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1. Introduction

Kármán [1] introduced an ingenious similarity transformation to study the axisymmet-

ric flow induced by a single rotating disk. Batchelor [2] showed that this transformation

can be used even when the fluid is confined between two parallel disks rotating about a

common axis at different speeds. The solutions that are not axially symmetric were con-

sidered by Berker [3]. He established a one-parameter family of solutions for the flow be-

tween two disks rotating about a common axis with the same angular velocity. Later, Ra-

jagopal [4] obtained asymmetric solutions for the flow due to porous disks rotating with

equal angular velocity about a common axis. Parter and Rajagopal [5] studied Berker’s

problem in the case of rotation at different speeds and rigorously proved that there is a

one-parameter family of solutions when the disks rotate about a common axis or distinct

axes. Lai et al. [6] obtained a numerical solution for the asymmetric flows belonging to

the equations established by Parter and Rajagopal [5]. Later, Lai et al. [7] presented solu-

tions that lack symmetry for the flow in the semi-infinite interval above a single rotating
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disk. Szeri et al. [8] investigated asymmetric flows above a rotating disk with uniform

suction.

Flow of non-Newtonian fluids between rotating disks has also drawn attention in view

of its applications in engineering practice. Maxwell and Chartoff [9] claimed that it is

possible to determine the complex dynamic viscosity of a viscoelastic fluid if an instru-

ment consisting of two parallel disks rotating with the same angular velocity about two

distinct axes normal to the disks is used. In this domain, Abbott and Walters [10] ob-

tained an exact solution for the flow of the Navier-Stokes fluid. In the case of a viscoelas-

tic fluid, they also carried out a perturbation analysis by expanding in a power series in

the distance between the axes of rotation. Rajagopal and Gupta [11] studied the possi-

bility of existence of asymmetric solutions for the flow of a second-grade fluid between

disks rotating about a common axis with the same speed. Rajagopal [12] showed that

the motion represented by Berker [3] is one with constant stretch history. Rajagopal and

Wineman [13] extended Berker’s work [3] to the case of a special subclass of the K-BKZ.

Motivated by the work of Parter and Rajagopal [5], Huilgol and Rajagopal [14] derived

the equations of motion in the case of an Oldroyd-B fluid. Rajagopal [15] discussed the

existence of solutions that do not possess axial symmetry for viscoelastic fluids in the

case of rotation about a common axis. He also took into account the flow in an orthog-

onal rheometer and then discussed the flow produced by the rotations about a com-

mon axis and distinct axes when two disks have different speeds. Later, Rajagopal [16]

reviewed the articles that study symmetric and asymmetric solutions for both a linearly

viscous fluid and viscoelastic fluids, and discussed questions that remain unanswered.

For a discussion about this subject, we also refer the reader to the book by Truesdell and

Rajagopal [17].

The velocity field employed by Abbott and Walters [10] for the analysis of a viscoelas-

tic fluid was adapted to the problem of flow between disks rotating about noncoaxial axes

at different speeds by Knight [18]. Abbott and Walters considered that the components of

translational velocity are related to each other. Knight took Abbott and Walters’ velocity

field to be a basis and obtained a full numerical solution. By assuming that the inertia

effects are small, he also found an approximate analytical solution. Later, several authors

took into account the perturbation procedure used by Knight and appliedit to their own

problems in order to obtain approximate analytical solutions. Banerjee and Borkakati

[19] studied the heat transfer characteristics of the flow when the disks are maintained

at different temperatures. A. R. Rao and P. R. Rao [20] investigated the flow induced un-

der the application of a uniform magnetic field in the axial direction. P. R. Rao and A.

R. Rao [21] studied the influence of heat transfer under the application of a magnetic

field. P. R. Rao and A. R. Rao [22] examined the flow between two torsionally oscillating

disks with the same frequency. Rao [23] studied the flow between disks performing tor-

sional oscillations with the same frequency in the presence of a uniform axial magnetic

field.

In this paper, the flow of a linearly viscous fluid between two disks rotating with a

small speed difference about distinct axes is investigated. In practice, there may be a small

difference between the angular velocities even when the disks are forced to rotate with the

same angular velocity. This view motivates us to examine this different-speed problem.
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Figure 2.1. Flow geometry.

Following Parter and Rajagopal [5] and Lai et al. [6], an approximate analytical solution

is obtained by employing a perturbation method. The influence of the parameters con-

trolling the flow is carefully examined.

2. Basic equations

Let us consider an incompressible linearly viscous fluid between two disks rotating about

noncoincident axes. The lower and upper disks located at z = ∓h rotate with the angu-

lar velocities Ωl =Ω and Ωu = λΩ about the axes through the points O′′(0,−ℓ,−h) and

O′(0,ℓ,h), respectively (see Figure 2.1). Thus, the appropriate boundary conditions are

u=−λΩ(y− ℓ), v = λΩx, w= 0 at z = h, (2.1a)

u=−Ω(y + ℓ), v =Ωx, w= 0 at z =−h, (2.1b)

where u, v, w represent the velocity components along the x, y, z-directions. In the light

of the above boundary conditions, we seek solutions for the velocity field of the form

u=ΩxF(ζ)−ΩyG(ζ) +Ωh f (ζ), (2.2a)

v =ΩxG(ζ) +ΩyF(ζ) +Ωhg(ζ), (2.2b)

w =ΩhH(ζ), (2.2c)

where ζ = z/h. Using (2.1a)-(2.1b) and (2.2a)–(2.2c), we have

F(1)= 0, G(1)= λ, H(1)= 0,

F(−1)= 0, G(−1)= 1, H(−1)= 0,
(2.3)

f (1)= δλ, g(1)= 0, f (−1)=−δ, g(−1)= 0, (2.4)
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where δ = ℓ/h. Substituting (2.2a)–(2.2c) into the equation of continuity and the Navier-

Stokes equations, we obtain

2F +H′ = 0, (2.5)

F′′−R
(

F2−G2 +HF′
)

= K , (2.6)

G′′−R(2FG+HG′)= 0, (2.7)

f ′′−R(H f ′ +F f −Gg)=A, (2.8)

g′′−R(Hg′ +Fg +G f )= B, (2.9)

where R=Ωh2/ν is the Reynolds number, ν is the kinematic viscosity of the fluid, a prime

denotes differentiation with respect to ζ , and K , A, B are the unknown constants. Equa-

tions (2.5)–(2.7) and the boundary conditions (2.3) also reflect the axially symmetric

flow problem corresponding to the flow between two rotating coaxial disks. Equations

(2.8)-(2.9) subject to the boundary conditions (2.4) are linear but their solutions depend

on those of (2.5)–(2.7). In order to obtain a solution to (2.8)-(2.9), we need two extra

conditions. For this reason, we follow Lai et al. [6] and consider that the velocity compo-

nents u and v are equal to zero at a point that is defined by (xp, yp) in midplane. Thus, we

have

f (0)=−γ1F(0) + γ2G(0),

g(0)=−γ1G(0)− γ2F(0),
(2.10)

where γ1 = xp/h and γ2 = yp/h.

3. Solution to the problem

As it is well known, the fluid rotates as a rigid body for the induced axisymmetric flow

when two disks rotate about a common axis with the same speed. In this case, the velocity

field takes the form obtained by writing F =H = 0, G= 1, and f = g = 0. In the case of

rotation with equal angular velocity about non-coincident axes, the velocity field reduces

to the form obtained for F = H = 0, G = 1, f = f0, g = g0, as found by Berker [24]. In

the light of this knowledge, let us assume that the upper disk rotates a bit faster than the

lower disk. If we define a parameter given by ε = (Ωu −Ωl)/Ωl (i.e., λ = 1 + ε), we can

expand the unknowns in terms of the parameter ε in the form

F(ζ)= εF1(ζ) +O
(

ε2
)

, G(ζ)= 1 + εG1(ζ) +O
(

ε2
)

,

H(ζ)= εH1(ζ) +O
(

ε2
)

, K = R+ εK1 +O
(

ε2
)

,

f (ζ)= f0(ζ) + ε f1(ζ) +O
(

ε2
)

, g(ζ)= g0(ζ) + εg1(ζ) +O
(

ε2
)

,

A=A0 + εA1 +O
(

ε2
)

, B = B0 + εB1 +O
(

ε2
)

,

(3.1)
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where K1, A0, A1, B0, B1 are constants. The appropriate conditions are

f0(1)= δ, g0(1)= 0, f0(0)= γ2,

g0(0)=−γ1, f0(−1)=−δ, g0(−1)= 0,
(3.2a)

F1(1)= 0, G1(1)= 1, H1(1)= 0, F1(−1)= 0,

G1(−1)= 0, H1(−1)= 0,
(3.2b)

f1(1)= δ, g1(1)= 0, f1(0)=−γ1F1(0) + γ2G1(0),

g1(0)=−γ1G1(0)− γ2F1(0), f1(−1)= 0, g1(−1)= 0.
(3.2c)

Substituting the expressions (3.1) into (2.5)–(2.9) and equating the coefficients of differ-

ent powers of ε, one obtains

f ′′0 +Rg0 = A0, (3.3a)

g′′0 −R f0 = B0, (3.3b)

F′′1 + 2RG1 = K1, (3.4a)

G′′1 − 2RF1 = 0, (3.4b)

2F1 +H′
1 = 0, (3.4c)

f ′′1 +Rg1 = R
(

H1 f
′

0 +F1 f0−G1g0

)

+A1, (3.5a)

g′′1 −R f1 = R
(

H1g
′
0 +F1g0 +G1 f0

)

+B1. (3.5b)

By defining φ0(ζ)= f0(ζ) + ig0(ζ), (3.3a)-(3.3b) and (3.2a) reduce to

φ′′0 − iRφ0 = A0 + iB0, (3.6a)

φ0(1)= δ, (3.6b)

φ0(0)= γ2− iγ1, (3.6c)

φ0(−1)=−δ. (3.6d)

The solution to (3.6a) satisfying the conditions (3.6b)–(3.6d) is

φ0(ζ)= δ
sinhκζ

sinhκ
+

(

γ2− iγ1

)

1− coshκ
(coshκζ − coshκ) (3.7)

or

f0(ζ)= δ
P(1)P(ζ) +Q(1)Q(ζ)

P2(1) +Q2(1)
+

γ2T(ζ) + γ1S(ζ)
[

1−D(1)
]2

+E2(1)
, (3.8a)

g0(ζ)= δ
P(1)Q(ζ)−Q(1)P(ζ)

P2(1) +Q2(1)
+

γ2S(ζ)− γ1T(ζ)
[

1−D(1)
]2

+E2(1)
, (3.8b)
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where

κ=

√

R

2
(1 + i), P(ζ)= sinh

√

R

2
ζ cos

√

R

2
ζ ,

Q(ζ)= cosh

√

R

2
ζ sin

√

R

2
ζ , D(ζ)= cosh

√

R

2
ζ cos

√

R

2
ζ ,

E(ζ)= sinh

√

R

2
ζ sin

√

R

2
ζ ,

T(ζ)=D2(1)−D(1) +E2(1) +D(ζ)−D(1)D(ζ)−E(1)E(ζ),

S(ζ)= E(ζ)−E(1) +E(1)D(ζ)−D(1)E(ζ),

A0 =
R

[

1−D(1)
]2

+E2(1)

{

γ1

[

D(1)−D2(1)−E2(1)
]

− γ2

[

E(1)
]}

,

B0 =
R

[

1−D(1)
]2

+E2(1)

{

γ1

[

E(1)
]

+ γ2

[

D(1)−D2(1)−E2(1)
]}

.

(3.9)

Using (3.4a)-(3.4b) and (3.2b) with the definition ϕ1(ζ)= F1(ζ) + iG1(ζ), we have

ϕ′′1 − 2iRϕ1 = K1, (3.10a)

ϕ1(1)= i, (3.10b)

ϕ1(−1)= 0. (3.10c)

The solution to (3.10a) subject to the boundary conditions (3.10b)-(3.10c) is

ϕ1(ζ)=
i
(

R−K1

)

2Rcoshc
coshcζ +

isinhcζ

2sinhc
+
iK1

2R
, (3.11)

where c =
√
R(1 + i). Substituting the real part of the solution (3.11) into (3.4c) leads to

H1(ζ)=
K1−R
R∆1

[

Q1(1)I1(ζ)−P1(1)I2(ζ)
]

+
1

∆2

[

P2(1)I4(ζ)−Q2(1)I3(ζ)
]

+CH1, (3.12)

where CH1 is a constant and

P1(ζ)= cosh
√

Rζ cos
√

Rζ , P2(ζ)= sinh
√

Rζ cos
√

Rζ ,

Q1(ζ)= sinh
√

Rζ sin
√

Rζ , Q2(ζ)= cosh
√

Rζ sin
√

Rζ ,

∆1 = P2
1(1) +Q2

1(1), ∆2 = P2
2(1) +Q2

2(1),

I1(ζ)=
1

2
√
R

[

cosh
√

Rζ sin
√

Rζ + sinh
√

Rζ cos
√

Rζ
]

,

I2(ζ)=
1

2
√
R

[

cosh
√

Rζ sin
√

Rζ − sinh
√

Rζ cos
√

Rζ
]

,

I3(ζ)=
1

2
√
R

[

cosh
√

Rζ cos
√

Rζ + sinh
√

Rζ sin
√

Rζ
]

,

I4(ζ)=
1

2
√
R

[

sinh
√

Rζ sin
√

Rζ − cosh
√

Rζ cos
√

Rζ
]

.

(3.13)
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Since H1(1) = 0, H1(−1) = 0, I1(1) = −I1(−1), I2(1) = −I2(−1), I3(1) = I3(−1), I4(1) =
I4(−1), we have

K1 = R, CH1 =
Q2(1)I3(1)−P2(1)I4(1)

∆2
, (3.14)

F1(ζ)=
Q2(1)P2(ζ)−P2(1)Q2(ζ)

2∆2
, (3.15)

G1(ζ)=
1

2
+

1

2∆2

[

P2(1)P2(ζ) +Q2(1)Q2(ζ)
]

, (3.16)

H1(ζ)=
P2(1)

[

I4(ζ)− I4(1)
]

−Q2(1)
[

I3(ζ)− I3(1)
]

∆2
. (3.17)

The functions F, G, H depicted the variation with ζ for various values of R and ε in

Figure 3.1 also reflect axial symmetric flow between two disks rotating about a common

axis with a small angular velocity difference.

Introducing φ1(ζ)= f1(ζ) + ig1(ζ) and using (3.5a)-(3.5b) with (3.2c), we have

φ′′1 − iRφ1 = R
(

H1φ
′
0 +F1φ0 + iG1φ0

)

+
(

A1 + iB1

)

, (3.18a)

φ1(1)= δ, (3.18b)

φ1(0)=
1

2

(

γ2− iγ1

)

, (3.18c)

φ1(−1)= 0. (3.18d)

For the sake of simplicity, let us rewrite I3(ζ) and I4(ζ) as follows:

I3(ζ)= b1 coshcζ + b2 coshdζ , I4(ζ)=−b2 coshcζ − b1 coshdζ , (3.19)

where

b1 =
1− i

4
√
R

, b2 =
1 + i

4
√
R

, d =
√

R(1− i). (3.20)

Thus, with the help of the solutions (3.7) and (3.15)–(3.17), (3.18a) transforms to the

following form:

φ′′1 − iRφ1 = ψ1 coshe1ζ +ψ2 coshe2ζ +ψ3 coshe3ζ +ψ3 coshe4ζ

+ψ4 sinhe1ζ +ψ5 sinhe2ζ +ψ6 sinhe3ζ −ψ6 sinhe4ζ

+ψ7 coshκζ +ψ8 sinhκζ +ψ9 sinhcζ +ψ10 +
(

A1 + iB1

)

,

(3.21)
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Figure 3.1. Variations of F(ζ), G(ζ), H(ζ) with ζ (R= 10,20; ε = 0.01,0.03,0.05).
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where

e1 = (
√

2 + 1)
√

R/2(1 + i), e2 = (
√

2− 1)
√

R/2(1 + i),

e3 =
⌊

(
√

2 + 1)− i(
√

2− 1)
⌋

√

R/2, e4 =
⌊

(
√

2− 1)− i(
√

2 + 1)
⌋

√

R/2,

ψ1 =
R
(

β1 + q1

)

2
, ψ2 =

R
(

β1− q1

)

2
, ψ3 =

Rβ2

2
,

ψ4 =
R
(

β3 + q2

)

2
, ψ5 =

R
(

−β3 + q2

)

2
, ψ6 =

Rβ4

2
,

ψ7 = R
(

β5 + q5

)

, ψ8 = R
(

β6 + q4

)

, ψ9 = Rq3, ψ10 = Rq6,

β1 =−α1b2 +α5b1, β2 =−α1b1 +α5b2, β3 =−α2b2 +α6b1,

β4 =−α2b1 +α6b2, β5 = α3 +α7, β6 = α4 +α8,

q1 = t1t3, q2 = t1t4, q3 =−t1t5, q4 = t2t3, q5 = t2t4, q6 =−t2t5,

t1 =
i

2sinhc
, t2 =

i

2
, t3 =

δ

sinhκ
, t4 =

γ2− iγ1

1− coshκ
, t5 = t4 coshκ,

α1 =
P2(1)a1

∆2
, α2 =

P2(1)a2

∆2
, α3 =

−P2(1)a1I4(1)

∆2
,

α4 =
−P2(1)a2I4(1)

∆2
, α5 =

−Q2(1)a1

∆2
, α6 =

−Q2(1)a2

∆2
,

α7 =
Q2(1)a1I3(1)

∆2
, α8 =

Q2(1)a2I3(1)

∆2
,

a1 =
δκ

sinhκ
, a2 =

κ
(

γ2− iγ1

)

1− coshκ
.

(3.22)

The solution to (3.21) satisfying the conditions (3.18b)–(3.18d) is

φ1(ζ)=�1 coshκζ + �2 sinhκζ +T1 coshe1ζ +T2 coshe2ζ

+T3 coshe3ζ +T4 coshe4ζ +T5 sinhe1ζ +T6 sinhe2ζ

+T7 sinhe3ζ +T8 sinhe4ζ +T9ζ sinhκζ +T10ζ coshκζ

+T11 sinhcζ +T12−

(

A1 + iB1

)

Ri
,

(3.23)
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where

T1 =
ψ1

e2
1−Ri

, T2 =
ψ2

e2
2−Ri

, T3 =
ψ3

e2
3−Ri

, T4 =
ψ3

e2
4−Ri

,

T5 =
ψ4

e2
1−Ri

, T6 =
ψ5

e2
2−Ri

, T7 =
ψ6

e2
3−Ri

, T8 =−
ψ6

e2
4−Ri

,

T9 =
ψ7

2κ
, T10 =

ψ8

2κ
, T11 =

ψ9

c2−Ri
, T12 =

ψ10i

R
,

�1 =
1

coshκ− 1

[

δ

2
−

(

γ2− iγ1

)

2
−

(

Ψ1 +Ψ2

)

2
+Ψ3

]

,

�2 =
1

sinhκ

[

δ

2
−

(

Ψ1−Ψ2

)

2

]

,

A1 + iB1 =
Ri

2

[

�1(coshκ+ 1) +

(

Ψ1 +Ψ2

)

2
+Ψ3−

δ

2
−

(

γ2− iγ1

)

2

]

,

Ψ1 = T1 coshe1 +T2 coshe2 +T3 coshe3 +T4 coshe4 +T5 sinhe1 +T6 sinhe2

+T7 sinhe3 +T8 sinhe4 +T9 sinhκ+T10 coshκ+T11 sinhc+T12,

Ψ2 = T1 coshe1 +T2 coshe2 +T3 coshe3 +T4 coshe4−T5 sinhe1−T6 sinhe2

−T7 sinhe3−T8 sinhe4 +T9 sinhκ−T10 coshκ−T11 sinhc+T12,

Ψ3 = T1 +T2 +T3 +T4 +T12.

(3.24)

Figure 3.2 shows the variations of the functions f and g that represent the dimen-

sionless x- and y-components of the translational velocity for various values of the pa-

rameters. The conditions obtained by means of the perturbation method, that is, f (1)=
δ(1 + ε), f (0) = γ2(1 + ε/2), f (−1) = −δ, g(1) = 0, g(0) = −γ1(1 + ε/2), g(−1) = 0, are

confirmed by Figure 3.2. It is obvious from Figure 3.2 that the influence of ε on f and g
is small. When the Reynolds number R increases, the curves become flatter in the core,

whereas they have a little more pronounced variation in the region near the disks.

Figures 3.3 and 3.4 illustrate the variations of the dimensionless x- and y-components

of the velocity field with the position, respectively, and reveal the flow produced by the

rotation of two disks with nearly the same angular velocity about distinct axes. The

conditions u(1) = (−y + δ)(1 + ε), u(0) = (−y + γ2)(1 + ε/2), u(−1) = −(y + δ), v(1) =
x(1 + ε), v(0)= (x− γ1)(1 + ε/2), v(−1)= x, which are obtained by the use of the pertur-

bation method, are clearly seen in Figures 3.3 and 3.4, where x = x/h, y = y/h, u= u/Ωh,

v = v/Ωh.

4. Discussion and conclusions

When two disks rotate about distinct axes with the same angular velocity, the flow is a

result of superposition, in each z = constant plane, of a rigid body rotation with the same
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Figure 3.4. Dependence of v on x, y, ζ (R= 10; ε = 0.01; δ = 0.05; γ1 = 0.004; γ2 = 0.008).
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angular velocity about the vertical axis passing the origin and a rigid body translation

that changes from plane to plane. In this case, it is clear that there is no flow perpendic-

ular to the disks. If there is a difference between the angular velocities of the disks, the

flow is a result of superposition, in each z = constant plane, of the Kármán flow and a

rigid body translation that is different from plane to plane (see Lai et al. [6]). The ro-

tation at different speeds causes a flow in the z-direction, which is a consequence of

the Kármán flow. The equations governing the flow are the nonlinear Kármán equa-

tions and the linear equations whose coefficients include the solution to the Kármán

equations. However, the boundary conditions are missing for linear equations. In or-

der to overcome this difficulty, Lai et al. [6] proposed a parameter characterizing the

stagnation points defined by u = v = 0 in midplane. In this paper, we follow the same

way and introduce two parameters defined as γ1 = xp/h and γ2 = yp/h, where xp and yp
are the coordinates at which the velocity components u and v in midplane are equal to

zero.

The solution to the problem is obtained by means of a perturbation analysis. From a

theoretical point of view, such solutions are very practical since the effects of successive

terms in the perturbation expansion decrease very rapidly. Since our perturbation anal-

ysis is valid only for small values of ε, the variation of ε is limited to a range from 0.0 to

0.05.

The effects of parameters on the velocity field are examined in detail. The conclusions

which are drawn from this analysis can be summarized as follows.

(i) The dimensionless velocity components u and v are strongly dependent on y and

x, respectively. The effect of eccentricity is noticeable for small values of x and y,

but gets progressively weaker as x and y increase.

(ii) The dimensionless velocity components u and v depend strongly on γ2 and γ1,

respectively.

(iii) Since the eccentricity is defined along the y-axis, the influence of the eccentricity

parameter δ on u is readily observed, but the eccentricity has a weak effect on v.

(iv) The effect of the parameter ε on the flow indicating the translational motion of

rigid body is small. This effect is more pronounced in the region between mid-

plane and the faster disk. In general, an increase in ε leads to an increase in the

velocity components of the fluid.

(v) The axial velocity is the same as that produced for axisymmetric flow of the fluid

between two disks rotating with different speeds; in other words, it is indepen-

dent of δ, γ1, γ2. The fluid flows from the slower rotating disk towards the faster

rotating disk. When the angular velocities are increased at the same rate, the axial

velocity becomes larger. The axial velocity in the core region is nearly uniform for

large Reynolds numbers. Far from the z-axis, the contribution of axial velocity to

the velocity vector is insignificant.

(vi) We take into account the solutions at moderate Reynolds number where the

uniqueness of von Kármán’s solution is guaranteed because there are multiple

solutions at high enough Reynolds number. Increasing Reynolds number R has

a tendency to make the three velocity components flatter in the core region. The

increase of R gives rise to the boundary layers developing on both disks.
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suggestions. He is grateful to Professor K. R. Rajagopal and the referee for their helpful

comments and suggestions.

References
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[18] D. G. Knight, “Flow between eccentric disks rotating at different speeds: inertia effects,”

Zeitschrift für Angewandte Mathematik und Physik, vol. 31, pp. 309–317, 1980.

[19] B. Banerjee and A. K. Borkakati, “Heat transfer in a hydrodynamic flow between eccentric disks

rotating at different speeds,” Zeitschrift für Angewandte Mathematik und Physik, vol. 33, pp. 414–

418, 1982.



16 Mathematical Problems in Engineering

[20] A. R. Rao and P. R. Rao, “On the magnetohydrodynamic flow between eccentrically rotating

disks,” International Journal of Engineering Science, vol. 21, no. 4, pp. 359–372, 1983.

[21] P. R. Rao and A. R. Rao, “Heat transfer in a MHD flow between eccentric disks rotating at

different speeds,” Zeitschrift für Angewandte Mathematik und Physik, vol. 34, pp. 550–555, 1983.

[22] P. R. Rao and A. R. Rao, “Flow between torsionally oscillating disks rotating about different axes

at different speeds,” Zeitschrift für Angewandte Mathematik und Physik, vol. 33, pp. 358–369,

1982.

[23] P. R. Rao, “Magnetohydrodynamic flow between torsionally oscillating eccentric disks,” Interna-

tional Journal of Engineering Science, vol. 22, no. 4, pp. 393–402, 1984.

[24] R. Berker, “An exact solution of the Navier-Stokes equation. The vortex with curvilinear axis,”

International Journal of Engineering Science, vol. 20, no. 2, pp. 217–230, 1982.

H. Volkan Ersoy: Department of Mechanical Engineering, Yıldız Technical University,
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