functions. Based on this, for the class of models we study

in our computational experiments, we propose using a rich, but tractable, approximation architecture that

captures a natural ‘moment’-based approximation architecture. With this set of basis functions and a suitable

version of our approximate best response algorithm, we explore the problem of approximating MPE across

various problem regimes.

More specifically, we provide an extensive computational demonstration of our method on two classes

of EP-style models: (1) a quality ladder model similar to Pakes and McGuire (1994); and (2) a capacity

competition model motivated by Besanko and Doraszelski (2004). Similar models have been previously

used as a test bed for new methods to compute and approximate MPE (Doraszelski and Judd (2010), and

Weintraub, Benkard, and Van Roy (2010)). To assess the accuracy of our approximation we compare the

candidate equilibrium strategy produced by the approach to computable benchmarks. First, in models with

relatively few firms and few individual states we can compute MPE exactly. We show that in these models

our method provides accurate approximations to MPE with substantially less computational effort.

Next we examine industries with a large number of firms and use ‘oblivious equilibrium’ introduced by

Weintraub, Benkard, and Van Roy (2008) (henceforth, OE) as a benchmark. OE is a simple to compute

equilibrium concept and provides valid approximations to MPE in several EP-style models with large num-

bers of firms. We compare the candidate equilibrium strategy produced by our approach to OE in parameter

regimes where OE can be shown to be a good approximation to MPE. Here too we show that our candidate

equilibrium strategy is close to OE and hence to MPE.

Our results suggest that our chosen approximation architecture together with our algorithm provide

accurate approximations to MPE in the two regimes described above. Moreover, our results show that a

relatively compact set of basis functions that captures few features of the industry state allows to approximate

MPE accurately.

Outside of the regimes above, there is a large ‘intermediate’ regime for which no benchmarks are avail-

able. In particular, this regime includes problems that are too large to be solved exactly and for which OE

is not known to be a good approximation to MPE. Examples of problems in this regime are many large

industries (say, with tens of firms) in which the few largest firms hold a significant market share. This is a

commonly observed market structure in real world industries. In these intermediate regimes our scheme is

convergent, but it is difficult to make comparisons to alternative methods to gauge the validity of our approx-

imations since no such alternatives are available. Nonetheless, the experience with the two aforementioned
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regimes suggest that our approximation architecture should also be capable of capturing the true value func-

tion in the intermediate regime and that our method will produce effective approximations to MPE here as

well. We believe our method offers the first viable approach to approximating MPE in these intermediate

regimes, significantly expanding the range of industries that can be analyzed computationally.

Finally, another important contribution of our work is a series of results that give theoretical support to

our approximation. These results are valid for a general class of dynamic oligopoly models. In particular, we

propose a simple, easily computable convergence criterion for our algorithm that lends itself to a theoretical

guarantee of the following flavor: Assume that our iterative scheme converges. Further, assume that a

good approximation to the value function corresponding to our candidate equilibrium strategy is within the

span of our chosen basis functions. Then, upon convergence we are guaranteed to have computed a good

approximation to a MPE. It is worth noting that such guarantees are typically not available for other means of

approximating best responses such as approximate value iteration based methods (Bertsekas and Tsitsiklis

1996). We believe this is an important advantage of the approximate linear programming approach.

The paper is organized as follows. Section 2 describes related literature. In Section 3 we introduce our

dynamic oligopoly model. In Section 4 we introduce our equilibrium concept and discuss its computation.

In Section 5 we describe the main elements of our approximate linear programming approach and we discuss

value function approximation; this discussion remains at a relatively conceptual level. Then, in Section 6

we provide a ‘guide for practitioners’ of our algorithm at a level of detail of interest to readers implementing

the approach. In Section 7 we report results from computational experiments. In Section 8 we provide

conclusions and discuss extensions of our work. In addition, at the end of the paper we provide several

appendices with important content. Appendix A describe in detail the models we analyze. Appendices B

and C develop in detail the linear programming formulation and our approximation architecture. Finally,

Appendices D and E provide specifics about the theory that gives support to our approach in terms of

approximation guarantees.

2 Related Literature

Our work extends the approximate linear programming approach to dynamic programming (de Farias and

Van Roy (2003) and de Farias and Van Roy (2004)) to consider a dynamic game setting. The extension

requires dealing with new computational challenges that inherently arise in the context of a best response

algorithm. We also extend the theory to obtain useful guarantees in this context, where we are interested on

approximating an equilibrium as oppose to a single agent optimization problem.

As we have discussed above, our work is also related to Weintraub, Benkard, and Van Roy (2008) and

Weintraub, Benkard, and Van Roy (2010). Like them we consider algorithms that can efficiently deal with

large numbers of firms but aim to compute an approximation rather than an exact MPE and provide bounds

for the error. Our work complements OE, in that we can potentially approximate MPE in situations where
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OE is not a good approximation while continuing to provide good approximations to MPE where OE does

indeed serve as a good approximation, albeit at a higher computational cost.

Our work is also related to Pakes and McGuire (2001) that introduced a stochastic algorithm that uses

simulation to sample and concentrate the computational effort on relevant states. Judd (1998) discusses

value function approximation techniques for dynamic programs with continuous state spaces. Doraszelski

(2003) among others have applied the latter method for dynamic games with a low dimensional continuous

state space. Trick and Zin (1993) and Trick and Zin (1997) use the linear programming approach in two-

dimensional problems that arise in macroeconomics. As far as we know, our paper is the first to combine

a simulation scheme to sample relevant states (a procedure inherent to the approximate linear program-

ming approach) together with value function approximation to solve highly dimensional dynamic oligopoly

models.

Pakes and McGuire (1994) suggested using value function approximation for EP-style models within a

value iteration algorithm, but reported serious convergence problems. In their handbook chapter, Doraszelski

and Pakes (2007) argue that value function approximation may provide a viable alternative to solve large

scale dynamic stochastic games, but that further developments are needed. We believe this paper provides

one path towards those developments.

Finally, we defer more specific discussions on the comparison of our approach to some commonly used

alternatives to Section 5 after introducing our method.

3 A Dynamic Oligopoly Model

We consider a variation of the industry model in Weintraub, Benkard, and Van Roy (2008) (which in turn is

close in spirit to Ericson and Pakes (1995)) where firms compete in a single-good market and the industry

evolves over discrete time periods and an infinite horizon. At the end of the section we describe two specific

versions of the model that we will use as a test bed for our methods: a quality ladder model similar to Pakes

and McGuire (1994) and a capacity model based on Besanko and Doraszelski (2004).

3.1 Model and Notation

We index time periods with nonnegative integers t ∈ N (N = {0, 1, 2, . . .}). Each incumbent firm is assigned

a unique positive integer-valued index.

State Space. Firm heterogeneity is reflected through firm states. Firm states might reflect quality level,

productivity, capacity, the size of its consumer network, or any other aspect of the firm that affects its

profits. At time t, the individual state of firm i is denoted by xit ∈ X = {0, 1, 2, ..., x}. The integer number

x is an upper bound on firms’ individual states. We define the industry state st to be a vector over individual

states that specifies, for each firm state x ∈ X , the number of incumbent firms at x in period t. We define the
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state space S =
{
s ∈ N|X |

∣∣∣∑x
x=0 s(x) ≤ N

}
.2 The integer number N represents the maximum number

of incumbent firms that the industry can accommodate at every point in time. We let nt be the number of

incumbent firms at time period t, that is, nt =
∑x

x=0 st(x).

Single-Period Profit Function. Each incumbent firm earns profits on a spot market. For firm i, its single

period expected profits π(xit, st) depend on its individual state xit ∈ X and the industry state st ∈ S . We

assume profits are bounded, i.e., there exists π <∞, such that |π(x, s)| ≤ π, for all x ∈ X , s ∈ S.

Exit Process. The model allows for entry and exit. In each period, each incumbent firm i observes a positive

real-valued sell-off value κit that is private information to the firm. If the sell-off value exceeds the value

of continuing in the industry then the firm may choose to exit, in which case it earns the sell-off value and

then ceases operations permanently. We assume the random variables {κit|t ≥ 0, i ≥ 1} are i.i.d. and have

a well-defined density function with support on the positive real line and finite moments.

Investment Dynamics. Firms that decide to remain in the industry can invest (at a cost of d per unit) to

improve their individual states. If a firm invests ιit ∈ R+, then the firm’s state at time t+ 1 is given by,

xi,t+1 = xit + w(xit, ιit, ζi,t+1),

where the function w captures the impact of investment on individual state and ζi,t+1 reflects idiosyncratic

uncertainty in the outcome of investment. We assume the random variables {ζit|t ≥ 0, i ≥ 1} are i.i.d. and

independent of {κit|t ≥ 0, i ≥ 1}. Uncertainty may arise, for example, due to the risk associated with a

research and development endeavor or a marketing campaign. To simplify notation we do not consider an

industry-wide shock to investment dynamics, but our methods could easily accommodate one.

We make the following assumptions regarding the investment process. We assume investment is bounded,

i.e., there exists a positive constant ι, such that ιit ≤ ι, ∀i,∀t. We assume that investment is productive,

i.e., w(x, ι, ζ) is nondecreasing in ι, for all x, ζ, and that P[w(x, ι, ζi,t+1) > 0] > 0, for all ι > 0. Also,

we assume the impact of investment on transition probabilities is continuous in the following sense: for all

x, k, P[w(x, ι, ζi,t+1) = k] is continuous in ι. Finally, we assume the transitions generated by w(x, ι, ζ) are

unique investment choice admissible. This last assumption is introduced by Doraszelski and Satterthwaite

(2010) and ensures a unique solution to the firms’ investment decision problem. In particular, it ensures the

firms’ investment decision problem is strictly concave or that the unique maximizer is a corner solution. The

assumption is used to guarantee existence of an equilibrium in pure strategies, and is satisfied by many of

the commonly used specifications in the literature.

Entry Process. We consider an entry process similar to the one in Doraszelski and Pakes (2007). At time

period t, there areN −nt potential entrants, ensuring that the maximum number of incumbent firms that the

industry can accommodate is N .3 Each potential entrant is assigned a unique positive integer-valued index.

In each time period each potential entrant i observes a positive real-valued entry cost φit that is private
2Because we will focus on symmetric and anonymous equilibrium strategies in the sense of Doraszelski and Pakes (2007), we

can restrict the state space so that the identity of firms do not matter.
3We assume n0 ≤ N .
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information to the firm. We assume the random variables {φit|t ≥ 0 i ≥ 1} are i.i.d. and independent of

{κit, ζit|t ≥ 0 i ≥ 1}, and have a well-defined density function with support on the positive real line and

finite moments. If the entry cost is below the expected value of entering the industry then the firm will

choose to enter.

Potential entrants make entry decisions simultaneously. Entrants do not earn profits in the period they

decide to enter. They appear in the following period at state xe ∈ X and can earn profits thereafter.4 As is

common in this literature and to simplify the analysis, we assume potential entrants are short-lived and do

not consider the option value of delaying entry. Potential entrants that do not enter the industry disappear

and a new generation of potential entrants is created next period.

Timing of Events. In each period, events occur in the following order: (1) Each incumbent firm observes its

sell-off value and then makes exit and investment decisions; (2) Each potential entrant observes its entry cost

and makes entry decisions; (3) Incumbent firms compete in the spot market and receive profits; (4) Exiting

firms exit and receive their sell-off values; (4) Investment shock outcomes are determined, new entrants

enter, and the industry takes on a new state st+1.

Firms’ Objective. Firms aim to maximize expected net present value: the interest rate is assumed to be

positive and constant over time, resulting in a constant discount factor of β ∈ (0, 1) per time period.

3.2 Specific Models

The model described above is general enough to encompass numerous applied problems in economics. To

study any particular problem it is necessary to further specify the primitives of the model. In this section we

briefly describe two specifications that we consider in our numerical experiments. Full details of the model

primitives and parameters are provided in Appendix A.

We consider exponentially distributed random variables to model both the sell-off value and the entry

cost. Following Pakes and McGuire (1994), a firm that invests a quantity ι is successful with probability

( bι
1+bι), in which case the individual state increases by one level. The firm’s individual state depreciates by

one state with probability δ, independently each period. Independent of everything else, every firms has a

probability γ of increasing its state by one level.5 Hence, a firm can increase its state even in the absence of

investment. If the appreciation shock is unsuccessful, then the transitions are determined by the investment

and depreciation processes.

Note that in most applications the profit function would not be specified directly, but would instead result

from a deeper set of primitives that specify a demand function, a cost function, and a static equilibrium

concept. Next, we specify two models that we will use in our computational experiments. The entry, exit,

and investment processes are kept the same for both of these models.

Profit Function: Quality Ladder Model. Similarly to Pakes and McGuire (1994), we consider an industry
4It is straightforward to generalize the model by assuming that entrants can also invest to improve their initial state.
5In our experiments, we eventually consider both settings where γ = 0 and γ > 0. We discuss this in more detail in Section

6.1.

7



with differentiated products, where each firm’s state variable represents the quality of its product. Given

quality levels and prices, demand is described by a standard logit model. All firms share the same constant

marginal cost of production. Profits at each period are determined by the unique Nash equilibrium of the

pricing game among firms.

Profit Function: Capacity Competition Model. This model is based on the quantity competition version

of Besanko and Doraszelski (2004). We consider an industry with homogeneous products, where each

firm’s state variable determines its production capacity. All firms share the same constant marginal cost of

production. There is a linear demand function. At each period, firms compete in a capacity-constrained

quantity setting game. Profits are determined by the unique Nash equilibrium of this game.

4 Equilibrium

In this section we introduce our notion of equilibrium and present a best response algorithm to compute

it. Then, we argue that solving for a best response is infeasible for many problems of practical interest.

This motivates our approach of finding approximate best responses at every step instead, using approximate

dynamic programming.

4.1 Markov Perfect Equilibrium

As a model of industry behavior we focus on pure strategy Markov perfect equilibrium (MPE), in the sense

of Maskin and Tirole (1988). We further assume that equilibrium is symmetric, such that all firms use a

common stationary investment/exit strategy. In particular, there is a function ι such that at each time t, each

incumbent firm i invests an amount ιit = ι(xit, st). Similarly, each firm follows an exit strategy that takes

the form of a cutoff rule: there is a real-valued function ρ such that an incumbent firm i exits at time t if and

only if κit > ρ(xit, st). Weintraub, Benkard, and Van Roy (2008) show that there always exists an optimal

exit strategy of this form even among very general classes of exit strategies. Let Y = {(x, s) ∈ X × S :

s(x) > 0}6. Let M denote the set of exit/investment strategies such that an element µ ∈ M is a set of

functions µ = (ι, ρ), where ι : Y → R+ is an investment strategy and ρ : Y → R is an exit strategy.

Similarly, each potential entrant follows an entry strategy that takes the form of a cutoff rule: there is a

real-valued function λ such that a potential entrant i enters at time t if and only if φit < λ(st). It is simple to

show that there always exists an optimal entry strategy of this form even among very general classes of entry

strategies (see Doraszelski and Satterthwaite (2010)). We denote the set of entry strategies by Λ, where an

element of Λ is a function λ : Se → R and Se = {s ∈ S :
∑x

x=0 s(x) < N}. Note that Se is the set of

industry states with fewer than N firms, that is, with a positive number of potential entrants.

We define the value function V µ′

µ,λ(x, s) to be the expected discounted value of profits for a firm at state

x when the industry state is s, given that its competitors each follows a common strategy µ ∈ M, the entry
6By s(x) we understand the xth component of s.
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strategy is λ ∈ Λ, and the firm itself follows strategy µ′ ∈M. In particular,

V µ′

µ,λ(x, s) = Eµ
′

µ,λ

[
τi∑
k=t

βk−t (π(xik, sk)− dιik) + βτi−tκi,τi

∣∣∣xit = x, st = s

]
,

where i is taken to be the index of a firm at individual state x at time t, τi is a random variable representing

the time at which firm i exits the industry, and the superscript and subscripts of the expectation indicate the

strategy followed by firm i, the strategy followed by its competitors, and the entry strategy. In an abuse of

notation, we will use the shorthand, Vµ,λ(x, s) ≡ V µ
µ,λ(x, s), to refer to the expected discounted value of

profits when firm i follows the same strategy µ as its competitors. An equilibrium in our model comprises an

investment/exit strategy µ = (ι, ρ) ∈M, and an entry strategy λ ∈ Λ that satisfy the following conditions:

1. Incumbent firm strategies represent a MPE:

(4.1) sup
µ′∈M

V µ′

µ,λ(x, s) = Vµ,λ(x, s) , ∀(x, s) ∈ Y.

2. For all states with a positive number of potential entrants, the cut-off entry value is equal to the

expected discounted value of profits of entering the industry:7

(4.2) λ(s) = βEµ,λ [Vµ,λ(xe, st+1)|st = s] , ∀s ∈ Se.

Standard dynamic programming arguments establish that the supremum in part 1 of the definition above

can always be attained simultaneously for all x and s by a common strategy µ′. Doraszelski and Sat-

terthwaite (2010) establish existence of an equilibrium in pure strategies for this model. With respect to

uniqueness, in general we presume that our model may have multiple equilibria.8

4.2 Computation of MPE

While there are different approaches to compute MPE, a natural method is to iterate a best response operator.

Dynamic programming algorithms can be used to optimize firms’ strategies at each step. Stationary points

of such iterations are MPE. With this motivation we define a best response operator. For all µ ∈ M and

λ ∈ Λ, we denote the best response investment/exit strategy as µ∗µ,λ. The best response investment/exit

strategy solves supµ′∈M V µ′

µ,λ = V
µ∗µ,λ
µ,λ , where the supremum is attained point-wise. To simplify notation

we will usually denote the best response to (µ, λ) by µ∗. We also define the best response value function as

V ∗µ,λ = V µ∗

µ,λ. Now, for all µ ∈M and λ ∈ Λ, we define the best response operator BR :M×Λ→M×Λ

7Hence, potential entrants enter if the expected discounted profits of doing so is positive. Throughout the paper it is implicit that
the industry state at time period t+ 1, st+1, includes the entering firm in state xe whenever we write (xe, st+1).

8Doraszelski and Satterthwaite (2010) also provide an example of multiple equilibria in a closely related model. We note,
however, that using the (approximate) best response algorithm that we introduce below, we have not been able to find two different
(approximate) MPE for a given instance, even when starting from different initial conditions.
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according to BR(µ, λ) = (BR1(µ, λ),BR2(µ, λ)), where

BR1(µ, λ) = µ∗µ,λ,

BR2(µ, λ)(s) = βEµ,λ
[
V ∗µ,λ(xe, st+1)|st = s

]
, ∀s ∈ Se.

A fixed point of the operator BR is a MPE. Starting from an arbitrary strategy (µ, λ) ∈M×Λ, we introduce

the following iterative best response algorithm:

Algorithm 1 Best Response Algorithm for MPE
1: µ0 := µ and λ0 := λ
2: i := 0
3: repeat
4: (µi+1, λi+1) = BR(µi, λi)
5: ∆ := ‖(µi+1, λi+1)− (µi, λi)‖∞
6: i := i+ 1
7: until ∆ < ε

If the termination condition is satisfied with ε = 0, we have a MPE. Small values of ε allow for small

errors associated with limitations of numerical precision.

Step (4) in the algorithm (i) updates the entry strategy and (ii) requires solving a dynamic programming

problem to optimize incumbent firms’ strategies. The latter is usually done by solving Bellman’s equation

with a dynamic programming algorithm (Bertsekas 2001). The size of the state space of this problem is

equal to:

|X |
(
N + |X | − 1

N − 1

)
.

Therefore, methods that attempt to solve the dynamic program exactly are computationally infeasible for

many applications, even for moderate sizes of |X | and N . For example, a model with 20 firms and 20

individual states has more than a thousand billion states. This motivates our alternative approach which

relaxes the requirement of finding a best response in step (4) of the algorithm and finds an approximate best

response instead.

5 Approximate Dynamic Programming

In this section we first specialize Algorithm 1 by performing step (4) using the mathematical programming

approach to dynamic programming. This method attempts to find a best response, and hence, it requires

compute time and memory that grow proportionately with the number of relevant states, which, as mentioned

above, is intractable in many applications. Then, we describe how to overcome the curse of dimensionality

and simplify the computation following several steps. Each step is illustrated through examples. Notably,

our approach reduces the dimensionality of the mathematical program significantly. In addition, it reduces
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the original non-linear mathematical program into a linear program that is much easier to solve. In summary,

step (4) of the algorithm finds an approximate best response by solving a tractable linear program and in

this way finds an approximation to MPE.

5.1 Mathematical Programming Approach

For some (µ, λ) ∈M× Λ, consider the problem of finding a best response strategy µ∗µ,λ; the best response

may be found computing a fixed point of the Bellman operator. We now construct the Bellman operator for

our dynamic oligopoly model. Let us define for an arbitrary µ′ ∈ M, the continuation value operator Cµ
′

µ,λ

according to:

(Cµ
′

µ,λV )(x, s) = −dι′(x, s) + βEµ,λ[V (x1, s1)|x0 = x, s0 = s, ι0 = ι′(x, s)], ∀ (x, s) ∈ Y,

where V ∈ R|Y| and (x1, s1) is random. Now, let us define the operator Cµ,λ according to

Cµ,λV = max
µ′∈M

Cµ
′

µ,λV,

where the maximum is achieved point-wise. Define the operator Tµ
′

µ,λ according to

Tµ
′

µ,λV (x, s) = π(x, s) + P[κ ≥ ρ′(x, s)]E[κ | κ ≥ ρ′(x, s)] + P[κ < ρ′(x, s)]Cµ
′

µ,λV (x, s),

and the Bellman operator, Tµ,λ according to

Tµ,λV (x, s) = π(x, s) + E [κ ∨ Cµ,λV (x, s)] ,

where a ∨ b = max(a, b) and κ is drawn according to the sell-off value distribution presumed. The best

response to (µ, λ) may be found by computing a fixed point of the Bellman operator. In particular, it is

simple to show V ∗µ,λ is the unique fixed point of this operator. The best response strategy, µ∗, may then be

found as the strategy that achieves the maximum when applying the Bellman operator to the optimal value

function (Bertsekas 2001). We call this strategy the greedy strategy with respect to V ∗µ,λ. That is, a best

response strategy µ∗ may be identified as a strategy for which

Tµ
∗

µ,λV
∗
µ,λ = Tµ,λV

∗
µ,λ,

where V ∗µ,λ is the unique fixed point of the Bellman operator Tµ,λ. A solution to Bellman’s equation may

be obtained via a number of algorithms. One algorithm requires solving the following, simple to state

mathematical program:
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(5.1)
min c′V

s.t. (Tµ,λV )(x, s) ≤ V (x, s), ∀(x, s) ∈ Y.

It is a well known fact that when c is a component-wise positive vector, the above program yields as its

optimal solution the value function associated to a best response to (µ, λ), V ∗µ,λ (Bertsekas 2001).

If the state space is large, solving this mathematical program in step (4) of Algorithm 1 to find a best

response poses a number of important challenges:

1. Number of Variables. The variable vector of the mathematical program is the value function V ; its

dimension is equal to the size of the state space. In Section 5.2 we show how to reduce the number of

variables of the mathematical program using value function approximation.

2. Approximation Error. If the state space is large, it is unlikely that the value function can be approx-

imated uniformly well over the entire state space. In Section 5.3.1 we discuss how the state relevance

weight vector c plays the role of trading off approximation error across different states.

3. Number of Constraints. The number of constraints of the mathematical program is equal to the

size of the state space. In Section 5.3.2 we introduce a constraint sampling scheme to alleviate this

difficulty.

4. Non-Linear Program. Program (5.1) is, as stated, a non-linear program. In Section 5.4 we introduce

a useful linear formulation of the mathematical program which is much simpler to solve than its

counterpart with non-linear constraints.

After all these steps, our initial mathematical program will be transformed into a tractable linear pro-

gram that computes an approximate best response. Iterating this approximate best response operator like

in Algorithm 1 yields a tractable approximation to MPE. In Section 5.5 we summarize theory that provides

support for our approach.

Before moving on, we digress to mention that many alternative methods to compute a good approximate

best response to competitors’ strategies do exist; the interested reader is referred to Bertsekas and Tsitsiklis

(1996). In effect, all of these methods attempt to produce an ‘approximate’ solution to the Bellman equation

that uniquely determine a best response. A method popular in economic applications is the ‘collocation’

method studied by Judd (1998). This method essentially enforces the Bellman equation at a few carefully

chosen states. Our choice of the linear programming approach here is appealing for several reasons:

1. The crucial computational step requires the solution of a linear program which are relatively easy to

solve. In contrast, collocation methods, for example, typically require solving non-linear systems of

equations. In addition, we can leverage commercial linear programming software.

12



2. The approach permits approximation and performance guarantees as previously mentioned. Other

approaches based on collocation or value iteration methods do not share these theoretical strengths. In

fact, even a single step best response computation based on the latter methods need not be convergent.

5.2 Value Function Approximation

Following de Farias and Van Roy (2003) we introduce value function approximation; we approximate the

value function by a linear combination of basis functions. This reduces the number of variables in the

program.

Assume we are given a set of “basis” functions Φi : Y → R, for i = 1, 2, . . . ,K. Let us denote by

Φ ∈ R|Y|×K the matrix [Φ1,Φ2, . . . ,ΦK ]. Given the difficulty in computing V ∗µ,λ exactly, we focus in this

section on computing a set of weights r ∈ RK for which Φr closely approximates V ∗µ,λ. To that end, we

consider the following program:

(5.2)
min c′Φr

s.t. (Tµ,λΦr)(x, s) ≤ (Φr)(x, s) , ∀(x, s) ∈ Y.

The above program attempts to find a good approximation to V ∗µ,λ within the linear span of the basis func-

tions Φ1,Φ2, . . . ,ΦK . The idea is that if the basis functions are selected so that they can closely approximate

the value function V ∗µ,λ, then the program (5.2) should provide an effective approximation. By settling for an

approximation to the optimal value function, we have reduced our problem to the solution of a mathematical

program with a potentially small number of variables (K).

Given a good approximation to V ∗µ,λ, namely Φrµ,λ, with rµ,λ a solution of the mathematical program

above, one may consider using as a proxy for the best response strategy the greedy strategy with respect to

Φrµ,λ, namely, a strategy µ̃ satisfying

T µ̃µ,λΦrµ,λ = Tµ,λΦrµ,λ.

Provided Φrµ,λ is a good approximation to V ∗µ,λ, the expected discounted profits associated with using

strategy µ̃ in response to competitors that use strategy µ and entrants that use strategy λ should also be close

to V ∗µ,λ. We formalize these notions in Appendices D.1 and D.2.

We note that our ability to compute good approximations to MPE will depend on our ability to approx-

imate, within the span of the chosen basis functions, the optimal value function when competitors use the

candidate equilibrium strategy. In particular, as we improve the approximation architecture (for example,

by adding more basis functions), the approximation to MPE should improve. We illustrate this with a few

examples.

13



5.2.1 Basis Functions

We describe a generic family of basis functions that we believe allows us to systematically construct increas-

ingly sophisticated approximations to the optimal value function. We will show that this family will serve

to approximate MPE accurately in important classes of EP-style models. At the end of the section we also

discuss the relation between this family of basis functions and other commonly used sets of basis functions,

such as those based on polynomials and state aggregation.

For a given set C ⊂ X , let us denote by s(C) the vector defined by the components of s in C. In

particular, s(C) yields the histogram of firms restricted to individual firm states in C. For example, if

X = {0, ..., 3}, a given industry state s = (6, 7, 9, 5), and C = {1, 2}, then s(C) = (7, 9). Now for a given

individual state x, let Cx be a set of subsets of X . For instance, we may have Cx = {{i} : i ∈ X}, or we

might have Cx = {{i, j} : i, j ∈ X}, or for that matter, we may even consider Cx = {X}.
Associating every individual state x ∈ X with such a set Cx, we consider approximations to the value

function of the form:

V ∗µ,λ(x, s) ≈
∑
C∈Cx

fC(x, s(C)),

where each fC is an arbitrary function of its arguments. We next consider a series of examples that should

make the flexibility of this architecture apparent:

• No Approximation: Notice that if Cx = {X} for all x, this is not an approximation at all; we may

capture the entire value function exactly. In particular, we have

V ∗µ,λ(x, s) ≈ fX (x, s)

which is not an approximation. Of course, the corresponding set of basis functions will be far too

large to be useful (i.e. it will require as many numbers to encode as the size of the state space Y).

• Separable Approximations: Consider taking Cx = {{i} : i ∈ X} for every x. This corresponds to an

approximation of the form:9

V ∗µ,λ(x, s) ≈
∑
j∈X

f{j}(x, s(j)).

For a given state (x, s), here we seek to approximate the value function by a sum of |X | functions,

each of which is an arbitrary function of the firm’s own state, x, and the number of firms at a specific

individual state, s(j). Note that the approximation is separably additive over functions that each

depend on the number of firms at a particular individual firm state. In this approximation there is one

basis function per pair of individual states (x, j); each such function is specified by N + 1 numbers.

Hence, the overall approximation can be encoded by |X |2 × (N + 1) numbers, a dramatic reduction

9In practice, our approximation also includes a constant term, independent of (x, s). The use of such constant is motivated by
the theoretical results of this paper; see Theorem D.1.
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from the size of the state space. To make this more concrete, suppose |X | = 2. Then, the separable

approximation is of the form: V ∗µ,λ(x, s(0), s(1)) ≈ f{0}(x, s(0)) + f{1}(x, s(1)), where f{0} and

f{1} are arbitrary functions. The first term corresponds to a contribution to the approximate value

function that depends on the firm’s own state and the number of firms in individual state 0; the second

one depends on the number of firms in individual state 1. Note that the fully flexible value function

allows for any function of (x, s(0), s(1)), while this approximation only allows for the separably

additive form.

• Moment Approximations: One can also consider ‘moment’ based approximations. Recall that the

value function depends on the firm’s individual state and the industry state; the latter can be viewed as

a distribution of firms over individual states. Here we attempt to approximate the value function by a

function of the firm’s own state and a few (unnormalized) moments of this distribution. Specifically,

a moment based approximation takes the form:

V ∗µ,λ(x, s) ≈ rx +
∑
k∈K

rx,k

∑
j∈X

s(j)jk

 ,

where K is a set of (typically positive) integers. Notice that
∑

j∈X s(j)j
k is the kth unnormalized

moment of the distribution over individual states that describes industry state s. We may interpret the

above approximation as a linear combination of the moments in K where the weights of this linear

combination are specific to the firm’s own state x.

It is not difficult to see that this intuitive approximation is nothing but a special case of the separa-

ble approximation described above. In particular, one sees that the moment approximation can be

recovered by defining the functions f{j}(x, s(j)) in a separable approximation according to:

f{j}(x, s(j)) =
rx
|X |

+
∑
k∈K

rx,ks(j)jk.

The family of basis functions we have described is easily expressed in the form described at the start of

this section where we approximate the value function V ∗µ,λ with Φr for a set of basis functions Φi : Y → R,

i = 1, 2, . . . ,K. This requires introducing appropriately defined indicator functions; see Appendix B for

details.

Evidently, by picking appropriate sets Cx, the basis functions described can be used to capture a rich

array of approximations. For example, one could also consider Cx = {{i, j} : i, j ∈ X}, for each x.

This approximation architecture is more general than the separable one described above. Specifically, this

corresponds to an approximation of the form:

V ∗µ,λ(x, s) ≈
∑
i,j∈X

f{i,j}(x, s(i), s(j)).
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Of course, this specification requires a larger number of basis functions.

Selecting an appropriate set of basis functions is problem dependent. In what follows, we demonstrate

numerical examples with the general separable, and moment based approximation architectures.

5.2.2 Examples

We test the previously introduced approximation architectures in the quality ladder and capacity models

introduced in Section 3.2 and described in detail in Appendix A. To do this, we first solve for the exact MPE

for the case ofN = 3. Then, we compute the approximation to MPE using the moment-based and separable

approximating architectures described above, setting c in the mathematical program to be the vectors of

ones.

Quality Ladder Model. Figure 1 displays the value functions associated to each set of basis functions and

to the exact MPE for the quality ladder and capacity competition models in the upper and low panels of the

figure, respectively. We observe that for the quality ladder model, the MPE value function has an intuitive

pattern; for a fixed industry state it increases with the firm’s own quality level, and for a fixed firm’s own

quality level it decreases with the “competitiveness” of the industry state. Note that even an approximation

with just two moments is able to capture these patterns and is quite accurate. Of course as we enrich the

basis functions by adding more moments or by moving to the fully flexible separable specification, the

approximation improves even more.

The upper panel in Figure 2 shows the investment strategies for the different set of basis functions and

the exact MPE. Except for a boundary effect at the firms smallest quality level (i.e. the smallest value taken

on by x), the MPE investment strategy – to a first order – decreases with the firm’s own quality level and the

“competitiveness” of the industry state. Again, even the architecture with two moments captures this pattern

and provides a reasonably accurate approximation.

The results suggest that for this model a set of basis functions that only depends on few features of

the industry state is enough to obtain a good approximation. In fact, a linear regression of the single-period

profit function and the MPE value function against a constant, the firm’s own state and the first moment of the

industry state yield an R2 of 0.9 and 0.97, respectively; the impact of the competitors’ state in equilibrium

outcomes can indeed be summarized by few simple statistics.

Capacity Competition Model. The MPE value function of this model exhibits rougher patterns (see lower

panel of Figure 1). For a fixed industry state, the value function first increases as a function of the firm’s own

state and then after individual state 4 it basically becomes flat. For a fixed firm’s own state, it decreases with

the “competitiveness” of the industry state, but after a point it also flattens. This is because the monopoly

quantity for this model is between the capacities in individual states 3 and 4, so firms will never produce more

than that. Hence, in terms of single period profits competitors beyond individual state 4 are all equivalent.

This effect is also expressed in the value function. In principle, due to depreciation firms in larger states are

tougher dynamic competitors, because they are less likely to fall below the monopoly quantity capacity state
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Figure 1: Value function approximation for different sets of basis functions and competition
models. The graph in (a) compares approximations from separable and moment-based archi-
tectures for the quality ladder model. The graph in (b) compares approximations from separa-
ble and moment-based architectures for the capacity competition model. States are ordered as
{(x = 0, s) : s ∈ S}, {(x = 1, s) : s ∈ S}, .... The industry states in S are roughly listed
in increasing order of “competitiveness”, where a more competitive state means that it has more
rivals and/or rivals in larger states.
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Figure 2: Investment strategy approximation for different sets of basis functions and competition
models. The graph in (a) compares strategies from separable and moment-based architectures
for the quality ladder model. The graph in (b) compares strategies from separable and moment-
based architectures for the capacity competition model. States are ordered as {(x = 0, s) : s ∈
S}, {(x = 1, s) : s ∈ S}, .... The industry states in S are roughly listed in increasing order of
“competitiveness”, where a more competitive state means that it has more rivals and/or rivals in
larger states.
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in the short-run. However, this effect is alleviated by the fact that firms invest even beyond the monopoly

quantity state to try to prevent this from happening (see Figure 2 lower panel).

The previous discussion already suggests that the actual state of competitors has a much larger impact

on equilibrium outcomes. For example, two competitors in state 4 are much tougher than one competitor in

state 8, even though their first unnormalized moments are the same. In fact, as previously discussed, in terms

of static competition, one competitor in state 8 is equivalent to it being in state 4. It is perhaps not surprising

then that the R2 of the two regressions mentioned above are much lower: 0.4 and 0.6, respectively.

Our discussion and the results in Figures 1 and 2 lower panels suggest that for this model approximations

based on few moments do not work as well; a more detailed representation is needed to obtain accurate

approximations. For this model, we apparently need the fully separable approximation architecture to get

reasonable accurate approximation to the MPE value function and strategy function.

5.2.3 Discussion

The simple exercise described above suggests that the selection of good basis functions is an important

contributor to the success of our approach. The quality of a given approximating architecture depends on

the specific model it intends to approximate. Choosing a good set of basis functions requires understanding

what features of the state may have the largest impact on the value function and optimal strategy, and a fair

amount of trial and error. The comparisons and linear regressions described in the previous sections together

with experiments like the ones presented in Section 7 can support this process in practice. In Section 7 we

will show that the separable approximation architecture discussed above is effective for the class of EP-style

models we study; that architecture seems to capture MPE strategic interactions well. As described above,

there is a natural extension to this set of basis functions that may be used if a richer architecture is called for.

It is worth digressing to discuss other approximation architectures suggested in the economics litera-

ture. Judd (1998) proposes the use of polynomials to approximate the value function in low dimensional

dynamic programming problems with continuous state spaces. This approach can be useful in a setting with

a relatively small number of firms, but where individual states are continuous. The present paper focuses

on a complementary setting with a large number of firms, but a finite state space. That said, the architec-

tures proposed by Judd can also be used to good effect in our framework. For example, in the separable

approximation there are no restrictions imposed over the functions f{j}(x, s(j)); in particular they could be

polynomials. Of course, each of these functions only depends on the number of firms in a particular individ-

ual state, s(j). For a larger class of polynomials, one could consider, for example, Cx = {{i, j} : i, j ∈ X},
in which one can include polynomial functions that depend on s(i) and s(j), for i, j ∈ X .

Another common approximation architecture is based on state aggregation (Tsitsiklis and Van Roy

1996). Here, the state space is partitioned into sets and all states in a specific set share the same value

for the value function. This architecture can be easily encoded using indicator basis functions. However,

we believe that the set of basis functions we introduced in this section provide more flexibility and are more
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appropriate to approximate the value function in the class of models we study.

Moment-based approximations have been previously used in large scale stochastic control problems that

arise in macroeconomics (Krusell and Smith 1998). Distinct to the present work, the structure of the specific

problems there permits an approximation not only of the value function but also of the dynamics of agents.

This effectively reduces the original dynamic programming problems to “aggregate” dynamic programs in

a reduced state space for which a tailor made algorithm is developed for equilibrium computation.

5.3 Weight Vector c and Constraint Sampling

In this section we first describe the importance of the state relevance weight vector c. Then, we describe

a constraint sampling scheme. We also provide a numerical example to illustrate how these steps work in

practice.

5.3.1 Approximation Error: State Relevance Weight Vector c

If the state space is large, it is unlikely that a parsimonious set of basis functions allows approximating the

value function uniformly well over the entire state space. This is shown, for example, in Figures 1 and 2

where the approximation errors to the value function are larger in some portions of the state space. This is

likely to be exacerbated in larger state spaces. Therefore, it is useful to point out that theory suggests that

the state relevance weight vector c trades-off approximation error across different states; the mathematical

program will provide better approximations to the value function for states that have larger weights in the

objective function. By choosing different c vectors, the user can effectively reduce approximation error in

different parts of the state space and hopefully obtain accurate approximation for the set of “relevant” states.

We formalize this notion in Section D.2.

For example, suppose we are interested in the short-run dynamic behavior of an industry starting from

a given initial state. More specifically, we want to assess how an industry would evolve over a few years

after a policy or environmental change like a merger. Then, relevant states are ones that are visited with high

probability starting from the given initial condition over a horizon of say T periods. In this case, the vector

c should assign larger weights to this set of states.

As another example, suppose we are interested in the long-run behavior of the industry (that is indepen-

dent of the initial condition). Then, relevant states are ones that have significant probability of occurrence

under the invariant distribution of the Markov process that describes the industry evolution. In this case, c

should be the invariant distribution.

In practice, the weight vector c will be required in computing an approximate best response to some

current strategy in the course of the use of an iterative best response scheme for equilibrium computation

such as Algorithm 1. In that case, the distributions alluded to above may be selected as those corresponding

to the incumbent strategy in the algorithm. An important observation is that because these strategies change

in the course of the algorithm, the set of relevant states, and hence, the weight vector c, should also change
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as the algorithm progresses.

5.3.2 Reducing the Number of Constraints

In the previous sections we discussed how to reduce the number of variables using value function approxi-

mation and how to trade-off approximation error across different states. However, the number of constraints

is still prohibitive. In this section we describe how a constraint sampling scheme alleviates this difficulty.

Value function approximation reduced the number of variables of the program (5.1). To deal with the

large number of constraints, we will simply sample states fromY and only enforce constraints corresponding

to the sampled states. Now since the number of variables common to all constraints in (5.2) is small i.e. it

is simply the number of basis functions, K, we will see that the resulting ‘sampled’ program will have a

tractable number of variables and constraints.

Given an arbitrary sampling distribution over states in Y , ψ, one may consider sampling a set R of L

states in Y according to ψ. We consider solving the following relaxation of (5.2):

(5.3)
min c′Φr

s.t. (Tµ,λΦr)(x, s) ≤ (Φr)(x, s) ∀(x, s) ∈ R.

Intuitively, a sufficiently large number of samples L should suffice to guarantee that a solution to (5.3)

satisfies all except a small set of constraints in (5.2) with high probability. In fact, theory suggests that if

the distribution chosen mimics the choice of c suggested in the previous section (so it focuses on the set

of relevant states), L can be chosen independently of the total number of constraints in order to achieve a

desired level of performance. By sampling a sufficiently large, but tractable, number of constraints via an

appropriate sampling distribution, one can compute an approximate best response via (5.3) whose quality

is similar to that of an approximate best response computed via the intractable program (5.2). We illustrate

this point with an example and present theoretical support in Appendix D.3.

Earlier, we pointed out that different selections of the weight vector c and the constraint sampling dis-

tribution can result in different approximations to MPE. In this section and the previous one, we have sug-

gested appropriate selections for these quantities that are supported by theory. Moreover, computational

experimentation with the models presented in Section 3.2 confirmed that, compared to other alternatives,

the selections we suggest consistently provide the best approximations to the MPE computed with our best

response algorithm.

5.3.3 Examples

Consider the capacity competition model introduced in Section 3.2 and described in detail in Appendix A,

with N = 4. In this setting one has that |Y| = 2860. We solve for the MPE and use it to estimate the

long run distribution of industry states over Y (through simulation). Let cLR denote such an estimate. Let

YLR(r) ⊆ Y include the r most frequently visited states according to cLR.
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We solve (5.3) for several values of |R|, while considering (µ, λ) to be the MPE, and c = cLR. That

is, we compute an approximate best response to the MPE using the mathematical program (5.3) and taking

c = cLR. To illustrate the concepts discussed above we use the moment-based approximating architecture

with |K| = 2 (so we consider the first two unnormalized moments).

Let V r denote the resulting best response approximation value function when the sampled constraints

in formulation (5.3) are R = YLR(r) for r = 500, 250, 100, |Y|. With these we compute the following

weighted approximation relative errors:

εVr :=
∑

(x,s)∈Y

cLR(x, s) ·
∣∣∣V |Y|(x, s)− V r(x, s)

∣∣∣/V |Y|(x, s), r ∈ {500, 250, 100}.

The errors above quantify the quality of the approximation produced while solving the approximate mathe-

matical program using only the constraints considered inR as opposed to all constraints.

Table 1 illustrates the results of our numerical experiments. There, one appreciates that reducing the

number of constraints in formulation (5.3) does impact the quality of the approximation, although the impact

is moderate when weighting according to the long run distribution induced by MPE. Even with a tenth of

the constraints the approximation does not degrade much.10

r = 500 r = 250 r = 100
εVr 0.0180 0.0121 0.1145

Table 1: Weighted relative errors of value function for capacity competition model, using moment-
based approximation with two moments when N = 4 and c = cLR.

5.4 Discretization and a Tractable Linear Program

In solving the program (5.3), it is computationally challenging to allow for a continuum of investment

levels and for sell-off values to be continuous random variables. As such, by suitably discretizing allowable

investment levels and by approximating a continuous valued random variable by a discrete random variable,

we may hope to approximate the solution of the original, continuous problem. Here we provide the details

of this discretization.

Discretizing Sell-Off Values: We replace the continuous valued sell-off value random variable κ by a

discrete-valued random variable κ̂ defined as follows: κ̂ takes values uniformly at random in the set K̂ =

{k1, k2, . . . , kn} where kj as the largest quantity satisfying P[κ < kj ] ≤ n+1−j
n for j = 1, . . . , n. Here n is

a parameter that will control the fineness of the discretization.

Discretizing Investment Levels: As opposed to allowing investments in [0, ι], we only allow for invest-

ments in the set

Iε = {0, ε, 2ε, . . . , b(ι)/εcε},
10Of course, generally we will not have access to the MPE strategy. Instead, as previously mentioned, in practice we sample

states using the incumbent strategy in the algorithm.
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where ε > 0 is a parameter that controls the fineness of our discretization.

The above discretizations are tantamount to the approximation

(Tµ,λΦr)(x, s) ∼ π(x, s) +
1
n

n∑
i=1

(
ki ∨ (Cεµ,λΦr)(x, s)

)
, (T ε,nµ,λΦr)(x, s),

where (Cεµ,λΦr)(x, s) = maxµ′(x,s):ι′(x,s)∈Iε(C
µ′

µ,λΦr)(x, s). We then consider solving the following pro-

gram instead of (5.3):

(5.4)
min c′Φr

s.t. (T ε,nµ,λΦr)(x, s) ≤ (Φr)(x, s), ∀(x, s) ∈ R.

Two questions arise regarding the program (5.4). First, what impact does discretization have on our

accuracy in solving the best response problem? Second, why is (5.4) any easier to solve? The first question

is answered in Appendix C, where we show that the approximation does not degrade much with a fine

enough discretization of the sell-off value distribution and investment levels. In addition, computational

experimentation with the models presented in Section 3.2 confirm this. As for the second question, (5.4) is,

in fact, equivalent to a linear program which is substantially simpler to solve than the non-linear program

(5.3); this equivalent linear program is described next.

Notice that by introducing auxiliary variables u(x, s) ∈ Rn, the constraint (T ε,nµ,λV )(x, s) ≤ V (x, s) is

equivalent to the following set of constraints:11

(5.5)

π(x, s) + 1
n

∑n
i=1 u(x, s)i ≤ V (x, s)

maxµ′(x,s):ι′(x,s)∈Iε C
µ′

µ,λV (x, s) ≤ u(x, s)i ∀i ∈ {1, ..., n}
ki ≤ u(x, s)i ∀i ∈ {1, ..., n}.

These constraints, except for the second one, are linear in the set of variables u and V . However, it is easy

to see that, for each i, the second non-linear constraint above is equivalent to a set of |Iε| linear constraints:

−dι′ + βEµ,λ[V (x1, s1)|x0 = x, s0 = s, ι0 = ι′] ≤ u(x, s)i , ∀ι′ ∈ Iε.12

Hence, (5.4) is, in fact equivalent to the following linear program:

min c′Φr

s.t. π(x, s) + 1
n

∑n
i=1 u(x, s)i ≤ Φr(x, s) ∀ (x, s) ∈ R

−dι′ + βEµ,λ[Φr(x1, s1)|x0 = x, s0 = s, ι0 = ι′] ≤ u(x, s)i ∀ι′ ∈ Iε, ∀i ∈ {1, ..., n},∀(x, s) ∈ R
ki ≤ u(x, s)i ∀i ∈ {1, ..., n},∀(x, s) ∈ R.

11By equivalent we mean that the set values of V (x, s) that satisfy the constraint is identical to the set of values of V (x, s) that
satisfy (5.5).

12Note that for a fixed action ι′ the expectation operator is linear in the set of variables V .
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In summary, we have constructed a linear program with a tractable number of variables and constraints

to approximate the best response value function. One last potential difficulty to solve this program is the

expectation over next period states that we need to compute in the left hand side of the constraints in (5.4);

as pointed out by Doraszelski and Judd (2010) this involves a high dimensional sum. We will show later,

however, that this sum gets significantly simplified with the basis functions we use.

One last comment is at order. Introducing discrete investment levels and sell-off values may destroy the

existence of pure strategy equilibrium as shown by Doraszelski and Satterthwaite (2010). We do not allow

for mixed strategies. Instead, when computing an MPE we relax the stopping criteria in Algorithm 1 as we

now explain. For simplicity consider a model with investment decisions only. Given our assumption that

the investment process is unique investment choice admissible, it is reasonable to expect that with discrete

investment levels, Algorithm 1 may jump between adjacent investment levels in consecutive iterates, such

that ‖ιi − ιi+1‖∞ = ε (ε is the parameter that controls for the fineness of the discretization in investment).

If this happens, we stop and we consider (ιi + ιi+1)/2 as an approximation to a pure strategy MPE. It

is easily seen that as ε becomes small, we get closer to a pure strategy MPE of the continuos model. A

similar argument would apply for discretizing sell-off values, however our algorithm considers an alternative

approach that does not require such discretization; see Section 6.2.1.

In Section 6 we will provide a procedural description of Algorithm 1 wherein the best response compu-

tation step is approximated and accomplished using the tractable program (5.4). That section will present

the overall scheme at a level of detail of interest to readers implementing the approach. Before that, we

conclude this section by briefly describing the theoretical guarantees we can offer for our approach.

5.5 Theoretical Guarantees

In Sections D and E in the Appendix we introduce theory that provides support for our overall approach.

We summarize those theoretical guarantees here.

We first develop an extension of the theory developed in de Farias and Van Roy (2003) and de Farias and

Van Roy (2004) that lets us bound the magnitude of the increase in a firm’s expected discounted profits if it

unilaterally deviated to an optimal strategy from that produced by the approximate dynamic programming

approach. In particular, these guarantees allow us to provide a stopping criterion under which our algorithm

would terminate at what is essentially an ε−equilibrium (Fudenberg and Tirole 1991). Our theory demon-

strates that the ‘ε’ here crucially depends on the expressivity of the approximation architecture among other

algorithmic parameters. More specifically, the ‘ε’ is guaranteed to be small if a good approximation to the

value function corresponding to our candidate equilibrium strategy is within the span of our chosen basis

functions.

We then demonstrate a relationship between our notion of ε−equilibrium and approximating equilibrium

strategies that provides a more direct test of the accuracy of our approximation. In Theorem E.1 we show

that as we improve our approximation so that a unilateral deviation becomes less profitable (e.g, by adding
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more basis functions), we indeed approach a MPE. The result is valid for general approximations techniques

and we anticipate it can be useful to justify other approximation schemes for dynamic oligopoly models or

even in other contexts.

6 A Procedural Description of the Algorithm

This section is a procedural counterpart to the preceding section. In particular, we provide a procedural

description of the linear programming approach to compute an approximate best response in lieu of step (4)

in Algorithm 1. The overall procedure is described as Algorithm 2 in Section 6.1. The following sections

present important sub-routines.

6.1 Algorithm

Our overall algorithm employing the approximate best response computation procedure, Algorithm 2, will

require the following inputs:

1. {Φi : i = 1, . . . ,K}, a collection of K basis functions. This collection is such that Φi : Y → R for

all i = 1, 2, . . . ,K. We denote by Φ ∈ R|Y|×K the matrix [Φ1,Φ2, . . . ,ΦK ].

2. A discrete valued random variable κ̂ taking values uniformly at random in a set {ki : i ∈ K̂} where

K̂ is a finite index set with cardinality n. Such a random variable may be viewed as a discretization to

a given sell-off value distribution as described in the previous section. It will also be possible to deal

with continuous random variables; see Section 6.2.1.

3. A discrete set of permissible investment levels I = {0, ε, 2ε, . . . , bι/εcε}. Again, I may be viewed

as a discretization of some given set of permissible investment levels.

4. (µc, λc), an initial investment/exit strategy and entry cut-off rule with a compact representation. An

example of such a strategy derived from what is essentially a myopic strategy is given by:

ιc(x, s) = 0, ∀(x, s) ∈ Y
ρc(x, s) = 1

1−β E[π(x1, s)|x0 = x , ι = ιc], ∀(x, s) ∈ Y
λc(s) = 1

1−βπ(xe, s), ∀s ∈ Se

5. An arbitrary initial state in Y, v.

6. Tuning parameters: i) L̃, a positive integer required to calibrate simulation effort and size of the

linear program to solve at each iteration (see step (4) in Algorithm 2); ii) T , a positive integer that

determines the size of the transient period when simulating the industry evolution; iii) ε > 0 used to
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calibrate the stopping criteria (see step (13) in Algorithm 2); and iv) γsimul, an appreciation factor

used in constructing distributions to sample industry states.

We next describe our Algorithm, noting that the description will call on two procedures we are yet to

describe: (1) an approximate linear programming sub-routine ALP (·), and (2) an oracle M(·) that suc-

cinctly represents investment, entry and exit strategies using the results of previous iterations and is called

whenever the incumbent strategy in a given state needs to be computed. The next two sections are devoted

to describing these sub-routines in detail.

Upon convergence, the approximate MPE strategy can be recovered as (µi∗ , λi∗) =M(ri
∗
, . . . , r1, µc, λc),

where i∗ is the number of iterations until convergence, and rj are the weights obtained in ALP (·) at each

iteration. There are several aspects of Algorithm 2 that merit further comment:

1. Sampling States: The ADP scheme relies on samples drawn from the state space under the incumbent

strategy in the algorithm. In particular, this is done in step (4) of Algorithm 2 and the samples obtained

are used for constructing c and R. The tuning parameters v and T are chosen appropriately. For

example, if one is interested in approximating the long-run behavior of the industry, T is set to be

a very large number. In contrast, if one is interested in approximating the short-run behavior of the

industry starting from a given initial state, then T = 0 and v is set to be the initial state of interest.

We note here that the distribution used to sample states can assume a somewhat distinct model of

industry dynamics than the true model. In particular, if the model appreciation parameter γ = 0, we

may sample assuming industry dynamics with an appreciation parameter γsimul > 0. We do this as

a means of encouraging ‘exploration’ when an intermediate policy spends most of its time in a small

part of the state space. If γ > 0, we take γsimul = γ, so that in this case the dynamics assumed

by the distribution used to sample states coincides with the actual dynamics. In our experience, we

observed that sometimes setting a small but positive value for the model parameter γ improved the

approximation.

2. Convergence and Stopping Criteria: Our algorithm stops when a proxy to the expected bene-

fit a firm obtains from unilaterally deviating from the approximate policy, ∆, falls below a spec-

ified threshold, ε. In the ith iteration of the algorithm, this proxy is defined according to ∆i =∑
(x,s)∈R c(x, s)

∣∣∣V µi+1

µi λi
(x, s)− Vµi λi(x, s)

∣∣∣ and evaluated via simulation in step (11) of the algo-

rithm. In essence, this treats µi+1 as a proxy for the best response to (µi, λi). Note that the empirical

distribution c is computed using the incumbent strategies in the algorithm, (µi, λi), and therefore

changes in each iteration. Appendix E relates convergence of the algorithm under this proxy to con-

vergence to an MPE strategy.

3. Smooth Updates: In our computational experiments we allow for a ‘smooth’ update of the r values.

Specifically we performed the update ri := ri−1 + (ri− ri−1)/i% as a last step in every iteration. The
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Algorithm 2 Algorithm for Approximating MPE
1: µ0 = µc, λ0 = λc

{Set initial investment, entry and exit strategies}
2: i := 0
{i indexes best response iterations}

3: repeat
4: Simulate industry evolution over T + L̃ periods, assuming all firms use strategy (µi, λi), the initial

industry state is v, and investment appreciates according to γsimul.

• Compute empirical distribution c.

c(x, s) =
T+L̃∑
t=T

1[st(x) > 0 , st = s]/
T+L̃∑
t=T

∑
x∈X

1[st(x) > 0] , ∀(x, s) ∈ Y

• R ← {(x, s) ∈ Y : c(x, s) > 0}

• Let L = |R|.

{The distribution c is the empirical counterpart of the set of “relevant” states induced by (µi, λi). c
andR are used to build the ALP; see Appendix D for the theoretical justification.}

5: Set ri+1 ← ALPθ(R, µi, λi, c)
{The ALPθ(·) procedure produces an approximate best response to (µi, λi); this is succinctly de-
scribed by the parameter vector ri+1. See the following Section for the description of ALPθ(·); θ is
a regularization parameter for the procedure.}

6: (µi+1, λi+1) := M(ri+1, . . . , r1, µ0, λ0).
{The oracle M(·) described in Section 6.3 uses the weight vectors ri to generate the corresponding
investment, entry and exit strategies at any given queried state; this does not require an explicit
description of those strategies over the entire state space which is not tractable.}

7: for each (x, s) ∈ R do
8: Estimate V µi+1

µi λi
(x, s).

{Estimation is via monte-carlo simulation of industry evolution starting from state (x, s) with the
incumbent firm using strategy µi+1 and its competitors using (µi, λi).}

9: Estimate Vµi λi(x, s).
{Estimation is via monte-carlo simulation of industry evolution starting from state (x, s) with all
firms using strategy (µi, λi).}

10: end for
11: ∆ =

∑
(x,s)∈R

c(x, s)
∣∣∣V µi+1

µi λi
(x, s)− Vµi λi(x, s)

∣∣∣
{∆ is the empirical counterpart to the directly measurable component of the quality of a candidate
equilibrium; see Appendix E.}

12: i := i+ 1
13: until ∆ < ε
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parameter % was set after some experimentation equal to 2/3. We observe from our experiments that

using an update of this sort was beneficial to the rate of convergence of our scheme.

6.2 The Linear Programming Sub-routine ALPθ(·)

The ALPθ(R, µ, λ, c) sub-routine employed in step (5) of Algorithm 2 simply outputs the solution of the

following linear program:

(6.1)
minimize
r,t,u,l

∑
(x,s)∈R

c(x, s)
∑

0≤j≤K
Φj(x, s) rj

subject to π(x, s) +
1
n

n∑
i=1

u(x, s)i ≤
∑

0≤j≤K
Φj(x, s) rj + l(x, s) ∀(x, s) ∈ R

−dι+ βEµ,λ

 ∑
0≤j≤K

Φj(x1, s1) rj
∣∣∣x0 = x, s0 = s, ι0 = ι

 ≤ t(x, s) ∀(x, s) ∈ R, ι ∈ I
t(x, s) ≤ u(x, s)i ∀(x, s) ∈ R, i ∈ K̂
ki ≤ u(x, s)i ∀(x, s) ∈ R, i ∈ K̂

1
|R|
∑

(x,s)∈R l(x, s) ≤ θ
l(x, s) ≥ 0 ∀(x, s) ∈ R

To prevent this program from being unbounded we also included the constraint that r lies in a large

bounded set. When the parameter θ is set to 0, the above linear program (LP) is, in fact, equivalent to the

LP derived for the program (5.4) 13 Briefly, we recall that we expect that given an optimal solution r to the

above program, Φr should provide as good an approximation to V ∗µ,λ as is possible with the approximation

architecture Φ. Positive values of θ serve to regularize the program by allowing violations of the Bellman

inequalities in states where this may benefit the overall approximation; the theory supporting this regu-

larization is developed in Desai, Farias, and Moallemi (2010). In particular, that paper extends the theory

presented in Appendix D to the “regularized” LP. Desai, Farias, and Moallemi (2010) provide a theoretically

robust choice of θ. In our own numerical experiments we determine an ideal choice of θ in small instances

where exact MPE is computable and employ this choice in our experiments with a large number of firms.

We first tried θ = 0 and then explore positive values of θ if required. In practice, we used both θ = 0 and

θ > 0 depending on the instance.

The second set of constraints in (6.1) involve the expectationsEµ,λ [(Φr)(x1, s1)|x0 = x, s0 = s, ι0 = ι].

For both the quality ladder and quantity competition models, the separable architecture introduced in Sec-

tion 5.2.1 allows us to express these expectations in a tractable fashion. In particular, these expectations can

be written as linear functions in r whose coefficients may be computed with roughly |X |N4 operations.14

13With the only difference that here we have introduced the auxiliary variables t(x, s), ∀(x, s) ∈ R, to reduce the number of
constraints of the program. However, the programs are indeed equivalent.

14In that model, firms can only transition to adjacent individual states. Considering this and the nature of the basis functions,
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This may not be possible in other models or with other types of basis functions; in that case one may simply

replace the expectation with its empirical counterpart. Alternatively, Doraszelski and Judd (2010) propose a

continuous time formulation that significantly reduces the complexity involved in computing the expectation

over next period states.

Problem (6.1) has (K + L(n + 2)) decision variables and (L(|I| + 2 · n + 2) + 1) constraints. Thus

both the number of constraints and variables in (6.1) scale proportionally to the number of states L sampled

from simulating the industry evolution. Note that the number of variables and constraints do not scale with

the size of the state space and one may solve this LP to optimality directly provided L is sufficiently small.

However, an alternative procedure proved to provide a further speedup. We describe this procedure next.

6.2.1 A Fast Heuristic LP Solver

We present here a fast iterative heuristic for the solution of the LP (6.1) that constitutes the subroutine

ALPθ(R, µ, λ, c). As opposed to solving a single LP with (K +L(n+ 2)) decision variables and (L(|I|+
2 · n + 2) + 1) constraints as above, the procedure solves a sequence of substantially smaller LPs, each

with (K + L) variables and (L(|I|+ 1) + 1) constraints. The idea underlying the heuristic is quite simple:

whereas LP (6.1) essentially attempts to find an optimal investment strategy and exit rule in response to some

input strategy (µ, λ), the heuristic assumes a fixed exit rule, and attempts to find a near optimal investment

strategy; following this, the exit rule is updated to reflect this new investment strategy and one then iterates

to find a new near optimal investment rule given the updated exit rule. As we will show, any fixed point of

this procedure is indeed an optimal solution to the LP (6.1). First, we describe the heuristic in detail; see

Algorithm 3.

Algorithm 3 stops when the exit strategy implied by the current optimal investment levels are consistent

with the exit strategy from which those investment levels where derived in the first place. The fixed points of

the above approach constitute an optimal solution to (6.1). In particular, suppose ε = 0 in the specification

of Algorithm 3 and let r′ and l′ be the output of the Algorithm assuming it terminates. Define

t′(x, s) = max
ι∈I
−dι+ βEµ,λ

 ∑
0≤k≤K

Φk(x1, s1) r′k
∣∣∣x0 = x, s0 = s, ι0 = ι

 , ∀(x, s) ∈ R.

and

u′(x, s)i = max{t′(x, s), ki}, ∀(x, s) ∈ R, i ∈ K̂.

We then have the following result that we prove in the Appendix.

Proposition 6.1. (r′, u′, t′, l′) is an optimal solution to the LP (6.1).

given a state (x, s) it is enough to go over each possible individual state j ∈ X and compute the probability distribution of the
number of firms that will transition to state j from states j, j−1, and j+1, while at the same time considering firms leaving/entering
the industry.
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Algorithm 3 Heuristic to solve Linear Program ALPθ(R, µ, λ, c)
1: j := 0
2: r′ = r
{r could be arbitrary here; a useful initial condition is to consider r to be the value computed at the
previous best response iteration.}

3: Set ej(x, s) = max
ι∈I
−dι+ βEµ,λ

 ∑
0≤k≤K

Φk(x1, s1) r′k
∣∣∣x0 = x, s0 = s, ι0 = ι

, ∀(x, s) ∈ R.

{Set cutoff values for firm exit based on the current approximation to the optimal value function.}
4: repeat
5: Set r′ and l′ as a solution to

(6.2)
minimize

r,l

∑
(x,s)∈R

c(x, s)
∑

0≤k≤K
Φk(x, s) rk

subject to π(x, s) + P(κ̂ < ej(x, s))

−dι+ βEµ,λ

 ∑
0≤k≤K

Φk(x1, s1) rk
∣∣∣x0 = x, s0 = s, ι0 = ι


+E[κ̂|κ̂ ≥ ej(x, s)]P(κ̂ ≥ ej(x, s)) ≤

∑
0≤k≤K

Φk(x, s) rk + l(x, s) ,

∀(x, s) ∈ R, ι ∈ I,

1
|R|

∑
(x,s)∈R

l(x, s) ≤ θ,

l(x, s) ≥ 0 ∀(x, s) ∈ R.

{Compute an approximate best response investment strategy assuming the fixed exit rule determined
by the cutoff value ej .}

6: Set ej+1(x, s) = max
ι∈I
−dι+ βEµ,λ

 ∑
0≤k≤K

Φk(x1, s1) r′k
∣∣∣x0 = x, s0 = s, ι0 = ι

, ∀(x, s) ∈ R.

{Update the exit rule based on the computed approximate best response investment strategy.}
7: ∆ :=

∑
(x,s)∈R

c(x, s)|ej+1(x, s)− ej(x, s)|

{If the update in the exit rule is sufficiently small then the computed value function in step (5) is, in
fact, a near-optimal solution to (6.1).}

8: j := j + 1
9: until ∆ < ε

10: return r′ and l′
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It is not clear that Algorithm 3 is convergent. Note however that if the algorithm did not converge within

a user specified number of iterations, one can always resort to solving (6.1) directly. In practice, the number

of iterations required for convergence depends on how close (µi, λi) is to an approximate equilibrium:

when Algorithm 2 is close to convergence we expect the number of inner iterations in Algorithm 3 to be

very small. Also, during the initial few iterations of Algorithm 2 one can restrict the number of inner

iterations in Algorithm 3; in the initial steps of the algorithm when presumably the strategies are not close

to an approximate equilibrium, having an accurate approximation to a best response is not crucial. In

practice, using this scheme (as opposed to solving (6.1) directly) provided an average speedup of one order

of magnitude.15

It is also worth remarking that the above procedure does not really require that the selloff value dis-

tribution be discrete. In fact, we use the actual (exponential) sell off value distribution in our experiments

without the discretization. In the event that the procedure above converges, one could show that the resulting

solution is in fact an optimal solution to the program (5.3) (assuming discrete investment levels); the proof

essentially follows that of the above proposition.

We next describe the sub-routineM(·) which we recall serves as an oracle procedure for the computation

of the current investment strategy µ and entry rule λ at a given input state.

6.3 Computing Strategies Given a Sequence of Weight Vectors: The Oracle M

At several points in Algorithm 2, we require access to the current candidate equilibrium strategy (µi, λi).

More precisely, we require access to a procedure that given a state (x, s) ∈ Y or a state s ∈ Se efficiently

computes µi(x, s) or λi(s), respectively, at any stage i of the algorithm. Simply storing (µi, λi) in a look-up

table is infeasible given the size of Y . Fortunately, we can develop a sub-routine that given past approximate

best-responses (encoded via the weight vectors ri), an initial strategy with a compact representation, and an

input state (x, s) ∈ Y (s ∈ Se), is able to efficiently generate µi(x, s) (λi(s)). We specify this sub-routine,

M , in this section. We will show that M(·) runs in time that is only linear in the current iteration count i.

Fix (x, s) ∈ Y , and define N(x, s) as the set of possible states faced by firms in that industry state, i.e,

N(x, s) = {(y, s) ∈ Y : s(y) > 0}.

For any given state (x, s) ∈ Y , Algorithm 4, described below, computes (µi(x, s), λi(s)) using as input

the sequence of previous solutions to (6.1) and the initial compact-representation strategy (µc, λc) (it is

understood that only µi(x, s) is computed when s /∈ Se).
Next, we argue the complexity of Algorithm 4 increases linearly with i, the current iteration count at

which a call to M(·) is made in Algorithm 2. For that we need the following key observations:

15In practice, the number of simplex iterations required to solve an LP typically grows linearly in the number of constraints; see
Applegate, Bixby, Chvatal, and Cook (2006). Our scheme trades solving a handful of LPs for reducing the number of constraints
of each LP by a factor of n
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Algorithm 4 M(ri, ri−1, . . . , r1, µ
c, λc) (Computation of (µi(x, s), λi(s)) for (x, s) ∈ Y)

1: µ0 := µc, λ0 := λc, j := 1
2: repeat
3: for all (y, s) ∈ N(x, s) do
4:

ιj(y, s) := argmax
ι∈I

− dι+ βE(µj−1,λj−1)

 ∑
0≤k≤K

Φk(x1, s1)rjk
∣∣∣x0 = y, s0 = s, ι0 = ι

 .

ρj(y, s) := −dιj(y, s) + βE(µj−1,λj−1)

 ∑
0≤k≤K

Φk(x1, s1)rjk
∣∣∣x0 = y, s0 = s, ι0 = ιj(y, s)

 .
λj(s) := βE(µj−1,λj−1)

 ∑
0≤k≤K

Φk(xe, s1)rjk
∣∣∣s0 = s

 .
5: j := j + 1
6: end for
7: until j = i
8: return ιi(x, s), ρi(x, s), λi(s)

• For all (x, s) ∈ Y , we have that N(y, s) = N(x, s), for all (y, s) ∈ N(x, s).

• For all (x, s) ∈ Y , we have that |N(x, s)| ≤ min{N, |X |}.

Note that in the last iteration of Algorithm 4 in steps (4) to (6) we require, in addition to knowing rj ,

which is easy to store, that we compute (µj−1(y, s), λj−1(s)) for states (y, s) ∈ N(x, s). Unless j − 1 = 0,

computing (µj−1, λj−1) will in turn require knowledge of rj−1 and (µj−2, λj−2) for states (y′, s) ∈ N(y, s).

Since N(y, s) = N(x, s), ∀y, we note that the set of states we must compute actions for at each level of

the recursion is always contained in N(x, s). This fact, depicted in Figure 3, prevents the computation from

blowing up; since |N(x, s)| ≤ min{N, |X |}, Algorithm 4 makes no more than i · min{N, |X |} calls to

line 4 in computing (µi(x, s), λi(s)). Hence, the computational effort increases only linearly in the number

of iterations. An alternative to the oracle M(·) can be developed for which the computational effort does

not increase with the number of iterations. This formulation requires Q−functions (Bertsekas and Tsitsiklis

1996) and the solution of an alternative ALP that demands a more complex approximation architecture. For

this reason, we use the oracle M(·) instead.

7 Computational Experiments

In this section we conduct computational experiments to evaluate the performance of our algorithm in situ-

ations where either we can compute a MPE, or a good approximation is available. We use both the quality
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Figure 3: Oracle computation increases linearly with the number of iterates in Algorithm 2.
Suppose we want to compute µi(x, s) and that x = 1 and s = (1, 1, 2) (here |X | = 3), that is, the
industry state consists of one firm at individual states 1 and 2, and 2 firms at individual state 3; the
incumbent firm under consideration is in individual state 1. Computation of µi(x, s) requires µi−1

for the competitors of the firm in individual state 1, that is, for firms in states (2, s) and (3, s), where
s = (1, 1, 2) as before. In turn, µi−1(2, s) requires µi−2 for firms in states (1, s) and (3, s). We can
continue with this reasoning and observe that all states for which we need to recover strategies in
this iterative scheme are contained in N(x, s).

ladder and the capacity competition models described in Section 3.2.16

A key issue in our approach is the selection of an approximation architecture, that is, a set of basis

functions. For the class of EP models we study, we propose using the separable approximation presented in

Section 5.2.1. In such an architecture one has a collection of |X |2 · (N + 1) basis functions. This number

will typically be substantially smaller than |Y|, hence the use of this approximation architecture makes the

linear program in Algorithm 3 a tractable program. For example, in models in which the state space has on

the order of 1015 states, we only require thousands of basis functions.

Whereas the separable architecture allows for general functions of the number of firms in a specific

inidividual state, in our numerical experiments, we also used a coarser architecture where these functions

were restricted to be piecewise linear. Specifically, for instances with N ≥ 20 we introduce this architecture

by modifying the linear program in Algorithm 3 as follows: For a setH ⊆ {0, ..., N} define l(j) = max{i ∈
H : i ≤ j} and u(j) = min{i ∈ H : i ≥ j}. We impose the following set of additional constraints:

ri,j,h =
u(h)− h
u(h)− l(h)

ri,j,l(h) +
h− l(h)

u(h)− l(h)
ri,j,u(h) for all i ∈ X , j ∈ X and h /∈ H.

That is, for each i ∈ X , j ∈ X , and h /∈ H, the variables ri,j,h are determined by linear interpolation.

This procedure reduced the number of basis functions and our numerical experience suggested it did not

significantly degraded the accuracy of the approximation.
16Our implementation of the algorithm described in the previous section together with a detailed documentation can be found at

the authors’ webpages.
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7.1 Comparing Economic Indicators of Interest

We show that our approximate linear programming-based (ALP-based) algorithm with the proposed archi-

tecture provides accurate approximations to MPE behavior. For this purpose we compare the outcome of

our ALP approach to the outcome of computable benchmarks. Specifically, we first compare the strategy

derived from our algorithm against MPE for instances with relatively small state spaces in which MPE can

be computed exactly. Second, we compare the strategy derived from our algorithm against oblivious equi-

librium (OE) introduced by Weintraub, Benkard, and Van Roy (2008) for instances with large numbers of

firms and parameter regimes where OE is known to provide a good approximation.

Instead of comparing ALP strategies to our benchmark strategies directly, we instead compare economic

indicators induced by these strategies. These indicators are long-run averages of various functions of the

industry state under the strategy in question. The indicators we examine are those that are typically of interest

in applied work; we consider average investment, average producer surplus, average consumer surplus,

average share of the i-th largest firms (Ci), where the values for i to be examined will depend on the specific

value of N (for example, if N = 4 one may be interested in examining C2, while if N = 40 one may also

be interested in C6).17

7.1.1 Comparison with MPE

Exact computation of MPE is only possible when the state space is not too large. Therefore, we will begin by

considering settings where the number of firms and the number of individual states are relatively small. For

these instances, we will compare the strategy generated by our ALP-based algorithm with a MPE strategy.

We compute MPE with Algorithm 1.

We consider several parameter regimes. First, we consider two regimes in the capacity competition

model: one in which incentives to invest are strong yielding a rich investment process, and one in which

incentives to invest are weaker yielding lower levels of investment. We also consider similar regimes for the

quality ladder model. Table 2 depicts parameter selection for each instance.18

Table 3 reports the results for different values of N for which exact computation of MPE is feasible.

There, we report MPE and ALP-based long-run statistics, and the percentage difference between them. Our

ALP-based algorithm has a running time that is on the order of minutes. Exact computation of MPE took

from a couple of seconds, for N = 3, to several hours, for N = 5.19

17Since the outcome of our algorithm is random, due to the sampling of constraints, ALP-based quantities reported in this
subsection represent the average of 5 runs. On each run, industry evolution is simulated during 104 periods. The resulting sample
of 5 data points is such that for each indicator, the ratio between the sample standard deviation and the sample mean is in average
less than 1% and always less than 7%.

18We also note that in our computational experiments we chose the following parameters for Algorithm 2: L̃ = 5000, T =
1000, ε = 0.005, and γsimul = 0.1 whenever γ = 0. Generally, we used 50 points to discretize investment levels. To solve
ALPθ(R, µ, λ, c), for the capacity model we considered θ = 0.32. We set the parameter to that value, because it provided the best
quality of approximations among several values in the comparisons against MPE in the experiments with a small number of firms.
We kept that value fixed for the large experiments when comparing against OE. For the quality ladder model, θ = 0 yields good
results and so we used that specification for all experiments with that model.

19All runs were performed on a shared cluster of (17) computers at Columbia Graduate School of Business. Each node has a 2.4
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Parameters
Capacity competition
High inv. Low inv.

qmin 1 5
f 0.5 0.25
d 0.75 2.0
φ̃ 150 250
κ̃ 50 75

Quality ladder
High inv. Low inv.

θ1 0.75 0.5
d 0.4 1.0
c 0.55 0.5
φ̃ 250 150
κ̃ 100 80
γ 0.1 0.1

Table 2: Parameter selection for comparison with MPE.

Our approximation provides accurate approximations of the economic indicators of interest in all in-

stances. In fact, ALP-based indicators are always within 9.0% from MPE indicators, and often within 2.0%.

The differences are similar for both the capacity competition model and the quality Ladder model.

The results show that our ALP-based algorithm produces a good approximation to MPE, in instances

with relatively small state spaces for which MPE can be computed. Moreover, our ALP-based algorithm

requires substantially less computational effort.

7.1.2 Comparison with Oblivious Equilibrium

For large state spaces exact MPE computation is not possible, and one must resort to approximations. In

this context, we use OE as a benchmark. In an OE, each firm makes decisions based only on its own firm

state and the long-run average industry state, while ignoring the current industry state. For this reason, OE is

much easier to compute than MPE. The main result of Weintraub, Benkard, and Van Roy (2008) establishes

conditions under which OE well-approximates MPE asymptotically as the market size grows. Weintraub,

Benkard, and Van Roy (2010) provide an efficient simulation-based algorithm that computes a bound on the

approximation error for specific models. For the purpose of our comparisons, we select parameters regimes

for which OE provide accurate approximations to MPE in industries with tens of firms.

Similarly to the comparison with MPE we consider several parameter regimes that yield different invest-

ment levels. Table 4 depicts parameter selection for each instance in this setting. We consider an additional

parameter m (with default value m = 10), which serves as a base market size, such that the actual market

size in the industry is m = Nm (so we scale the market size proportionally to the total number of firms

Ghz Intel (R) Xeon (R) CPU and 32 Gbs of Ram memory. Our Java implementation called CPLEX 12.1.0 (facilitated by the IBM
ILOG Academic Initiative) as a subroutine to solve the linear programs in the algorithms.
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Long-Run Statistics
Instance Number Total Prod. Cons. Entry

of firms Inv. Surp. Surp. C1 C2 Rate

C
ap

ac
ity

co
m

pe
tit

io
n

m
od

el

H
ig

h
in

ve
st

m
en

t

MPE 3.0879 17.6150 14.6262 0.5334 0.8531 0.2084
N = 3 ALP-Based 3.0587 17.8515 13.4731 0.5495 0.8640 0.2143

% Diff. 0.95 1.34 7.88 3.03 1.28 2.86
MPE 3.3922 16.6884 17.4042 0.4313 0.7326 0.3250

N = 4 ALP-Based 3.2436 17.0408 16.3356 0.4462 0.7459 0.3349
% Diff. 4.38 2.11 6.14 3.46 1.81 3.04
MPE 3.5304 15.6986 19.6373 0.3638 0.6385 0.4556

N = 5 ALP-Based 3.3697 16.1112 18.6626 0.3756 0.6513 0.4633
% Diff. 4.55 2.63 4.96 3.25 2.01 1.71

L
ow

in
ve

st
m

en
t

MPE 1.6292 34.4300 34.0271 0.4610 0.8017 0.1752
N = 3 ALP-Based 1.6000 34.7816 33.0713 0.4692 0.8082 0.1760

% Diff. 1.79 1.02 2.81 1.78 0.82 0.47
MPE 1.4311 31.4584 40.0369 0.3625 0.6641 0.2934

N = 4 ALP-Based 1.4783 31.5736 39.7765 0.3651 0.6664 0.2965
% Diff. 3.30 0.37 0.65 0.70 0.35 1.03
MPE 1.2037 28.8305 44.7682 0.3020 0.5680 0.4217

N = 5 ALP-Based 1.3071 28.6284 45.1704 0.3002 0.5663 0.4201
% Diff. 8.59 0.70 0.90 0.59 0.30 0.37

Q
ua

lit
y

la
dd

er
m

od
el

H
ig

h
in

ve
st

m
en

t

MPE 4.0641 23.9621 130.1799 0.5084 0.8435 0.2618
N = 3 ALP-Based 4.1093 24.0540 131.0789 0.5068 0.8427 0.2567

% Diff. 1.11 0.38 0.69 0.31 0.09 1.94
MPE 4.8899 25.1501 149.2553 0.4090 0.7119 0.3836

N = 4 ALP-Based 5.0498 25.2980 151.2078 0.4055 0.7078 0.3683
% Diff. 3.27 0.59 1.31 0.86 0.58 3.99
MPE 5.5733 25.9517 165.1592 0.3433 0.6103 0.5067

N = 5 ALP-Based 5.8782 26.1399 168.3259 0.3385 0.6034 0.4791
% Diff. 5.47 0.73 1.92 1.41 1.13 5.45

L
ow

in
ve

st
m

en
t

MPE 2.0424 23.4767 105.2604 0.4669 0.8152 0.2567
N = 3 ALP-Based 2.0647 23.5145 105.5504 0.4663 0.8148 0.2555

% Diff. 1.08 0.16 0.27 0.12 0.06 0.49
MPE 2.3715 25.1526 122.4082 0.3684 0.6698 0.3825

N = 4 ALP-Based 2.4495 25.2645 123.4267 0.3663 0.6670 0.3707
% Diff. 3.18 0.44 0.83 0.56 0.43 3.21
MPE 2.6207 26.3429 137.0153 0.3038 0.5622 0.5062

N = 5 ALP-Based 2.7742 26.4766 138.4873 0.3016 0.5581 0.4864
% Diff. 5.53 0.50 1.06 0.75 0.74 4.07

Table 3: Comparison of MPE and ALP-based indicators. Long-run statistics computed simu-
lating industry evolution over 104 periods.
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the industry can accommodate). For these instances, computing a MPE using Algorithm 1 is infeasible for

N > 5.

Parameters
Quality ladder

High inv. Low inv.
θ1 0.75 0.5
d 0.4 1.0
c 0.55 0.5
x 15 15
φ̃ 250 250
κ̃ 40 30
γ 0.1 0.1

Capacity competition
qmin 1
qmax 50
m 8
γ 0.1

Table 4: Parameter selection for comparison with OE.

Table 5 reports the results for the different parameters regimes and models studied. There, we report OE

and ALP-based long-run statistics, and the percentage difference between them. Running times for these

instances are on the order of hours. While our simulation routine typically sample around 5, 000 states, we

consider only the L = 1500 most visited states to keep running times relatively low.20

We observe that ALP-based indicators are always within 8.5% from OE indicators, and often within 4%.

Because OE approximates MPE accurately in these instances, ALP-based indicators should be close to MPE

indicators. The results in this section suggest that our ALP-based algorithm provides a good approximation

to MPE, in instances with large numbers of firms for which OE provides a good approximation to MPE. We

note that the differences in indicators in this section, while being quite small, are somewhat larger than the

ones in the previous section. We believe this is partially explained by the fact that OE is also subject to some

approximation error. In addition, the quantities that exhibit the larger differences (e.g., C6) are relatively

small; hence, even though the percentage differences are larger, the absolute differences are very small.

8 Conclusions and Extensions

The goal of this paper has been to present a new method to approximate MPE in large scale dynamic

oligopoly models. The method is based on an algorithm that iterates an approximate best response operator
20In practice, running times for large instances (N ≥ 20) are critically determined by the amount of computational effort

required to solve the linear programming subroutine. For the reported results such linear programs had approximately 14,000
(15,000) variables and 120,000 (140,000) constraints whenN = 20 (N = 40). A given equilibrium computation typically entailed
solving about 40 such linear programs. Note that in some of these computations we set θ > 0 so that the effective number of
variables in a linear program could be larger than the number of basis functions.
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Long-Run Statistics
Instance Number Total Prod. Cons. Entry

of firms Inv. Surp. Surp. C6 C12 Rate

Q
ua

lit
y

la
dd

er

L
ow

in
ve

st
m

en
t OE 7.1105 63.0029 518.1806 0.4904 0.8583 1.2534

N = 20 ALP-Based 7.1160 62.7361 509.0353 0.4676 0.8504 1.2644
% Diff. 0.08 0.42 1.76 3.11 0.92 0.87

OE 15.2514 129.8281 1318.1610 0.2668 0.4855 2.4209
N = 40 ALP-Based 14.5708 129.3723 1283.6820 0.2473 0.4733 2.5934

% Diff. 4.46 0.35 2.63 6.85 2.52 7.13

H
ig

h
in

ve
st

m
en

t OE 15.1665 58.5573 613.8964 0.5224 0.8608 1.4482
N = 20 ALP-Based 15.8296 58.2390 596.9013 0.4875 0.8499 1.5112

% Diff. 4.37 0.54 2.77 6.68 1.26 4.34
OE 31.9531 118.6970 1515.6960 0.3055 0.5262 2.8436

N = 40 ALP-Based 32.8968 118.4719 1489.1871 0.2806 0.5071 2.9826
% Diff. 2.95 0.19 1.75 8.18 3.63 4.89

C
ap

ac
ity

co
m

p. OE 7.1863 67.4135 245.0830 0.6095 0.9303 1.1794
N = 20 ALP-Based 7.5839 69.0197 243.8150 0.5936 0.9200 1.1138

% Diff. 5.53 2.38 0.52 2.61 1.10 5.55
OE 12.9678 107.5034 522.4103 0.4015 0.6831 2.5293

N = 40 ALP-Based 13.2519 109.4110 525.1520 0.4166 0.7087 2.3276
% Diff. 2.19 1.77 0.52 3.76 3.75 7.97

Table 5: Comparison of OE and ALP-based indicators. Long-run statistics computed simulating
industry evolution over 104 periods.
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computed via ’approximate linear programming’. We provided theoretical results that justify our approach.

We tested our method on a class of EP-style models and showed that it provides useful approximations for

models that are of practical interest in applied economics. Our method opens up the door to study dynamics

in industries for which, given currently available methods, have to this point been infeasible.

In some applications one may be interested in asymmetric equilibria in EP-style dynamic models (see

for example Harrington, Iskhakov, Rust, and Schjerning (2010)). In this case, computational requirements

are even more onerous. Of course several details would need to be worked out, starting with our definition

of the state space that assumes identity of firms do not matter. These issues notwithstanding, we think that

our general approach can be extended to compute asymmetric equilibria by modifying the best response

algorithm to allow different firms (or different classes of firms) to use different strategies.

Finally, an input to our algorithm is a set of basis functions and an important contributor to the success of

our approach is the selection of good basis functions. In this paper, we discuss possible ways of identifying

useful sets of basis functions. Moreover, our results show that a relatively compact set of ‘separable’ basis

functions captures the first order effects regarding MPE strategies in the class of models we study. There

are natural extensions to this set of basis functions that may be used if a richer architecture is called for. We

expect that experimentation and problem specific knowledge can guide users of the approach in selecting

effective basis functions in their applications of interest. In this way, we hope that our method will find

applicability in a wide class of dynamic oligopoly models.
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A Details of Specific Models

In this section we provide details regarding the models described in Section 3.2.

Sell-off and Entry Cost Distributions. We consider exponentially distributed random variables to model

both the sell-off value and the entry cost. In particular, in each time period each potential entrant i will

observe a random positive entry cost φit exponentially distributed with mean φ̃. Also, each period, each

incumbent firm i observes a positive random sell-off value κit exponentially distributed with mean κ̃.

Transition Dynamics. Following Pakes and McGuire (1994) a firm that invests a quantity ι is successful

with probability ( bι
1+bι), in which case the quality of its product increases by one level. The firm’s quality

level depreciates one state with probability δ, independently each period. Independent of everything else,

every firm has a probability γ of increasing its quality by one level. Hence, a firm can increase its quality

even in the absence of investment.21 If the appreciation shock is unsuccessful, then the transitions are

determined by the investment and depreciation processes. Combining the investment, depreciation and

appreciation processes, it follows that the transition probabilities for a firm in state x that invests ι are given

by:

P
[
xi,t+1 = y

∣∣∣xit = x, ι
]

=


(1− γ) (1−δ)bι

1+bι + γ if y = x+ 1

(1− γ) (1−δ)+δbι
1+bι if y = x

(1− γ) δ
1+bι if y = x− 1 .

Parameter Specification. In practice, parameters would either be estimated using data from a particular

industry or chosen to reflect an industry under study. We use a set of representative parameter values,
21In our experiments, we eventually consider both settings where γ = 0 and γ > 0. We discuss this in more detail in Section

6.1.
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summarized in Table 6. We will keep these parameters fixed for all experiments, unless otherwise stated.

The values of δ and b are set like in Pakes and McGuire (1994). We also set the mean entry cost to be much

higher than the mean sell-off value.

Parameter β δ γ b κ̃ φ̃ x xe d
Value 0.925 0.70 0.00 3.00 30.00 300.00 9 1 1.00

Table 6: Default parameters for numerical experiments

Note that in most applications the profit function would not be specified directly, but would instead result

from a deeper set of primitives that specify a demand function, a cost function, and a static equilibrium

concept. Next, we specify two models that we will use in our computational experiments. The entry, exit,

and investment processes are kept the same for both of these models.

A.1 Profit function: Quality Ladder Model

We consider an industry with differentiated products, where each firm’s state variable represents the quality

of its product. There are m consumers in the market. In period t, consumer j receives utility uijt from

consuming the good produced by firm i given by:

uijt = θ1 ln(
xit
Z

+ 1) + θ2 ln(Y − pit) + εijt , ∀i, j = 1, . . . ,m,

where Y is the consumer’s income, pit is the price of the good produced by firm i at time t, and Z is a scaling

factor. εijt are i.i.d. Gumbel random variables that represent unobserved characteristics for each consumer-

good pair. There is also an outside good that provides consumers an average utility of zero. We assume

consumers buy at most one product each period and that they choose the product that maximizes utility.

Under these assumptions, the demand system is a classic logit model. Considering a constant marginal

cost of production c, there exists a unique Nash equilibrium in pure strategies, which can be computed by

solving the first-order conditions of the pricing game (see Caplin and Nalebuff (1991)). Let p∗ denote such

equilibrium; expected profits are given by:

πm(xit, st) = mσ(xit, st, p∗)(p∗i − c) , ∀i ,

where σ(xit, st, p∗) is the logit market share.

We use a particular set of representative parameter values, summarized in Table 7, that we keep fixed

for all experiments, unless otherwise stated.

Parameter m c Z θ1 θ2 Y

Value 100.00 0.50 1.00 0.50 0.50 1.00

Table 7: Default parameters for Quality Ladder model.
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A.2 Profit function: Capacity Competition Model

This model is based on the quantity competition version of Besanko and Doraszelski (2004). We consider

an industry with homogeneous products, where each firm’s state variable determines its production capacity

so that a firm in state 0 has a capacity of q(0) = qmin, and a firm in state x has a capacity of q(x) = qmax.

Capacity grows linearly between states 0 and x. Investment increases this capacity. At each period, firms

compete in a capacity-constrained quantity setting game. There is a linear demand function Q(p) = m(e−
fp) and an inverse demand function P (Q) = e/f − Q/(mf). To simplify the analysis, we assume the

marginal costs of all firms are equal to zero. Given the total quantity produced by its competitors Q−i,t, the

profit maximization problem for firm i at time t is given by:

max
0≤qit≤q(xit)

P (qit +Q−i,t)qit,

where q(xit) is the production capacity at individual state xit. It is possible to show that a simple iterative

algorithm yields the unique Nash equilibrium of this game q∗t , which is characterized by the following set

of equations:

q∗it = max
{

0,min
{
q(xit),

1
2

(me−Q∗−i,t)
}}

, ∀ i ∈ st.

Profits for firm i are then given by: P (q∗it+Q∗−i,t)q
∗
it. We use a particular set of representative parameter

values, summarized in Table 8, that we keep fixed for all experiments, unless otherwise stated.

Parameter m qmin qmax e f

Value 40.00 5.00 40.00 1.00 1/4

Table 8: Default parameters for Capacity model.

B Basis Functions for Separable Approximation Architecture

The family of ‘separable’ basis functions is easily expressed in the form Φi : Y → R, i = 1, 2, . . . ,K where

we approximate the value function V ∗µ,λ with Φr. For this, we define indicator functions for appropriate sets

of states. As a concrete example, the separable approximation to the value function can be encoded as

follows. For all i, j ∈ X and k ∈ {0, 1, . . . , N}, define the indicator function

Φi,j,k(x, s) =

{
1 if x = i and s(j) = k

0 otherwise
for all (x, s) ∈ Y.
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That is to say, Φi,j,k(·, ·) is an indicator for the state where a firm is in individual state i, and the industry

state has k competitors at individual state j. Then, any function of the form f{j}(x, s(j)) can be written as

f{j}(x, s(j)) ,
∑

i∈X ,k∈{0,...,N}

Φi,j,k(x, s)ri,j,k ,

with the appropriate weights r·,j,·. It follows that any separable approximation may be succinctly expressed

as Φr where Φ is a matrix in {0, 1}|Y|×|X |2·(N+1) with a column, Φi,j,k : Y → {0, 1} for each i, j ∈ X and

k ∈ {0, 1, . . . , N}, and r ∈ R|X |2·(N+1).

C Discretization

We will demonstrate the impact of discretizing sell-off values and investment levels in the context of com-

puting an exact best response to an incumbent strategy (µ, λ). We first consider the impact of discretizing

investment levels and then proceed to understand the impact of discretizing sell-off values. For convenience,

we will assume that the sell-off value distribution has support [0, κ] although it is not difficult to extend the

analysis here to general continuous distributions.

Let us denote by V ∗,εµ,λ the value function corresponding to a best response investment/exit strategy to

(µ, λ) when investments are restricted to the set Iε. With a slight abuse of notation denote this “restricted”

best response strategy by µ∗,ε; µ∗,ε may be recovered as the greedy strategy with respect to V ∗,εµ,λ. The value

function V ∗,εµ,λ is the unique fixed point of the discretized Bellman operator T εµ,λ defined according to

(C.1) (T εµ,λV )(x, s) = max
µ′(x,s):ι′(x,s)∈Iε

(Tµ
′

µ,λV )(x, s), ∀(x, s) ∈ Y.

and may be computed by the solution of the following program:

(C.2)
min c′V

s.t. (T εµ,λV )(x, s) ≤ V (x, s) ∀(x, s) ∈ Y.

The impact of this discretization is given by the following Lemma:

Lemma C.1. Let ε̃ < 1 satisfy 1 − ε̃ ≤ P(x1=x′|x0=x,ι0=bι/εcε)
P(x1=x′|x0=x,ι0=ι) , ∀x, x′, ι. Let V ∗,εµ,λ be an optimal solution

to (C.2). Then:

‖V ∗,εµ,λ − V
∗
µ,λ‖∞ ≤

ε̃β(π + ι+ κ)
(1− β)2

+
dε

1− β
.

We next consider our discretization of the sell-off value distribution. By our choice of discretization

points, K̂, it is easy to check that

(C.3)

∣∣∣∣∣ 1n
n∑
i=1

(ki ∨ C)− E[κ ∨ C]

∣∣∣∣∣ ≤ κ

n
, ∀C ∈ [0, π/(1− β) + κ],
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Now, suppose firms face a discrete sell-off value distribution and only consider a finite set of investment

levels as described before. In this setting, we propose to compute the exact best response to (µ, λ) via the

program

(C.4)
min c′V

s.t. (T ε,nµ,λV )(x, s) ≤ V (x, s), ∀(x, s) ∈ Y.

Let us denote by V ∗,ε,nµ,λ the optimal solution to this linear program. We then have the following Lemma

characterizing the approximation to V ∗,εµ,λ provided by V ∗,ε,nµ,λ :

Lemma C.2. We have:

‖V ∗,ε,nµ,λ − V ∗,εµ,λ‖∞ ≤
κ

n(1− β)
.

The triangle inequality with the proofs of the preceding Lemmas then immediately yield:

‖V ∗,ε,nµ,λ − V ∗µ,λ‖∞ ≤
ε̃β(π + ι+ κ)

(1− β)2
+

dε

1− β
+

κ

n(1− β)
,

which suggests that as the discretization provided by ε and n gets sufficiently fine, our approximation to the

best response value function to an incumbent policy (µ, λ) gets progressively better.

In the remainder of this section, we will provide proofs of the above Lemmas:

Proof of Lemma C.1. V ∗,εµ,λ is the value function corresponding to a best response investment strategy to

(µ, λ) when investments in a given time are restricted to the set Iε. We show that

0 ≤ V ∗µ,λ − V
∗,ε
µ,λ ≤

βε̃(π + ι+ κ)
(1− β)2

+
dε

1− β
.

Let P ∗µ,λ ∈ R|Y|×|Y| be a state transition matrix corresponding to using the best response strategy µ∗ in

response to (µ, λ); note that this is a sub-stochastic matrix since a firm may exit. Define µε according to

ιε(x, s) = b(ι∗(x, s))/εcε and ρε(x, s) = ρ∗(x, s). Let P εµ,λ be the corresponding state transition matrix.

Moreover, let g, gε ∈ R|Y| be respectively defined according to

g(x, s) = π(x, s)− P(κ < ρ∗(x, s))dι∗(x, s) + E[κ;κ ≥ ρ∗(x, s)]

and

gε(x, s) = π(x, s)− P(κ < ρ∗(x, s))dιε(x, s) + E[κ;κ ≥ ρ∗(x, s)].

Now since 1− ε̃ ≤ P(x1=x′|x0=x,ι0=bι/εcε)
P(x1=x′|x0=x,ι0=ι) ∀x, x′, ι. by assumption, we must have that

P εµ,λ = (1− ε̃)P ∗µ,λ + ε̃P̂ ,

for some sub-stochastic matrix P̂ . Given the representation above, we may couple the sample paths under
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the µ∗ and µε strategies so that the states visited under both strategies are identical until a random time τ ε̃

which is distributed as a geometric random variable with mean 1/ε̃. Letting Ṽ ∗µ,λ =
∑∞

t=0 β
t
(
P ∗µ,λ

)t
gε, and

noting that the maximal absolute difference in the performance of two arbitrary strategies starting from a

given state is bounded from above by (π+ι+κ)
1−β , this lets us conclude that

‖Ṽ ∗µ,λ − V
µε

µ,λ‖∞ ≤
∞∑
t=1

βtε̃(1− ε̃)t−1 (π + ι+ κ)
1− β

≤ ε̃β(π + ι+ κ)
(1− β)2

.

Now by the definition of ιε(·),

‖Ṽ ∗µ,λ − V ∗µ,λ‖∞ ≤ ‖
∞∑
t=0

βt
(
P ∗µ,λ

)t|g − gε|‖∞ ≤ dε

1− β
.

Thus, by the triangle inequality,

‖V ∗µ,λ − V
µε

µ,λ‖∞ ≤
ε̃β(π + ι+ κ)

(1− β)2
+

dε

1− β
.

and since V ∗µ,λ ≥ V
∗,ε
µ,λ ≥ V

µε

µ,λ, we immediately conclude

(C.5) 0 ≤ V ∗µ,λ − V
∗,ε
µ,λ ≤

ε̃β(π + ι+ κ)
(1− β)2

+
dε

1− β
.

which yields the result.

Proof of Lemma C.2. First, observe that (C.4) must yield the optimal value of a best response to (µ, λ) when

faced with a sell off value distribution that takes values in K̂ uniformly at random; let κ̂ denote this random

variable. It must then be that

V ∗,ε,nµ,λ (x, s) ≤ π

1− β
+ κ , ∀ (x, s) ∈ Y.

Of course, the same upper bound must hold for V ∗,εµ,λ. Now, since both κ and κ̂ are assumed non-negative

random variables, taking εn , κ
n , we must then have from (C.3) that

‖T ε,nµ,λV
∗,ε,n
µ,λ − T εµ,λV

∗,ε,n
µ,λ ‖∞ ≤ εn

and

‖T ε,nµ,λV
∗,ε
µ,λ − T

ε
µ,λV

∗,ε
µ,λ‖∞ ≤ εn

so that

T εµ,λV
∗,ε,n
µ,λ ≤ V ∗,ε,nµ,λ + εne
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and

T ε,nµ,λV
∗,ε
µ,λ ≤ V

∗,ε
µ,λ + εne,

where e is the vector of all ones. Since T εµ,λ(V + λe) ≤ T εµ,λV + βλe, for λ > 0, we must then have that

T εµ,λ

(
V ∗,ε,nµ,λ +

εn
1− β

e

)
≤ T εµ,λV

∗,ε,n
µ,λ +

βεn
1− β

e

≤ V ∗,ε,nµ,λ + εne+
βεn

1− β
e

= V ∗,ε,nµ,λ +
εn

1− β
e.

Since T εµ,λV ≤ V =⇒ V ∗,εµ,λ ≤ V (by iterating the Bellman operator), it follows that

V ∗,εµ,λ ≤ V
∗,ε,n
µ,λ +

εn
1− β

e.

Similarly, using the fact that T ε,nµ,λ(V + λe) ≤ T ε,nµ,λV + βλe, for λ > 0, we may show that

V ∗,ε,nµ,λ ≤ V ∗,εµ,λ +
εn

1− β
e.

The result follows.

D Approximate Dynamic Programming Theory Background

D.1 Value Function Approximation

The program (5.2) seeks to approximate the value function corresponding to a best response to (µ, λ) within

the linear span of a small number of basis functions. In particular, we sought the approximation Φr ∼ V ∗µ,λ.

The following Theorem (Theorem 2 of de Farias and Van Roy (2003)) demonstrates the sense in which (5.2)

actually accomplishes this approximation:

Theorem D.1. Let e ∈ R|Y|, the vector of ones, be in the span of the columns of Φ and c be a probability

distribution. Let rµ,λ be an optimal solution to (5.2). Then,22

‖Φrµ,λ − V ∗µ,λ‖1,c ≤
2

1− β
inf
r
‖Φr − V ∗µ,λ‖∞.

The above theorem shows that as the basis function architecture Φ grows ‘richer’ in the sense that its

span contains a good approximation to V ∗µ,λ, the approximation computed by the program (5.2) also provides

a good approximation to the optimal value function. In fact, the latter is of a quality comparable to the best

possible approximation to V ∗µ,λ within the span of the basis functions.

22For c ∈ Rk+, the (1, c) norm of a vector x ∈ Rk is defined according to ‖x‖1,c =
Pk
i=1 |xi|ci.

47



D.2 Approximation Error and State Relevance Weights

Given a good approximation to V ∗µ,λ, namely Φrµ,λ one may consider using as a proxy for the best response

strategy the greedy strategy with respect to Φrµ,λ, namely, a strategy µ̃ satisfying

T µ̃µ,λΦrµ,λ = Tµ,λΦrµ,λ.

Provided Φrµ,λ is a good approximation to V ∗µ,λ, the expected discounted profits associated with using

strategy µ̃ in response to competitors that use strategy µ and entrants that use strategy λ is also close to V ∗µ,λ
as is made precise by the following result which is easy to establish and whose proof is omitted (see de

Farias and Van Roy (2003)). Let us denote by Pµ′;(µ,λ) a transition matrix over the state space Y induced

by using investment/exit strategy µ′ in response to (µ, λ). Notice that the matrix Pµ′;(µ,λ) is sub-stochastic

since the firm may exit. Now, denote by cµ
′

µ,λ the sub-probability distribution

(D.1) (1− β)
∞∑
t=0

βtν>P tµ′;(µ,λ).

cµ
′

µ,λ describes the discounted relative frequency with which states in Y are visited during a firms lifetime in

the industry assuming a starting state over Y distributed according to ν.

Theorem D.2. Given strategies (µ, λ), and defining µ̃ and cµ̃µ,λ as above for an arbitrary distribution over

initial states in Y , ν , we have:

‖V µ̃
µ,λ − V

∗
µ,λ‖1,ν ≤

1
1− β

‖Φrµ,λ − V ∗µ,λ‖1,cµ̃µ,λ .

Together with Theorem D.1, this result lets us conclude that

(D.2) ‖V µ̃
µ,λ − V

∗
µ,λ‖1,ν ≤ max

(x,s)∈Y

cµ̃µ,λ(x, s)

c(x, s)
2

(1− β)2
inf
r
‖Φr − V ∗µ,λ‖∞.

Let us discuss what we have established. First, the previous expression provides a bound on how much

a firm can improve its expected discounted profits by unilaterally deviating from the strategy derived by

the approximate dynamic programming approach to an optimal strategy. In particular, upon convergence of

our approximate best response algorithm, the extent of this unilateral deviation will be small if the chosen

basis functions provide an accurate approximation to the optimal value function when competitors use the

candidate equilibrium strategy. This measure of the accuracy of the approximation is related to the notion of

an ε−equilibrium. We formalize this notion in Section E and relate it to the convergence to MPE strategies.

Second, the state relevance weight vector c plays the role of trading off approximation error across states
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which follows from the fact that (5.2) is equivalent to the program (see de Farias and Van Roy (2003)):

min ‖Φr − V ∗µ,λ‖1,c
s.t. (Tµ,λΦr)(x, s) ≤ (Φr)(x, s) ∀(x, s) ∈ Y.

In fact, expression (D.2) suggests that the vector c should ideally assign weights to industry states ac-

cording to cµ̃µ,λ. To be more concrete, suppose one is interested in approximating the long-run behavior of

the industry in the sense that V µ̃
µ,λ and V ∗µ,λ are close when weighting industry states according to the invari-

ant distribution of the Markov process that describes the industry evolution under strategies (µ, λ). Then, the

selection of ν in cµ̃µ,λ (and hence in c) should weight industry states according to the invariant distribution.

Note that in this case c itself will weight industry states according to the invariant distribution.23 In practice,

the weight vector c will be required in computing an approximate best response to some current strategy in

the course of the use of an iterative best response scheme for equilibrium computation such as Algorithm 1.

In that case, the distributions alluded to above may be selected as those corresponding to the incumbent

strategy in the algorithm.

D.3 Reducing the Number of Constraints

Here we describe an ‘idealized’ sampling distribution ψ∗ under which the program (5.3) provides a good

approximation to V ∗µ,λ. In particular, assume we had access to the strategy µ∗µ,λ and consider sampling states

according to a distribution ψ∗ defined according to ψ∗(x, s) = cµ
∗

µ,λ(x, s)/
∑

(x′,s′)∈Y c
µ∗

µ,λ(x′, s′) where we

take ν to be equal to the state relevant weights vector, c, in the definition of cµ
∗

µ,λ (see equation (D.1)). We

do not have access to ψ∗; let ψ be a sampling distribution satisfying maxx,s
ψ∗(x,s)

ψ(x,s)
≤ M . Assuming the L

states inR are sampled according to ψ, we then have the following result.

Theorem D.3. Let δ, ε′ be arbitrary numbers in (0, 1). LetR consist of L states in Y sampled according to

ψ. Let r̃µ,λ be an optimal solution to (5.3). If

L ≥ KM

ε′δ

2(1 + β)
c>V ∗µ,λ(1− β)

‖Φr̃µ,λ − V ∗µ,λ‖∞

then, with probability at least 1− δ, we have

‖V ∗µ,λ − Φr̃µ,λ‖1,c ≤ ‖V ∗µ,λ − Φrµ,λ‖1,c + ε′‖V ∗µ,λ‖1,c,

where rµ,λ solves (5.2).

The proof of the above result closely follows that of Theorem 3.1 in de Farias and Van Roy (2004); since

the program (5.3) is distinct from that studied by de Farias and Van Roy (2004), their result does not apply

directly. In particular, since (5.3) is a convex program (but not an LP), we employ the sample complexity
23Under the assumptions in our model such an invariant distribution always exists and is unique.
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bound (Theorem 3) of Calafiore and Campi (2005) in lieu of Theorem 2.1 of de Farias and Van Roy (2004);

the proof is then essentially identical to that of their Theorem 3.1.24 The result and the discussion in de Farias

and Van Roy (2004) suggest that sampling a tractable number of constraints according to a distribution close

to ψ∗ ensures that ‖V ∗µ,λ − Φr̃µ,λ‖1,c ≈ ‖V ∗µ,λ − Φrµ,λ‖1,c.25 Of course, we do not have access to ψ∗; ψ∗

requires we already have access to a best response to (µ, λ). Nonetheless, our sequential MPE computation

yields a natural candidate for ψ: in every iteration we simply sample industry states according to cµµ,λ where

(µ, λ) are the approximate best response strategy computed at the prior iteration.

D.4 A Heuristic LP Solver for (5.3)

Proposition 5.1. (r′, u′, t′, l′) is an optimal solution to the LP (6.1).

Proof. Let (r, u, t, l) be a feasible solution to (6.1). It is easy to see that (r, l) is a feasible solution to the LP

solved in step (5) of Algorithm 3, (6.2) of the same value, for any ej . Consequently the value of an optimal

solution (r∗, u∗, t∗, l∗) to (6.1) is no larger than the value of an optimal solution to (6.2) for any ej .

Now, (r′, u′, t′, l′) is by construction a feasible solution to (6.1). To see this simply note that (6.1) is

equivalent to the program

minimize
r,l,e

∑
(x,s)∈R

c(x, s)
∑

0≤k≤K
Φk(x, s) rk

subject to π(x, s) + P(κ̂ < ej(x, s))

−dι+ βEµ,λ

 ∑
0≤k≤K

Φk(x1, s1) rk
∣∣∣x0 = x, s0 = s, ι0 = ι


+E[κ̂|κ̂ ≥ ej(x, s)]P(κ̂ ≥ ej(x, s)) ≤

∑
0≤k≤K

Φk(x, s) rk + l(x, s) ,

∀(x, s) ∈ R, ι ∈ I
ej(x, s) = maxι∈I −dι+ βEµ,λ

[∑
0≤k≤K Φk(x1, s1) rk

∣∣∣x0 = x, s0 = s, ι0 = ι
]
,

∀(x, s) ∈ R,
1
|R|
∑

(x,s)∈R l(x, s) ≤ θ
l(x, s) ≥ 0 ∀(x, s) ∈ R.

and that upon convergence in Algorithm 3,

ej(x, s) = ej+1(x, s) = max
ι∈I
−dι+ βEµ,λ

 ∑
0≤k≤K

Φk(x1, s1) rk
∣∣∣x0 = x, s0 = s, ι0 = ι

 .
for all (x, s) ∈ R. Moreover, this feasible solution to (6.1) has the same value as an optimal solution to (6.2)

with ej = t′. Since the value of a feasible solution to (6.1) cannot exceed the value of an optimal solution to

24While we have not discussed these technicalities here, Theorem 3 of Calafiore and Campi (2005) requires a certain ‘tie-
breaking’ rule in the event that (5.3) has multiple optimal solutions.

25The number grows linearly in the number of basis functions and is independent from the total number of constraints.
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(6.2) for any value of ej , it follows that (r′, u′, t′, l′) must be an optimal solution to (6.1) which proves the

result.

E ε-Weighted MPE and Approximating MPE

Motivated by the discussion at the end of Section D.2, we begin by defining a notion of ε-weighted MPE. Let

ν be a given distributions overY and let ν̂ be distribution induced by ν on the set Se =
{
s ∈ N|X | :

∑x
x=0 s(x) < N

}
.

Notice that Se is the set of industry states that have potential entrants. Given these distributions, we define

approximate notions of a best response and an MPE:

Definition E.1. For (µ, λ) ∈M× Λ, we call (µ̃, λ̃) ∈M× Λ an ε−weighted best response to (µ, λ) if

(E.1) ‖V ∗µ,λ − V
µ̃
µ,λ‖1,ν ≤ ε,

(E.2)
∥∥∥λ̃− βEµ,λ [V µ̃

µ,λ(xe, st+1)|st = ·
]∥∥∥

1,ν̂
≤ ε.

Definition E.2. (µ̃, λ̃) ∈M× Λ is an ε−weighted MPE if (µ̃, λ̃) is an ε−weighted best response to itself.

Under the definition above, the maximum potential gain to an incumbent firm in deviating from an

ε−weighted MPE strategy, µ̃, is averaged across industry states under the measure ν. Similarly, the potential

entrants’ strategy, λ̃, is such that the zero expected discounted profits entry condition is not satisfied exactly;

however, the average error under the measure ν̂ is at most ε. This notion of ε-weighted MPE is similar to

other concepts that have been previously used to assess the accuracy of approximations to MPE (Weintraub,

Benkard, and Van Roy 2008) and as stopping criteria (Pakes and McGuire 2001).

It is only natural to ask whether our definition of ε−weighted MPE is computationally relevant. Here

we note that with an appropriate selection of stopping criterion in our iterative algorithm for equilibrium

computation, one may conclude that upon termination we have arrived at an ε-weighted MPE where ε

can be controlled. In particular, consider stopping the algorithm when ‖V µi+1

µi,λi
− V µi

µi,λi
‖1,ν ≤ ε1 and

‖λi − λi+1‖1,ν̂ + ‖βEµi,λi
[
V
µi+1

µi,λi
(xe, st+1)|st = ·

]
− βEµi,λi [Vµi,λi(x

e, st+1)|st = ·] ‖1,ν̂ ≤ ε1, where

ε1 is some pre-specified tolerance (in our algorithm we use a relaxation of this criteria that worked well

in practice; see second comment in Section 6.1). Moreover, let us assume that ‖V ∗µi,λi − V
µi+1

µi,λi
‖1,ν ≤ ε2.

Notice that our theoretical development of approximate dynamic programming in the previous appendix

attempted to characterize precisely the conditions under which ε2 was small; in particular, see (D.2). It is

then simple to show using the triangle inequality that we are then guaranteed that upon termination, our

algorithm would have computed an (ε1 + ε2)-MPE.

Now, in what sense does an ε-weighted MPE as defined above approximate MPE? We attempt to make

this precise under the assumption that ν places positive mass over all states in its support. In what follows, let
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Γ ⊆M×Λ be the set of MPE. For all (µ, λ) ∈M×Λ, let us defineD(Γ, (µ, λ)) = inf(µ′,λ′)∈Γ ‖(µ′, λ′)−
(µ, λ)‖∞. We have the following theorem:

Theorem E.1. Suppose ν > 0. Given a sequence of real numbers {εn ≥ 0|n ∈ N}, let {(µn, λn) ∈ M×
Λ|n ∈ N} be a sequence of εn−weighted MPE with limn→∞ εn = 0. Then, limn→∞D(Γ, (µn, λn)) = 0.

Proof. Assume the claim to be false. It must be that there exists an ε > 0 such that for all n, there exists

an n′ > n for which d(Γ, (µn′ , λn′)) > ε. We may thus construct a subsequence {(µ̃n, λ̃n)} for which

infn d(Γ, (µ̃n, λ̃n)) > ε. Now, since the space of strategies is compact, we have that {(µ̃n, λ̃n)} has a

convergent subsequence; call this subsequence {(µ′n, λ′n)} and its limit (µ∗, λ∗).26 We have thus established

the existence of a sequence of strategies and entry rate functions {(µ′n, λ′n)}, satisfying:

(E.3) ‖V BR(µ′n,λ
′
n)

µ′n,λ
′
n

− V µ′n
µ′n,λ

′
n
‖1,ν → 0,

(E.4) ‖λ′n − βEµ′n,λ′n
[
V
µ′n
µ′n,λ

′
n
(xe, st+1)|st = ·

]
‖1,ν̂ → 0,

(E.5) (µ′n, λ
′
n)→ (µ∗, λ∗).

(E.6) inf
n
d(Γ, (µ′n, λ

′
n)) > ε,

where BR(µ, λ) denotes the best response strategy when competitors play strategy µ and enter according to

λ. Now, since by assumption, we must have ν, ν̂ > 0 component-wise, this implies that

V
BR(µ′n,λ

′
n)

µ′n,λ
′
n

(x, s)− V µ′n
µ′n,λ

′
n
(x, s) → 0, ∀(x, s) ∈ Y(E.7)

λ′n(s)− βEµ′n,λ′n
[
V
µ′n
µ′n,λ

′
n
(xe, st+1)|st = s

]
→ 0, ∀s ∈ Se.(E.8)

Now, it is simple to show that our assumptions on model primitives guarantee that V µ′

µ,λ(x, s) is con-

tinuous in (µ′, µ, λ) for all (x, s) ∈ Y , so that V µ
µ,λ is continuous in (µ, λ). Moreover, the assump-

tion of unique investment choice admissibility yields in addition that BR(·) is continuous on M × Λ.

For a proof of this fact, see the proof of Proposition 2 in (Doraszelski and Satterthwaite 2010) which

in turn employs Lemmas 3.1 and 3.2 of (Whitt 1980). Thus, we have from (E.7), (E.8), and (E.5) that

V
BR(µ∗,λ∗)
µ∗,λ∗ (x, s)−Vµ∗,λ∗(x, s) = 0, ∀(x, s) ∈ Y , and λ∗(s)−βEµ∗,λ∗ [Vµ∗,λ∗(xe, st+1)|st = s] = 0, ∀s ∈
Se. Hence, (µ∗, λ∗) ∈ Γ. But by (E.6), (E.5) and the triangle inequality d(Γ, (µ∗, λ∗)) > ε, a contradiction.

The result follows.
26Under our assumptions on model primitives, without loss of generality we can restrict attention to bounded exit and entry cut-

off strategies. Indeed, it is easily shown that |ρ(x, s)| and |λ(s)| are uniformly bounded by (π + κ̂)/(1− β). Here κ̂ = E[κ|κ ≥
π/(1− β)] is an upper bound on the expected scrap value upon a firm’s exit.
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We note that the assumption ν > 0 is key to show the result, because it guarantees the extent of a

unilateral deviation becomes small in all states as εn converges to zero. One notes, however, that in the

course of our algorithm the weight vector ν used to evaluate the stopping criterion alluded to above changes

at each iteration; the relevant distribution over states might be assumed, for instance, to be the long run

distribution under the incumbent policy in that iteration. The result we have just established can be extended

to this case. The extension, however, requires the additional assumption that for all strategies µ ∈ M and

entry rate functions λ ∈ Λ, the Markov chain that describes the industry state evolution {st : t ≥ 0} is

irreducible and aperiodic. Together with the fact that the state space is finite, it implies that the Markov

chain {st : t ≥ 0} admits a unique invariant distribution that assigns strictly positive mass to all states.27

27The assumption is satisfied if, for example, (i) for all strategies and all states (x, s) ∈ Y , there is a strictly positive probability
that an incumbent firm will visit state x at least once before exiting, and π(x, s) ≥ 0; and (ii) exit and entry cut-off values are
restricted to belong to the sets [0,maxx,s π(x, s)/(1− β) + κ̂] and [κ̂,∞), respectively, where κ̂ is the expected net present value
of entering the market, investing zero and earning zero profits each period, and then exiting at an optimal stopping time. Note that
the latter assumption is not very restrictive as all best response exit/entry strategies lie in that set. To satisfy the former assumption,
the model needs to have depreciation and appreciation shocks in all states, as we assume in some of our numerical experiments.
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