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AN APPROXIMATE INERTIAL MANIFOLDS APPROACH
TO POSTPROCESSING THE GALERKIN METHOD

FOR THE NAVIER-STOKES EQUATIONS

BOSCO GARCÍA-ARCHILLA, JULIA NOVO, AND EDRISS S. TITI

Abstract. In a recent paper we have introduced a postprocessing procedure
for the Galerkin method for dissipative evolution partial differential equations
with periodic boundary conditions. The postprocessing technique uses ap-
proximate inertial manifolds to approximate the high modes (the small scale

components) in the exact solutions in terms of the Galerkin approximations,
which in this case play the role of the lower modes (large scale components).
This procedure can be seen as a defect-correction technique. But contrary to
standard procedures, the correction is computed only when the time evolu-
tion is completed. Here we extend these results to more realistic boundary
conditions. Specifically, we study in detail the two-dimensional Navier-Stokes
equations subject to homogeneous (nonslip) Dirichlet boundary conditions.
We also discuss other equations, such as reaction-diffusion systems and the
Cahn-Hilliard equations.

1. Introduction

The Navier-Stokes (NS) equations (see Section 2), in a smooth bounded do-
main Ω, with nonslip Dirichlet boundary conditions, can be written as an abstract
dissipative evolution equation

du

dt
+ νAu + R(u) = f,(1)

in an appropriate Hilbert space H with norm |·| (see Section 2) (cf. [6], [23], [38]).
Here A : D(A) ⊂ H → H is a densely defined, unbounded, self-adjoint and positive
operator with compact inverse and contains the higher-order spatial derivatives,
ν > 0 is a scalar, and R : D(R) ⊂ H → H is a nonlinear map which gathers lower
order spatial derivatives and nonlinear terms.

The eigenfunctions {w1, w2, . . . } of A with the associated eigenvalues 0 < λ1 ≤
λ2, . . . form a complete orthonormal set in H . Let Hm = span {w1, w2, . . . , wm},
Pm the orthogonal projection of H onto Hm and Qm = I − Pm. Every solution u
of (1) can be decomposed uniquely into

u = p + q, p = Pmu, q = Qmu.(2)

The solution u of (1) can be approximated by the Galerkin approximation,
um(t) ∈ Hm, obtained by integrating the standard Galerkin method (SGM) which
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is given by the system of ordinary differential equations
dum

dt
+ νAum + PmR(um) = Pmf, um(0) = Pmu(0).(3)

Notice that since um is sought in Hm, the Galerkin error u − um will never be
smaller that the best-approximation error u− p = q; that is,

|u− um| ≥ |u− p| = |q| .(4)

Thus, for a better approximation of u, we propose the following algorithm to im-
prove the SGM. We call it the Postprocessing Galerkin Method (PPGM).

Postprocessing Galerkin algorithm. Suppose that the solution u is wanted at
time T > 0. Then,

1. Compute the Galerkin approximation um(T ) by integrating (3) with respect
to time.

2. Solve the linear elliptic problem νAqm = Qm(f −R(um(T ))).
3. Add qm to um(T ) in order to obtain the new approximation um(T ) + qm to

u(T ).
We will see that the convergence rate of the new approximation is better than that
of the SGM, or, broadly speaking, that |u(T )− (um(T ) + qm)| = o(|q|). Moreover,
this improvement is obtained at a small computational cost, so that the new method
is computationally more efficient than the SGM (see Figure 2 below). We note that
in practice, the whole of qm is never computed, and it is replaced by an adequate
truncation Pm′qm with m′ > m sufficiently large.

The PPGM was introduced and analyzed in [21]. The analysis in [21] relies
heavily on the properties of Fourier expansions and the fact that complex exponen-
tials form an algebra; therefore we restricted our treatment in [21] to dissipative
evolution PDEs subject to periodic boundary conditions. This may inspire doubts
about the PPGM improving the SGM when more realistic boundary conditions are
imposed. This question becomes more relevant in view of recent results like those
in [4], where, thanks to a clever algorithm for approximating the eigenfunctions and
eigenvalues of the Stokes operator A, actual computations of (3) are carried out on
complex geometries. In the present paper we analyze the method independently of
the properties of the eigenfunctions wj . We present here a new analysis with much
simpler ideas than those presented in [21]. These simpler ideas have allowed us to
extend the PPGM to more technical situations [18], [22]. Although for simplicity we
concentrate on the Dirichelet (nonslip) boundary conditions and the NS equations,
the techniques used here are easily adapted to other situations.

The PPGM is reminiscent of classical defect-correction techniques for steady
state problems. To better appreciate this fact, suppose that we are dealing with
the steady state problem, so that instead of (1) and (3) we have

νAv + R(v) = f, v ∈ H,(5)

νAvm + PmR(vm) = Pmf, vm ∈ Hm,(6)

respectively. Thus, in this case the PPGM method would be:
1′. Find the Galerkin approximation vm ∈ Hm by solving (6).
2′. Find zm ∈ QmH by solving the linear elliptic problem νAzm =

Qm(f −R(vm)).
3′. Add zm to vm in order to obtain the new approximation vm + zm ∈ H to u.
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Thus, the whole technique amounts to solving in step 1′ the full nonlinear prob-
lem in the finite dimensional space Hm, where nonlinearities are more easily treated,
and then computing a correction on its orthogonal complement (or, in practice, an
adequate truncation of it) in step 2′. Notice that in step 2′, we just compute the
high-frequency component zm of the solution ṽ = vm + zm of the (more familiar)
linear elliptic problem

νAṽ = f −R(vm).(7)

Furthermore, once ṽ is computed, a better approximation ˜̃v can be computed by
replacing vm by ṽ in the nonlinear term R in (7). The process can be further
iterated until a prescribed accuracy is reached, or one can use Newton’s iteration
to converge faster to v. Notice also that solving the steady state problem in step 2′

instead of (7) is feasible due to the fact that we are dealing with spectral methods
and both Pm and Qm commute with A. For finite-element methods, one should
use (7) instead of step 2′ [11], [22], [43], [44].

Defect-correction techniques, or the related two-grid, two-level or multilevel
methods, are a well established technique for nonlinear steady state problems (see
e.g. [3], [11], [31], [43], [44], and the references cited therein). That is, the three steps
1′–3′ are nothing new. For evolution problems, similar defect-correction techniques
are used on the steady state problems that arise when doing implicit time-stepping.

More recently there has been renewed interest in multilevel methods for evolu-
tion problems (see e.g. [2], [7], [10], [32], [33], [34]). Part of the recent interest in
multilevel methods for evolution problems arose from studies initiated by [14], [16],
[13] and [41] in connection with inertial manifolds (IM) [15] and their approxima-
tions. In fact, the multilevel methods developed from this approach are not called
that, but rather nonlinear Galerkin methods (NLG) [13], [26], [32]. It was through
this approach that we arrived at the PPGM.

It may be clarifying then to summarize the main facts of this approach. To do
this, notice that, using (2) and the fact that both Pm and Qm commute with A,
equation (1) can be rewritten as the coupled system

dp

dt
+ νAp + PmR(p + q) = Pmf, p ∈ Hm,(8)

dq

dt
+ νAq + QmR(p + q) = Qmf, q ∈ QmH.(9)

It is shown in [14] that, under certain circumstances which are motivated by the
dynamical systems approach, the q terms other than νAq in (9) can be considered
negligible as compared to the other terms. Thus, the authors of [14] suggested the
following approximation model for the high-frequency component q of u:

q ≈ Φ1(p) = (νA)−1Qm(f −R(p)).(10)

It is noteworthy that in [16] the authors used a totally different technique, which is
also motivated by a dynamical systems approach, which led them to a model similar
to (10). Notice the similarity of the above approximation with step 2′ of the defect-
correction technique (we will discuss the differences later). In [14] it is also shown
that Φ1(p) is a good approximation to q, in the sense that |q − Φ1(p)| = o(|q|) (see
Section 2 for a more precise statement). Based on this fact, the NLG method was
developed. In the NLG method, the exact solution u of (1) is approximated by
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ym(t) + Φ1(ym(t)), where ym ∈ Hm is obtained by solving

dym
dt + νAym + PmR(ym + Φ1(ym)) = Pmf, ym(0) = Pmu(0),

Φ1(ym) = (νA)−1Qm(f −R(ym)),
(11)

or certain variants of the above equation which preserve the dissipative nature of (1)
(cf. [27], [10]).

The NLG error satisfies |u(t)− (ym(t) + Φ1(ym(t))| ≈ |q − Φ1(p)| = o(|q|) [10],
which (recall (4)) should imply a better computational performance than the SGM.
However, the continuous update of Φ1(ym) along the time evolution is so compu-
tationally costly that the NLG, in spite of its o(|q|) error, is generally less efficient
than the SGM.

Let us clarify this point now with an example from [21]. Consider the 2-
dimensional NS equations (see Section 2) in the vorticity-streamfunction formu-
lation

∂ω
∂t

− ν∆ω +∇ω ×∇Ψ = g,

−∆Ψ = ω,

(12)

in the spatial domain Ω = [0, 2π]2, with ν = 0.01 and subject to periodic boundary
conditions. Here the vorticity ω = (∇ × u) · k, the velocity u = ∇ × (Ψk), the
streamfunction is Ψ and g = ∇ × f . We set the forcing term g as g(x, y, t) =
f1(x, y)(2 + cos(t))/3, where

f1(x, y) =


(1 + cos(4r+))2/8, if r+ < π/4,
−(1 + cos(4r−))2/8, if r− < π/4,
0, otherwise,

r± =
∣∣x + iy − (π(1 + i)± eiθπ/2)

∣∣, and θ = 0.7. The function f1 represents stir-
ring the fluid in opposite directions at the locations π(1 + i) ± eiθπ/2. Let us fix
the vorticity ω at t = 0 by ω(x, y, 0) = ω0(x, y), where ω0 = (ν∆)−1f1.

Figures 1 and 2 show the errors of the different methods when they use several
values N of Fourier modes in each spatial direction. The results correspond to
runs from t = 40π to T = 44π. Results corresponding to the SGM are marked
with asterisks and joined by continuous lines, and those of the NLG are marked by
small circles and joined by dotted lines. Since in the present example ω is in the
Sobolev spaces Hσ for all σ < 13/2, following suggestions in [41], Φ1 was truncated
to N13/11 Fourier modes in each spatial direction (see also [10], [28] and [37]).

Figure 1 is a convergence diagram where the errors in the vorticity ω committed
by the methods, measured in the H1 norm, are plotted versus the number N of
Fourier modes in each spatial direction. The slopes of least-squares fits to the last
four points of each method are shown in Figure 1. We see that whereas in the SGM
the errors decay like N−5.5, in the NLG they decay like N−6.5. Thus, the NLG has
a better convergence rate than the SGM, because its error decays faster with the
number of modes (m = N2 in this example) than the SGM.

However, efficiency (ratio of cost to error) is another matter. In Figure 2, the
same errors as in Figure 1 are plotted versus the smallest amount of computing
time (in seconds) that the methods needed to achieve those errors. It is clear from
Figure 2 that the NLG takes more than twice the computing time of the SGM for
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Figure 1. Convergence diagram; ∗ SGM, + PPGM, ◦ NLG

any error. This can be seen by drawing any horizontal line (i.e., selecting a desired
accuracy); then, its intersection with the continuous line of the SGM is on the right
of its intersection with the dotted line of the NLG by a factor of more than two
(i.e., to achieve that desired accuracy, the SGM needs less than half the computing
time of the NLG).

The poor practical performance of the NLG led us to develop the PPGM. The
aim was to obtain the better accuracy of the NLG at the cost of the cheaper SGM.
This, as shown in Figures 1 and 2, is achieved by the PPGM, whose results are
represented by + sings and joined by dashed lines. In, Figure 1, the NLG and the
PPGM commit virtually the same errors for a given N (◦ and + signs are plotted
on almost the same locations). Furthermore, in Figure 2, the + sings of the PPGM
and the ∗ of the SGM are (almost) on the same vertical lines (i.e., same cost) but
since the PPGM error is smaller, it turs out to be more efficient. Again, this can
be checked by noticing that the broken line joining + sings is the leftmost (i.e., the
PPGM needs less computing time to reach a given accuracy).

Two final comments are pertinent in this example. First, following standard
practice with spectral Fourier methods, nonlinear terms were approximated by
interpolation, in what is known as pseudospectral methods; we made sure that the
aliasing error arising from this practice was not dominant (i.e., that the errors were
the same as those of the more costly pure spectral methods). Second, we were very
careful in checking the sources of error and cost to avoid reaching wrong conclusions
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Figure 2. Efficiency diagram

on the relative efficiency of the methods (see [19], [20]). We refer the reader to [21],
where full details of the methods used are provided, and where L2 errors are shown.

Let us turn to the relation of these methods with defect-correction techniques.
Notice that both the NLG (11) and the PPGM in steps 1–3 are defect-correction
methods for evolution problems: the corrections Φ(ym) in the NLG and qm in the
PPGM are obtained through solving linear elliptic problems. Notice also that,
for the correction, both the NLG and the PPGM use the Foias-Manley-Temam
mapping Φ1 in (10), since qm in step 3 is qm = Φ1(um(T )). Let us then look more
closely to the relation between Φ1 and the standard defect-correction approach for
steady state problems in steps 1′–3′. Observe that on going from (9) to (10), the
dq/dt term is dropped. Thus, in the steady state case 2,′ we have the full forcing
(source) term f of the original problem (5), whereas in the evolution case (10), only
Qmf instead of Qmf−dq/dt is present. This implies that while in 1′–3′, continuing
iteration of the process might bring better and better approximations, this is not
(necessarily) so in (10) unless some approximation to dq/dt is included. Procedures
for doing this can be found in [8], [9], [10], [39] and [40]. Our practical experience
with them [20] inspired us to use only Φ1 in (10). For the possibility of using
Newton’s or another iteration method see, for instance, [16], [26], [35] and [41].

Observe also that in the PPGM the correction qm is computed only once, as
opposed to more standard defect-correction practices for evolution problems like
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the NLG or the method presented in [7], where the correction is computed at every
time step over the interval [0, T ].

A quick explanation of the o(|q|) error of the PPGM may make things clearer.
For linear problems with constant coefficients um is p, so that the error p−um = 0.
However, u − um = q, which is not negligible (and hence (4)). For nonlinear
problems, we show here that |p− um| = o(|q|), and this allows Φ1(um) to be a
good approximation to Φ1(p) ≈ q. In fact, since Φ1 is Lipschitz-continuous (see,
e.g., [10]), then |Φ1(um)− Φ1(p)| ≤ C |um − p|. Thus, by adding ±Φ(p), for the
error we have that

|um + Φ1(um)− p− q| ≤ (1 + C) |um − p|+ |Φ1(p)− q| = o(|q|).
We perform the analysis summarized here for both L2 and H1 norms.

We point out that in [14], the graph of Φ1, that is, {p + Φ1(p) | p ∈ Hm},
was called an approximate inertial manifold (AIM) (see also [16], [41]), in reference
to the IMs, where q = Φ(p) for some mapping Φ, which is sometimes known to
exist but is hardly ever known explicitly. We do not discuss here whether AIMs
approximate IMs or not. We simply use Φ1 and use the term AIM that other
authors coined before us.

We remark that our results are not restricted to time-independent forcing terms f
in (1), and are valid for Hölder-continuous (in time) f (see Remark 2 in Section 3).
We also show how to extend our analysis to dissipative equations other than the
NS equations, such as reaction-diffusion systems and the Cahn-Hilliard equations.
We note that there are in the literature AIMs other than the Φ1 used here [8], [9],
[14], [16], [17], [30], [38], [39], [41]. Our results hold also for the Euler-Galerkin
approximate inertial manifold which was introduced in [16] (see also [13] and [26]).

The rest of the paper is organized as follows. In Section 2 some standard prelim-
inary material is introduced. Section 3 is devoted to studying the PPGM for the
NS equations. Finally, in Section 4, the extension of the results to other equations
is discussed.

2. Preliminary results

We consider the NS equations

ut + (u · ∇)u +∇p = ν∆u + F,

div(u) = 0,

in a smooth bounded domain Ω ⊂ R2, subject to the homogeneous (nonslip) Dirich-
let boundary condition u|∂Ω = 0. In the rest of the paper, we use the spaces

H =
{
u ∈ L2(Ω)2 | div(u) = 0, u · n|∂Ω = 0

}
and the space

V =
{
u ∈ H1

0 (Ω)2 | div(u) = 0
}

.

Let Π be the orthogonal L2 projection Π : L2(Ω)2 → H . Projecting onto H , the
NS equations become equation (1) with A = −Π∆, R(u) = B(u, u) = Π[(u · ∇)u],
and f = ΠF (see, e.g., [6]). It is well known that then D(A1/2) = V . Following the
notation of [6], we denote by (·, ·) the inner product in H (i.e., in L2(Ω)2), and by
|·| and ‖·‖ the norms

|u| = ‖u‖L2(Ω)2 , ‖v‖ =
∣∣∣A1/2v

∣∣∣ ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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in H and V respectively. We will also denote by ‖·‖∞ the L∞(Ω) norm. For k an
integer, we consider the Sobolev space Hk = Hk(Ω) with its usual norm rescaled
to

‖u‖Hk =
( ∑
|α|≤k

λ
k−|α|
1 ‖Dαu‖2L2(Ω)

)1/2

.(13)

This norm is readily extended to Hk(Ω)2. We will use the inequalities

‖ω‖Hk(Ω)2 ≤ c1

∣∣∣Ak/2ω
∣∣∣ , ∀ω ∈ D(Ak/2), k = 1, 2, 3,(14)

where, throughout this paper, c, c1, c2, . . . will denote dimensionless constants. (See
[6], pp. 36-41, on the regularity requirements on the domain Ω for (14) to be valid).

We recall the Brézis-Gallouet [5] inequality in two dimensions:

‖u‖L∞(Ω) ≤ c2 ‖u‖H1

(
1 + log

‖u‖H2

λ
1/2
1 ‖u‖H1

)1/2

, ∀u ∈ H2.(15)

This inequality is also valid for u ∈ H2(Ω)2, and as a result we have

‖v‖∞ ≤ c3 ‖v‖Lm, ∀v ∈ Hm,(16)

where

Lm =
(

1 + log
λm

λ1

)1/2

.

The bilinear form B satisfies the following skew property:

(B(u, v), w) = −(B(u, w), v) for all u, v, w ∈ V(17)

(see, for instance, [6], p. 53). Moreover, for any δ with 1/2 < δ < 1 we have

|A−δ(R(u)− R(v))| ≤ L |u− v| , ∀u, v ∈ V,(18)

with L = c4|A1/2(u + v)| (see, e.g., [6], p. 55).
We recall the following property of the NS equations. There exist constants M0

and M1 such that for any solution u of (1), there is a time T0 = T0(|u(0)| , |f |) such
that ∣∣u(t)

∣∣ ≤ M0,
∣∣A1/2u(t)

∣∣ ≤ M1, t ≥ T0.(19)

Here and below, M, M0, M1, . . . and K, K0, K1, . . . denote constants that may de-
pend on the data of the problem (i.e., ν, f , |u(0)| and λ1). A simple modification
to the argument given in [14] allows us to choose the time T0 large enough so that

|q(t)| ≤ K0
Lm

λm+1
, K0 =

c5

ν

( |Qmf |
Lm

+ M2
1

)
,(20)

‖q(t)‖ ≤ K1
Lm

λ
1/2
m+1

, K1 =
c6

ν

( |Qmf |
Lm

+ M2
1 +

M0M
2
1

νLm

)
,(21)

for every m and for every t ≥ T0. In particular these estimates hold, for all −∞ <
t < ∞, for any solution in the global attractor. We now summarize some results
concerning Φ1 and the rates of convergence of the SGM and the NLG. First of all,
we notice that the convergence properties of the discretizations of (1) depend on
the approximation capabilities of the space where the solution is sought. For the
SGM, the solution um is in Hm, so that, for example, the L2 error cannot be better
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than the L2 norm of u−Pmu = u−p = q. In fact, if (19), (20) and (21) are satisfied
for T0 = 0 then

|u(t)− um(t)| ≤ C(t)
Lm

λm+1
, and ‖u(t)− um(t)‖ ≤ C(t)

Lm

λ
1/2
m+1

(22)

(see, for instance, [10] and [36]). Moreover, the above estimate (22) is sharp, as has
been demonstrated by an example in [41]. For the NLG, the solution ym + Φ1(ym)
lies in the manifold M1 = graph(Φ1). The L2-distance and the H1-distance of
the solution u of (1) to this manifold are |q − Φ1(p)| and ‖q − Φ1(p)‖, respectively.
These quantities can be bounded [14] by

|q − Φ1(p)| ≤ K3
Lm

λ
3/2
m+1

, ‖q − Φ1(p)‖ ≤ K3
Lm

λm+1
,(23)

with K3 = K3(ν−1, |f | , λ1, M
3
1 ). One can then prove that

|u(t)− ym(t)− Φ1(ym(t))| ≤ C(t)
L2

m

λ
3/2
m+1

,(24)

‖u(t)− ym(t)− Φ1(ym(t))‖ ≤ C(t)
L2

m

λm+1
.(25)

3. Main results

This section is devoted to proving the following theorem.

Theorem 1. Let T > 0 be fixed. Let u be a solution of the NS equations on [T0, T ]
such that (19), (20) and (21) are satisfied for T0 = 0. Then, there exists a constant
C = C(T, M1) such that for any t ∈ (0, T ) the solution um(t) of the standard
Galerkin method, equation (3), satisfies

|p(t)− um(t)| ≤ C
L4

m

λ
3/2
m+1

,(26)

∣∣u(t)− (
um(t) + Φ1(um(t))

)∣∣ ≤ C
L4

m

λ
3/2
m+1

.(27)

‖p(t)− um(t)‖ ≤ C
L4

m

λm+1
,(28)

∥∥u(t)− (
um(t) + Φ1(um(t))

)∥∥ ≤ C
L4

m

λm+1
.(29)

The factor L4
m can be replaced by a constant (see Remark 1 below).

Before proving this theorem, some remarks may be helpful. We first show that,
as we mentioned in the Introduction, (27)–(29) are implied by (26). In fact, notice
that since u = p + q, we can write u− (um + Φ1(um)) = (p− um) + (q − Φ1(um)),
which, on adding ±Φ1(p), can be expressed as

u− (um + Φ1(um)) =
(
p− um) + (q − Φ1(p)) + (Φ1(p)− Φ1(um)).(30)

The second term on the right hand side above is (recall (23)) O(Lmλ
−3/2
m+1 ). The

last term, since Φ1 is Lipschitz-continuous [10], can be bounded as

|Φ1(p)− Φ1(um)| ≤ l |p− um| , ‖Φ1(p)− Φ1(um)‖ ≤ l ‖p− um‖ ,(31)
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where l can be made arbitrary small by choosing m large enough. It is then
clear that (27) follows from (26) and (23). Similarly, if we take into account that
‖p− um‖ ≤ λ

1/2
m+1 |p− um|, (28) is a straightforward from (26), and by the same

argument as above we get (29).
The proof of (26) given below will be divided into a number of separate inter-

mediate results. We now comment on the main ideas, to facilitate the reading.
This proof is done by stability plus consistency arguments, reminiscent of finite-
difference analysis, rather than by the standard error analysis typical of spectral and
finite-element methods. This allows us to study only quantities in Hm, for example
um−p, rather than in quantities H like u−um, and exploit the finite-dimensionality
in certain inequalities.

The first step in our proof of (26) is the stability of the SGM. This is no novelty,
and is presented in Theorem 2 for convenience of the reader. By stability we mean
that we bound the error |p− um| in terms of the quantity

W = max
0≤s≤T

∣∣∣∫ s

0

e−ν(s−r)APmG(r) dr
∣∣∣,(32)

which is a convenient norm of the residual PmG, where

G = B(p, q) + B(q, p) + B(q, q).

Notice that PmG equals (d/dt)p+νAp+PmB(p, p)−Pmf ; that is, it is the residual
or truncation error obtained when um is replaced by p in the “discrete” equation (3)
satisfied by um.

The second step in the proof of (26) is consistency, that is, to show that (32) is
of order L4

mλ
−3/2
m+1 . Consistency is presented in Theorem 3. From this theorem and

the stability of Theorem 2, the main result of this section, Theorem 1, follows.
We now comment on the proof of Theorem 3 (consistency), which is prepared

by three lemmas. Observe that we want to show that (32) is O(L4
mλ

−3/2
m+1 ). Since

G is only of the size of ‖q‖ (= O(λ−1/2
m+1 )) ([6]), p. 50, in order to get a better rate

we must exploit the smoothing effect of e−ν(s−r)A in (32) by using the inequality∣∣∣eν(t−s)APmG(s)
∣∣∣ ≤ ∥∥Aeν(t−s)PmA

∥∥
L(Hm)

∣∣A−1PmG(s)
∣∣ .

(Here and in the sequel, ‖·‖L(X) denotes the operator norm in the Hilbert space X).

Lemmas 1 and 2 below show that
∣∣A−1PmG(s)

∣∣ = O(L2
mλ

−3/2
m+1 ). This result is not

valid for
∣∣A−1G(s)

∣∣, so that the finite-dimensional space Hm plays a key role here.
After Lemmas 1 and 2, W in (32) can be bounded by

W ≤ KL2
mλ

−3/2
m+1

∫ T

0

∥∥Aeν(T−s)PmA
∥∥
L(Hm)

ds.

Lemma 3 then shows that
∫ t

0

∥∥Aeν(T−s)PmA
∥∥
L(Hm)

dr ≤ cL2
m, and consistency

follows. Notice that again we have exploited the finite dimension of Hm, since
whereas the operator norm

∥∥Aeν(T−s)PmA
∥∥
L(Hm)

is integrable in [0, T ], the norm∥∥Aeν(T−s)A
∥∥
L(H)

is (ν(T − s))−1 and, hence, nonintegrable.

Theorem 2. Let δ ∈ (1/2, 1) be fixed, and let T > 0 also be fixed. Let u be a
solution of the NS equations such that (19), (20) and (21) are satisfied for T0 = 0.
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Then, there exists a constant C = C(T, M1, δ) such that for any t ∈ [0, T ] the
solution um of the standard Galerkin method satisfies

|p(t)− um(t)| ≤ C
(
|p(0)− um(0)|+ max

0≤s≤T

∣∣∣∫ s

0

e−ν(s−r)APmG(r) dr
∣∣∣),(33)

where

p(t) = Pmu(t) and G(r) = R(u(r))−R(p(r)).

Proof. Let us set e = p− um. Subtracting (3) from (8), we have
d

dt
e = −νAe + Pm(R(um)−R(p))− PmG.

Hence,

e(t) = e−νtAe(0) +
∫ t

0

e−ν(t−s)APm(R(um(s))−R(p(s))) ds

−
∫ t

0

e−ν(t−s)APmG(s) ds.

Taking norms and using (18) and the fact that ‖um(t)‖ ≤ M1 for t ≥ T0 (see [6],
p. 77), we obtain

|e(t)| ≤ |e−νtAe(0)|+ c4M1

νδ

∫ t

0

δδ

(t− s)δ
L |e(s)| ds +

∣∣∣∫ t

0

e−ν(t−s)APmG(s) ds
∣∣∣.

Now (33) follows from a generalized Gronwall inequality ([24], p. 6).

Lemma 1. There exist a constant c such that for any solution u of the NS equations
satisfying (19), (20) and (21) for T0 = 0, the following bounds hold:∣∣A−1PmB(p, q)

∣∣ ,
∣∣A−1PmB(q, p)

∣∣ ≤ cM1Lm ‖q‖H−1(Ω)2 ,(34) ∣∣A−1PmB(q, q)
∣∣ ≤ cLm |q|2 .(35)

Proof. For u, v ∈ V we have∣∣A−1PmB(u, v)
∣∣ = max

ξ∈Hm
|ξ|=1

∣∣(A−1B(u, v), ξ
)∣∣ = max

ξ∈Hm
|ξ|=1

∣∣(B(u, v), A−1ξ
)∣∣(36)

= max
ξ∈Hm
|ξ|=1

∣∣(B(u, A−1ξ), v)
)∣∣ ,

where for the last equality we have used the skew property (17).
Let us put ω = A−1ξ (notice that ω ∈ C∞(Ω) ∩D(A)). We now replace u and

v in (36) by p and q respectively. Since div(q) = 0,

(B(p, ω), q) = (q, p · ∇ω).

Moreover, since p ∈ V and ω ∈ C∞(Ω) ∩ D(A)), then p · ∇ω ∈ H1
0 (Ω)2, and as a

result of the above we have

|(B(p, ω), q)| = |(q, p · ∇ω)| ≤ ‖q‖H−1(Ω)2 ‖p · ∇ω‖H1
0 (Ω)2

≤ c ‖q‖H−1(Ω)2 ‖∇(p · ∇ω)‖L2(Ω)2

≤ c ‖q‖H−1(Ω)2 (‖p‖∞ ‖ω‖H2(Ω)2 + ‖∇ω‖∞ ‖∇p‖L2(Ω)2)(37)

Applying the Brézis-Gallouet inequality (15) to ∇ω, we get

‖∇ω‖∞ ≤ c ‖∇ω‖H1(Ω)2

(
1 + log

‖∇ω‖H2(Ω)2

λ
1/2
1 ‖∇ω‖H1(Ω)2

)1/2

.
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Since ‖∇ω‖Hk(Ω)2 ≤ ‖ω‖Hk+1(Ω)2 , and using (14) and the fact that
∣∣A1/2ω

∣∣ =
‖∇ω‖L2(Ω)2 , we can bound

‖∇ω‖H2(Ω)2

λ
1/2
1 ‖∇ω‖H1(Ω)2

≤ ‖∇ω‖H2(Ω)2

λ1 ‖∇ω‖L2(Ω)2
≤ ‖ω‖H3(Ω)2

λ1

∣∣A1/2ω
∣∣ ≤ c

∣∣A3/2ω
∣∣

λ1

∣∣A1/2ω
∣∣ .

Hence, we obtain

‖∇ω‖∞ ≤ c |Aω|Lm.

Then, from (37), and using (16) to bound ‖p‖∞, we get

|(B(p, ω), q)‖ ≤ c′Lm ‖p‖ |Aω| ‖q|H−1(Ω)2 .

Since |Aω| = 1 and ‖p‖ ≤ M1, we conclude that∣∣A−1PmB(p, q)
∣∣ ≤ cLmM1 ‖q‖H−1(Ω)2 .(38)

For
∣∣A−1B(q, p)

∣∣, arguing as before, we only have to bound (p, q · ∇ω). Let
q = (q1, q2)T ; then we observe that

(p, q · ∇ω) =
∫

Ω

q1p · ∂xω dxdy +
∫

Ω

q2p · ∂yω dxdy.

Let us estimate the first term on the right hand side from above. As before, since
p ∈ V and ω ∈ C∞(Ω) ∩D(A) we have p · ∂xω ∈ H1

0 (Ω). Therefore,∣∣∣∣∫
Ω

q1p · ∂xω dxdy

∣∣∣∣ ≤ c
∥∥q1

∥∥
H−1(Ω)

‖∇(p · ∂xω)‖L2(Ω)2 .

By using arguments similar to the ones above, especially applying the Brézis-
Gallouet inequality (15) twice, and the fact that p, ω ∈ Hm, we obtain

‖∇(p · ∂xω)‖L2(Ω)2 ≤ ‖∇p‖L2(Ω)2 ‖∂xω‖∞ + ‖p‖∞ ‖∇∂xω‖L2(Ω)2

≤ cLm

(
‖p‖ |Aω|+ ‖p‖ ‖ω‖H2(Ω)2

)
≤ c′Lm ‖p‖ |Aω| ≤ c′Lm ‖p‖ ,

because |Aω| = 1. The term
∫
Ω q2p · ∂yω dxdy can be treated similarly, and we

conclude that ∣∣A−1PmB(q, p)
∣∣ ≤ cLm ‖p‖ ‖q‖H−1(Ω)2 ,

which, together with (38), readily leads to (34), since ‖p‖ ≤ M1.
To prove (35), let us apply (36) with u = v = q and use (17) to obtain∣∣A−1PmB(q, q)

∣∣ ≤ max
ξ∈Hm
|ξ|=1

∣∣(B(q, A−1ξ), q)
)∣∣ ≤ |q|2 max

ξ∈Hm
|ξ|=1

∥∥∇A−1ξ
∥∥
∞ ≤ cLm |q|2 ,

where in the last step we have applied the Brézis-Gallouet inequality (15) to∥∥∇A−1ξ
∥∥
∞ and used the fact that ξ ∈ Hm.

Lemma 2. There exist a constant c > 0 such that for any q ∈ V the following
bound holds:

‖q‖H−1(Ω)2 ≤ c
∣∣∣A−1/2q

∣∣∣ .(39)
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Proof. Notice that ‖q‖H−1(Ω)2 = sup{|(q, v)| | v ∈ H1
0 (Ω)2, ‖v‖H1

0 (Ω)2 = 1}. But

|(q, v)| = |(q, Πv)| = ∣∣(AA−1q, Πv)
∣∣ =

∣∣(∆A−1q, Πv)
∣∣ =

∣∣(∇A−1q,∇Πv)
∣∣

≤ ∣∣∇A−1q
∣∣ |∇Πv| = ∣∣A1/2A−1q

∣∣ |∇Πv| = ∣∣A−1/2q
∣∣ |∇Πv| ,

where we recall that Π is the orthogonal projection of L2 onto H . Since (see
Remark 1.10 in [6], p. 9) Π : H1

0 → H1 is continuous, (39) follows.

Lemma 3. Let g : [0, T ] → Hm be such that

max
0≤t≤T

∣∣A−1g(t)
∣∣ ≤ C.

Then for any t ∈ [0, T ], ∣∣∣∣∫ t

0

e−(t−s)νAg(s) ds

∣∣∣∣ ≤ L2
m

ν
C.(40)

Proof. We start by noticing that∫ t

0

e−(t−s)νAg(s) ds =
1
ν

∫ t

0

νAe−(t−s)νAA−1g(s) ds.

Since g(s) ∈ Hm for s ∈ [0, T ], we have

Ae−(t−s)νAA−1g(s) = PmAe−(t−s)νPmAA−1g(s),

so that ∣∣∣∣∫ t

0

e−(t−s)νAg(s) ds

∣∣∣∣ ≤ C
1
ν

∫ t

0

∥∥νPmAe−(t−s)νPmA
∥∥
L(Hm)

ds.(41)

In the sequel, we change variables r = t− s in the integral above. Observe that∥∥νPmAe−rνPmA
∥∥
L(Hm)

= max
1≤j≤m

νλje
−νλjr ≤ max

z∈[νλ1,νλm]
ze−rz

=


νλme−νλmr (r ≤ 1/(νλm)),
e−1

r (1/(νλm) ≤ r ≤ 1/(νλ1)),
νλ1e

−νλ1r (r ≥ 1/(νλ1)).

In order to estimate the right hand side of (41) we decompose the interval [0, t]
as the union of

I1 = [0,
1

νλm
] ∩ [0, t], I2 = [

1
νλm

,
1

νλ1
] ∩ [0, t], I3 = [

1
νλ1

, t] ∩ [0, t].

We then have∫
I1

∥∥νPmAe−rνPmA
∥∥
L(Hm)

dr ≤
∫

I1

νλme−νλmr dr ≤ 1− 1
e
,

∫
I2

∥∥νPmAe−rνPmA
∥∥
L(Hm)

dr ≤ 1
e

∫
I2

1
r

dr ≤ L2
m

e
,

and ∫
I3

∥∥νPmAe−rνPmA
∥∥
L(Hm)

dr ≤
∫

I3

νλ1e
−νλ1r dr ≤ 1

e
− e−λ1t.

Combine the above with (41) to obtain (40).
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Theorem 3. Suppose that the conditions of Theorem 2 hold. Then there exists a
constant c > 0 such that

max
t≥0

∣∣∣∫ t

0

e−ν(t−s)APmG(s) ds
∣∣∣ ≤ L2

m

ν
(LmM1

∣∣∣A−1/2q
∣∣∣ + cLm |q|2)(42)

≤ K0L
4
m

νλ
3/2
m+1

(M1 +
cLmK0

λ
1/2
m+1

).

Proof. Let us recall that

PmG = PmB(p, q) + PmB(q, p) + PmB(q, q).

Then (42) follows immediately from (20), (21), and Lemmas 1, 2 and 3.

Remark 1. The leading term ν−1L4
mK0M1λ

−3/2
m+1 on the right hand side of (42) can

be replaced by ν−2L2
mM3

1 K0λ
−3/2
m+1 in the following way. Let us denote g(s) =

B(p, q) + B(q, p). Using integration by parts we can write∫ t

0

e−ν(t−s)APmg(s) ds =
1
ν

(
A−1Pmg(t)− e−νtAA−1Pmg(0)

)
(43)

− 1
ν

∫ t

0

e−ν(t−s)AA−1Pm
dg(s)
ds

ds.

Notice that no term Aeν(t−s)A appears now, so that the L2
m factor arising from

Lemma 3 will not be present in the corresponding bound. Then the result follows
from the the fact that for t ≥ T0,∥∥∥∥du

dt
(t)

∥∥∥∥ ≤ c
M2

1

ν
M1,

∣∣∣∣dq

dt
(t)

∣∣∣∣ ≤ c
M2

1

ν
K0

Lm

λm+1
.(44)

(Here, we are assuming that |f | is not too small; see [14] for a more precise statement
of (44)). Notice that the above estimate (44) holds for all t ∈ (−∞,∞) for solutions
in the global attractor. Let us remark, however, that this approach provides a more
favorable estimate than (42) only if m is sufficiently large so that Lm > M2

1 /ν.
Furthermore, all terms Lm can be removed from (42) at the price of replacing all

constants depending on M1 by constants depending on M2 = maxt≥T0 |Au|, which
is several orders of magnitude bigger than M1.

Remark 2. Theorem 1 is not restricted to time-independent forcing terms. If f =
f(t) satisfies f∞ = maxt≥0 |f(t)| < +∞ and for some θ ≥ 1/2

|f(t1)− f(t2)| ≤ Lf |t1 − t2|θ , ∀t1, t2 ≥ 0,

then it can be shown (see [29]) that (23) holds (inequality (23) was first proved
in [14] for time-independent forces f). Since f plays no role in the results in this
section, they are also valid for f = f(t).

It is important to notice that for time-dependent forces, the estimates (44) do
not necessarily hold (except for f analytic in a strip of the complex plane around
the positive real time axis). Hence the approach provided by (43) is of no use, and
Lemma 3 has to be used.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



POSTPROCESSING THE GALERKIN METHOD 907

4. Further extensions

The fact that the postprocessed Galerkin method has the same rate of conver-
gence as the NLG with Φapp = Φ1 is not an exclusive property of the NS equations.
It applies also to other two-dimensional (and three-dimensional) dissipative PDEs.
In fact, none of the properties of the solutions of the NS equations that have played
a key role in our analysis are exclusive to the NS equations, nor are the three
lemmas in the previous section applicable only to the NS equations.

Let us review first the properties of the NS equations that we have used. These
are (19) (i.e., dissipativity) and (14) (i.e., the continuity of the embeddings of D(Aα)
into the corresponding Sobolev spaces). Notice that we have used (14) in order to
have some control on the L∞ norms of both p and um (and their spatial derivatives)
in the nonlinear terms. To avoid the presence of |Au| in our error bounds we
relied heavily on the Brézis-Gallouet inequality (15). This works nicely for two-
dimensional problems; however, for three-dimensional problems we will have to use
the estimate

M2 = max
t≥T0

|Au|(45)

instead.
As for the lemmas in the previous section, Lemma 3 is valid even for sectorial

operators, while Lemma 2 depends on the boundary conditions and the relation
between Sobolev spaces and the the fractional powers of A. Lemma 1, however,
depends on the particular nonlinearity of the equation.

We show now how to extend the results of the previous section to reaction-
diffusion (RD) equations of the form

ut − ν∆u + R(u) = f,(46)

where R is a polynomial nonlinearity

R(u) =
2k+1∑
j=1

aju
j , a2k+1 > 0.(47)

We consider the equation on a bounded domain Ω in Rd, d ≤ 3, subject to ho-
mogeneous Dirichlet boundary conditions u = 0 on ∂Ω. Notice that the operator
A is A = −∆. We refer the reader to, for instance, [38] for the properties of the
solutions of this equation.

For the RD equation (46), the mapping Φ1 possesses the following approximation
property [8]. For u = p + q satisfying (19) and (45)

|q − Φ1(p)| ≤ K4

λ2
m+1

,(48)

where K4 depends on M2 (in fact, on M2k
2 ). All the bounds that we obtain here

for the RD equation will depend on this constant M2, rather than on M1.
We present a version of Lemma 1 for the RD equation.

Lemma 4. There exists a constant c such that for any solution u of the RD equa-
tion (46) such that (19) and (45) are satisfied for T0 ≥ 0, the following bound
holds: ∣∣A−1(R(u)−R(p))

∣∣ ≤ KM
k−1/2
1 M

k+1/2
2

∣∣A−1q
∣∣ .(49)
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Proof. Reasoning as in Lemma 1, we have to bound
∣∣(R(u)−R(p), A−1ξ)

∣∣ with
|ξ| = 1. Notice that R(u) − R(p) is a linear combination of terms that are either
q, or qlpn with l ≥ 1 and 2 ≤ l + n ≤ 2k + 1. Then for ω = A−1ξ we denote
v = ql−1pnω and Q = A−1q. Since D(A) is an algebra, and since q, p and ω belong
to D(A), then ∇v = 0 on ∂Ω. As a result we have

(qlpn, ω) = (q, v) = −(div(∇Q), v) = (∇Q,∇v) = −(Q, ∆v),

where, for the last equality, we have used the fact that Q∇v = 0 on ∂Ω. Then, if
we show that |∆v| ≤ KM

k−1/2
1 M

k+1/2
2 |ξ|, (49) will follow. Assume for simplicity

that l = 1 (the case l ≥ 1 is treated similarly). Then

∆v = nωpn−1∆p + n(n− 1)ωpn−2∇p · ∇p + 2npn−1∇p · ∇ω + pn∆ω.(50)

We bound each term on the right hand side above separately. Take the first term.
Using Agmon’s inequality [1], [38] in three dimensions

‖f‖∞ ≤ c ‖f‖1/2
H1 ‖f‖1/2

H2 , ∀f ∈ H2(Ω),(51)

and (13), we have∣∣ωpn−1∆p
∣∣ ≤ ‖ω‖∞ ‖p‖n−1

∞ |∆p| ≤ cM
n−1

2
1 M

n+1
2

2 ‖ω‖1/2
H1 ‖ω‖1/2

H2

≤ cλ
−1/4
1 M

k−1/2
1 M

k+1/2
2 |ξ| ,

where for the last inequality we have used the fact that ‖ω‖H1 ≤ λ
−1/2
1 ‖ω‖H2 . For

the first term on the right hand side of (50) we write

|pn∆ω| ≤ ‖p‖n
∞ |∆ω| ≤ c ‖p‖n/2

H1 ‖p‖n/2
H2 |ξ| ≤ c ‖p‖1/2

H1 M
n−1

2
1 M

n/2
2 |ξ|

≤ cλ
−1/4
1 ‖p‖1/2

H2 M
n−1

2
1 M

n/2
2 |ξ| ≤ cλ

−1/4
1 M

k−1/2
1 M

k+1/2
2 |ξ| .

For the third term on the right hand side of (50) we first notice that, using
Hölder’s inequality and Sobolev’s inequalities in three dimensions, we have the
bound

|∇p · ∇ω| ≤ ‖∇p‖L3(Ω)2 ‖∇ω‖L6(Ω)2 ≤ c ‖∇p‖H1/2(Ω)2 ‖∇ω‖H1(Ω)2

≤ cλ
−1/4
1 ‖p‖H2 ‖ω‖H2 ,

so that ∣∣pn−1∇p · ∇ω
∣∣ ≤ ‖p‖n−1

∞ |∇p · ∇ω| ≤ cλ
−1/4
1 M

n+1
2

2 M
n−1

2
1 |ξ|

≤ cλ
−1/4
1 M

k−1/2
1 M

k+1/2
2 |ξ| .

Since the second term on the right hand side of (50) can be treated similarly, the
proof is complete.

After this lemma, if we want to show that, for the RD equation, the solution
um of the SGM satisfies |p− um| = O(L2

m/λ2
m+1), we can proceed exactly as in the

case of the two-dimensional NS equations. For the three-dimensional case, one
always has to replace the Brézis-Gallouet inequality (16) by Agmon’s inequal-
ity (51).

Remark 3. The results on the RD equation can be also extended with minor mod-
ifications to the Cahn-Hilliard equation

ut + ν∆2u + ∆R(u) = f
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(R as in (47)) with boundary conditions

∂nu = ∂n∆u = 0,

where ∂n denotes normal derivative (see [38]). If A = −∆, then |p− um| =
O(L2

m/λ3
m+1); that is, the same order of convergence (except for the L2

m term)
as the approximation order of Φ1 [8].
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