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Abstract. An approximate solution of the Riemann problem associated with a realisable and objective
turbulent second-moment closure, which is valid for compressible flows, is examined. The main features of
the continuous model are first recalled. An entropy inequality is exhibited, and the structure of waves asso-
ciated with the non-conservative hyperbolic convective system is briefly described. Using a linear path to
connect states through shocks, approximate jump conditions are derived, and the existence and uniqueness
of the one-dimensional Riemann problem solution is then proven. This result enables to construct exact or
approximate Riemann-type solvers. An approximate Riemann solver, which is based on Gallouët’s recent
proposal is eventually presented. Some computations of shock tube problems are then discussed.
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Nomenclature

f,i partial derivative of f with respect to
xi

f,t partial derivative of f with respect to
t

〈θ〉 Reynolds average of instantaneous
variable θ

θ′′ = θ − 〈ρθ〉/〈ρ〉 Favre decomposition of θ
〈θ′′〉 Reynolds average of fluctuation

(in the sense of Favre’s averaging)
ρ (or 〈ρ〉) mean density
p (or 〈p〉) mean pressure
T = 〈p〉/〈ρ〉 mean temperature
E (or 〈E〉) mean total energy
η entropy
fnv

η non-viscous part of entropy flux
fv

η viscous part of entropy flux
ε dissipation rate of the turbulent ki-

netic
energy K

For i = 1 → 3:

Ui mean velocity in xi direction

Correspondence to: J.M. Hérard
(e-mail: Herard@cmi.univ-mrs.fr)

For i = 1 → 3, and j = 1 → 3:

Rij = 〈ρu′′
i u

′′
j 〉 turbulent Reynolds stress tensor

Σv
ij = −µ(Ui,j + Uj,i − 2

3U1,1δij)
molecular viscous strain tensor

Φij (so-called) pressure strain correlation
tensor

For i = 1 → 3, and j = 1 → 3, and k = 1 → 3:

Φk
ij = 〈ρu′′

i u
′′
j u

′′
k〉 triple velocity correlation

Reynolds stress tensor invariants:
I = 2K = trace (R) turbulent kinetic energy
IIR = trace (R2) second invariant of R
IIIR = trace (R3) third invariant of R

For i = 1 → 3:

λi eigenvalues of the Reynolds stress
tensor R

δi
1 = Rii first fundamental minor of R (no

summation)
δi
2 = RααRββ − (Rαβ)2

second fundamental minor of R
(no summation); α and β are not
equal and not equal to i

δ3 = det(Rij) third fundamental minor of R
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1 Introduction

We present herein some new results, which are expected
to be useful for numerical studies of turbulent compress-
ible flows using second order closures. These seem to be
attractive from both theoretical and numerical points of
view. Numerical investigation of turbulent compressible
flows is usually carried out using one- or two-equation
turbulent compressible models, such as the well-known
K-ε closure, or computing the governing equations for all
Reynolds stress components. Differential transport mod-
els are potentially capable of predicting the influence of
a shock wave on the anisotropy of the Reynolds stress
tensor, as idealized studies of shock wave/turbulence in-
teraction suggest (Uhlmann 1997). Actually, both first or-
der and second-moment models involve non-conservative
first order differential systems. Two-equation turbulent
closures have been recently investigated (Forestier et al.
1995, 1997; Hérard 1995b; Hérard et al. 1995; Louis 1995);
these references suggest two different ways, namely, (i) a
Godunov-type approach alike Godunov’s (1959) original
scheme (Forestier et al. 1997), and (ii) a flux-difference-
splitting as originally proposed by Roe (extended to non-
conservative systems, for instance, by Hérard 1995b), to
compute convective fluxes and non-conservative terms, so
that turbulent shock-tube problems might be numerically
simulated. Both ways have been proven to be suitable
tools for that purpose, and enable to preserve Riemann in-
variants in linearly degenerate fields. It was also confirmed
numerically (Page and Uhlmann 1996) that standard Eu-
ler Riemann solvers are not adequate for that goal. Turn-
ing now to second-moment closures, preceeding remarks
still hold; moreover, as underlined recently by Uhlmann
(1997), Euler-type Riemann solvers can no longer be used
to compute this kind of closures, since they provide un-
stable computational results in some situations, which are
mainly due to the occurrence of two new waves, which do
not exist in the Euler framework. Though emphasis is put
on a simple objective and strongly realisable model arising
from the literature, the present analysis extends to more
complex closures proposed by Fu et al. (1987), Shih and
Lumley (1985), Shih et al. (1994).

It must be emphasized here that a priori suitability
of second-order compressible closures to predict the be-
haviour of flows including shocks (or even contact discon-
tinuities) is beyond the purpose of the present paper, and
might generate a huge discussion. Moreover, it is abso-
lutely not claimed here that the approach is the most ade-
quate one. In particular, one should at least distinguish the
adequacy of second-moment closures in compressible flows
including shock waves in terms of two distinct concepts.
First of all, one may wonder whether continuous solutions
satisfy some basic “intrinsic” concepts such as realisability
(Lumley 1978), invariance under some frame rotation or
translation (Speziale 1979), or some constraint pertaining
to thermodynamics; this will be briefly discussed below,
and many references to previous works will be recalled.
A second way to evaluate these models is related to their
ability to predict accurately unsteady complex situations
encountered in well-documented experiments; as recalled

above, many papers referenced in the work by Uhlmann
(1997) address this problem. Thus, the basic two ideas
underlined in the work are actually the following ones.
Assuming the second-moment closure approach is indeed
a suitable one, how should one try to compute unsteady
flows including discontinuities (shocks and contact dis-
continuities) when applying this kind of closures to the
averaged Navier-Stokes equations? And even more: may
one exhibit analytical solutions of such a model, at least
in a one-dimensional framework (though accounting for
three spatial dimensions of the physical space)? The lat-
ter problem is indeed a delicate one since the occurrence
of non-conservative terms in the first order set of partial
differential equations renders the problem of formulating
jump conditions much more difficult than in the purely
conservative framework (see the basic works of Dal Maso
et al. 1995; Le Floch 1988; Le Floch and Liu 1992 on that
specific topic).

In the first three sections, governing equations and
some basic properties of the whole viscous system are
briefly described. Approximate jump conditions are then
proposed, which are based on a linear path with respect
to some non-conservative variable. This allows construct-
ing the solution of the 1-D Riemann problem, applying
for the entropy inequality, and restricting to weak shocks.
The solution of the Riemann problem satisfies realisabil-
ity requirements. These results enable us to propose in the
fourth section a simple but efficient way to compute time-
dependent solutions including rarefaction waves, shocks
and contact discontinuities. It should be emphasised here
that other ways to provide approximate Riemann solvers
based on strongly coupled upwinding techniques may be
suggested, but the main purpose of the present contribu-
tion is not to exhibit the “ultimate” scheme but to take ad-
vantage of the continuous analysis to exhibit an expected
meaningful compromise between efficiency and accuracy.
In particular, the comparison with commonly used Roe’s
method may be found in the work by Uhlmann (1997),
though the latter scheme does not comply exactly with
so-called Roe’s condition (which corresponds to the consis-
tency with the integral form of the conservation law, when
focusing on conservation laws). The fifth section will thus
be devoted to the presentation of sample computational
results of turbulent shock tube problems, which confirm
the capabilities of the scheme, even when the turbulent
Mach number is close to one.

2 Set of equations

Before we examine the solution of the one-dimensional
Riemann problem associated with the whole governing set
of equations, and then introduce the approximate Rie-
mann solver which is used to compute turbulent com-
pressible flows with shocks, we first recall some basic re-
sults connected with a simple strongly-realisable second-
moment closure, which is based on standard Favre’s (1965)
averaging. All commonly used averaging symbols (over-
tilda for the Favre averaging) have been dropped herein
to avoid confusion between instantaneous and averaged
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values of functions. Brackets 〈〉 – which are present in
some places – refer to the Reynolds averaging of variables,
instead of standard overbar notations. The latter will be
used for the arithmetic average when discussing numerical
implementation in finite-volume codes. The nomenclature
is intended to help readers who are not very familiar with
these notations. Hence, the set of equations is (see the
work by Vandromme and Ha Minh (1986) for a general
presentation):

(ρ),t + (ρUi),i = 0 ; (1)

(ρUi),t + (ρUiUj),j + (pδij),j + (Rij),j = − (Σv
ij

)
,j

(2)

(E),t + (EUj),j + (Ui(pδij +Rij)),j = − (Ui

(
Σv

ij

))
,j

+

(
σE

(
p

ρ

)
j

)
,j

+

(
Φk

jj

2

)
,k

− (〈u′′
i 〉p),i ; (3)

(Rij),t + (RijUk),k +RikUj,k +RjkUi,k = −〈u′′
i 〉p,j

−〈u′′
j 〉p,i + Φij − 2

3

( ε
I

)
trace (R)δij + (Φk

ij),k , (4)

with
Rij = 〈ρu′′

i u
′′
j 〉 ; (5)

Σv
ij = −µ

(
Ui,j + Uj,i − 2

3
U1,1δij

)
. (6)

Moreover, it is assumed that the perfect gas state law
holds. Hence:

p = (γ − 1)
(
E − ρUjUj

2
− 1

2
Rjj

)
. (7)

Given some (normalised) vector n in IR3, admissible stat-
es should comply with the over-realisability constraints

Rnn(x, t) = ntR(x, t)n > 0 (8a)

and be such that
ρ(x, t) ≥ 0 ; (8b)

p(x, t) ≥ 0 . (8c)

We also need to introduce:

Un(x, t) = Ut(x, t)n . (9)

Above, ρ stands for the mean density, U is the mean ve-
locity, E denotes the mean total energy and p is the mean
pressure. The Reynolds stress tensor is R, and K is the
turbulent kinetic energy (K = trace (R)/2); γ (greater
than one) is the ratio of specific heats and σE is a positive
function; µ is the molecular viscosity. A standard equation
governs the motion of the mechanical dissipation ε. The
turbulent mass flux is modelled according to the proposi-
tion of Ristorcelli (1993):

〈u′′
i 〉 = τ

Rij

ρ2 ρ,j ,

where τ represents some turbulent time scale. Basic con-
straints are recalled now. First of all, solutions of the whole
closed set should be such that (8a–c) hold. In particular,
(8a) gives:

Rii ≥ 0 (i = 1, 2, 3) ;

RiiRjj − R2
ij ≥ 0 (1 ≤ i ≤ j ≤ 3) ;

R11R22R33 + 2R12R13R23 − R33R
2
12 − R11R

2
23

−R22R
2
13 ≥ 0 .

Any positive quantity θ (chosen among the fundamental
minors of the Reynolds stress tensor R) should behave
as follows when vanishing (see Fu et al. 1987; Hérard
1994, 1995a, 1996; Lumley 1978, 1983; Pope 1985; Shih
and Lumley 1985; Shih et al. 1993):

θM = 0 ⇒ {(Dtθ)M = 0 and (Dt(Dtθ))M ≥ 0} .

Lumley (1978) proposed a simple model for the pressure-
strain term Φij , which is in agreement with the previous
constraints. We thus focus on this closure, which accounts
for the return-to-isotropy process and fulfils the objec-
tivity requirement (Hérard 1994; Lumley 1978; Speziale
1979). Hence:

Φij = − ε

I

{(
2 + f

δ3
I3

)(
Rij − Iδij

3

)}
,

where δ3 denotes the product of the three eigenvalues of
the Reynolds stress tensor, i.e.

δ3 = λ1λ2λ3 ,

and I stands for the trace of the Reynolds stress tensor:

I = Rii .

The exact form of the function f is given in the original
paper by Lumley (1978).

Finally, it is assumed that the turbulent velocity field
almost follows a Gaussian distribution, and we thus ne-
glect the triple velocity correlation:

Φk
ij = 0 .

3 Some basic results

3.1 Entropy inequality

We introduce the so-called “conservative” state variable:

Wt = (ρ, ρU, ρV, ρW,E,R11, R22, R33, R12, R13, R23) .

Focusing on regular solutions of set (1-4), the following
may be easily derived:

Proposition 1.
Define:

η(W) = −ρ log(pρ−γ)
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and
fnv

η (W) = Uη .

Regular solutions W of set (1–4) are such that:

η,t+∇·(fnv
η (W))+∇·(fv

η (W,∇W)) = Sη(W,∇W) ≤ 0 .

The source term may be written as:

Sη(W,∇W) = −γ − 1
T

×
(
σE

T
T,iT,i + ε − 1

2
Σv

ij(Ui,j + Uj,i)
)

−(γ − 1)
τ

ρ2 ρ,iRijρ,j

(noting that T = p/ρ). The viscous flux is such that
fv

η (W,∇W) = 0 if ∇W = 0. Thus, the entropy inequality
reduces to

−σ[η] +
[
fnv

η

] ≤ 0

in the non-viscous limit. It will be helpful to connect states
through genuinely non-linear fields in a physical way, when
neglecting viscous effects. This entropy inequality is simi-
lar to one arising when investigating one- and two-equati-
on models (Forestier et al. 1997; Hérard 1995b).

3.2 A conservative entropy-consistent
splitting-up technique

We now introduce the following splitting-up technique,
which requires solving a first-order differential system in-
cluding a very small amount of laminar viscous effects, and
a second step which treats both source terms and second
order terms. The main advantage is that this technique
enables including mass flux contributions (as described
above), if needed. Another interesting point is that it iso-
lates terms arising from turbulence modelling in step II,
whereas step I only involves non-controversial contribu-
tions. Hence, we set:

Step I:

(ρ),t + (ρUi),i = 0 ;

(ρUi),t + (ρUiUj),j + (pδij),j + (Rij),j = −θ
(
Σv

ij

)
,j
;

(E),t + (EUj),j + (Ui(pδij +Rij)),j = −θ
(
Ui

(
Σv

ij

))
,j

(Rij),t + (RijUk),k +RikUj,k +RjkUi,k = 0 .

Step II:

(ρ),t = 0 ;

(ρUi),t = −(1 − θ)
(
Σv

ij

)
,j
;

(E),t = −(1 − θ)
(
Ui

(
Σv

ij

))
,j
+

(
σE

(
p

ρ

)
j

)
,j

− (〈u′′
i 〉p),i ;

(Rij),t = −〈u′′
i 〉p,j − 〈u′′

j 〉p,i + Φij − 2
3

( ε
I

)
trace (R)δij .

The parameter θ is assumed to lie in [0,1]. Numerical sim-
ulations of the system involved in step I will be depicted
later setting θ to zero. Note that all second order terms
in step II are in conservative form, unless turbulent mass
fluxes are accounted for. Regular enough solutions of step
I agree with

η,t + (Ujη),j = −θ
γ − 1
T

(
−1
2
Σv

ij(Ui,j + Uj,i)
)

≤ 0 ,

the non-viscous limit of which being

η,t + (Ujη),j ≤ 0 .

In a similar way, smooth solutions of step II satisfy

η,t +
(
(fv

η )j
)
,j

= −γ − 1
T

(
σE

T
T,iT,i + ε − 1 − θ

2
Σv

ij(Ui,j + Uj,i)
)

−(γ − 1)〈u′′
j 〉ρ,j .

This results in
η,t ≤ 0

in the non-viscous limit, whenever turbulent mass fluxes
are neglected or chosen to be in agreement with the former
proposition: 〈u′′

i 〉 = τ(Rij/ρ
2)ρ,j . This approach may be

extended to the framework of some more complex closures
where so-called rapid pressure-strain correlations are ac-
counted for in a suitable way. This is not discussed herein.

From now on, we focus on the most difficult part,
namely step I.

3.3 Hyperbolicity criteria
for the non-conservative convection system

We focus now on statistically two-dimensional turbulence,
and hence assume that

R13 = R23 = 0 , W = 0

and also
ϕ,3 = 0

whatever ϕ stands for. We also introduce a “2D conserv-
ative” state variable:

Zt = (ρ, ρU, ρV,E,R11, R22, R12, R33) .

The non-conservative convective subset arising from (1–4)
(or step I) reads:

Z,t +
2∑

i=1

(Fi(Z)),i +
2∑

i=1

Anc
i (Z)Z,i = 0 . (10)

This enables to derive

Proposition 2.
Define:

c1 =
(
γp

ρ
+ 3

Rnn

ρ

)1/2

;
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c2 =
(
Rnn

ρ

)1/2

.

(i) The two-dimensional non-conservative first order par-
tial differential set (10) is a non-strictly hyperbolic system
if (8a–8c) holds. Eigenvalues are:

λ1 = Un − c1 ;

λ2 = Un − c2 ;

λ3 = λ4 = λ5 = λ6 = Un ;

λ7 = Un + c2 ;

λ8 = Un + c1 .

(ii) In a one-dimensional framework, the 1-wave and the
8-wave are genuinely non-linear; other fields are linearly
degenerate.

The computation of eigenvalues and right eigenvectors
is tedious but straightforward. We refer to the books by
Godlewski and Raviart (1996), Smoller (1983) for basic
concepts and definitions to investigate hyperbolic systems
under conservation form. It seems worth noting the occur-
rence of two new contact discontinuities with respect to
the Euler framework. It must be noted that the eigenvalue
problem is “ill-conditioned”, due to the fact that the tur-
bulent Mach number, which is proportional to (K/p)1/2 is
usually much smaller than one. A sketch of waves is given
in Fig. 1.

Fig. 1. Sketch of waves: GNL – genuinely non-linear wave; LD
– linearly degenerate wave

Let us note also that, due to the fact that in most prac-
tical applications the turbulent intensity K, which varies
as Rnn, is small as compared with either the sound propa-
gation in the laminar case or even with the mean velocity
U in the turbulent case, intermediate states Z2 and Z6 will
be difficult to distinguish from each other; this will be con-
firmed by numerical experiments. This remark still holds
in the multi-dimensional case, whenever one uses struc-
tured or unstructured meshes; however, the direction of
the outward normal vector to a cell interface may modify
(increase or decrease) the value of the ratio (U · n/Rnn)
at a given position in space.

4 An approximate solution
of the one-dimensional Riemann problem

From now on we restrict ourselves to shocks of small am-
plitude. We afterwards connect states (ρ−1, U , V , p, R11,
R22, R33, R12) with a linear path (see Dal Maso et al.
1995; Le Floch 1988; Le Floch and Liu 1992; Sainsaulieu
1995a,b) across discontinuities. If σ stands for the speed
of a travelling discontinuity, the following approximate
jump conditions arise (we set [ϕ]rl = ϕr − ϕl and ϕlr =
(ϕr + ϕl)/2):

−σ[ρ]rl + [ρU ]rl = 0 ;

−σ[ρU ]rl +
[
ρU2 +R11 + p

]r
l
= 0 ;

−σ[ρV ]rl + [ρUV +R12]
r
l = 0 ;

−σ[E]rl + [U(E +R11 + p]rl + [V R12]rl = 0 ;

−σ[R11]rl + [UR11]rl + 2(R11)lr[U ]rl = 0 ;

−σ[R22]rl + [UR22]rl + 2(R12)lr[V ]rl = 0 ;

−σ[R12]rl + [UR12]rl + (R11)lr[V ]rl + (R12)lr[U ]rl = 0 ;

−σ[R33]rl + [UR33]rl = 0 .

Obviously, these approximate jump conditions turn out
to be the exact ones when the turbulence vanishes (i.e.
setting R11 = R22 = R33 = R12 = 0). Owing to the
entropy inequality

−σ[η] +
[
fnv

η

] ≤ 0 ,

it may be proven that the 1D Riemann problem with suf-
ficiently weak shocks has a unique entropy-consistent so-
lution.

Proposition 3.
Define:

Xi =
(
γpi

ρi

)1/2

×
∫ ρi

0

(
a

ρi

)(γ−1)/2
(
1 + 3

(Rnn)i
γpi

(
a

ρi

)3−γ
)1/2

da
a

for i = L,R. Assume that initial data is in agreement
with (8a–c). Then, the one-dimensional Riemann problem
associated with the non-conservative system (10), above-
mentioned approximate jump conditions, and initial data

Z(x < 0 , t = 0) = ZL ,

Z(x > 0 , t = 0) = ZR

has a unique solution in agreement with conditions (8a) if
the following condition holds:

(Un)R − (Un)L < XL +XR .

The solution is such that the mean pressure and the mean
density remain positive in the (x, t) plane.

The reader is referred to Appendices A1–A4 for proof.



250 C. Berthon et al.: An approximate solution of the Riemann problem

Remark 1. The above-mentioned condition of existence
and uniqueness is the counterpart of the well-known con-
dition of vacuum occurrence when investigating the one-
dimensional Riemann problem in gas dynamics (Smoller
1983) and restricting to the perfect gas state laws. It must
be emphasized that the realisability of the Reynolds stress
tensor is preserved, through contact discontinuities, but
also through genuinely non-linear fields, whenever these
turn out to be shocks or rarefaction waves (see Appendix
A5).

Remark 2. It is clear that the solution of the one-dimensi-
onal Riemann problem is close to that associated with
the Riemann problem arising in one- or two-equation tur-
bulent models (Forestier et al. 1997). In the present case,
the leading variables are, in fact, ρ, Un, p, Rnn; this means
that for given initial data for ρ, Un, p, Rnn on both sides
of the initial interface, the solution is completely deter-
mined, independently of the values for the remaining com-
ponents. This is due to the fact that the above quantities
remain constant through the two new contact discontinu-
ities, since we get, using notations introduced in Fig. 1:

[ρ]21 = [Un]21 = [p]21 = [Rnn]21 = 0 ;
[ρ]76 = [Un]76 = [p]76 = [Rnn]76 = 0 .

5 An approximate Riemann solver

We focus here on the computation of step I using θ = 0.
The computation of viscous fluxes, which are present in
the right hand side of equations (2) and (3), requires only
the implementation of central schemes. Moreover, suitable
ways to implement source terms in step II (or, equiva-
lently, the so-called “slow terms” in the right hand side of
equation (4)) were discussed in a previous work (Hérard
1995a).

5.1 Introductory remarks

We obviously restrict ourselves here to finite-volume tech-
niques (Eymard et al. 2001) due to the great complexity
of the whole non-linear system. On the basis of the above-
mentioned result, a classical Godunov scheme – in the
limit of weak shocks – based upon the linear path, may
be developed to compute convective effects (Forestier et
al. 1997); this, however, requires a tremendous amount of
CPU time. Thus, if we intend to avoid complexity, the
only schemes of practical interest seem to be approxi-
mate Riemann solvers. Since no exact Roe-type Riemann
solver (Roe 1981) based on a state average may be exhib-
ited in the present case (Uhlmann 1997), we present now
an extension of the approximate Riemann solver called
VFRoe which was recently proposed in order to deal with
complex hyperbolic systems (Gallouët and Masella 1996;
Masella et al. 1999). Actually, other extensions of stan-
dard schemes to the framework of non-conservative sys-
tems might be used for computational purposes, but we
nonetheless restrict our presentation to VFRoe with non-
conservative variables. It seems clear that either the HLL

scheme (Harten et al. 1983), or its extension such as the
HLLC scheme (Toro 1997) in order to account for the
three distinct contact discontinuities, are also natural can-
didates for that purpose. Sample results with the help of
the Rusanov scheme and an approximate form of the Roe
scheme will be very briefly discussed as well.

In order to simplify the presentation, we now consider
statistically one-dimensional flows in the x-direction, and
thus define a “conservative” vector state Zt = (ρ, ρU, ρV,E,
R11, R22, R12, R33), and introduce a matrix B1(Z):

B1(Z) =
dF1

dZ
(Z) + Anc

1 (Z) . (12)

We recall that

F1(Z) =



ρU

ρU2 + p+R11

ρUV +R12

U(E + p+R11) + V R12

UR11

UR22

UR12

UR33


. (13)

We introduce a constant time step ∆t, integrate Eq. (10)
over cell Ωi, which provides:{∫

Ωi

Z(x, tn+1)dx −
∫

Ωi

Z(x, tn)dx
}

+
∫ tn+1

tn

∫
Ωi

{
(F1(Z(x, t))),x + Anc

1 (Z(x, t))Z,x

}
dtdx = 0.

The explicit (first-order) numerical scheme is:

vol(Ωi)
(
Zn+1

i − Zn
i

)
+∆t

∫
Γi

Fnum
1 (Zn)dΓ +∆tSi(Zn) = 0 , (14)

where:

Si(Zn)

=



0
0
0
0

2
(
R̂11

)
i

(
Ûi+1/2 − Ûi−1/2

)
2
(
R̂12

)
i

(
V̂i+1/2 − V̂i−1/2

)(
R̂11

)
i

(
V̂i+1/2 − V̂i−1/2

)
+
(
R̂12

)
i

(
Ûi+1/2 − Ûi−1/2

)
0


(15)

The most suitable way to compute the so-called “source”
terms, which is based on the recent proposals by Forestier
et al. (1997) and Masella (1997), is described below. We
now present the main features of the approximate Rie-
mann solver.
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5.2 A simple Riemann solver

Though the scheme presented below is slightly different
from the original VFRoe scheme (see Gallouët and Masella
1996), it has been shown that it provides similar rates
of convergence, when focusing on the isentropic or full
Euler set of equations. On the basis of a series of ana-
lytical test cases involving shocks, contact discontinuities
and rarefaction waves, it was checked in this framework
that the present VFRoe scheme is as accurate as Roe’s
scheme. This new approach has previously been used to
compute some two-phase flows (in this case, no Roe-type
approximate Riemann solver can be constructed, see the
work of Declercq-Xeuxet 1999 and Faucher 2000), using
finite-volume techniques.

First, using (12), Eq. (10) may be rewritten as follows:

Z(Y),t + B1(Z(Y)) (Z(Y)),x = 0 ,

(restricting to regular solutions) where

Yt = (ρ−1, U, V, p,R11, R22, R12, R33) .

Thus we have

(Y),t + Z−1
Y (Y)(B)1(Z(Y))ZY(Y) (Y),x = 0 ,

or equivalently:

(Y),t + C1(Y) (Y),x = 0 . (16)

The 1D Riemann problem associated with the non-linear
hyperbolic system (16) and initial conditions

y(x < 0, t = 0) ≡ YL = Y(ZL) ,
y(x > 0, t = 0) ≡ YR = Y(ZR) ,

is linearized as follows:

(Y),t + C1(Y) (Y),x = 0 , (17)

where Y = (YR + YL)/2. System (17) contains five dis-
tinct linearly degenerate fields, and its solution is triv-
ial, since it only requires computing eight real coefficients
noted αi (for i = 1 to 8), setting

YR − YL =
8∑

i=1

αir̂i ,

where (r̂i) represents the basis of right eigenvectors of the
matrix C1(Y). Intermediate states are then uniquely de-
fined (see Appendix B for details) as:

Y1 = YL + α1r̂1 ;

Y2 = YL + α1r̂1 + α2r̂2 ;

Y6 = YR − α8r̂8 − α7r̂7 ;

Y7 = YR − α8r̂8 ;

and hence the state Y∗ at the initial location of the data
discontinuity is given by

Y∗ = YL if λ̂1 > 0 ;

Y∗ = Y1 if λ̂1 < 0 and λ̂2 > 0 ;

Y∗ = Y2 if λ̂2 < 0 and λ̂3 > 0 ;

Y∗ = Y6 if λ̂6 < 0 and λ̂7 > 0 ;

Y∗ = Y7 if λ̂7 < 0 and λ̂8 > 0 ;

Y∗ = YR if λ̂8 < 0 ,

where
λ̂1 = U − ĉ1 ; λ̂2 = U − ĉ2 ;

λ̂3 = λ̂4 = λ̂5 = λ̂6 = U ;

λ̂7 = U + ĉ2 ; λ̂8 = U + ĉ1 ;

and also
ĉ1 =

(
τ
(
γp+ 3R11

))1/2
;

ĉ2 =
(
τR11

)1/2
.

The numerical flux in the first integral on the left hand
side of (14) is then set as:

Fnum
1 (Zn) = F1 (Z(Y∗)) .

The most obvious way to compute integrals in (15) is to
apply central schemes:

φ̂i = φn
i and φ̂i+1/2 =

(
φn

i + φn
i+1
)
/2 .

This approach is suitable when using Roe-type schemes
(modified to account for non-conservative terms, Hérard
1995a,b). However, the most stable scheme when applied
to Godunov-type schemes is obtained via

φ̂i =
φ∗

i−1/2 + φ∗
i+1/2

2
and φ̂i+1/2 = φ∗

i+1/2

(to our knowledge, first proposed by Masella 1997).

Remark 3. The latter form (Masella 1997) to account for
non-conservative terms is the straightforward counterpart
of the Godunov scheme introduced previously to com-
pute two-equation turbulent compressible closures (Louis
1995).

Remark 4. It should be emphasized that the present VFRoe
scheme turns out to be the original Godunov scheme when
considering the scalar Burgers equation rewritten in non-
conservative form, provided that the “star” value is the
exact solution of the Riemann problem on the initial in-
terface ξ = x/t = 0.

Remark 5. Obviously, an entropy correction is required
(Buffard et al. 1998, 1999, 2000; Gallouët and Masella
1996; Masella 1997; Masella et al. 1999) to compute shock
tube problems when one sonic point is present in the 1-
rarefaction wave (respectively, in the 8-rarefaction wave).

Remark 6. An interesting property of the approximate Rie-
mann solver may be exhibited (see Buffard et al. 2000 for
a straightforward counterpart in the Euler framework):
when considering a single discontinuity, it occurs that the
jump conditions associated with (17) are equivalent to
those detailed in Sect. 4.
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6 Turbulent shock tube problems
Shock tube problems are of prime importance to validate
the numerical treatment of convective terms. Before we
examine the capabilities of the scheme to predict the be-
haviour of turbulent shock tube flows, we briefly depict its
speed of convergence when applied to the simulation of the
Euler equations with the perfect gas state law (the ratio
of specific heats γ is assumed to be equal to 7/5). When
dealing with the Euler equations, the results obtained with
the present scheme are in excellent agreement with those
reported by Gallouët and Masella (1996), Masella (1997),
Masella et al. (1999) and were also compared with those
obtained using Roe’s scheme or the Godunov scheme. Ac-
tually (Buffard et al. 2000), the real rate of measured con-
vergence, using L1 norm, is around 0.82 for both velocity
and pressure variables when using the first order scheme
(respectively, 0.98 when using a MUSCL reconstruction
on primitive variables) and a bit lower (approximately
0.66) for density. This is due to the fact that both U
and p remain constant through the contact discontinu-
ity of the Euler set of equations and only vary through
genuinely non-linear fields. The scheme has also been ap-
plied in order to compute the Euler equations with real
gas equations-of-state, using either structured or unstruc-
tured meshes (Buffard et al. 2000). The behaviour of the
scheme is also fairly good when applied to shallow-water
equations, even when “vacuum” occurs in the solution
or when dam-break waves are computed (Buffard et al.
1998). The extension of the scheme to non-conservative
hyperbolic systems was first performed by Buffard et al.
(1999).

All computations discussed below have been obtained
with a CFL number equal to 1/2: (∆t/h)max (|λ1|, |λ8|) =
0.5 . This enables to ensure that non-linear waves do not
interact within each cell. In practice, almost all compu-
tations might be performed using a higher value (around
0.9), except probably when very strong shock waves oc-
cur or when strong double rarefaction waves develop. The
unit normal vector is assumed to be tangent to the x-axis:
n = (1, 0, 0)t. Thus, U and Un = U · n are identical here
(a similar remark holds for V and Uτ = U · τ).

We present now the numerical results obtained with
the initial conditions which are similar to those pertain-
ing to the Sod shock tube problem, considering the basic
set of “laminar” variables and adding new initial condi-
tions on each side of the initial interface for “turbulent”
variables, i.e. R11, R22, R33, R12. Figure 2 displays the
computed solution of a Riemann problem associated with
(10), using the basic first order time-space scheme, the
following initial data

YL =



ρ−1 = 1
U = 0
V = 0
p = 105

R11 = 103

R22 = 103

R12 = 5 · 102

R33 = 103


; YR =



ρ−1 = 8
U = 0
V = 0
p = 104

R11 = 103

R22 = 103

R12 = 5 · 102

R33 = 103


,

and a rather fine uniform mesh (5000 nodes in the x di-
rection). This is a difficult test case, since both the tur-
bulent Mach numbers and the anisotropy of the Reynolds
stress tensor are by no way negligible. Thus, there exists a
strong coupling not only between various Reynolds stress
components, but also between mean variables and second
moments. The time step is in agreement with the above-
mentioned CFL condition.

Similar to the pure gas dynamics case, a subsonic rar-
efaction wave propagates to the left, and a shock wave
travels to the right. The behaviour of the normal (axial)
component of the velocity U is quite similar to its counter-
part in gas dynamics; however, the tangential (cross) ve-
locity V no longer remains null (Fig. 2b) due to the strong
shear induced by the non-zero component R12. Riemann
invariants U , p + R11 are well preserved through the 2-
wave, the 3-4-5-6 wave and the 7-wave (see Fig. 2a, b). It
should also be emphasized that the mean density (Fig. 2c)
and the Reynolds stress component R11 (Fig. 2d) do not
vary across the 2-wave and the 7-wave, according to the
respective theoretical results detailed in Appendix A. Nu-
merical results obtained using a coarse mesh are of very
poor quality, since the two new waves (the 2-wave and the
7-wave) can hardly be distinguished.

Some other notations are introduced in Fig. 2g:

V + = V +
R12

(ρR11)1/2 ; V − = V − R12

(ρR11)1/2 .

Let us recall that V + (respectively, V −) is a Riemann
invariant of the 2-wave (respectively, the 7-wave), see Ap-
pendices A2, A3. Figure 2f shows that the mean pressure
p varies considerably through the contact discontinuity
associated with the 3-4-5-6 wave, which is a direct con-
sequence of the presence of turbulence (this has already
been pointed out by Hérard (1995a,b) and Louis (1995)
when considering two-equation models). It appears clearly
that the 2-wave and the 3-4-5-6 wave can hardly be dis-
tinguished even on this rather fine mesh; this results in a
rather strange behaviour of V + due to the fact that the
turbulent component R11 on the left hand side of the con-
tact discontinuity associated with the eigenvalues λ3 − λ6
in Proposition 2 is indeed very small (as compared with
the left initial value of R11). All Reynolds stress compo-
nents (except R33) are plotted together in Fig. 2h. Figure
2e enables to check that the determinant R11R22 − (R12)2
remains positive in the (x, t) plane.

The next computational results presented in this sec-
tion, which were also obtained on a uniform grid with
5000 nodes, are displayed in Fig. 3. The CFL number is
still equal to 0.5. The initial data, which is now

YL =



ρ−1 = 1
U = 100
V = 0
p = 105

R11 = 105

R22 = 104

R12 = 5 · 103

R33 = 104


; YR =



ρ−1 = 1
U = −100

V = 0
p = 105

R11 = 105

R22 = 104

R12 = 5 · 103

R33 = 104


,
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Fig. 2a–h. The first test case: a Sod-type shock tube problem
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Fig. 2. (continued)
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Fig. 3a–h. The second test case: a strong double shock wave
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Fig. 3. (continued)
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generates a strong double shock wave. The high initial ra-
tio R11/p has been chosen intentionally, in order to check
the capability of the scheme to handle high turbulent
Mach numbers, which seems to be compulsory when one
aims at investigating the behaviour of jets impinging on
wall boundaries. When looking at the predicted values of
the mean density and some Reynolds stress components,
a small glitch located at the position of the initial discon-
tinuity is visible. It is due to the fact that a perturbation
initially created there is hardly smoothed out since the
(null) eigenvalue associated with λ3−6 vanishes there dur-
ing the whole computational time. This test case is indeed
interesting since it enables to predict the behaviour of the
scheme when computing jets impinging on wall bound-
aries in two- or three-dimensional geometries. This is also
one of the best test cases to illustrate the failure of (un-
coupled) approximate Riemann solvers based on the wave
structure of the Euler set of equations (Uhlmann 1997).
Results obtained with an approximate version of the Roe
scheme are also briefly described in Appendix D (Fig. 6).

The third series of figures (Fig. 4) corresponds to the
computation of a strong double rarefaction wave (still us-
ing a uniform grid with 5000 nodes) with the help of the
VFRoe scheme of Sect. 5.2. The CFL number is again
equal to 0.5, and the initial data

YL =



ρ−1 = 1
U = −1000

V = 0
p = 105

R11 = 105

R22 = 103

R12 = 103

R33 = 103


; YR =



ρ−1 = 1
U = 1000
V = 0
p = 105

R11 = 105

R22 = 103

R12 = 103

R33 = 103


generates a strong double rarefaction wave. This may rep-
resent a schematic view of the flowfield behind a bluff
body. Although it is not the case here, we recall that these
initial conditions may lead to the occurrence of vacuum
when the modulus of the normal velocity is high enough
(see the condition arising in Proposition 3 in Sect. 4). The
mean axial velocity (Fig. 4b) is not a linear function of
x/t, unless γ is equal to 3, since the effective celerity c
varies as

c =

(
γ

PL

ρL

(
ρ

ρL

)γ−1

+ 3
(R11)L

ρL

(
ρ

ρL

)2
)1/2

=
(

γ
PL

ρL

)1/2(
ρ

ρL

)(γ−1)/2
(
1 +

3
γ

(R11)L
PL

(
ρ

ρL

)3−γ
)1/2

in the 1-rarefaction wave (respectively, in the 8-rarefac-
tion wave). The cross velocity is non-zero, as may be
checked in Fig. 4b. The small variation of the mean den-
sity (Fig. 4c) around the initial interface is characteristic
of the Godunov approach. Again, although the minimum
value of the product of eigenvalues is indeed small as com-
pared with the left (or right) values, no loss of positivity
is observed. Due to the very small order of magnitude of

the stress component R11 around the characteristic line
x/t = 0, all three contact discontinuities tend to merge,
as may be seen in Fig. 4g.

In Fig. 5 we provide some comparison between the nu-
merical results obtained when applying the above scheme
(VFRoe) and an extension of the Rusanov (1961) scheme
to the framework of non-conservative systems (Appendix
C), following the initial proposition by Hérard (1995b).
Similar results may also be found in the work of Périgaud
and Archambeau (2000). The main purpose is to demon-
strate that rather simple schemes may provide meaningful
results, if the overall eigenstructure is accounted for. The
initial conditions of the test case are the same as those
of the previous one. It is clear that both computational
results are very similar. The Rusanov scheme performs in
this test case rather well since neither contact discontinu-
ity nor shock wave are present in the solution. The small
density spike seen in the solution is more smeared by the
extended Rusanov scheme (Fig. 5d). It may be noted that
this robust scheme enables to handle vacuum occurrence
(see the review on the basis of the Euler equations by
Seguin 2000 and Gallouët et al. 2000).

7 Conclusion

The main aim of the paper is to present an approximate
solution of the one-dimensional Riemann problem associ-
ated with an objective realisable second-moment closure
which is valid for compressible flows. Basic analysis of the
non-conservative first order differential system obviously
indicates that the structure of internal waves is quite dif-
ferent from its counterpart in non-turbulent flows (the Eu-
ler equations). This analysis is crucial since the amount of
physical diffusive effects in these turbulent models is much
smaller than that in two-equation models.

An algorithm has been suggested in order to compute
this second-moment closure. Numerical solutions confirm
that the present finite-volume technique provides rather
satisfactory results (in particular, diagonal components as
well as fundamental minors, such as R11R22 − (R12)2, re-
main positive). However, it becomes clear that accurate
computations of the two specific “slow” waves associated
with λ2 and λ7 require using either fine meshes or at least
a second-order extension. As might have been expected,
approximate Riemann solvers based on the Euler set of
equations should not be used since they may provide spuri-
ous solutions (Uhlmann 1997), for instance when comput-
ing flows in the vicinity of wall boundaries, and hence are
not suitable to handle computations of compressible tur-
bulent flows using the second-order approach. The exten-
sion of the Roe-type scheme introduced by Hérard (1995b)
to compute non-conservative hyperbolic systems also pro-
vides rather good results when computing single-phase
turbulent compressible flows with shocks using second-
moment closures. This was recently demonstrated by Uhl-
mann (1997). A sample result is described in Appendix D.
Moreover, the simple extension of the Rusanov scheme has
also been shown to provide rather nice results (Périgaud
and Archambeau 2000).
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Fig. 4a–h. The third test case: a double rarefaction wave
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Fig. 4. (continued)
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Fig. 5a–h. The third test case: a double rarefaction wave. Results for the Rusanov (a–f – dashed lines and g) and VFRoe (a–f
– solid lines and h) schemes. Dashed and solid lines in g and h correspond to the Riemann invariants V+ and V−, respectively
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Fig. 5. (continued)
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In the present paper we were not aiming at the “ul-
timate” or the most well-suited scheme to deal with this
non-conservative set of equations. Other extensions to the
non-conservative framework of the well-known schemes
such as the Osher scheme, the HLL scheme (Harten et al.
1983), or a suitable counterpart of the HLLC scheme (Toro
et al. 1994; Toro 1997) in order to account for the three
contact discontinuities, the AUSM scheme (Liou 1996), or
other approximate Godunov schemes, such as a counter-
part of PVRS scheme (Toro 1997), are certainly poten-
tially good candidates, too.

An ongoing effort is currently directed towards the
comparison of several suitable schemes for the present pur-
pose. Obviously, a MUSCL-type second order extension of
the present scheme combined with second order time in-
tegration (using the RK2 scheme, for instance) is easily
feasible, using (ρ, U, p) variables and Reynolds stress com-
ponents. Implementation of the scheme in a finite volume
code using unstructured meshes is in progress.

Appendix A

We first introduce τ = 1/ρ. We also recall that

p = (γ − 1)
(
E − ρUjUj

2
− 1

2
Rjj

)
.

The following can be then derived using the left hand sides
of (1)–(4):

τ,t + Ujτ,j − τUj,j = 0 ;

Ui,t + UjUi,j + τp,i + τRij,j = 0 ;

p,t + Ujp,j + γpUj,j = 0 ;

Rij,t + UkRij,k +RijUk,k +RikUj,k +RjkUi,k = 0 ,

when considering regular solutions. We now restrict our-
selves to a two-dimensional framework, use invariance un-
der rotation, and neglect transverse variations (y-direction);
hence, the local one-dimensional convective system re-
duces to:

τ,t + Uτ,x − τU,x = 0 ;

U,t + UU,x + τp,x + τR11,x = 0 ;

V,t + UV,x + τR12,x = 0 ;

p,t + Up,x + γpU,x = 0 ;

R11,t + UR11,x + 3R11U,x = 0 ;

R22,t + UR22,x +R22U,x + 2R12V,x = 0 ;

R12,t + UR12,x + 2R12U,x +R11V,x = 0 ;

R33,t + UR33,x +R33U,x = 0 .

A1. Eigenvalues and right eigenvectors

It may be easily checked that the eigenvalues of the matrix
associated with the above-mentioned first-order differen-
tial system are

λ1 = U − c1 ; λ2 = U − c2 ; (A1.1)

λ3 = λ4 = λ5 = λ6 = U ; (A1.2)

λ7 = U + c2 ; λ8 = U + c1 , (A1.3)

with c1 = (γpτ + 3τR11)1/2 and c2 = (τR11)1/2.
Right eigenvectors are as follows:

r3 =



1

0

0

0

0

0

0

0



; r4 =



0

0

0

0

0

0

0

1



;

r5 =



0

0

0

1

−1

0

0

0



; r6 =



0

0

0

0

0

1

0

0



;

r2 =



0

0

c2

0

0

−2R12

−R11

0



; r7 =



0

0

c2

0

0

2R12

R11

0



;
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r1 =



τ

c1

2R12c1(γp+ 2R11)−1

−γp

−3R11

−(R22 + 4R2
12(γp+ 2R11)−1)

−2R12c
2
1(γpτ + 2τR11)−1

−R33



;

r8 =



−τ

c1

2R12c1(γp+ 2R11)−1

γp

3R11

R22 + 4R2
12(γp+ 2R11)−1

2R12c
2
1(γpτ + 2τR11)−1

R33



. (A1.4)

A2. Riemann invariants

Riemann invariants may now be computed;
1-wave (GNL – genuinely non-linear):

φ =
{
s1 = pτγ , s2 = R11τ

3, U −
∫ τ

0

c1(a, s1, s2)
a

da,

(R11R22 − (R12)2)τ4, R12ϕ, V + θ,R33τ

}
; (A2.1)

2-wave (LD – linearly degenerate):

φ =
{
τ, U, p,R11, R11R22 − (R12)2,

V +R12(ρR11)−1/2, R33

}
; (A2.2)

3-4-5-6-wave (LD):

φ = {U, V, p+R11, R12} ; (A2.3)

7-wave (LD):

φ =
{
τ, U, p,R11, R11R22 − (R12)2,

V − R12(ρR11)−1/2, R33

}
; (A2.4)

8-wave (GNL):

φ =
{
s1 = pτγ , s2 = R11τ

3, U +
∫ τ

0

c1(a, s1, s2)
a

da,

(R11R22 − (R12)2)τ4, R12ϕ, V − θ,R33τ

}
, (A2.5)

using the following notations:

ϕ = exp
{
2
∫ τ

0

c21{a, s1, s2}
(γp+ 2R11){a, s1, s2}

da
a2

}
;

θ = −2
∫ τ

0

c1{a, s1, s2}R12

(γp+ 2R11){a, s1, s2}
da
a

.

A3. Shocks and contact discontinuities

We start from:
−σ[ρ] + [ρU ] = 0 ;

−σ[ρU ] + [ρU2 +R11 + p] = 0 ;

−σ[ρV ] + [ρUV +R12] = 0 ;

−σ[E] + [U(E +R11 + p)] + [V R12] = 0 ;

−σ[R11] + [UR11] + 2R11[U ] = 0 ;

−σ[R22] + [UR22] + 2R12[V ] = 0 ;

−σ[R12] + [UR12] +R11[V ] +R12[U ] = 0 ;

−σ[R33] + [UR33] = 0 .

Contact discontinuities:
(i) Through the 2-wave, we have

[U ]21 = [p]21 = [ρ]21 = [R11]21 = 0, (A3.1)

so that

ρ(U − σ)[V ]21 + [R12]21 = 0 ;

(U − σ)[R22]21 + 2R12[V ]21 = 0 ;
(U − σ)[R12]21 +R11[V ]21 = 0 .

Hence
σ = U − (R11/ρ)1/2 (A3.2)

and

[V ]21 = −
[
(R11ρ)−1/2R12

]2
1
; (A3.3)

R11[R22]21 − 2R12[R12]21 = 0 ⇔ [R11R22 − (R12)2]21 = 0 .

(A3.4)

Obviously
[R33]21 = 0 . (A3.5)

(ii) A similar result holds through the 7-wave:

[U ]76 = [p]76 = [ρ]76 = [R11]76 = 0 ; (A3.6)
[R33]76 = 0 ; (A3.7)

[V ]76 =
[
(R11ρ)−1/2R12

]7
6
; (A3.8)[

R11R22 − (R12)2
]7
6 = 0 ; (A3.9)

σ = U + (R11/ρ)1/2 . (A3.10)

(iii) Through the 3-4-5-6-wave, we get:

[U ]62 = [V ]62 = [p+R11]62 = [R12]62 = 0 . (A3.11)
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Shocks:
(iv) Through the 1-wave, we connect states “L” and “1”
using a real parameter z (z > 1) and β = (γ +1)/(γ − 1):

ρ1 = zρL ; (A3.12)

p1 =
(
βz − 1
β − z

)
pL ; (A3.13)

(R11)1 =
(
2z − 1
2 − z

)
(R11)L ; (A3.14)

U1 = UL − (z − 1) ×

×
(

β + 1
(β − z)z

pL

ρL
+

3
(2 − z)z

(R11)L
ρL

)1/2

. (A3.15)

The speed of the 1-shock is:

σ =
1
2

{
U1 + Ul + (ρ1 + ρL)

(
UL − U1

ρL − ρ1

)}
. (A3.16)

Besides, we get:

(R33)1 = z(R33)L ; (A3.17)

[R11R22 − (R12)2]1L

= 2
[ρ]1L

ρL+ρ1

{(
(R11)L+(R11)1

)(
(R22)L+(R22)1

)
−((R12)L+(R12)1

)2}
. (A3.18)

The remaining two variables V and R12 are the solutions
of(

ρU1,L − σρ1,L 1

(R11)1,L U1,L − σ + [U ]1L

)(
V1

(R12)1

)

=

(
ρU1,L − σρ1,L 1

(R11)1,L U1,L − σ − [U ]1L

)(
VL

(R12)L

)
. (A3.19)

(v) Through the 8-wave, we connect states “7” and “R”
using a real parameter z (z < 1):

ρR = zρ7 ; (A3.20)

pR =
(
βz − 1
β − z

)
p7 ; (A3.21)

(R11)R =
(
2z − 1
2 − z

)
(R11)7 ; (A3.22)

UR = U7 + (z − 1)

×
(

β + 1
(β − z)z

p7

ρ7
+

3
(2 − z)z

(R11)7
ρ7

)1/2

. (A3.23)

The speed of the 8-shock is:

σ =
1
2

{
U7 + UR + (ρ7 + ρR)

(
UR − U7

ρR − ρ7

)}
. (A3.24)

We also get:
(R33)R = z(R33)7 ; (A3.25)

[R11R22−(R12)2]R7

= 2
[ρ]R7

ρ7+ρR

{(
(R11)7+(R11)R

)(
(R22)7+(R22)R

)
−((R12)7+(R12)R

)2} ; (A3.26)

(
ρU7,R − σρ7,R 1

(R11)7,R U7,R − σ + [U ]R7

)(
VR

(R12)R

)

=

(
ρU7,R − σρ7,R 1

(R11)7,R U7,R − σ − [U ]R7

)(
V7

(R12)7

)
. (A3.27)

A4. Solution of the one-dimensional Riemann problem

First, let us notice that U , p, ρ as well as R11 remain un-
changed through the 2-wave and the 7-wave. This may be
verified using (A2.2), (A2.4), (A3.1), and (A3.6). Thus, in
this subsection, we focus on the above subset of variables
and omit the 2-wave and the 7-wave; this simply means
that at first we are only looking for the values of interme-
diate states “1” and “7”. Moreover, a glance at (A3.11)
shows that both U and p+R11 satisfy

U1 = U7 ;

(p+R11)1 = (p+R11)7 .
(A4.1)

We may introduce (z1, z2) such that

ρ1 = z1ρL ;

ρR = z2ρ7 .
(A4.2)

Then, owing to (A2.1), (A2.5) as well as (A3.13), (A3.14),
(A3.21), (A3.22), we may parametrize both p and R11 as
follows:

p1 = pLh1(z1) ,

pR = p7h2(z2) ;
(A4.3)

(R11)1 = (R11)L · g1(z1) ,

(R11)R = (R11)7 · g2(z2) ;
(A4.4)

using formula (A3.13), (A3.14) if z1 is greater than 1 (re-
spectively, (A2.1) if z1 < 1), and formula (A3.21), (A3.22)
if z2 < 1 (respectively, (A2.5) if z2 > 1). Normal velocities
are linked through the following relations:

U1 = UL + f1 (z1; ρL; pL; (R11)L) ;

UR = U7 + f2 (z2; ρR; pR; (R11)R) ,
(A4.5)

owing to (A2.1), (A2.5), (A3.15), and (A3.23). Then, elim-
ination of (A4.3), (A4.4), and (A4.5) and substitution into
(A4.1) provides:

UR − UL = f1(z1; ρL; pL; (R11)L)
+f2(z2; ρR; pR; (R11)R) ; (A4.6)
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pLh1(z1) + (R11)L · g1(z1) = pRh−1
2 (z2)

+(R11)R · g−1
2 (z2) . (A4.7)

This coupled system with two unknowns admits a unique
solution (z1, z2) in [0,m]× [m−1,+∞] (where m is defined
as m = max{2, (γ + 1)/(γ − 1)} ), provided that the fol-
lowing condition holds:

UR − UL < XL +XR, (A4.8)

with

Xi =
(
γpi

ρi

)1/2

×
∫ ρi

0

( a
ρi
)(γ−1)/2

(
1 + 3 (R11)i

γPi

(
a
ρi

)3−γ
)1/2

a
da,

(A4.9)

where i is either “L” (left state), or “R” (right state). Here
we indicate only the main lines of the proof. First of all,
taking (A4.7) into account one may relate z1 to z2:

z1 = z1(z2) , where
dz1(z2)
dz2

≤ 0 .

Moreover, it may be checked that f1 is a decreasing func-
tion of z1, and f2 is an increasing function of z2. Thus,
f1(z1(z2); ρL; pL; (R11)L)+f2(z2; ρR; pR; (R11)R) is an in-
creasing function of z2. Eventually, the notion that

XL = lim
z2→+∞ f1(z1(z2); ρL; pL; (R11)L) ,

XR = lim
z2→+∞ f2(z2; ρR; pR; (R11)R)

enables to conclude the proof. The reader is referred to
Forestier et al. (1995), Herard (1995b), Louis (1995) for a
similar result.

A5. The Reynolds stress tensor is realisable

We have to check now that Reynolds stress components
satisfy the following inequalities:

R11 ≥ 0 ;

R11R22 − (R12)2 ≥ 0 ;

R33 ≥ 0 .

We assume that (initial) left and right states fulfill the
above mentioned conditions.

A5.1. Thus, in the 1-rarefaction wave, we have, on the
basis of (A2.1):

(R11)1 = (R11)L

(
τL

τ1

)3

≥ 0 ;

(R11R22 − (R12)2)1 = (R11R22 − (R12)2)L

(
τL

τ1

)4

≥ 0 ;

(R33)1 = (R33)L

(
τL

τ1

)
≥ 0 .

Otherwise, if the 1-wave is a shock wave, we notice that,
owing to (A3.14), (A3.17) and (A3.18):

(R11)1 =
(
2z1 − 1
2 − z1

)
(R11)L ≥ 0 ;

(R33)1 = z1(R33)L ;

[R11R22 − (R12)2]1L ≥ 0 ⇒ (R11R22 − (R12)2)1
≥ (R11R22 − (R12)2)L ≥ 0 .

A5.2. In the linearly degenerate 2-wave, we have, using
previous results:

(R11)2 = (R11)1 ≥ 0 ;

(R11R22 − (R12)2)2 = (R11R22 − (R12)2)1 ≥ 0 ;

(R33)2 = (R33)1 ≥ 0 .

A5.3. Through the 8 rarefaction wave, we have, on the
basis of (A2.5):

(R11)7 = (R11)R

(
τR

τ7

)3

≥ 0 ;

(R11R22 − (R12)2)7 = (R11R22 − (R12)2)R

(
τR

τ7

)4

≥ 0 ;

(R33)7 = (R33)R

(
τR

τL

)
≥ 0 .

In the 8-shock wave, we get, using (A3.22), (A3.25),
(A3.26):

(R11)7 = (R11)R

(
2z2 − 1
2 − z2

)−1

≥ 0 ;

(R33)7 = (R33)R z−1
1 ≥ 0 ;

[R11R22 − (R12)2]R7 ≤ 0 ⇒ 0 ≤ (R11R22 − (R12)2)R
≤ (R11R22 − (R12)2)7.

A5.4. In the linearly degenerate 7-wave, we have, using
results in A5.3:

(R11)6 = (R11)7 ≥ 0 ;

(R11R22 − (R12)2)6 = (R11R22 − (R12)2)7 ≥ 0 ;

(R33)6 = (R33)7 ≥ 0 .

This completes the proof.
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Appendix B

B1. The four intermediate states are given as follows:

Y1 = YL + α1r̂1 ;

Y2 = YL + α1r̂1 + α2r̂2 ;
Y6 = YR − α8r̂8 − α7r̂7 ;

Y7 = YR − α8r̂8 .

Coefficients associated with the “GNL” fields are:

α1 =
1
2ĉ1

[U ]RL − τ

2ĉ21
[p+R11]RL ;

α8 =
1
2ĉ1

[U ]RL +
τ

2ĉ21
[p+R11]RL

with
ĉ21 = τ(γp+ 3R11)

and

r̂1 =



τ

ĉ1

2R12ĉ1
(
γp+ 2R11

)−1

−γp

−3R11

−
(
R22 + 4R

2
12(γp+ 2R11)−1

)
−2R12ĉ

2
1
(
γp τ + 2τR11

)−1

−R33



;

r̂8 =



−τ

ĉ1

2R12ĉ1
(
γp+ 2R11

)−1

γp

3R11

R22 + 4R
2
12(γp+ 2R11)−1

2R12ĉ
2
1
(
γp τ + 2τR11

)−1

R33



.

Coefficients associated with the two new “LD” fields are:

α2 =
1

2R11

{
2R12

γp+ 2R11

(−ĉ2
τ

[U ]RL + [p+R11]RL

)

+
ĉ2
τ
[V ]RL − [R12]RL

}
;

α7 =
1

2R11

{
−2R12

γp+ 2R11

(
ĉ2
τ
[U ]RL + [p+R11]RL

)

+
ĉ2
τ
[V ]RL + [R12]RL

}
,

noting that
ĉ22 = τR11

and

r̂2 =



0

0

ĉ2

0

0

−2R12

−R11

0



; r̂7 =



0

0

ĉ2

0

0

2R12

R11

0



.

B2. Considering, first, the 2-wave, and owing to the fact
that

Y2 = Y1 + α2r̂2 ,

we immediately obtain that the numerical (approximate)
intermediate states satisfy

[U ]21 = [p]21 = [ρ]21 = [R11]21 = 0,

as they do in the continuous case. A similar result holds
for the 7-wave:

[U ]76 = [p]76 = [ρ]76 = [R11]76 = 0 .

Turning then to the 3-4-5-6 wave, we have that the numer-
ical values of the intermediate states “2” and “6” agree
with

[U ]62 = [p+R11]62 = [V ]62 = [R12]62 = 0 .

Hence, all these Riemann invariants are numerically pre-
served.

Appendix C

We briefly present here the extension of the Rusanov sche-
me which has been used to compute the non-conservative
system

Z,t + (F1(Z)),x + Anc
1 (Z)Z,x = 0 . (C.1)

The integration over the cell Ωi and the constant time
step ∆t provides:

vol (Ωi)
(
Zn+1

i − Zn
i

)
+∆t

∫
Γi

FRusanov
1 (Zn)dΓ

+∆tπi(Zn) = 0, (C.2)

where

FRusanov
1 (Zn) =

{
F1(Zn

i ) + F1(Zn
i+1)

−ri+1/2(Zn
i+1 − Zn

i )
}
/2 . (C.3)
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Fig. 6a–d. The second test case: a strong double shock wave. Results for the extension of the Roe scheme to the non-conservative
system
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We recall that the continuous flux is given by:

F1(Z) =



ρU

ρU2 + p+R11

ρUV +R12

U(E + p+R11) + V R12

UR11

UR22

UR12

UR33



. (C.4)

The spectral radius rspec (B1) of B1(Z) = dF1(Z)/dZ +
Anc

1 (Z) is computed on each side of the interface and the
resulting coefficient is written as

ri+1/2 = max{rspec ((B1)i) rspec((B1)i+1)} . (C.5)

Integration of the non-conservative part leads to:

πi(Zn) =

=



0

0

0

0

2(R11)i(U i+1/2 − U i−1/2)

2(R12)i(V i+1/2 − V i−1/2)

(R11)i(V i+1/2 − V i−1/2) + (R12)i(U i+1/2 − U i−1/2)

0



.

(C.6)

Appendix D
We briefly present here the extension of the Roe scheme
which has been used to compute the non-conservative sys-
tem

Z,t + (F1(Z)),x + Anc
1 (Z)Z,x = 0 . (D.1)

We still denote the constant time step as ∆t. The straight-
forward integration over cell Ωi again provides

vol (Ωi)
(
Zn+1

i − Zn
i

)
+∆t

∫
Γi

FRoe
1 (Zn)dΓ

+∆tπi(Zn) = 0 , (D.2)

where

FRoe
1 (Zn) =

(
F1(Zn

i ) + F1(Zn
i+1)

−Ω(Z(Yi+1/2))|Λ(Z(Yi+1/2))

Ω−1(Z(Yi+1/2))(Zn
i+1 − Zn

i )
)
/2 .(D.3)

The state Y is the same as in the main text: Yt = (ρ−1,
U , V , p, R11, R22, R12, R33). The continuous flux is still
given by

F1(Z) =



ρU

ρU2 + p+R11

ρUV +R12

U(E + p+R11) + V R12

UR11

UR22

UR12

UR33



. (D.4)

Λ(Z) and Ω(Z) represent the diagonal matrix of eigen-
values and the matrix of right eigenvectors of the matrix
of convective effects B1(Z) = dF1(Z)/dZ + Anc

1 (Z), re-
spectively. The integration of the non-conservative part
πi(Zn) is exactly the same as in Appendix C related to
the Rusanov scheme.

The initial conditions associated with the computa-
tional results displayed in Fig. 6 are those of the Riemann
problem which corresponds to a double shock wave (see
the main text). Hence:

Yt
L =

(
1, 100, 0, 105, 105, 104, 5 · 103, 104) ;

Yt
R =

(
1,−100, 0, 105, 105, 104, 5 · 103, 104) .

The uniform mesh contains only 500 nodes. The CFL
number is equal to 0.5.
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Eymard R, Gallouët T, Herbin R (2001) Finite volume meth-
ods. In: Ciarlet PG, Lions PL (eds) Handbook for numeri-
cal analysis, Vol. 7, pp. 729–1020. North Holland

Faucher E (2000) Simulation numérique des écoulements uni-
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de Provence, Marseille, France

Godlewski E, Raviart PA (1996) Numerical analysis of hyper-
bolic systems of conservation laws. Springer Verlag

Godunov SK (1959) A difference method for numerical calcu-
lation of discontinuous equations of hydrodynamics. Math.
Sb. 47: 217–300

Harten A, Lax PD, Van Leer B (1983) On upstream differenc-
ing and Godunov type schemes for hyperbolic conservation
laws. SIAM Review 25(1): 35–61

Hérard JM (1994) Basic analysis of some second moment clo-
sures. Part I: incompressible isothermal turbulent flows.
Theoretical and Computational Fluid Dynamics 6(4): 213–
233

Hérard JM (1995a) Suitable algorithms to preserve the realis-
ability of Reynolds stress closures. ASME Fluids Engineer-
ing Division 215: 73–80

Hérard JM (1995b) Solveur approché pour un système hyper-
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Electricité de France, Chatou, France

Pope SB (1985) PDF methods for turbulent reactive flows.
Prog. Energy Combust. Sci. 11: 119–192

Ristorcelli J (1993) A representation for the turbulent mass
flux contribution to Reynolds stress and two-equation clo-
sures for compressible turbulence. NASA ICASE Technical
Report 93-88

Roe PL (1981) Approximate Riemann solvers, parameter vec-
tors and difference schemes. J. Comp. Physics 43: 357-372

Rusanov VV (1961) Calculation of interaction of non steady
shock waves with obstacles. J. Comp. Math. Physics USSR
1: 267–279

Sainsaulieu L (1995a) Finite volume approximation of two
phase fluid flow based on approximate Roe type Riemann
solver. J. Comp. Physics 121: 1–28

Sainsaulieu L (1995b) Contribution à la modélisation mathé-
matique et numérique des écoulements diphasiques con-
stitués d’un nuage de particules dans un écoulement de gaz.
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