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Abstract

In this paper, we consider a multicommodity flow problem where for each pair of vertices,
(u,v), we are required to sendf half-units of commodity (uv) from u to v and f half-units of
commodity (vu) from v to u without violating capacity constraints. Our main result is an
algorithm for performing th9 task provided that the capacity of each cut exceeds the
demand across the cut by a b(log n) factor. The condition on cuts is required in the worst
case, and is trivially within a i(log n) factor of optimal for any flow problem.

The result is of interest because it can be used to construct the first poly-log times optimal
approximation algorithms for a wide variety of problems, including minimum quotient
separators, 1/3-2/3 separators, bifurcators, crossing number and VLSI layout area. The
result can also be used to efficiently route packets in arbitrary distributed networks. For
example, we can prove that any n-node bounded degree graph, G, with minimum edge
expansion h can be configured off-line to simulate any n-node bounded degree graph H in
0(log n/a)steps using constant size queues. By letting H be a universal network, we can
then use G to simulate a PRAM on-line with elay 0(log2 n1 a) steps, resolving a
conjecture in the theory of distributed comput tion. These results compare well with the
universal lower bound of n(1/a) and the existntial lower bound of 0(log n/a).
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Abstract and the existential lower bound of fl(lo"0).

In this paper, we consider a multicommodity 1 Introduction
flow problem where for each pair of vertices,
(u,v), we are required to send f half-units of 1.1 Multicommodity Flow Prob-

commodity (u, v) froi u to " and f half-units lems
of commodity (v, u) from v to u without vio- A multicommodity flow problem (MFP) con-
lating capacity constraints. Our main result is sists of a graph G = (TV, E), a set of com-
an algorithm for performing the task provided modities, r, a capacity function on the edges
that the capacity of each cut exceeds the de- C E -- R+, a supply function for vertices
mand across the cut by a e(log n) factor. The S V x C' -- R+, and a demand function for
condition on cuts is required in the worst case, vertices D : V x r - R+. The object is to con-
and is trivially within a 0(log n) factor of op- struct flows for the commodities that satisfy
timal for any flow problem. the demand for each commodity at each vertex

The result is of interest because it can be without violating the constraints imposed by

used to construct the first poly-log times opti- the supply function and the capacity function.

mal approximation algorithms for a wide vari- It is well known that any MFP can be solved

ety of problems, including minimum quotient in polynomial time using linear programming.

separators, I - 2 separators, bifurcators, cross- In this paper, we consider a special kind of

ing number and VLSI layout area. The result MFP that we call a uniform multicommodity

can also be used to efficiently route packets in flow problem (UMFP). In a UMFP, we have

arbitrary distributed networks. For example, a separate commodity for each ordered pair of

we can prove that any n-node bounded degree vertices (i.e., r = V x V), and we insist that f
graph, G, with minimum edge expansion a can half-units of commodity (u, v) flow from u to v
be configured off-line to simulate any n-node and that f half-units of commodity (v, u) flow

bounded degree graph H in O(L%- ) steps us- This research was supported in part by the De-

ing constant size queues. By letting H be a fense Advanced Research Projects Agency under Con-
universal network, we can then use G to simu- tract N00014-80-C-0622 the Office of Naval Research

late a PRAM on-line with delay O(1 2n ) steps, under Contract N00014-6-K-0593, the Air Force un- - -

resolving a conjecture in the thoery of dis- der Contract OSR-86-0076, and the Army under Con-
resvibte coptuion the erlts compar tract DAAL-03-86-K-0171. Tom Leighton is also sup-
tributed computation. These results compare ported in part by an NSF Presidential Young Investiga-
well with the universal lower bound of 0(1) tor Award with matching funds from IBM and AT&T . -
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from v to u for each u, v E V. The underly- connected to the rest of the graph with edges
ing graph and capacities can be arbitrary, al- of total weight at least a JUI. For example, un-
though we will only need the special case when weighted (i.e., C(e) = 1 for all e E E) expander
the edge capacities are all equal for the appli- graphs have constant flux. A cut that achieves
cation. The object of a UMFP is to maximize the flux is called the minimum quotient sepa-
f subject to the constraints imposed by the rator and is related by a constant factor to the
edge capacities. This can be done in polyno- sparsest cut since
mial time using linear programming, and can
be approximately done using faster algorithms S< a < nS (3)
by Shahrokhi and Matula [19].

As in the case for the single commodity for any n-vertex graph since the number of ver-
flows, an MFP cannot be solved if there is a cut tices in the big half of a cut must lie between
of the graph for which the demand across the 2 and n. Computing the minimum quotient
cut exceeds the capacity of the cut. In the case separator is also NP-complete. (The proof is
of a UMFP, the demand across a cut (U,r) is identical to that of graph bisection [7].)
simply f JUJ J'J where U C V. The capacity Unlike the case for single commodity flowssimply he u o Vthe capacitys problems, there is no max-flow, min-cut the-
of the cut is simply the sum of the capacities orem for the UMFP. In particular, the condi-
of the edges crossing the cut. In the case when tion that S 2! f is necessary but not always
all the capacities are equal, the capacity of the sufficient for a UMFP to have a flow cf size
cut is proportional to the number of edges in f. As a particularly nasty example, consider
the cut. This m otivates the definition of the a A a bu nded-degre ex a nde, grs peminium ct fo a UFP t bea UMFP on a bounded-degree expander graph

with identical edge capacities C(e) = Co. Since

Se=(.U) C(e) most pairs of vertices are separated by distance
mCV u (1) fQ(logn) in such a graph, the sum of the edge

S IU capacities must be Q(fn2 log in order for

Note that for any feasible solution to a UMFP, there to be a flow of size f in the UMFP. This
we must have f < S. means that Co = Q(fnlogn) which is equiva-

The value of 8 defined in equation 1 also has lent to requiring that S = n(flogn). Hence,
interpretations in graph theory. If C(e) = 1 in this case, the capacity across each cut must
for all e E E, then S is the value of the spars- exceed the demand across the cut by a E(log n)
est cut of the graph. In the case of arbitrary factor in order for there to be a solution to the
edge capacities, then S is the weighted spars- UMFP.
est cut value for the graph with edge weights The preceding example is as bad as things
given by C. Even in the simple case where all ca ret however. This fact is summarized in
edge weights (capacities) are 1, computing the the , ' wing theorem.
sparsest cut of a graph is NP-hard [14).

A closely related quantity to the sparsest cut Theorem 1 There a feasible flow with f =
of a graph is the minimum edge expansion or g s) for any n-vertex UMFP.
flux of a graph, defined by The preceding result provides an ap-

FeEMV) C(e) proximate max-flow in-cut relationship for
a = mine( ) (2) UMFPs that is tight in the worst case. In par-

min(IUl, ITT) ticular, we have that

In other words, a graph has flux a f every S
subset U with at most half of the vertices is (-o-) -f S, (4)



. for any UMFP. In other words, the maximum proving Theorem 1 is showing that paths with
flow is always within a O(logn) factor of the small total weight exist no matter how the ad-
minimum cut. Moreover, there are examples versary places the weights. It is also necessary
of both f = 0(S) and f = 0(S /log n), so the for some of the applications to find the shortest
approximation is existentially tight. paths in a way that reveals a cut whose size is

The proof of Theorem 1 is the first of two inversely proportional to the total path length.
main results in the paper and is included in Hence we must use a nonstandard short paths
Section 2. In the remainder of this section, type of algorithm.
we describe the method of the proof, the sec- We suspect that our method for proving the
ond main result, and the applications of the existence of paths with short total length may
results to a wide variety of problems. Section be directly useful in other contexts such as
3 contains the proof of Theorem 2. We con- routing paths around faults or costly (e.g., con-
clude with some remarks, acknowledgements, gested) components in a distributed network.
and references in Sections 4 - 6. In this paper, however, we use this technique

only indirectly - in the context of the dual
1.2 Proof Method problem of finding sparsest cuts.

To prove Theorem 1, we work with the dual
of a UMFP. The dual UMFP problem consists
of a weighted graph where the weight of an From Equations 3 and 4, we can quickly deduce
edge (denoted by d(e)) is treated as a distance that
and is selected by the adversary subject to the nf
condition that FeeE d(e)C(e) = 1. The object -< O(fidogn) (6)
is to route the commodities along paths in a
way that minimizes the total distance of all for any weighted graph. Hnce, we can approx
paths used. In general, a UMFP has a feasible imate the flux of any graph up to a @(log n)-
flow f if and only if for every legal distance factor simply by finding the optimal value of f
function, the sum of all path distances is at for the associated UMFP. Unfortunately, this
most '. (This fact can be proved using the approach is not sufficient to actually locate
duality theory of linear programming [9].) In an approximate minimum quotient separator,
other words, however.

1 In order to find an actual cut, we first solve
f = length(3) the corresponding UMFP and its dual in order

mam j {rinimum total path lenth} to construct the worst possible distance func-

Given an n-node graph with capacities C tion d : E --- R+. We then use the path routing
and weighted flux a, and any distance func- algorithm described in Section 2 to find paths
tion d such that ZEE d(e)C(e) = 1, we show between all pairs of vertices with small total
in Section 2 how to route paths between all path length. As the algorithm progresses, we
pairs of vertices so that the total path weight keep track of the minimum edge expansion cut
is at most 0(112EM) = (2"). This will be found up to that point. At the end, we out-
sufficient to prove Theorem I since we can then put the best such cut ever encountered. The
conclude that there is a feasible flow of size algorithm has the nice property that the total
Q!( ), path length is at most 0(",) where aob, is

It is worth noting that it is, of course, well- the sparsest cut observed during the running
known how to compute shortest paths in a net- of the algorithm. Hence by Equations 5 and 6
v work in polynomial time. The tricky part of we have



well as any graph with 4n or more edges [111.
robs : 0 (a log n), These conditions are satisfied by most graphs.

and thus our minimum observed sparsest cut Moreover, the result can be partially extended

is within a G(log n) factor of optimal. to graphs with arbitrary degree. For example,
the same result holds for regular (or near reg-
ular) graphs of arbitrary degree.

1.4 Aproximatrsing ep o rs BWe should note that some minor effort is re-
furcators, Crossing Numbers quired to adapt the arguments of Bhatt and

Leighton [1] to obtain these results. Full de-

The algorithm for finding an approximate rin- scriptions of the algorithms and their analysis

imum quotient cut can be used to find polylog will be included in the full paper.
approximation algorithms for a variety of NP-
hard combinatorial problems. For example, 1.5 Application to Packet Routing
by recursively applying the approximate mini-
mum quotient algorithm as in [18], we can ob-
tain a O(log2 n) times optimal approximation Communication in a distributed network is an
algorithm for finding minimum -F, -- graph important area of research for which relatively
separators for any k > 3. Alternatively, we little is known. For example, given an arbitrary
can obtian obtain a O(log n) times optimal ap- n-processor network, we might wish to know
proximation algorithm for finding approximate how well it can simulate a wel-studied network
I k-1, - separators. (The difference in the lat- or other parallel machine such as the butterflyI k-1
ter result is that we pay the price for a 1 k or PRAM. Some progress has been made on

a--1
separator but only get a l., = separator as this problem in the special case that the graph
output where a > 1 is a small constant.) is an expander. For example, Peleg and Upfal

These algorithms can then be combined with have shown how to solve any n-packet routing
the reductions of Bhatt and Leighton [1] to ob- problem on any n-node expander in O(log n)
tain: expected steps using queues of size O(log n) at

each node (15]. For general graphs, relatively
1. a O(log4 n) times optimal approximation little is known except that it has been observed

algorithm for c + n where c is the cross- by many researchers that flux and diameter
ing number of an n-node bounded degree are important parameters that influence per-
graph, formance (e.g., they are both lower bounds on

the time needed to route a random permuta-2. a O(1og5 1 2 n) times optimal approxima- tion).

tion algorithm for the V"/1-bifurcators of to)
tin alorih ode re gfra, s ofd In this paper, we provide the first step

towards a general solution to the problem

3. a O(log6 n) times optimal approximation by showing how any n-node bounded-degree
algorithm for the layout area of an n-node graph, G, with flux a can simulate any other
bounded degree graph. n-node bounded-degree graph, H, with delay

O(i -1") and constant size queues. The result
At first glance, the crossing number approx- is optimal in the sense that there are simula-

imation algorithm seems fairly weak since we tion problems that require this much time, and
are only approximating c + n and only for is robust in the sense that the simulation can
bounded degree graphs. However. c > w(n) take place for any 1 - 1 embedding of the nodes
for any graph with bisection width .(/'n) as of H onto nodes of G. The main drawback of



the simulation result is that it requires off-line solved in O(congestion + dilation) steps using
computation. However, once the off-line em- constant size queues.
bedding is performed for one H, simulation of Unfortunately, the LMR routing algorithm
another H' can be performed on-line by using is nonconstructive. We can circumvent this
H to simulate H'. For example, by embed- drawback by introducing randomness and
ding a butterfly or other universal network into queues, however. In particular, we can use
G off-line, we can then use G to simulate any Theorem 2 to embed K, in G with congestion
CRCW PRAM algorithm in an on-line fashion O(l*") and dilation O('-). This can be
with delay 0( '' ' ) and constant size queues. performed in polynomial time off-line. We can

Conceivably, such a result could have a sub- then route a random permuation in O( '29)
stantive impact on the theory of distributed expected steps using queues of size O("-°' n ) by
computation, where the complexity of algo- introducing a random delay selected uniformly
rithms for operations such as sorting is typi- from [1, 1-] for each packet and multiplexing
cally measured in terms of numbers of nodes the packets as they arrive at each edge. The
and edges and (sometimes) diameter. While details are not difficult to work out and will be
such algorithms are of interest 1or some graphs, included in the final paper.
they can be far from optimal for many others. One final comment is relevant here. The
By using our flux-based approach, however, observant reader will notice that we are rout-
it is possible to devise a single on-line algo- ing axbitrary paths in G within time O(!2")
rithm to sort in any network in Q(log2 n) steps without regard for the diameter of G. At first
times the optimal for that graph. Of course, glance, this would not seem to be possible if
we will still need off-line computation to set the diameter were w(!2- ). Such a scenario is
up routing tables for the graph (in this case, not possible, however, since as a consequence
we embed the AKS-based sorting network de- of our proof we will find that the diamete- of
scribed by Leighton in [13]), but if the sorting any bounded-degree graph, is always O(-o T).
is to be done many times, the algorithm will
be asymptotically much better than currently 1.6 Previous Work
known techniques for general graphs. (Alter-
natively, we could use O(log3 n) times optimal Aside from the expander-related results cited
steps and obtain a smaller constant factor by in Section 1.5, there are relatively few previous
off-ine embedding a shuffle-exchange graph.) results (that we are aware of) on the problems

In order to prove that any n-node bounded- addressed in this paper. Although there axe
degree graph G with flux a can simulate any many max-flow min-cut results for multicom-
other n-node bounded-degree graph H with modity flow problems [14] [6], they tend to be
delay O( 1K n), we first prove that H can be exact results (or sometimes "plus one" results)
embedded in G with congestion and dilation for specialized problems, and we know of noth-
O(1".). This is Theorem 2 and is the second ing resembling the approximate result in this
of our two main results. (The congestion of an paper. Duals to max-flow problems that in-
embedding is the maximum number of edges of volve min cuts have been constructed (see (19]),
H that traverse any edge of G. The dilation of but they involve distance functions and are not
an embedding is the maximum distance sepa- natural min-cut problems in the normal sense.
rating adjacent nodes of H when embedded in Although there are numerous heuristic algo-
G.) The proof is then completed by applying rithms for separator related problems [5][10],
the recent result of Leighton, Maggs and Rao as well as numerous average-case algorithms [4]
[12] that any packet routing problem can be [2] [3], there a very few previous results in ap-



proximation algorithms. For example, the best The algorithm for finding such a node u con-
previously known algorithms for separators are sists of three Stages. The first Stage is a pre-
due to Plaisted [16], who has a randomized processing stage. We start by placing an in-
O(v'n) times optimal approximation algorithm tegral number of "distance tokens" on each
and a randomized O(log n) times the square of edge. In particular, we place max {1, [j ej I

optimal approximation algorithm. There has tokens on edge e for every e E E where s =
been substantial recent progress on the related Each token corresponds to distance
problem of bandwidth minimization, however. ) Ea (e)"

a and serves to discretize the distance func-In particular, Gonzalez and Kurki-Gowdara to.B sn h oes ecnbeku

have used bundle-capacity flow techniques to long edges into discrete pieces, each with the

construct a 2 times optimal approximation al- same into distence. e th the

gorithm for this problem as well as for a vari- same amount, s, of distance. Note that the to-
tal distance of each edge is not decreased by

ety of VLSI layout problems in [8]. Whether thistprces.

or not these techniques can be combined with We next assign a weight to each token. In

those presented in this paper to obtain better particular, tokens on edge e are assigned weight

approximation algorithms for separator related cu r Note a th e a weig oaltht

problems is a potentially interesting area of re- C(e). Note that the total weight of all the to-

search. kens is at most

eEE d(e) 2
2 Proof of Theorem 1

since ZeEECede) = 1 and ZeEC(e) -IFollowing the analysis of Section 1.2, we need We now ceed w t snd e the
only show that for any n-node graph G = We now proceed with the second Stage of the
(V, E) wit), weights C : E -- R + and dis- algorithm. The purpose of Stage 2 is to grow a

e E)uwit ights : E - R+ andh thst shallow depth region that contains a majoritytane functio d , E Rs such t te of the nodes. We do this by insisting that every
Sd(e)C(e) = 1, it is possible to route time we grow the region by a token, we make

paths between every pair of vertices with total
distance 0 (n°-S*?) where a is the weighted flux the weight of t o he aiegn r amount

of G Ths euivaentto howng tat her is that is proportional to the expansion ratio. In
of G. This equivalent to showing that there is particular, we execute the following steps:
some vertex u of G for which

vEV lg 1. Select a vertex v E G, to initiate the re-
d(u, v) = O( ), gion.

where d(u,v) denotes the distance along the 2. Extend the region by one token.
selected path from u to v. For later reference
we state this result as Lemma 1. 3. Let i denote the depth (i.e., radius) of this

region as measured in tokens. (This is the

Lemma 1 There is some vertez u of G for number of times we have executed Step

which 2.) Let Wi-i denote the weight of tokens
in the first i - 1 levels of the region. If

VEV O(,,,, Wi 2! (1 + c)Wi-I where E = 2M then go
d(u,v) = 0(log to Step 2.

where d(u, v) denotes the distance along the se- 4. If the region contains n or more nodes,
lected path from u to v. halt and output the region.



5. Otherwise, remove the nodes in the region (anything larger could never be used in a
from the graph and go to Step 1. UMFP) and thus

eEE
We first prove that the algorithm eventually C(e) 5 n'c,i,,

halts and outputs a region containing at least
n nodes. For the purposes of contradiction, as- soi
sume otherwise and consider the union of the
removed regions at the first instant that it con- log 0E C(e) = O(log n).
tains at least 2 nodes. Since, by assumption, cmn

no single removed piece contains n removed In addition,
nodes, the union of the removed regions has nsa no < 2

nodes where 2 < I < a at this point. By E -  9 C 1

the definition of a, this means that at least -4
token weight leaves the union of the regions, since by averaging over all nodes, there must be

From the condition at Step 3, we know that some single node for which the weighted min-

the ratio of the internal token weight to the imum edge expansion is at most 21"-E C(e)

boundary token weight of each removed piece Thus log(1 + 4) = 0(e), and d = O(I--fl) as
is greater than 1. Hence the same is true of the claimed.
union of the removed regions, and we conclude At this point, we have constructed a region
that the union of the removed regions contains which contains at least B nodes, and for which
at least 2on- total token weight. This is impos- the sum of the distances from the root to al

sible, however, since 22 > 2 which is the in the is at most =
4c 4 nodes interegionisamot0 *"

total token weight. Hence the algorithm halts O(i .- ). It remains to extend the region to the
and successfully outputs a region with at least remaining nodes with short total path length.

. nodes. This takes place during Stage 3.
We next show that the depth of the output Stage 3 consists of simply extending the re-

region (as measured in numbers of tokens) is gion constructed in Stage 2 in a breadth first
at most O( 0'4 n To see why, we need only ob- manner (one level of tokens at a time) until all
serve that W, > (1 + e)Wj_1 for each level of nodes are reached. Although individual paths
the output region, and hence that a region of constructed during Stage 3 can be much longer
depth d must have total token weight exceeding than those constructed in Stage 2 (and this can
(1 + C)d-lc,n, where C,in is the minimum to- be required in certain examples), their total
tal capacity of the edges incident to any node. length will still be small.
Since there is only 1 = 2 Ee6E C(e) total token To prove that the total path length is small
weight we can conclude that for the full region, we let ni denote the number

eEE of nodes still not in the region after it is grown

(1 + )d-lc,min 2 C(e), by i tokens during Stage 3. For example, no is
the number of nodes not in the region at the

and thus that end of Stage 2. Since precisely, ni paths will
traverse the ith level of Stage 3, the total path

log 3 EE C(e) length contributed by nodes in Stage 3 is at

d = 0( +og )1 "  most

Without loss of generality we can assume O(L-g) + 0

that the capacity of any edge is at most ncn ,=



The first term comes from the portion of the can then make use of Raghavan's [17] method
paths in the Stage 2 portion of the region, and of converting fractional flows into single paths
the second term comes from the portion of the to show that H can be embedded in G with
paths routed in Stage 3. O( -"n) congestion. These peripheral details

The sum F'0 n, cannot be too large, how- will appear in the full paper.
ever, since if after level i, there are still ni un- In order to produce paths with simultaneous
seen nodes, the weight of all the tokens used at congestion and dilation O( "-n), however, we
level i must be at least an,. Since the total to- have to extend the proof of Lemma 1 so that all
ken weight is at most 1, we can conclude that paths used have at most 0( '-'- ) edges in ad-

0 n, _so and thus that dition to total (token) distance O(1-"). The

2 result will then follow by restricting the lin-

s n _< -. ear program so that only paths with distance
6=0 O('- ) are allowed.

Hence the sum of all path lengths is at most To construct a region with small edge depth
0(i-), as claimed, as well as small total path distance (measured

This completes the proof of Lemma 1 and as in Section 2 with the distance function), we
hence Theorem 1. In order to construct the al- need to modify the region construction algo-
gorithm for finding approximate sparsest cuts rithm of Lemma 1. In particular, we need only
as described in Section 1.3, however, we still modify stage 3 since the edge depth of the re-
need to check that the total weight of the paths gion produced by Stage 2 is bounded by the
in the region is at most O(OE?.) where 0ab, is token depth, which was shown to be at most
the sparsest cut observed during the construc- O(L' ') = 0(""). This is at most 0(1"')
tion of the region. This is easily done, since we since s = ;(;) for an n-node bounded-degree
simply replace o with cob, in all of the analy- graph with edge capacities all of which are one.
sis for the performance of the algorithm. Note To modify Stage 3, we examine each level to
the algorithm is run the same way (c doesn't see whether or not the number of nodes on the
change) but the analysis can be improved by level exceeds the fraction s-. of the number
using nob, instead of a. of tokens, where d,._ is the maximum degree

of the graph G. If not, then we insert addi-

3 Proof of Theorem 2 tional tokens in front of all the nodes that were
on the level in order to "push" them to the next

Our second main result can be formally stated level. Otherwise, we continue as before.

as follows. Now we show that we do not insert too
much token weight. Consider that at any

Theorem 2 Given any n-node bounded degree level where tokens are inserted there are less
graph H, and any 1-1 embedding of the nodes than the number oftokens nodes in the level,
of H onto the nodes of G, the edges of H can and we need to use at most daz tokens to
be routed as paths in G with congestion and push out any node. Thus we use less than
dilation O(i2 - ). the number of tokens inserted tokens to pushout the nodes. In addition, each node that is

By Lemma 1 and standard duality argu- pushed out can push out at most dn,, tokens
ments we can deduce that the commodities with it so at least half the tokens that start in
induced by the edges of H can be satisfied the level stay in this level. Hence, we can add
in G with congestion 0(l "-l). (Here conges- only as many tokens as we already have which
tion corresponds to capacity in the UMFP.) We means that the number of tokens at most dou-
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