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Summary

An approximate axisymmetric method has been developed which can reliably

calculate fully viscous hypersonic flows over blunt-nosed bodies. By substituting

Maslen's second order pressure expression for the normal momentum equation, a sim-

plified form of the viscous shock layer (VSL) equations is obtained. This approach can

solve both the subsonic and supersonic regions of the shock layer without a starting so-

lution for the shock shape. The approach is applicable to perfect gas, equilibrium, and

nonequilibrium fiowfields. Since the method is fully viscous, the problems associated

with coupling a boundary-layer solution with an inviscid-layer solution axe avoided.

This procedure is significantly faster than the parabolized Navier-Stokes (PNS) or

VSL solvers and would be useful in a preliminary design environment. Problems

associated with a previously developed approximate VSL technique are addressed

before extending the method to nonequilibrium calculations. Perfect gas (laminar

and turbulent), equilibrium, and nonequilibrium solutions have been generated for

air flows over several analytic body shapes. Surface heat transfer, skin friction, and

pressure predictions are comparable to VSL results. In addition, computed heating

rates are in good agreement with experimental data. The present technique generates

its own shock shape as part of its solution, and therefore could be used to provide

more accurate initial shock shapes for higher-order procedures which require starting

solutions.
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1 Introduction

Ongoing investigations into configurations such as the Aeroassist Space Transfer

Vehicle (ASTV), the National Aero-Space Plane (NASP), and the Personnel Launch

System (PLS), with their associated high altitude, high speed environments, have

sparked renewed interest in hypersonic aerodynamics [1]. Since extensive computer

run times prcvent more exact approaches from being used in the preliminary de-

sign environment, there is a continued interest in developing improved engineering

methods.

For large Reynolds numbers, tile shock layer consists of a large inviscid region

and a thin boundary layer near the body. Typically, an inviscid solution to this

outer region is coupled with a boundary-layer technique (e.g., Ref. [2]). For flows

about blunt-nose bodies, the shock slope changes rapidly in the streamwise direction

creating strong entropy gradients in the inviscid flow which must be accounted for

when coupling the inviscid-layer and boundary-layer solutions.

The viscous region encompasses _ significant portion of the shock layer at the lower

Reynolds numbers encountered by hypersonic vehicles at high altitude. Most inviscid-

layer/boundary-layer approaches neglect the boundary-layer effect on the outer layer,

so in some cases a siml)le cout)ling technique may not give satisfactory results. Ac-

curate predictions of the flowfield properties may be obtained from solutions to the

Navier-Stokcs [3], the parabolized Navicr-Stokes [4, 5, 6], or the viscous shock layer

[7, 8, 9, 10] equations. The full Navier-Stokcs equations are typically solved us-

ing a time-marching procedure in order to properly model their elliptic behavior (a

very costly computation). The parabolized Navier-Stokes (PNS) and viscous shock

layer (VSL) equations are derived from the steady compressible Navier-Stokes equa-

tions. Both equation sets have been parabolized in the streamwise direction so that

a solution may he advanced downstream using spatial marching techniques. These

formulations account, among other things, for the nonzero normal pressure gradients

which are neglected in a classical boundary-layer approach. Unfortunately, the com-

putational requirements of existing methods for solving these equations exceed that

which can be tolerated in preliminary parametric design studies.

For high energy flows, the assumption of perfect gas behavior is not valid since

chemical reactions occur. Using the perfect gas assumption results in much higher

post-shock temperature predictions than are realized in the flight environment. This

reduced temperature is due to energy being absorbed by endothermic chemical reac-

tions. The classical approach is to assume that these reactions occur at a fast enough

rate, relative to the time scales of the flow, that an equilibrium composition has been

achieved everywhere in the shock layer [8, l l].

Chemical reactions are a result of sufticiently high energy molecular collisions

which, in air for example, cause the dissociation of 02 and N2 into O and N, along
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with tile productiou of NO. Such reactions require a linitc amount of time to occur.

Thus, a finite amount of time is required for the related chemical changes to take place.

For equilibrium flows, the assumption is made that the residence time of the fluid in

the shock layer is large relative to tile time scales of the chemical reactions. Hence,

the reactions occur nearly instantaneously. The assumption of equilibrium flow is

not correct for many cases of interest, particularly with reentry trajectories. This is

evident from the Catalytic Surface Experiment [12] flight data, which illustrate the

nonequilibrium phenomenon via the rather noncatalytic nature of the Space Shuttle

surface. Thus, consideration of these nonequilibrium effects in the design process

is desirable. VSL solutions with finite-rate chemistry have been documented in a

number of references [8, 13, 14, 15, 16, 17]. Unfortunately, the restrictive central

processing unit (CPU) requirements cited earlier are intensified when nonequilibrium

effects are included. Therefore, a more approximate approach which accounts for the

effects of finite-rate chemistry would be useful.

In 1964, Maslen [18] published a simple inverse method (shock shape prescribed,

body shape to be determined) for calculating the inviscid flowfield within the shock

layer surrounding a smooth axisymmetric body. The direct problem, which is the

more straightforward application, requires iterating the shock wave shape until the

desired body shape is obtained. A closed-form expression for the local pressure in

terms of the stream function is obtained by approximating the integral of the normal

momentum equation. With the original approximations, the effects of the velocity

normal to the shock are neglected. Using this first-order expression, Grose [19, 20]

developed an inviscid, nonequilibrium method for calculating flows in Earth, Martian,

and Venusian atmospheres.

In a later effort, Maslen approximated the normal velocity's contribution to the

pressure relation to obtain a second order approximate integral of the normal mo-

mentum equation [21]. This expression better accounts for the recompression across

the shock layer. Zoby and Graves [22] coupled this improved relation with the itera-

tire scheme of Jackson [23] to solve the direct problem for a variety of blunt bodies.

Later this approach was extended [2,t, 25] to include an approximate technique for

calculating heating rates for bodies at angle of attack. Ref. [26] provides a review of

additional approximate heating methods.

In a more recent work, Grantz and DeJarnette [27, 28, 29] employ the second

order Maslen pressure relation, along with a simple linear expression for the normal

component of velocity, in an approximate VSL approach. Boundary-layer-like viscous

terms are added to the inviscid streamwise momentum and energy equations to obtain

a parabolic equation set analogous to the full VSL equations. The viscous terms

are retained across the entire shock layer, thus avoiding the problems which can be

encountered in the coupled inviscid-layer/boundary-layer approach. Furthermore,

since the shock shape is part of the solution, no initial shock shape or smoothing of

intermediate shock shapes (both required for the VSL technique) is necessary.

The method of Ref. [29] did not fully yield the anticipated reductions in CPU



requirementsas comparedwith the full VSL equations. Basedon a review of the
algorithm, severalareasof concernill the original techniquewererecognized:1) too

many iterations are required for shockshapeconvergence;2) the solution is incon-
sistent nearthe stagnation line; 3) the grid-point spacingacrossthe shocklayer may

yield oscillationsin the shocklayer property profiles. Thus, it becameapparent that

a different approximateVSL approachshouldbeexplored.
The first portion of this paper discussesthat effort, and details the differences

betweenRef. [29]and the new approach[30]. Threemajor differencesbetweenthese
techniquesare: 1) moreefficientalgorithms than thoseemployedin Ref. [29] are used

to generate the shock shape; 2) the governing equations give a consistent limiting

form on the stagnation line; 3) and the spacing across the layer is related to physical

distance rather than the stream function, as in Ref. [29]. Comparisons of results and

run times are made using the current approach, the method of Ref. [29], and a full

VSL solver [9]. Comparisons with experiment are also made.

The second part of this document concerns nonequilibrium flowfield calculations.

A seven-species finite-rate chemistry model for air [15] has been incorporated in the

approximate VSL solver discussed above. Comparisons of results and run times are

made using the current approach and a full VSL solver [14]. Comparisons with Space

Shuttle flight data [31] are also made.
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2 General Analysis

Ref. [29] discusses the development of an approximate viscous shock layer tech-

nique which is solved in a shock-normal coordinate system. The approach begins with

an approximate inviscid flowfield solution based oil the second-order pressure relation

of Maslen [18], including an approximate representation for the normal component of

velocity. In order to approximate a full VSL solution, boundary-layer-like terms are

added to the inviscid energy and streamwise momentum equations.

Since the goal of the present work is to develop an approximate VSL algorithm,

the current approach starts with the full VSL equations written in orthogonal curvi-

linear coordinates. First, tile equations are cast in a shock-normal (rather than the

traditional body-normal) coordinate system. This step is necessary in order to fa-

cilitate the use of Maslen's pressure relation which replaces the normal momentum

equation. Since the remaining equations are unchanged, the normal component of

velocity is found by solving the continuity equation rather than assuming a profile

as was done in Ref. [29]. If the form of the energy and streamwise momentum equa-

tions used in Ref. [29] are compared to the full VSL equations in the shock-normal

system, it can be noted that several "higher-order" terms (involving the variation of

the metrics across the shock layer) have been neglected. These higher-order terms

are retained in the present study.

The governing equations (along with their stagnation line iormulations), bound-

ary conditions, and surface quantities are presented in this chapter. In addition, key

differences between the current approach and Ref. [29] are cited. The subsequent

four chapters deal with applying these equations to perfect gas, equilibrium, turbu-

lent, and nonequilibrium flows, respectively. Unless otherwise noted, the governing

equations as presented in this chapter are employed in those applications. As a final

comment, dimensionless variables (see Appendix A) are employed throughout this

paper. Diinensional quantities are denoted by a superscript *, except in the results

chapter where this superscript is omitted.

2.1 Viscous Shock Layer Equations

The Navier-Stokes equations written in curvilinear coordinates for axisymmetric

flow are presented in Appendix B. If v and n are assumed to be order e (where e

is the Reynolds number parameter), and terms greater than order e are neglected,

the VSL equations [7] are obtained (see Appendix B for details). They are presented

below, excluding the normal momentum equation, in nondimensional form.

continuity:

0 0 (pvh_h3) = 0 (2.1.1)
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energy:

u Oh Oh _ u Op

N L_J + PRO,, I; On

( a_ a,,,/ (1 au

where the Reynolds number parameter is defined as

1 Oh3)+ h7a---Z

u Oha)}

(2.1.2)

(2.1.3)

c_ _ #*,:!

p;ou_R*.0.0
i

and Pr is the Prandtl number. The dimensional reference conditions are given in

Appendix A.

At this stage, this equation set could be transformed to either a body-normal or

shock-normal system. The shock-oriented coordinate system is shown in Figure 2.1.

Metrics associated with the shock-oriented coordinate system (where s is the distance

along the shock) used in this effort are

ha = 1 - nx_ hz = r = r, - ncosF, (2.1.4)

where n is the inward normal distance from the shock and _ is the shock curvature.

By definition,

dr, (2.1.5)
/% -- ds

Note: In addition to Eqs. (2. I.1) through (2.1.3), the standard VSL

equations employ the normal momentum equation:

( u Ov Ov u2 Oh, _ OpP h-_lOs +v_ _ _nn/+_nn =0 (2.1.6)

This set of equations is solved in a body-oriented coordinate system (where

s is the distance along the body). The metrics are defined as

hi = 1 + ntCb h3 = r = rb + n Cos Fb

where n is the outward normal distance from the body and tcb is the body

curvature (which, by definition, is-dFb/ds).
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r Fsu s

shock _V So

Z

Figure 2.1. Flowfield geometry and curvilinear coordinate system.

In order to facilitate tile solution of the governing equations, a transformation

to normalized coordinates is performed to yield a constant number of points across

the layer from station to station. Using the shock properties, define the following

computational variables:

7/

_=s 0,, = l---
rib

u p

Us Ps

where nb and the shock properties are functions of _ only. From its definition, r/n = 0

on the body and r/,, = 1 at the shock. The chain rule of differentiation gives

0 _0_0 +c9_" 0 0 _ c9_ 0 +07" 0

Os Os O_ Os Ori,, On On O_ On cgrl,_

Since

O_ 1 O,l,_ n dnb

O_ c9_ n_ ds

oA=o _
On On nb

the derivatives in this coordinate system are

0 0 rl,_-ldnb 0 0 1 0

Os O_ nb d_ 071,, On nb Orb,
(2.1.7)
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In tile transformed coordinate system employed here, the metrics, Eq. (2.1.4), become

hi = 1 + nb (_ln - 1) .:_ ha = rs +nb (r/_ - 1) cos Fs (2.1.s)

Their partial derivatives in the normal direction are

Oh1 10hi Oh3 1 Oh3

On m = .... cos F, = (2.1.9)nb Orl, On nb Orl,

The governing equations in this normalized shock-oriented coordinate system can now

be written as

continuity:

0 q,_-ldn6 0 Ps 0

-_ (pspu,ith3) - p,u. nb d_ 0,1. (pah3) nb Orb, (pvh,h3) = 0 (2.1.10)

- 'nlom6n_,u?Tt:

-I- ft ---_ -- Us .... hi+

energy:

[ ] {1 Op ft. - 1 dnb Op e2 0 ff__,_

2 Oh, 1 Oh3] _qq,_ hi+# _-_1_ + h3
(2.i.ii)

nb d_ nbff_.

Equations Eqs. (2.1.11) and (2.1.12) can be cast in the following standard form

for parabolic partial differential equations:

A O2W OW OW

+ Alff_-n. + A2W + A3 + a4--_-- = 0 (2.1.13)0"_n2
0

a

where W represents the dependent variables fi and h, respectively. The values for the

coefficients are listed below:

- momentum:
£2

Ao = -'-_b #
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A,=_n__[0__l + _ /-771-+ 1Or�,, ha Or�,,/.1

( [ ( 1, Oh, o. Oh, _Oh3 l
Or�. h3;)r/.] ]

[ v uch r/.-- l dnb]+ h, n_ d_ J

+-if, _'de r_bOr/.]

energy:

p__uu
A4 = psUs hi

(2.1.14)

e_ _u

n_ Pr

e= [_.._, (_) la (1 i)h, 1 i)h3'_] Iv usfir/n--ldn__b]Aa n_ -P-r + _ gT-'-- + ha _b hi nb de J= -- or�. -_-_.)j- p'_ +

As = o (2.1.15)

A3= h, _ n_ d_ _ +nbOr/,, n_ _ hi_]

pu

A4 = p,u,--_l

Ao m

2.2 Maslen's Pressure Equation

As mentioned in the previous section, the normal momentum equation is solved as

part of the standard VSL solution. In the approximate VSL method, Maslen's second-

order pressure equation is used in lieu of numerically integrating the n-momentum

equation. The derivation of this approximate closed-form expression is presented in

Appendix C. The result is repeated here:

KsrsUs v, sin F,

[1 + (,r/2 1) (2.2.1)
-- t_srs 1 --

P(_' 7/) = P' + 2 (r/- 1) 4 cos F,J

where

and k9 is the stream function.

Maslen's pressure expression offers an attractive alternative to numerically in-

tegrating the normal momentum equation to solve for p, since it expresses p as a

function of the shock properties at the current station and 7/only. This relation is

very simple as compared with the normal momentum equation which it supplants.
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The variable, / should not be confilsed with the transformation variable r/,, defined pre-

viously. The relationshil) between th,'s(' distinct quantities is derivcxl in Appendix D,

and is repeated below:

Maslen's relation fosters analytic relations for the partial derivatives of pressure

(which appear in the governing equations) as well. Differentiating Eq. (2.2.1) with

respect to r/gives

Op_ t_,r,u, v, sinI', [1 + t%r, ]
Or/ 2 2 . co--_, J r/ (2.2.3)

Differentiating Eq. (2.2.1) with respect to _ gives

= d---( + _ "u,n, sin[', + u,r,--d- ( + x]r, sinF,

4 cosG [r,-_- + rasing 1 c_L/l

( "" ]/+ 1 + _ sin F_-- - v,_, cos F, (2.2.4)
cos r, d_¢

As noted, Eq. (2.2.4) is the partial derivative of p along lines of constant r/. The

following expression relates this quantity to the partial derivative of p along lines of

constant r/,_ (see Appendix C):

where

and

Further,

0__n = O__n+Or lop rln-ldnbOp0--_'0--_ + (2.2.5)nb d_ Or/,,

Oq p_pu,f_ha On I (2.2.6)

On] (1-71) v_ [1 x,r, ]= ? coVr, c LJ

Op p,iiudlhanb Op

= % Or/

(2.2.7)

(2.2.s)

2.3 Wall Boundary Conditions

The no-slip condition is applied at the wall so that,

_1 w _ V w _ 0

In addition, the wall temperature (To), which can vary along the wall, must be

specified.
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2.4 Stagnation Line

Tile stagnation line is a singularity in tile standard VSL equations. Typically, this

singularity is handled by representing the dependent variables on the stagnation line

with a truncated power series of (. Substituting these expressions into the governing

equations yields a set of ordinary differential equations for the stagnation line. How-

ever, since truncated expansions were used in their formulation, these stagnation line

equations are not strictly consistent with the general governing equations.

In the shock-oriented system, an explicit limiting form of the governing equations

as _ ---. 0 can be calculated, since Maslen's relation provides analytic derivatives

of tile pressure. Thus, a set of ordinary differential equations which is consistent

with the general governing equations can be obtained. The form of the streamwise

momentum equation used in Ref. [29] contains a group of terms which vanish on

the stagnation line provided the normal momentum equation is satisfied. However,

Maslen's expression does not satisfy the normal momentum equation, so a correction

term must be carried along throughout the shock layer in order to force the solution to

smoothly approach its stagnation value. Despite these efforts, the stagnation solution

was not consistent with tile remainder of the layer. In the current research, the

streamwise momentum equation does not contain this group of terms, so no correction

terms are required. Results of Chapter 9 show that with the current approach, the

problem with the limiting form of the equations as they near the stagnation line is

successfully addressed. Tile governing equations for the stagnation line are presented
below.

2.4.1 Viscous Shock Layer Equations

The limiting values of the geometric quantities are given in Appendix E. First

consider the continuity equation. Without loss of generality, Eq. (2.1.10) can be
rewritten as

0 dm 0 0

0--_ (psu,nbpf_h3) -- psus d_ Orln [(71,, - l) ]Shh3] - P'--_n (fivhlh3) = 0
(2.4.1)

On the stagnation line,

u 0lien ,-_ (p_nbpfihl) + P*--nb_fihl 0 dnb 0

so that

- P,o
(2.4.2)

=0 (2.4.3)



2.4. STAGNATION LINE 11

Further applying these limits to Eqs. (2.1.11) and (2.1.12) yields the following set

of equations which are valid along the stagnation line:

continuity:
0

(fivh_) = 0 (2.4.4)
2nsonboPsofi _h'l - P_o 07----_

- momentum:

energy:

Oh1 ./L Oh1 _ Ohl'_

(2.4.6)

It follows that Eqs. (2.1.1,t) and (2.1.15) become

- momentum:
£2

Ao = - 2/1
nb o

e2 [ O# 2 # Ohl] v
A1 = + - P'o#--

_o _ t-ff_o, h, 3-_.J n,o

A2 m
nbo 2 fz, "O-_.) -0-_, + h, -_ J + --_"a _u "_ nbo -_. )

1 [,im_lOp_ 7,-,-10p _imoo_ldrtb_l[jjA3 = _ Le--0[ u, 0_ J nb0 07. u. d_

A4:0

(2.4.7)

energy:

e2 #
A 0 _- _----

nbo Pr

nbo _ --_r + hl Pr-_.] O'°pv

A2 = 0

Op
A3=v--

07,,

A4 = 0

(2.4.8)



12 2. GENERAL ANALYS_

2.4.2 Maslen's Pressure Equation

On the stagnation line, equation Eq. (2.2.1) reduces to

p(,) = p.o- "'_(¢- 1)
2

(2.4.9)

and Eq. (2.2.2) becomes

_r/1 = nbo2 [p,on,O2_oO- 5fi(q, - 1)dq,,] +nbo[PsoX,Ofo'7"fi_tdq,,] (2.4.10)

From Eq. (2.2.3)
Op
-- "- --VsJ]
07

Further, Eq. (2.2.4) becomes
t

,,m{' 1

(2.4.11)

(2.4.12)

q2 1 V,o lim + n,, lira --
4 _--.o d_ '-'¢--.o u]

+2 ---
us d_ - vs°_*°

Utilizing results from Appendix E, this can be written as

_-o _ . = u, de + '% (' - 1)
(2.4.13)

where the terms

lim_' 1 dp_}_-.oL_

_o _--.o u--'_d---( + lira _*o• _.ot_ _ -V.o

lim ldv____ __dxs_

¢--.o us d,_ us d,_ J

are defined elsewhere.

Continuing, from Eq. (2.2.5) the limiting form of the streamwise pressure gradient

is

+
rln-10p _imo_ l( dnb_mo 07. us d_ j

(2.4.14)
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where

_--,o [, us Os J = 2p_°ptth' _i_mo 1 On
rs "_rl

Taking the limit of the streamwise derivative of n gives

so that (see Appendix E)

lim{1 _)n }_(q-l)V_Olim{1 d_ }_____

Further, tile derivative of p with respect to q,, is

0p Op

Orln - 2p=o h:_onbot_'Shl

(2.4.15)

(2.4.16)

(2.4.17)
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3 Perfect Gas Analysis

The governing equations given in Chapter 2 must be supplemented by the equa-

tion of state. In addition, the thermodynamic and transport properties are required

for closure of the equations set. This chapter supplies those quantities for perfect gas

flows. In addition, the perfect gas shock jump conditions are given in Section 3.3.

Perfect gas results generated using these governing equations are presented in Chap-
ter 9.

3.1 State Equation

In its general form, the equation of state is

p*=:(?*,h*)

For perfect gas flows,

p" = p*_*T* (3.1.1)

where for standard air (N_ and O_ only), 7_* "*= R,ir" Written in nondimensional form

(see Appendix A),

~ t"

p = pT_,,i,.Y = l, _---1T (3.1.2)
7

where "7 is the ratio of specific heats.

3.2 Thermodynamic and Transport Properties

For perfect gas flows, tile specific heat has a constant value:

C;- "r- I (3.2.1)

where in nondimensional form (see Appendix A) this becomes

"_ _'_ air

C,- 3'- 1 - 1 (3.2.2)

As a result, the definition of enthalpy for perfect gas flows is simply

so that nondimensionally

h*=C;T* (3.2.3)

h = Cfl'= T (3.2.4)
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Sutherlaml's law [32] is employed to calculate the viscosity:

T.,.5

/_*= 2.27 × 10-s_/,, + 198.6 [slug/fl's] (3.2.5)

where T" is in degrees R. The Prandtl number (Pr) is the ratio of viscous diffusivity

to thermal diffusivity:

pep (3.2.6)
Pr= - k

For a perfect gas, this quantity is constant throughout the shock layer, and in this

investigation is assmned to be Pr = .72. With Up, #, and Pr as defined above, the

thermal conductivity, k, can be determined from Eq. (3.2.6).

3.3 Shock Properties

Tile shock jump conditions are given by the Rankine-Hugoniot relations. For

the special case of perfect gas flow, these expressions take the following form (see

Appendix F for details):

2 sin 2 I'8 "7 - 1
P8 - (3.3.1)

"7+1 "7(7 + 1)ML

('7+ 1)ML r8
(3.3.2)

ps= 2+('7- t)M_sin 2F_

Ts - p_ '7 (3.3.3)
ps"7- 1

sin F8
v8 - (3.3.4)

Ps

The streamwise derivatiw_ of us appears in the _-momentum equation. Further,

the derivatives of p8 and v_ with respect to _ are required for Maslen's analytic

expression for dp_/d_. These gradients are given by (see Appendix F)

dus
-- = ,% sin F8 (3.3.5)

dv_____ . [ 4 1 (3.3.6)d_ - ^s cos Is . (At + 1 ) _M_ sin 2 F, p,

dp_ ,1

d_ - (7+ 1) _'sinr'c°sr8
(3.3.7)

On the stagnation line, the shock jump conditions take the form of the normal

shock relations:

2 "7- 1 (3.3.8)
Ps° - '7+a "7('7 + l) M_
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(7 + 1)iL
P_o = 2 + (7 - 1) AIL (3.3.9)

7] ° _ P,o 7 (3.3.10)
P_o7 - l

1

v_o = -- (3.3.11)
P'_o

In addition, tile stagnation line limiting forms of the shock gradients are

dun

d--'_-= _'o (3.3.12)

{.,.,} [ .]lin, ,u_ d_ : x"° (7 + l)M_ P]o (3.3.13)_--,0

,im{l'} 4.0¢--.o 'us d_¢ (7 + 1) (3.3.14)

3.4 Surface Quantities

In the design environnmnt, estimates of tim lift, drag, and heating rates are de-

sired. Thus, a design tool should provide values for body pressure, skin friction, and

heat transfer rate. In this effort, the body pressure is supplied by Maslen's relation.

Relations tbr the skin friction and heating rates are given below. Gradients along the

shock-normal fines are used in lieu of body-normal values.

The skin friction coefficient is defined as

'2

C/ - p_o V£,Z r,: (3.4.1)

where the shear stress at the wall is

_":=/"* (-a,: ] (3.4.2)

In terms of the nondimensional variables (see Api)cndix A),

, . _ ttw OU

Tw = re] 71b
(3.4.3)

so that

t_2 01/, w
C! = 2--1_,

nb (3.4.4)
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Tile heat transfer rate (see Appendix G) to the body is

so that in nondimensional form,

OT

q_ = -e_kw Ynn e2 OT[
-- kw

7Lb _ w

Since

this may be written as

or

dh = CpdT

_'2 k,,, Oh _,qto --

nb Cv Or;,,

_ c2 tL,,, Oh[

q_ nb Pr_ Or;,, ]

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)
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4 Equilibrium Analysis

The governing equations as presented in Chapter 2 are readily applicable to equi-

librium fiowfields, lu fact, the form of the continuity equation and Maslen's equation

remains unchanged for all flow regimes considered in this paper. The state equation,

the thermodynamic and transport properties, and shock jump conditions for equilib-

rium flows are provided in this chapter. Chapter 9 presents equilibrium results based

on these governing equations.

4.1 State Equation

For a nonreacting gas, 7_ is constant since .A4 is constant. However, when

chemical reactions become important, A4 varies within the fluid, and using 7_ = _ai_

in Eq. (3.1.2) is no longer valid. There are a variety of approaches for handling

equilibrium flows [33, 34] which account for l,he variation of 7_ . In this study,

Eq. (3.1.2) is modified to account for the effects of chemical reactions:

p = pZT_,i,T (4.1.1)

The term Z is the compressil)ility factor:

./_ air

Z-
A4

This factor is evaluated through a table look-up procedure of values calculated using

Hansen's expressions [35].

4.2 Thermodynamic and Transport Properties

For equilibrium flows, both the Prandtl numl)er and specific heat of the fluid vary

within the shock layer. In addition, Sutherland's viscosity relation is no longer valid.

In past efforts (see [36], for example), various techniques [37, 34, 38, 39, 40] have been

employed to define the thermodynanfic and transport properties of equilibrium flows.

The energy equation as written in Chapter 2 requires that the equilibrium Prandtl

number be used (see Appendix G). tlansen's paper [35] includes expressions for h, T,

p, and P_q. This is the model used to define thermodynamic and transport properties

for the solutions presented in this paper. As in the calculation of Z, these relations

are used to generate a table of data which spans a large range of values for p, h,

and T. These tabulated values are then interpolated as needed during the numerical

solution of the governing equations. At the body surface (where T_ is known), the

table look-up procedure takes the form
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= hw(p , = Z (p,o,

Elsewhere, since h is known, tile implementation is of the form

T = T(p,h) Z = Z(p,h)

p = #(p, h) P,'_q = Preq(p, h)

4.3 Shock Properties

With perfect gas tlows, closed-form relations can be used to determine the values

of the jump conditions. However, no such simple expressions can be formulated for

chemically reacting flows. Therefore, the following set of equations must be solved in

an iterative fashion (see Appendix F for details):

sin F_
vs - (4.3.1)

PS

Ps = poo + sin 2 F,,

hs = ho_ + --

T 7(p h)
r-i

s = s S, S

Ps =

The iterative procedure is as follows:

1) Begin by setting Ps = 10.

2) Use Eq. (4.3.2) to calculate Ps-

3) Fin,I bs from Eq. (4.3.3).

sin2l'*(l-_-_2)2

Ps

r " t •

Z s R ,. /I ,

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

4) For these values of Ps and h_, find Ts and Z, from Hansen's model.

5) Determine a new value of p, fi'om Eq. (4.3.5).

6) Steps (2) through (5) are repeated until the relative error between

the new and old values for ps is less than the prescribed tolerance.

7) After convergence, compute vs from Eq. (4.3.1).

The derivatives of u,, ps, and v_ with respect to _ are also required. The definition

of the streamwise derivative of us as given in Section 3.3 is valid for equilibrium flows.

Finding the gradients of ps and vs, however, presents a challenge. Fortunately, these

gradients only appear in Maslen's streamwise pressure gradient. As will be discussed

later, a simple two-point backward-difference representation of this term is employed

in the marching region, so analytic forms of these derivatives are only required in the
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nose region. The following algorittun is eml)loyed. Tile shock values for p and v in

the nose region are fit ill a least-squares sense with tile following conic

A_2+B_(S-So)+CS(S'-So)+I S _0
So

(4.3.6)

where S is either p_ or vs. This equation is constrained to pass through the stagnation

value with a slope of zero. The shock gradients are supplied by the derivative of this

expression:

dS 2A( + B (S - So)

d---_-= C (2S - So) + B4 - 1 (4.3.7)
So

Oil tile stagnation line, the equilibrium shock jmnp conditions of Section 4.3 sim-

plify to become
1

'Oso _ --

Pso

Pso = Poo + l - --

hso = h_+_ 1---

7;0 = 7;0(P,o, hso)

Pno

(4.3.8)

1
(4.3.9)

Pno

1 ) (4.3.10)
ps ° 2

Zso = Z,o(P,o,h, o) (4.3.11)

P_o - - (4.3.12)
Z_0 7_,,.7'_ 0

Equations Eqs. (,I.3.8) through (4.3.12) are solved using the iterative procedure of

Section 4.3. The stagnation line value of the strcamwise derivative of us is given in

S'ect,on" 3.3. The quantities

are required for Eq. (2.4.13). Recall that the gradients are given by

dS

d_

2A_¢ + B (S - S0)

c: (2s - s0) + B_ - --
l

,%

(4.3.13)

where S is either Ps or v_. Also note that

lim{ 1 dS_ 1 lim{ j (4.3.14)
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Since rs ---* _ and S _ So as _ ---*O, the above equation gives

_-.oI. ,, d_J C.S',,- .,,_ C_%-

Further, since AS/A_ ---, dS/d_ ---*0 as _ _ O,

(4.3.15)

so that

lira _'1 dS'[ 2A (4.3.16)

_-o(,.s ,l_ j : CS.o_ !
So

lira l1 dS'_ : 2ACs (4.3.17)
-_o. us d_ J C So - 1

So

4.4 Surface Quantities

The relations given in Section 3.4 for perfect gas flows can be employed for equi-

librium flows as well, provided Pr_q is used in Eq. (3.4.8).
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5 Nonequilibrium Analysis

In nonequilibrium flows, the characteristic time scales of the chemical reactions

are of the same order as the time scales of thc mcan flow. Thus, species conservation

equations must be solvcd in ordcr to determine the local composition of the fluid. In

addition, it is advantageous to rewrite the cncrgy equation in terms of T. The rate of

production of each species appears in the energy equation when it is written in this

form. These changes to the governing equations presented in Chapter 2 are detailed

in the sections that follow. Further, discussions of the thermodynamic and transport

properties, state equation, boundary conditions, and surface quantities are presented

in this chapter.

5.1 Viscous Shock Layer Equations

Tile continuity and streamwise moinentuin equations and Maslen's expression,

presented in Chapter 2, are still valid for these flows. However, it is advantageous

to recast the energy equation in terms of T (see Appendix G for details), since the

chemical rate equations are flmctions of T:

u OT OT'_ u Op Op

N_ N_

°'r-- Z.h,w,
i=1 (9// i=1

The subscript i is the species index for the seven-species air model used here. Table 5.1

provides the key for this indexing, along with the species molecular weights and perfect

gas values of specific heat.

Each species present in the mixture is governed by a species conservation equation

(see Appendix G):

where the binary diffusion mass flux is

k _ o)¢i

Ji - C_.t Le,2 _ (5.1.3)
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Table 5.1. Species Data

Species

1 N2

2
3 N

4 O

5 NO

6 NO +

7 e-

28

32

14

16

30

30

0.0005486

lk

Pipg

[cal/grn- mole- ft]

7.00

7.00

4.97

5.44

7.00

7.00

and Le12 is the binary Lewis number. Binary diffusion assumes that the fluid con-

sists primarily of heavy particles diffusing to light particles, and vice versa. Previous

investigations [8, 13] have used this approach successfully (assuming Le12 = 1.4 ev-

erywhere, for example). In keeping with the approximate nature of this approach, a

constant Lewis numbcr of 1.4 is used here. The species mass fractions are

and by definition satisfy the relation

pi (5.1.4)C i _ --

P

N_

y c, = 1 (5.1.5)
i=l

In the normalized shock-oriented coordinate system (see Chapter 2), Eqs. (5.1.1)

and (5.1.2) can be written as

energy:

/u_,,_[OT 71,,_-_ldnbOT ] v OT)

..�,lOP op] mop

_2 Ns Ns

+ __y_jiC, i O___T_T_ Ehitbi
Orl,_l/b i=1 i=1

(5.1.6)
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species conservation:

( u,,i [&i "r/,,- 1,l,,b Oci v Oci '_ _

nb &l,_ ]

with

where

k Lel_ Oci ,-']i t/ci
3"/- (5.1.8)

Cp] nt, t/r/,, nb Or/,,

k It

A = _ Zel2 = -_r Zel2 (5.1.9)
(-'p]

In preparation for numerically integrating the governing equations, the production

terms are written in terms of 7' and ci in the energy and species conservation equation,

respectively. These representations are given in the next section, along with the

resulting governing equations.

5.2 Species Rates of Production

In addition to their presence in the species conservation equations, the species

rates of production (_bi) appear in the energy equation when it is written in the

above form. These source terms are functions of both T and c,- (see Appendix H).

As such, they should be expressed in terms of el for the species continuity equations,

and in terms of 7' for the energy equation [58, 59].

For the species continuity equation, the production term can be linearized [58, 59]

to yield

d,.__= 6,o _ cid2_ (5.2.1)
P

where

1wi -- _ ci
II)re.[ r=l a p

(5.2.2)

(5.2.3)

{c_i,, -/3i,,. , for eq,_ -/3i# > 0 (5.2.5)["_,r = 0 , for _i,_ -/3i,,. <_ 0

F+ = ! fli,, - ai,_ , for 3i,,. - ai,_ > 0 (5.2.4)
'" [ 0 , for /3i.,. - oi# <_ 0
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and the remaining quantities are given in Appendix H. The subscript v denotes

evaluation at tile previous iteration. The quantities ai,r and/3i,r are the stoichiometric

coefficients for reactants and products, respectively.

For the energy equation, tile production term can be written as a truncated Tay-

lor's series [58, 59]:

tbi

P

where again the subscript v

p P

denotes evaluation at the previous iteration. Thus, the

production term in the energy equation can be expressed as

N$

Z hiwi = '_01 i '_ T(v2i (5.2.7)
i=1

where

and

Further,

% = p ILh,-- - T_h,-- (5.2.8)
[i=1 P i=a 0T p

(5.2.9)

0-T - r=l

Db,r

Now make use of these expressions in the energy and species continuity equations.

For clarity, the entire set of governing equations for nonequilibrium flows is repeated

below.

continuity:

0 P,
p_u rl,_ - 1 dn____b_bO___O 0

--0_(p,_u,uh3) - nb d_ 0,],, (pfih3) nb 071,, (pvh,h3) = 0 (5.2.11)

- momentum:

oo+ u--_-( - u, - -- hinb _ + --_-._.J]

1 [Op rl,,-ldnb Op] e2{£[ (Ob___n

( )}1 0 ._ Oa _ Oha

+p _--+Oqn h3
(5.2.12)
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energy:

species conservation:

(5.2.13)

P'_ k h, [O_ - ,,b de or/.J _2o7.] -
i

P

Maslen's equation:

(5.2.14)

with

x.,r,'u_ sin 1'_ [1 + (r/2 1p=p,+_(q-1) v., _,'_ ]4 _] - ) (5.2.15)

Eqs. (5.2.12), (5.2.13) and (5.2.14) are cast in the standard form for parabolic

partial differential equations to yield the following coefficients (see Appendix G):
- momentum:

[ ( , Iv(-_ Okt 1 Oh, Oh3 _ ] u,£t rln -1 dnb ]

al -- n_ _ + tt hl O'r/-----_+ h3 a.n ] J -- PsP _ "b h---l- rl b d{ J

(,o,,)to,,(,o,,,_o,,3/1A'2 = ,,--_b h, Oq,, JOy,, + la /-hi-+ 1
O'q,, h:3Or�,, ] ]

1Aa = _( u, O_ J n7 Or/,,

A,t = p s'as _q

_ d'u s

+"'PU'-_ -----

..d_ JJ

V Ohl

(5.2.17)
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encTyy:

A 3 -

species conservation:

+ k oh,+ h3oo. -_1 + '_b J,.c,,

-psp -+ - cpj
ns h, n_, d_ J

A2 = 'ti]2i

h, n-b d( + --nb Orl,_

ooh )
pu

A4 = psUs-l--
It,

+ wl i

Ao= _

e_ [ 0 (ffi)+_(1 0h, 1 Oh3)] [vA, = --n_ _ h--_Ort----_+ --O-_q,/ta] + p_¢

A_= -p,_,z:

m3 = p,#tb °

pu

A4 = -p_u, h-_

(5.2.18)

+ u,fLq,- l dnb]

hi nb d_ J

(5.2.19)

All N_ species conservation equations need not be integrated to determine the

concentrations of each species. It is possible to use only N,-1 of the species continuity

equations, in conjunction with Eq. (5.1.5). Ref. [16] goes one step further by locally

conserving the elemental composition of the fluid. For air, this gives two relations, if

binary diffusion assumed:

-_N

c_ + ClV+ _ (cNo + c_o+ ) = cN_o_
(5.2.20)

.Mo (5.2.21)
co., + co + _ (cuo + cuo+ ) = co,_

so that only N, - 2 species continuity equations must be integrated. Numerically

integrating fewer equations should reduce CPU requirements, so this latter approach

is employed here.
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5.3 State Equation

As mentioned in Chapter 4, _ is variable tbr reacting flows since .,_ of the

mixture is not constant. When finite-rate chemical reactions are considered, the

flowfield can be modeled as a mixture of thermally perfect gases. For such a mixture,

the equation of state is
_Ur

p = p_ (5.3.1)

where

Tile mixture molecnlar weight can be written as

1

M--N" ci

i-=l

(5.3.2)

5.4 Thermodynamic and Transport Properties

5.4.1 Thermodynamic Properties

The thermodynamic properties are required for each species that is present in the

fluid. Expressions from Ref. [60] are used to define Cpi and hi for the temperature

range of 300K < T* _< 30000K (see Appendix I). The thermodynamic properties for

the gas mixture are determined in terms of the individual species properties through

the relations Ns

h = __,cihi (5.4.1)
i=1

and

Cp! = _--_fiC'pl (5.4.2)
i=1

5.4.2 Transport Properties

Ref. [60] also supplies the species transport properties (/_; and ki) with curve fits

for the temperature range of 1000K _< T* < 30000K (see Appendix J). While the

thermodynamic properties of the fluid are linear combinations of the individual species

thermodynamic properties, the transport properties are defined by more complicated

expressions. These expressions are referred to as mixing laws. Ref. [61] presents a

thorough review of mixing laws, and points out several approximate formulations of
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them. In tile present research, two of tiles(; sinai)lifted relations are employed. The

method of Armaly and Sutton [62] is used to define the mixture viscosity:

N, , ,2

/' = _ x, (5.4.3)
i=1 "_ii

where

• N_ XiXj 2_i.]_j [3_@)J_J] (5.4.4)7"lil = x'._ + __2- (M, + .Mj) 2 + -_i
#i _=t #ij

jei

and

.. =
+

A

The mole fraction for st)ecies i is

M

xi = c,Mi (5.4.6)

Further, Aii= 1.25 and

0.78 , for interactions of atoms or molecules with each other (5.4.7)Bij = 0.15 , for interactions of atoms or molecules with ions

For the mixturc conductivity, the method of Mason and Saxena [63] is employed:

N_ ki

./#i j

where

(I #, M2_ 2

1 $065 \

% = 11 +

Ref. [61] shows that valucs from the curve fits approach Sutherland's values as

T* _ 1000K. Thus, for temperatures less than 1000K, Sutherland's viscosity law

r.1.5

I'* = 1.4584 x 10-_,1,, + 110.33 [gm/cm-s] (5.4.10)

and Sutherland's law for thermal conductivity [32]
i

T.l.s
k*= 5.9776 x 10 -6 [cal/cm-s-l(] (5.4.11)

T* + 194.4

may be used to define the mixture viscosity and conductivity, respectively.
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5.5 Boundary Conditions

5.5.1 Wall Values

As ill the case of perfect gas and equilibrium flows, the no-slip condition is applied
at tile wall so that

llw _ Yw --- 0

Further, the wall temperature, Tw(_), must be specified. Additional boundary con-

ditions must be supplied for the species continuity equations. For a noncatalytic

surface, the boundary condition is

Or/,, w = 0 (5.5.1) _

If equilibrium catalytic wall con(litiolls are specified, then

_,_-- _,,('r_) (5.5.2)

In this research, the wall teml)erature is low enough to produce freestream values for
these concentrations:

co._,,, = 0.23456 CN2w = 0.76544 (5.5.3)

COw ----" CNw _-- CNOw _ CNO+ w = Ce- w = 0

5.5.2 Shock Properties

l;br nonequilibrium cah:ulations, flow through the shock wave is assumed to be

chemically frozen. The governing equations for the shock jump conditions are (see

Appelidix F for details):

sin I',

P,

p, = po_ + sin'_ I'_ ( l -1)

h. = h_+ _

h, = co2oo ho_ (7;) + c,,_,,_,hN2 (T_)

P,
Ps--

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

(5.5.s)

(5.5.9)
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where the species enthall)ies of Eq. (5.5.7), as well as tile species specific heats in

Eq. (5.5.8), are obtain(,d from the curve fits of Ref. [60].

By substituting Eq. (5.5.9) into Eq. (5.5.5), the following quadratic for ps is ob-

tained (with 7's as the only unknown):

p]- (p¢¢ + sin2 Fs)p8 + _i T_ sin2 F, =0 (5.5.1o)

Substitute Eq. (5.5.9) into Eq. (5.5.6) to obtain

Differentiating Eq. (5.5.10) with respect to 7:, gives

TO= sin 2 P,

Op__2_,= .A,'t,,r (5.5.12)

OT, 2p -(p_+sin2F_)

Differentiating Eq. (5.5.11) with respect to 7'_ gives

= - sin 'z F, 7; Op, ]p] 07;
(5.5.13)

Combine Eqs. (5.5.12) and (5.5.13), and rearrange to get

7_u sin 2 Fs

Ohs _ 2_ air (5.5.14)
OT_ p_p_ - sin _ F_

As with equilibrium tlows, these equations nmst be solved in an iterative fashion.

To speed convergence, Newton's method is employed:

Sp
(5.5.15)

where F

AT' - (5.5.16)
F t

The function F is defined to be the difference in enthalpy values given by Eqs. (5.5.6)

and (5.5.7), respectively:

F(Ts) = hsEq" (5.5.(;) -- h_. (s.s.7)
(5.5.17)

so that
Ohs

F'(T,)- 0"1; C,,, (5.5.18)

The solution procedure is as follows:
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1) Begin with T, from the previous shock evaluation.

2) Use Eq. (5.5.10) to calculate pc.

3) Determine _ new value of p_ from Eq. (5.5.9).

4) Find he fi'om Eq. (5.5.6).

5) Evaluate he from Eq. (5.5.7) and (_;p_ from Eq. (5.5.8).

6) Calculate F and F' from Eqs. (5.5.17) and (5.5.18), respectively,

to determine AT, from Eq. (5.5.16).

7) If [ATs[ is greater than the prescribed tolerance, update Ts using

Eq. (5.5.15) arid return to (2).

8) After convergence, compute v_ from F,q. (5.5.4).

The derivative of u., is given in Section 3.3. The derivatives of p, and v, with

respect to _ are (see Appendix F)

$

J'(v, - p, sin F_)
/£s COS P s

/ G, - 2[_ + C_] (v, - sinrs) }

d_

Ro

(5.5.19)

and

d--Z-=2^:2cosl'_ -1 --- K_

respectively.

5.6 Stagnation Line

As mentioned in Chapter 2, a limiting form of the governing equations can be

obtained for use on the stagnation line. A limiting form for the energy equation

cast in T, as well as the species conservation equations, may be found in the same

mamler. These ordinary differential equations are given in Section 5.6.1. In addition,

the stagnation line jump conditions and their gradients are presented in Section 5.6.2.

5.6.1 Viscous Shock Layer Equations

continuity:

- l#20lncllt_m:

o : o
2t%o nbop_afifih t - P_o

( v )

(5.6.1)
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ene,yy:

_2

OT Op
- p_o?Cpf,v=-- + v-- =

or/_ Or/n

% o-;_.t "b--_..J+k

species conservation:

_2{ 0o_, [we c,_]+--
- psoPV-_-_ " : pnb 0 -- ,Zbo

Ns
OT 2 Oh, e2y73,.Cp i OT
0_ h, Or/_ + 0,7,,

i=1

-r% [tbl, + Tgv2i]

(5.6.3)

2 Oc,] oc, 2oh, }&,j + _ (5.6.4)Or/,, hi Or/,

Maslen 's equation:

with

1 r , rTln

"_r/ = rtb02 [flsol%02/O

l) s0

t' = P_0 :_ (,72- 1) (5.6.5)

p_ (r/,, -1) dr/n] + nbo [P,o_,o Ln" _fidr/,] (5.6.6)

Eqs. (5.6.2), (5.6.3), and (5.6.4) are cast in the standard form for parabolic partial

differential equations to yield the following coefficients (see Appendix G):

- momentum:
_2

Ao = 7%2#

A, + - -
- nbo2 _ "h, Or/,J P*°Pnbo

A3 g [_-o Or/, u---_d----(

A4:0

energy:

AIm

_2

Ao- k
71b02

_ [o,_ .,±Oh,] _,". _v,,70'_ +-h,o,,_j+_Z=,.r,c_,-_,.o,,_c.,

A2 = (02 i
(5.6.8)
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species conservation:

v Op
A3- +"

nb 00qn 'wli

A4 = 0

_.2

Ao - 2 _
;lb o

e2 [ 0 2 £ Oh,]
A,--- (3)+-,_bo_ t_ E_J + P'oP--

i

v

72b0

A2 = -p,o_bl (5.6.9)

A3 = p,o,bd, °

A4=0

5.6.2 Shock Properties

On tile stagnation line, the shock jump conditions of Section 5.5.2 simplify to
become

1
v, o = -- (5.6.10)

Ps o

pso "z- (p_ + 1)p, o + _T, o = 0 (5.6.11)

= - - (5.6.12)
h, o hoo + 2 ..A4ai,-pso J

,,.o:co_o_(_.o)+c_ (_.o) /__._
CCv,o = co2oocvo2 (T,o)+ N2o_CpN2 (71,o) (5.6.14)

with

Equations Eqs.

Section 5.5.2.

_U

(5.6.16)Io psop, o - 1

(4.3.8) through (4.3.12) are solved using the iterative procedure of
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Next, the limiting forms of tile shock derivatives defined in Section 5.5.2 must be

determined. The stagnation line value of the derivative of u8 is given in Section 3.3.

The limiting forms of Eqs. (5.5.19) and (5.5.20) are

 f,0+1] }
74,, V_o----_+

and

_--.0 [ u, d_ = -n_0 - 1 - --P,o n'° + --v,0_--.olim----usdf (5.6.18)

respectively.

5.7 Surface Quantities

The relation for skin friction which was defined in Section 3.4 is still valid for

nonequilibrium flows. However, for chemically reacting flow, the effect of diffusion, in

addition to that of conduction, must bc included in the heat flux calculations. The

heat transfer to the wall is

'1: = [q_*+ q,_],o (5.7.1)

where q_ is the energy flux due to diffusion in the normal direction. This term can

be expressed as (see Appendix G)

N, r)C' Ns

**E*_' E**q_ = -P l)12 hi - hiYi
0---75"i:1 i=1

Written in nondimensioual form (see Appendix A),

No 2 N_s #Le12 Oci
qd _2__,hJ_ == -_ E--pT-rh,_

i=1 i:1

From Section 3.,1, the heat flux due to conduction is

_2 k OT

-- 1tb "_Tln

OT

q_ = -e2 k _) n

Combining these components,

qw : -t2 [kOT ]On - __hifli
i=1 w

(5.7.2)

(5.7.3)

(5.7.4)

(5.7.5)
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or

For a noncatalytic surface,

Ocl IO'/n ,,, = 0

and the heat transfer rate reduces to the familiar form

(5.7.7)
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6 Turbulence

For turbulent flow, the governing equations are modified [41] using an eddy vis-

cosity model. In various efforts [33, 41,42, 11,43, 44] the Cebeci-Smith [45, 46, 47] or

Baldwin-Lomax [48] eddy viscosity models have been mated with VSL solvers. Such

algebraic (or zero-equation) models are less complicated than more exact approaches,

such as the Johnson-King [49] and two-equation [50] models, and as a result are more

computationally efficient (although theoretically less accurate). The equations in this

chapter may be applied to perfect gas or equilibrium flows.

6.1 Viscous Shock Layer Equations

The VSL equations of Chapter 2 are modified [41] using an eddy viscosity model

so that they are applicable to turbulent flows. Simply put, the laminar transport

coefficients are supplenmnted with turbulence terms. Thus, replace

# with # +/_t

where/xt is the eddy viscosity, and replace

k with k + kt

where kt is the eddy thermal conductivity.

By definition,

Pr- (;_L
k

so that

/'r Cv

The turbulent Prandtl number can be detined as

Prt- Cp#t
kt

so that
tzt kt

P_i Cp

Thus, the thermal conductivity may be rewritten as

--7- +_ =-- + - I+----
C v C v Pr Prt Pr # Pvt

In this study, a value of 0.90 is used for the turbulent Prandtl number [44].
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Summarizing, the modifications to the governing equations axe

tt ===_/t (1 + e+) tt--===_
Pr # (1+ +Pr_

where

e+ =/tt

/x

These modifications affect only the energy and streamwise momentum equations.

Referring back to Eqs. (2.1.2) and (2.1.3), these equations become

8 - momentum:

+ e+) _n - 1_ On J

eneTyy:

Note:

terms.

20ha 10h3_[ 0,, ,_ Oh,] }1+ ,+)_ - _,Z-7--ff_-_j

u Oh Oh'_ u Op Op _

Pr) Oh] It ( + Pr, Oh (10hl __Oh3_
On h3 On ]

-F1_(1+¢+) -_n -2hi On On] +/t hl-_n] J

The described modifications are not performed on the higher order

(6.1.1)

(6.1.2)

Looking in the transformed system, Eqs. (2.1.11) and (2.1.12) become

- momentum:

__,o, ,j°- _,,_o.] , fo_ _ Oh,
+ u--_- - u, .... [nb d_ Oq,,] nb _ + ha Or#,, )

enc_yy:

[ o_, _, Oh,]

(2 Oh, lOh3_ [ (1+,:+) Oi, fiOhl]}+ _--_t-- + P

(u,a [Oh ,.- Id,_Oh] o Oh)P'Pthi [0_ n_ d__ n_

(6.1.3)
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_,di[a, ,,,-1,tnbOp] ,_ cgp

hi i- [O_ _b ,1_ i),t,,J + .b 0,1. -

{ [ +Pr'_ Oh (1 Oh1

As a result, Eqs. (2.1.14) and (2.1.15) become

- momentum:
(2

Ao: -_. (_+_+)

,_ o {.(,+_+)}+. (,+_+)_-- +

-p_i_ --+
'_b h_ '_b d_ J

energy:

(6.1.4)

1 Oh3)--- + h_o_--_

}+"(_,_,j}

A2 = n_-- l_, -_q_ ] _71_ + t' ----haO,l. + ---_ J J +h3--_i tu -_

1 [_lOp'_ ,,..-10p {1 dnb}]A3 = _ [ ( us O_ J nb Oqa us a_

pu
A4 = p_'u, .-

in

(6.1.5)

v Oh1

+ Pr'_
62 /_ 1+

Ao = n_ Pr _ _ )

A,- ,,_ l+e _)_ _ +_ Oh,+10% h3 Oq, ) J

[v___t_u_ii,i.-ldn.b].... _'_ tt O ( +Pr,-P') ,,b h, ,,.b d_ J ,,_ P,'O,._ l +e -_rt)

A2 = 0

u,a top ,/,:-_ 1 Op Op

h, io_ ,,_ d---( +---noo,.
A 3 -

pu

A4 = psUs_l

Note: For _+ = 0, the laminar expressions of Eqs. (2.1.1I), (2.1.I_),

(2.I.14), and (2.1.15) are recow'red from Eqs. (6.1.3) through (6.I.6),

respectively.

(6.1.6)
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6.2 Stagnation Line

If fully turbulent flow is to be considered, tile limiting forms of the governing equa-

tions are needed in order to calculate stagnation line solution. As _ ---* 0, Eqs. (6.1.3)

and (6.1.4) reduce to

- momentum:

( u2 du. vP,oP _ d_ nbo

_2

rl,--ldnb Op]}nb d_ _ (6.2.1)

O_ _ Oh1]}

energy:
Oh Op

- P,o pv _ + .o,-7:--Orb,-

_o _ g" 1+_ e_)-_. + h,O,l,,Pr1+_ N) b-_.

It follows that Eqs. (6.1.5) and (6.1.6) become

- momentum:

Al--
72 b0 2

.Oh,1 _
haoo.j - P_°Pn_o

v Oh1)
nbo Orj,_

71,,-10p [ 1 dnn_b_]

mo O,p._[u,d_ JJ

_2

Ao- ,,(1
nbO 2

3 Oh1

{"(' +'+)} +"(1 +_+) h,O_,

A2 ---

._o2 t;,_ ] _ + _-_. j + -U, _ d_

a_ _ L_}

A4=0

(6.2.2)

(6.2.3)

eneTyy:

AI -

e2 [ + Pr

Ao # _1 +
nbo Pr Pr_ J

d . O (prO,i. Pr )-p,opv nbo 1 + _+-_rt

A2 =0

Op
A3 = v--

Olin

A4=0

30ht #]hi Orln Pr

(6.2.4)
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6.3 Turbulence Model

A turbulence model must be employed to define e+, and the Cebeci-Smith model

is used here. It is a two-layer eddy viscosity formulation whose inner layer value, e+,

is based on Prandtl's mixing length concept [51]. Tile outer layer value, e+, is given

by the Clauser-Klebanoff [52, 53] expression. The inner layer expression is used from

the wall outward until e+ > e+.

Note: The Cebeci-Smith model was developed for a body-normal system,

however it is being applied here in a shock-normal environment.

Iu the laminar to turbulent transition region, the composite eddy viscosity is modified

using the Dhawan and Narashima [54] method.

6.3.1 Inner Layer

The inner layer eddy viscosity is based on Prandtl's mixing length theory:

_+_ pl "_1 I Ou u Ohl

The mixing length for the inner layer according to Van Driest [51] is

l=K,,nbrl,,[1-exp(-n+/A+)]

where tile yon Karman constant is

Ko = 0.4

and the normal coordinate parameter is

n + _ nbT]nP

in Ref. [44], the damping factor is defined as

: (!]A + 26
\lTw I]

where the local shear stress is

U hl[
10rh, hi 0ft,

Tim subscript to indicates that quantity is evaluated at the wall.

(6.3._)

(6.3.z)

(6.3.3)

(6.3.4)

(6.3.5)
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6.3.2 Outer Layer

The outer layer eddy viscosity is approximated by the Clauser-Klebanoff [52, 53]
expression:

+ = 0.0168 P'aet_k"/iJ (6.3.6)

The displacement thickness is

where 6 is the value of r/,, at the boundary layer edge.

factor [55] is

(6.3.7)

Klebanoff's intermittency

(6.3.8)

6.3.3 Boundary Layer Edge

By definition, at tile boundary layer edge,

H
----.1

H_o

where the total enthalpy (H) is

u 2 + v 2
H=h+--

2

Numerically, this can be approximated as tile first grid point where

H
-- > 0.995
H_o

This approach can lead to oscillations at the boundary-layer edge. Reference [56]

proposes a different criteria, which is based on another characteristic of the boundary

layer edge:

"(£)dr/,_ --, 0

Numerically, this is approximated as

dr/,,

This is the criteria which is employed in the present work.
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6.3.4 Transition

Transition from laminar to turbulent flow is modeled through the definition of a

streamwise transition intermittency factor [54]:
*

_,,_= 1- exp(-0.412(_) (6.3.9)

where

_ = 9 96 (s_- _o) (6.3.10)
" [_o(X- _)]

Before transition begins, the flow is laminar and 7i,_ = 0. As _ ---* _, it can be seen

that 7i,_ _ 1. lit practical applications, this value of unity is essentially achieved at

= 5. Thus, transition begins at _ = _0 (as prescribed by the user) and continues

until _ = 5. Within the transition region, the local value of eddy viscosity is modified

by

e+ = e+Ti,_ (6.3.11)

The value of ._" is dependent on the flow conditions and body geometry under

consideration [57]. It is usually determined empirically. In the results presented

later, a value of _," = 2 is chosen for the purposes of comparison.
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7 Shock Layer Geometry

This chapter discusses tile relations which define the shock and body shapes,

and the resultant shock layer thickness. Sections 7.1 and 7.2 discuss the analytic

expressions used to describe the body and shock shapes, respectively. Relations for

the shock layer thickness and its streamwise gradient are presented in Section 7.3. The

final section contrasts three coordinate transformations which have been investigated

as a part of this research.

7.1 Body Geometry

7.1.1 Forebody

For many configurations of interest, the body shape can be defined by an axisym-

metric conic equation:

,_:_ (_- _0)-_ (z___o)_ I__._)

where rib0 is the stagnation standoff distance and the nondimensional nose radius of

curvature has a value of unity. This is the equation of an axisymmetric conic body

whose nose is at (zb =nb o, rb = 0).

The character of the conic is dictated by b_:

<0 , hyperboloid

= 0 , paraboloid

b6 > 0 , ellipsoid

= 1 , sphere

For a hyperboloid, the value of tile cone angle, I'b, that the hyperboloid asymptotically

approaches is specified so that

bb = - tan s l'b (7.1.2)

For bb > 0, tile value of bb is a required input. By setting bb > 0, Eq. (7.1.1) can be

used to define the forebody of an elliptic-cone, where bb = 1 is the special case of a

sphere-cone.

For the blunted body described by Eq. (7. l.1), the slope is

J- b_(:_- ',_o)dr___b
(7.1.3)

dzb rb
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7.1.2 Stagnation Line

From Eq. (2.1.4), tile body radius is

[ cos F,]rb = ha b = rs - 7_b cos Fs ---- rs 1 -nb --
rs J

On the stagnation line this becomes

rb = rs [1-- nb_so] = r,h%

so that E¢I. (7.1.3) call be rewritten as

drb - (=b-- '%) 1

7.1.3 Ellipsoid-Cone Juncture

At the juncture between the ellipsoidal forebody and cone afterbody, both the

position and slope of the body are continuous. Thus, the coordinates of this juncture

may be determined by equating Eqs.

(after some manipulation) gives

,{Zjunct _- ?Zb0 -'}-

(7.1.4)

(7.1.3) and (7.1.11). Solving for zb = zj,,,_a

(7.1.6)
sin Fb }

1 -- ebb cos 2 Fb + sin 2 I'b

Now the corresponding value for rj,,,a can l)e found from Eq. (7.1.1):

"j_,,,a = '2 (zj_,¢t- nbo) -- bb (zi,,,¢t- nbo) 2 (7.1.7)

For the special casc of a sphere-cone (b_ = l):

zj,,,_a = nbo + 1 - sin Fb (7.1.8)

and

rj_a = cos rb (7.1.9)

For Zb < zj,,,_a, the body is defiimd by the equations of Section 7.1.1. After this

juncture, the body shal)e is described I)y the equations of Section 7.1.4.

7.1.4 Afterbody

The conc afterbody is given by

rb = ri,,,,_t + (zb - zj,,,c,) tan l-'b (7.1.10)

where ri,,,,_t and zi_,a are the coordinates of the ellipsoid-cone juncture, defined in

Section 7.1.3. The slope of the cone is

dl"b

dzb tan Fb (7.1.11)
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7.2 Shock Shape

7.2.1 Subsonic-Transonic Region

The body shape in the nose region is deso'ibed by a conic equation (see Sec-

tion 7.1.1). Van Dyke and Gordon [64] suggest that a conic body generates a conic

shock shape, so the subsonic-transonic region is described by a conic equation:

2 2C, z, b.,z_ (7.2.1)

where (?8 is the value of the shock radius of curvature on the stagnation line and bo

determines the conic's character.

Since the shock shape is defined analytically, closed-form expressions for the quan-

tities listed below may be determined. (see Appendix K for details). The shock angle
can be found from

COS F s

sinF_ = (C, - b_z_)- (7.2.2)

The curvature is given by

a_ _ cos F_ (sin _ F, + b_ cos 2 I'_) (7.2.3)
rs

Further, the gradient of the curvature is

dKs COS 2 F s

d_ - 3n, sin F,--re (b" - 1) (7.2.4)

Referring to Eq. (2.2.4), the streamwise pressure derivative can be rewritten as

Opl dp_ - I'__--_ = d--f+_--_n_ sin {u_+3,,_(:os_F,(b_-l)+x,r,} (7.2.5)

7?2 1 2v, x, sin 2p.cosF_(b_ 1)+ l+cosFs d_-1 - -- sin Fs-- - vp% cos F,

In addition, fi'om Eq. (2.2.7), tile streamwise derivative of n becomes

On = (7]- 1)_-cosl',(bs- 1) (7.2.6)

On the stagnation line, Eq. (7.2.,1) has the following limiting form:

cost. deJ = 1) (7.2.7)
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Thus, Eq. (2.4.12) becomes

lirat_j : lira + % -e-0 _0L_- _- (,/ 1) (7.2.8)

qU-l[ ( b _ 2 ) + lim { i dvs } ]2 t's°as° e--.0 us d_

and Eq. (2.4.16) becomes

l,m{l0n/ -o_-_o r_ O_, -('I-l)-_-ns0!bs -l) (7.2.9)

7.2.2 Supersonic Region

Since the supersonic region ishyperbolic-parabolicin nature, a marching proce-

dure isemployed. The shock shape segment between the previous (k - l) and current

(k) stations is described by a truncated Taylor's series (see Appendix L for details):

÷3
÷2 (Az_)2 + (Azs)3 (7.2.10)rs= ÷o+ ÷, (azs) + g, _.,

where

Azs ": Zs -- Zsk_ 1

The shock angle (:an be found from

÷3 (Azs)2d,'s ÷,+ ÷_(zx_)+ -ytan I', = dz--7 =

The curvature is given by

where

d 2 r s

Ks : -- COS 3 rs

(7.2.11)

(7.2.12)

where

A_k = & - &-,

Op = pk,j - Pk-,,j (7.2.14)

O( ,,, A&

d 2r s
-- = i'2 + ÷a (Azs) (7.2.13)
dz_

In this marching region, a simple backward difference representation of the pres-

sure derivative is employed. Thus, at a given point k on station j,
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7.3 Shock Layer

With each iteration in tile solution of the governing equations, a calculated value

of the shock layer thickness may bc determined from the continuity equation. In

addition, the analytic expressions for the shock and body shape provide the means of

calculating a geometric value of the thickness. If the equation used for the shock shape

is reasonable, then these two values should match. This observation serves as the

criteria for shock-shape convergence at a given station (see Chapter 8). Expressions

for the calculated and geometric thickness values are given below. In addition, an

analytic expression for the gradient of the shock layer thickness (a term which appears

in the governing equations) is presented.

7.3.1 Calculated Thickness

The continuity equation can be used to determine the shock layer thickness based

on the conservation of mass. This calculated thickness (see Appendix D) is defined

by the following quadratic for nb:

n_[p,u,c°sF, fo'fifi(O,-1)drb,]+nb[p,u_r_fo'P_dTl,,]-kO,=O (7.3.1)

Dividing by _o, Eq. (7.3.1) can be written as

As _ _ 0, Eq. (7.3.2) becomes (see Appendix E)

This expression is used to define the stagnation standoff distance, nb0.

7.3.2 Geometric Thickness

Through geometric considerations,

where

rb = rs -- llbg COS F s

7lbg ---- ¢(Z s -- Zb) 2 + (Fs -- rb) 2

is the geometric shock layer thickness (measured along a shock normal).

Differentiating with respect to _ gives

drb dnb

= hlb sin 1_, - d--_-cos F,

(7.3.2)

(7.3.3)

(7.3.4)

(7.3.5)

(7.3.6)
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Similarly,

Z b -= Z s _ lib 9

Differentiating with respect to ( gives

However,

sin l's (7.3.7)

dz___bb_ dnb

d( - tqb cos I'_ + _ sin Fs
(7.3.8)

drb dvb dzb
_ (7.3.9)

d_ dzb d_

where drb/dzb is the local slope of the body geometry. Combine Eqs. (7.3.6), (7.3.8),

and (7.3.9) to get

dnb h, b sin l', - dz--_bcos Fs
(7.3.10)

d_ - drb

cos F_ + dz----bbsin I's

which is valid for any body geometry.

A shock normal has a slope of

-1

Thus, the equation of the shock normal line passing through the shock point (zb, rb)

and intersecting the body at point (zb, rb) is

(7.3.11),'_ = ":b + ("_ - ,nz.)

Forebody

Combining Eqs. (7.1.1) and (7.3.11) giw,s

(7.3.12)

This quadratic can be solved for zb, and then rb is found from Eq. (7.1.1). With dvb/dzb

defined by Eq. (7.1.3), the gradient of the shock layer thickness can be determined

from Eq. (7.3.10).

Stagnation Line

The limit of Eq. (7.3.10) as ( _ 0 is

drb ]

lira{ 1 dnb} = h, b 1-d-_-zbC°sF"e-o cos I'_ d_ cos F, drb (7.3.13)

dzb
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Now combin(. Et 1. (7.1.5) with this resvlt to gvt

,im{'_-o cos I', d_ cos l's l

?'shl b

7" 3

--cosrshlb[hlb--gs] (7.3.14)

so that

,,m{1  CshibL = (7.3.15)

Afterbody

Combining Eqs. (7.1.10) and (7.3.11) gives

rj_,,a - zj_,_t tan l't, - (r_ - rnz_)
Zb = (7.3.16)

m - tan l'b

Substitute into Eq. (7.1.10) to get rb. Utilizing l':q. (7. t.ll), the shock layer thickness

gradient is determined from Eq. (7.3.10).

7.4 Spacing Across Layer

At the beginning of this investigation, a considerable effort went into the devel-

opment of an inviscid nonequilibrium algorithm. In this early work, the governing

equations were transformed to a streamline coordinate system (Figure 7.1). In this

transformed space, the solution was advanced by marching along streamlines. At each

new station, the shock streamline is added to the grid. Thus, if a constant number

of points is desired, an automated procedure for dropping streamlines is required.

In Ref. [29], r/ (where _/= O/_) was found to be a better transformation coor-

dinate since it allowed more control of the spacing than the streamline method. In

addition, this transformation gives a constant number of points across the layer for

each station. Since viscous effects were to be included eventually in the nonequilib-

rimn algorithm, a switch from the streamline approach seemed inevitable. Unfortu-

nately, this decision meant al)andoning the explicit approach under development by
this author.

In Ref. [29], the solution is advanced along lines of constant r/(Figure 7.2). The

spacing is still based on mass Ilow through the layer, rather than on physical distance

across the layer. While this transformation to 'q is an improvement over k9, it still

yields a grid-point distribution which is less thav optimal in the near-wall region of

the shock layer. In fact, the points cluster near the shock, rather than near the wall.

As will be shown in Chapter 9, the shock layer profiles from the method of Ref. [29]

exhibit oscillations as a result of this spacing.
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Figure 7.1. Equally-spaced lines of constant • (streamlines).

Z

Figure 7.2. Equally-spaced lines of constant 71.
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Z

Figure 7.3. Equally-spaced lines of constant rh_.

In order to better control tile spacing across the layer in the present technique, a

transformation to normalized coordinates as described in Chapter 2 is used. Recall

the definition of the following computational variables:

'/2

_ =5 ?In = 1 ----

12b

This normal spacing based on r/n (Figure 7.3) is analogous to the spacing used in

Ref. [9]. Although Figures 7.2 and 7.3 show equally-spaced lines, these spacing func-

tions lend themselves to clustering. However, since the physical distance to which r/

corresponds varies in the streamwise direction, determining a distribution which will

work well for the duration of a given solution can be difficult. On the other hand,

since there is no streamwise variation in the normalized distance that r/,, represents,

finding a suitable distribution is more straightforward in the present approach.

The following distribution function [9] may be used to define the spacing across

the shock layer:

A-f0
'I,,j = fo + (7.4.1)

where

j-I --I
Jo = 7l''I'_

71,_l__j,- t _ 1

Ji_js_l + l 3s- -

(7.4.2)

r],,,, (7.4.3)



7.4. SPACING ACROSS LAYER 53

In addition, j_ is the total number of grid points, 71n6rk is the point through which the

exponential fit passes, 71,_1,c is the geometric stretching factor, qni,_t is the intercept on

the axis which determines the slope of the linear distribution near the shock, and r/%tp

is the slope of the fit at 'q"brk" ]'his function clusters points according to a geometric

progression near the wall, a linear distribution near the shock, and an exponential

fit for the interior of the shock layer. If _/,q,, < 0 is specified, a simple geometric

progression is used so that

do,_j = 'q,,t, cdrlns_l ' (7.4.4)

_/,,j = _/-j-i + dr/,j (7.4.5)

and

d11'_2 = qnj.c - 1

71n1,_5,-1 - 1

This relation clusters points near the wall, but not at the shock.

(7.4.6)

For the perfect gas and equilibrium solutions presented in Chapter 9, j. = 101,

while for the nonequilibrium solutions, j_ = 51. The factors corresponding to these

values of j, are

j_ =51 j, = 101

q'_b,k = 30 q'_b,k = 60

r/,_l,c = 1.17 r/,_l__ = 1.13

7]r_i,_t = O. _]nin t = O.

tl,_,tp = 0.13 qnsl v = 0.1
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8 Method of Solution

The procedure for solving the equations presented ill the preceding chapters is out-

lined here. First, an introduction to the issue of generating the shock shape is given.

Next, the quasi-linearization of the streamwise momentum equation is discussed. The

procedure for numerically integrating the equations of standard parabolic form is pre-

sented in Section 8.3. The chapter concludes with a discussion on the advancement

of the solution fi'om one station to the next.

8.1 Shock Shape

The full VSL approach requires the user to input an initial shock shape, which is

used to calculate a first iteration solution. Tile shock shape calculated in the first-

iteration solution must then be smoothed and used as the input shape for a second

iteration. This user-controlled process is continued until the new calculated shock

shape varies little from ttle input shape (usually 2 to 4 iterations). In the design

environment, such requirements of the user are undesirable.

Automating this process was addressed in Ref. [29] by incorporating a shock it-

eration technique in the solution. Since the subsonic-transonic region is elliptic in

nature, this portion of the flowfield must be solved in a global fashion. The deriva-

tive of shock layer thickness is described in terms of a cubic equation involving the

body radius where an iterative procedure is applied to determine its coefficients. This

process typically requires ten to twenty iterations to obtain a converged shock shape.

A marching technique is employed aft of the subsonic-transonic region, since the

inviscid layer is supersonic. For this region, the shock shape at the current station is

extrapolated from the previous station using a cubic equation for the shock radius as

a function of axial location. Requirements that this expression match the position,

slope, and curvature at the previous station leaves one free coefficient (essentially the

shock curvature derivative). An iterative technique is employed to determine this

value based on comparisons between the shock standoff distance obtained from the

flowfield solution and the geometric distance between the shock and body curves.

When these two values agree to within the prescribed tolerance, the solution is ad-

vanced downstream to the next station. The iterative procedure used in Ref. [29] is

sensitive, so this marching technique is often slow to converge.

The current technique also generates its shock shape as part of the solution. The

details are giw_n in Section 8.4. Before discussing that topic, the linearization pro-

cedure is given in Section 8.2. Then, an outline of the solution of the governing

equations is presented in Section 8.3.
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8.2 Streamwise Momentum Linearization

The usual approach to handling the nonlinearities in the VSL equations is to eval-

uate the Am coefficients (m = 0, 1,2, 3, 4) from the most recent information available.

For example, the value of u obtained in the most recent solution of the streamwise

momentum equation is used in loading tile coefficients for solving the energy equation.

This approach, which essentially treats all such quantities as knowns, still leaves the

following nonlinear terms in the streamwise momentum equation:

0_

For the energy equation, tile nonlinearities are handled through a simple lagging

technique. Itowever, in order to speed convergence, the streamwise momentum equa-

tion is quasi-linearized [65]. This process involves expressing _ as

= + (8.2.1)

where the subscript p denotes evaluation at the previous iteration and Aft is the

change in fi from the previous iteration. Differentiating Eq. (8.2.1) with respect to

r/,, gives

O_ O u v (0_) (8.2.2)

and differentiating Eq. (8.2.1) with respect to _ gives

0/_ 0fi 1 (0fi) (8.2.3)N
P

Using these representations,

0_

Or],

so that if the higher order term is dropped, then

Orb, 07],, v

(8.2.4)

Using Eqs. (8.2.1) and (8.2.2) this can be rewritten as

(8.2.5)
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Similarly,

and finally,

{ } °°1._: o¢1_ +.p_- p (8.2.6)

ii _ = 2 {fipii} - '-_up (8.2.7)

The "bracketed" portions of these three expressions are the terms which would be

present without linearization. Eqs. (8.2.5) through (8.2.7) are substituted back into

the _-momentum equation to obtain the linearizcd form of the equation.

This linearization process only affects the As and A3 coefficients of the stream-

wise momentum equation. Based on Eq. (6.1.5), the coefficients for the streamwise

momentum equation become

- momentum:

__2 (1 + r.+)
Ao = n_ tl

A':-n--_b _ 00----_+ h30o.]

[V+ U,_TIn-- l dnb ]- P_P nb hi nb d4 J
i

( [ ( 1e2 10h,_ O# 1 __Oha_]

+ p,# [ du_ v Oh, ( OU ,l_. : l dnb O5 ) ]

hi nb d_ Oq.

pu
A4 = p_u, hi

On the stagnation line, these become

- momentum:

A'=--n--_b

Ao---_. (1+,+)
3 Oh1

A.2 - n_ h, O'q,, _ + - Iq Oq,, J + _ 2fi d_ nb _]

(8.2.8)

_V

PsP--
nb

(8.2.9)
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A4=0

1 dnb}] pslh(_ 2u_ d_ hi I¢°°

8.3 Equations of Standard Parabolic Form

A finite-difference approach is used to solve the (-momentum, energy, and species

conservation equations (for nonequilibrium tlow). As mentioned earlier, the first step

is to write these equations in the standard parabolic form:

c)2W OW OW

Ao--O_2_ + A,_I_ + A2W + A3 + A4--_- = 0 (8.3.1)

where W represents the dependent variables fi, h, and ci. Next, finite-difference

representations are substituted for the partial derivatives. A two-point backward

difference is used for the partial derivatives with respect to _. For a fully implicit

scheme, a three-point central-difference of values at the current station is used for the

partial derivatives with respect to rb,. Thus, for an arbitrary point j at station k

where

o2w 2 [wk,j+, - (1 +/3) wk,j +/_wk,j-l]
_ (8.3.2)

OW Wk,y+_ - (1 - f32) W,,j - fl2Wk,j__ (8.3.3)
= A,j_j+, +/32A_.j

0 W = Wk,i - Wk-,,j (8.3.4)
O_ A_k

and

ATlnj = Ynj - Y'_j-I

At/, b.

In a more general approach, the T/_-derivatives are differenced about point (k-1 +O, j)

where

0 , fully explicit
1 Crank Nicholson

1 , fully implicit

The derivatives now become

02W
= al {[Wk,j+, - (1 + ,3) Wk6 + flWk,j-,] 0 (8.3.5)
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and

where

-_ [Vlfk-l,j+l -- (1 + fl) Wk_,.j +/3Wk_,,j_,] (1 - O)}

OW

a_--;--"_{[_","- (1- :) _,_- :w_._,]o

+ [Wk-,,5+, - (1 -/32) Wk-i,j - _32Wk_15_,] (1 -- 0)}

2 1
CI_1 : 0 2 :

In addition, the quantity W is evaluated at point (k - 1 + O,j):

(8.3.6)

w = Wk,jO + l__,,j (1 - O)

Making use of these expressions, Eq. (8.3.1) takes the form

(8.3.7)

where

AjWk,j_, + B_Wk,j + OjWk,j+l = b_ (8.3.8)

A s = [Otl_Ao- o_2f12Al] 0

/_j: /--oq (1 +_)Ao-a2(l-fl2)A, + A2] 0 +--

C,j : [alAo + a.2A,] O

= - + ,41
[-), -A3 + 'J A4 Ao _ k-l,j _n k-l,j

A4

+ A2Wk_l,j} (1 - O)

On the stagnation line (since A4 = 0 for the streamwise momentum, energy, and

species conservation equations), the coefficients reduce to

,;tj = [a,/3Ao- a.2iJ2A,] 0

/3j : [-a,(l+fl) Ao-a2(1-fl2)A,+A2]O
t

C,,j : [o¢lao "3t- O¢2A1] 0

A3{Ao" Wf°wt }= -- -- + A2Wk-I,j (1 - O)
a_l_ ]k-l,j + A1 _ k-l,j

The results presented in Chapter 9 were generated with the fully-implicit approach

(O = l).

Evaluating the coefficients of Eq. (8.3.8) at discrete points across the shock layer

yields a tri-diagonal system of equations which may be solved using Thomas' algo-

rithm [66]. The general solution is

Wk,j = P_Wk,j+, + Fj (8.3.9)
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where

4=- _

- Aft:j____._.2

The boundary condition at the shock is

Wk,j, = W_

On the body, the general boundary condition is

Oo O_-_-WI +01 Wk,2+ 02 = O
c'qn Ik,1

In finite difference form, this can be written as

or

where

[Wk2 - Wk,_]
0oL '_x-_ j + 0,w_,,+ 02= 0

El - 0°

0o - Ar/,,0x

If the wall condition is specified,

and

!,,

02r/n

Oo - Ar/,_01

_Vk,l _ Wto

so that

If the wall gradient is specified,

P,=W_

and

In the special case of

this gives

E1 = 1

owI
O'q,_ k,t

EI=I

Or/,, _o

=0

/_; = o

r/n

(8.3.1o)

(8.3.11)

(8.3.12)

(8.3.14)

(8.3.15)

(8.3.16)

(8.3.17)
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Implementation of the algorithm involves first evaluating/_j and _'j from j = 2 up to

j = j_ - 1, and then solving Eq. (8.3.9) for Wk.j from j = j, - 1 down to j = 1.

For a given station and shock shape, the governing equations are solved in the

following order. The streamwise momentum and energy equations are solved for fi

and h, respectively. Tile equation of state gives p. From the continuity equation,

the shock layer thickness is determined. The pressure distribution is found directly

from Maslen's expression. The normal velocity distribution is extracted from the

continuity equation after the standoff distance has been determined.

8.4 Advancing the Solution

The previous sections in this chapter explain the solution procedure of the govern-

ing equations for a known shock shape at a given station. More precisely, holding the

shock geometry (and the resulting jump conditions) constant, the fluid equations may

be satisfied in an iterative fashion. From this solution, a calculated shock layer thick-

ness for the current station is determined. This value is compared to the geometric

shock standoff distance, with the difference between the two dictating the adjustment

of the shock shape. After convergence of the shock shape for a given station, the so-

lution is advanced to the next station, using the current profiles to initialize the new

station. The discussion now turns to how the shock shape is actually determined.

Maslen's original method [18, 21] is an inverse technique. That is, a shock shape

is prescribed and the resulting calculated body shape is compared with the desired

body shape. The shock shape is then adjusted in an iterative fashion until the desired

body shape is obtained. Riley and DeJarnette [67, 68, 69] automate this process for

blunt bodies where separate approaches must be used for the nose region and the

remainder of the flowfield.

The current approach parallels that of Ref. [29] in that the shock shape is generated

as part of the solution, rather than being an input required of the user. However,

the approach of Riley and DeJarnette serves as a model for the technique employed

here, since it provides a smooth shock shape within relatively few iterations. In the

subsonic region, a conic equation is used to describe the shock radius as a function

of axial position. The marching procedure again utilizes a cubic equation with one

parameter to be determined iteratively. The details of the iterative procedures used

to determine the shock shapes for the subsonic and marching regions are presented

in Sections 8.4.1 and 8.4.2, respectively.

8.4.1 Subsonic-Transonic Region

Since the subsonic-transonic region is elliptic in nature, this portion of the flowfield

must be solved in a global fashion. As discussed in Section 7.2.1, the shock shape for
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the subsonic-transonic region is described by

.2 2C_z_ bsz_7 8 _
(8.4.1)

where C, is the value of tile shock radius of curvature on the stagnation line and b,

determines the conic's character. For a given body shape, three parameters (b_, C_,

and rib0) constrain the geometry of the shock-body tandem (and hence, the shock

layer). The value of nb0 is the shock layer thickness (standoff distance) calculated

from the stagnation line solution (see Section 7.3.1).

The quantities b, and C, are determined through a quasi-Newton iterative pro-

cedure. With each variation of these two parameters, the flowfield is solved for the

entire subsonic region. The fluid equations are solved at eleven discrete stations be-

ginning on the stagnation line (giving nbo). The values for the calculated shock layer

thickness at two stations near the end of the subsonic region are compared with the

values dictated by the geometry (see Section 7.3). Shock iterations are continued

until the calculated values of nb at these two stations match the geometric values.

Typically only four to six iterations are required to converge the shock shape.

8.4.2 Supersonic Region

Since the supersonic region is hyperbolic-parabolic in nature, a marching proce-

dure is employed. Recall from Section 7.2.2, the shock shape for the region between

the previous and current stations is described by a truncated Taylor's series (see

Appendix L for details):

1r, = %_, + Az, +-U 2 + kl (8.4.2)

where the shock derivative is given by

[d2r_

d__ dz. Jk-1 _ L-_Z2Sk_l

d2r_ ] (8.4.3)
+ A

and

/_kZ s _ Z s -- Zsk_l

Written in this form, the only unknown is the second derivative of r8 with respect to z,

(which is proportional to the shock curvature) at the current station. This parameter

is determined through the iterative process described in the next paragraph. Note

that Ref. [29] iterates about tile derivative of the shock curvature, which is a more

sensitive procedure.

The position, slope, and curvature of the shock at the previous station are known.

Thus, the curvature at the current station is the only unknown in Eqs. 8.4.2 and 8.4.3.

As a first guess, the d2r_/dz_ term at station k is extrapolated from its values at the
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previous two stations. With the shock geometry (and corresponding jump conditions)

constrained, the fluid equations are solw._d. Then the calculated and geometric values

of nb are compared to determine an error (b,rT). After perturbing the guess for

_r,/dz_ (which alters the shock position and slope), the governing equations are

solved to determine a new value for 6,,.. Now the second derivative at station k may

be updated using the secant method:

The subscript p denotes a value fi'om the previous iteration. Through successive

applications of the secant method (accompanied by a solution to the fluid equations),

_,_ _ O, with shock shape convergence typically obtained in three to four iterations

per station.
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9 Results and Discussion

Results generated with the present algorithm are given in this chapter, which is

divided into three sections: perfect gas, equilibrium, and nonequilibrium solutions.

In an effort to evaluate the accuracy of this new approach, the comparisons outlined

below are made. Heating rates are shown alongside experimental or flight data, where

available. In addition, the perfect gas solutions are compared with the results of the

VSL [9] and Grantz [29] approaches. Comparisons with the VSL solver of Ref. [9] are

also made for equilibrium flows. The nonequilibrium results are compared with those

of Ref. [14]. Specific areas to be addressed are:

1) surface properties, including examination of the stagnation region;

2) shock shapes;

3) shock layer profiles of dependent variables;

4) run times.

The algorithms employed here are fully-implicit (see Section 8.3). For the perfect

gas and equilibrium results, 101 points across the layer are used by each of the methods

(see Section 7.4). The nonequilibrium solutions are based on 51 points across the layer

for the VSL and present method. The results are plotted in nondimensional form (see

Appendix A), with the dependent variable on a logarithmic scale in most cases. Note

that in this chapter, the superscript * is omitted on the dimensional quantities.
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9.1 Perfect Gas

Two cases are presented in this section. Tile first case is a 5 ° sphere-cone with

a length of approximately 140 ft. Two solutions with different nose radii are calcu-

lated in Ref. [70] in a study of bluntness effects. Comparisons with those results are

made here. The geometry of tile second case is a 15° sphere-cone with a length of

approximately 20 in. Again the solutions are obtairmd for two different nose radii,

and the results are compared with experimental data [71]. For each case, analysis of

the second radius is limited to surface properties in the interest of brevity.

Case 1

For Case 1, Mach 15 flow over a 5 ° sphere-cone is calculated using the VSL [9],

Grantz [29], and present approaches. The freestream conditions are poo = 0.018919

psi and Too = 478°R, with a wall temperature of T_ = 2259.69°R. Fully-laminar

solutions are calculated, as well as solutions where the flow transitions to turbulence.

The beginning of transition is an input for all three approaches. The VSL heating

results are from Ref. [70].

First, the solution for R,,o,e = 1.5 iu is calculated for a body length of sb_,_ = 1125.

The transition point is specified to be sb = 192. Figure 9.1 shows the body shape

along with the shock shapes (fully-larninar) calculated with the three methods. The

approximate (Grantz and present) techniques agree with the VSL results as the sharp

cone solution is approached. However, from the close-up given in Figure 9.2, note that

the two approximate approaches yield a thinner shock layer than the VSL algorithm

in the pressure overexpansion region.

In Figure 9.3, the computed heating results from the three solutions are presented

for both laminar and turbulent flows. The laminar results of the VSL and present

method are in excellent agreement overall, while those of Ref. [29] are at an approx-

imately ten to fifteen percent higher level. Downstream of the nose region (for sb

between approximately 10 and 100), both approximate techniques over-predict the

VSL heating results. It is believed that Maslen's pressure relation is the source of this

deviation, as will be discussed in the next paragraph. The turbulent results of the

VSL and present method are in excellent agreement overall, with those of Ref. [29]

approximately twenty percent higher. The transition heating results (see Figure 9.3)

of Grantz [29] reflect an error in the application of the transition model.

Figure 9.4 shows the body pressure distributions from the three methods for the

fully-laminar solution. The computed pressure distributions are in excellent agree-

ment (within five percent) except in the pressure overexpansion/recompression region.

In this region, the shock and body angles are quite different (see Figure 9.2) for slen-

der cones, violating one of Maslen's assumptions. Apparently, this poor pressure

prediction feeds back into the shock shape which is generated as part of the solution,

to give the shock shape deviation mentioned earlier. As a result, the VSL shock layer
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thickness (and also the thickness gradient) in this region differs from the values given

by the approximate methods. Since the thickness gradient plays a prominent role in

the governing equations, this deviation is reflected in the shock layer profiles, as well

as the surface properties. The effect of the differences in the overexpansion region di-

minishes further downstream, as can be seen i_ tile figures. A similar phenomena has

been seen in the inviscid technique of Riley and DeJarnette [68], which also employs

Maslen's pressure relation.

Figures 9.5 and 9.6 provide more detailed information on the stagnation region

results. As the stagnation line is approached (sb --+ 0), dq_/dsb ---+0 and dp,,,/ds_ -* O.

Note that the heating results fi'om the current method approach the stagnation line

more smoothly than those of either Ref. [29] or the VSL method. This is a direct result

of the limiting form of the governing equations used here (see Section 2.4). Note also

that the results of Ref. [29] are approximately twenty percent higher than the other

two solutions in this region, and do not approach a zero gradient at the stagnation

line. In Figure 9.6, the stagnation region pressure distribution is reasonably smooth

for all three methods.

Skin friction results are presented ill Figures 9.7 and 9.8. The method of Ref. [29]

does not compute this parameter, hence it is excluded from this comparison. Both

the laminar and turbulent results are in excellent agreement, (generally within five

percent). This result is not surprising since Reynolds analogy relates the skin friction

to the heat transfer. Therefore, good agreement for the skin friction is expected in

those areas where the heat transfer is predicted well. As shown in Figure 9.8, the

present method has a smoother distribution in the stagnation region.

Now consider the stagnation line profiles. Figure 9.9 shows the pressure predic-

tions to be within 0.5 percent of one another. In Figure 9.10, note that the normal

velocity results of the VSL and present method are virtually identical, while the re-

sults of Ref. [29] differ from them slightly. The approximate relation for v used in

Ref. [29] is the source of this difference. The tangential velocity is zero on the stagna-

tion line, but a finite non-zero value for its normalized form (fi = u/u_) is calculated

from the limiting form of the streamwise momentum equation (see Section 2.4). Pro-

files of this normalized velocity are shown in Figure 9.11. The approximate results

are in close agreement with each other, while the VSL results are different. This dif-

ference may be due to the VSL limiting form of the str_amwise momentum equation

(see Section 2.4). Figures 9.12 and 9.13 show that the enthalpy and density profiles

of the three methods are virtually identical on the stagnation line. The density "mir-

rors" the accuracy of the other results (since it is calculated from the state equation),

so in the remainder of this chapter it will be shown only sparingly.

Pressure profiles near the pressure minimum (sb _ 40) and at the end of the body

(sb ,_ 1125) are presented in Figures 9.14 and 9.15, respectively. The approximate

results are virtually identical. Agreement with the VSL solution is excellent as the

sharp cone limit is reached. Even in the pressure minimum region, where the deviation

is largest, the Maslen pressures are generally within ten to fifteen percent of the VSL
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results.

For purposes of comparison, the velocities calculated in the two approximate

methods (solved in a shock-normal system) are resolved into body-normal compo-

nents. The velocity component normal to the body is shown in Figures 9.16 and 9.17.

The limitations of the approximate expression for v which is used in the method of

Ref. [29] are readily apparent. This component is small relative to fi and h except in

the near-wall region. As a result, its poor prediction has minimal effect on the overall

shock layer solution outside of the boundary layer. In the pressure minimum region,

the other two techniques agree well near the wall. The last station exhibits excellent

agreement between the VSL and present approaches.

The body-tangential velocities are shown in Figures 9.18 and 9.19, and the three

approaches are in good agreement. The enthalpy profiles of the present and VSL

approaches, shown in Figure 9.20 and 9.21, also agree well with one another. At

the end station, the results of Ref. [29] differ in the boundary layer. This difference

is reflected in the heating rates, and is due to the inaccuracies of the approximate

relation for the normal component of velocity. Also at the end station, note the

severe oscillations around the boundary-layer edge which are present in the results

of Grantz [29]. Figure 9.19 shows wiggles in the tangential velocity profiles as well.

This is the result of not having enough points in this region. A grid adjustment is in

order, but since the Ref. [29] normal spacing is based on the stream function rather
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Figure 9.17. Normal velocity profile comparison for 5 ° sphere-cone,

P_o,_ = 1.5 in (_b _ 1125).
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Figure 9.18. Tangential velocity profile comparison for 5° sphere-cone,

R,o,e = 1.5 in (sb _ 40).
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Figure 9.19. Tangential velocity profile comparison for 5 ° sphere-cone,

R,_o_ = 1.5 in (sb ,-_ 1125).
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Figure 9.20. Enthalpy profile comparison for 5 ° sphere-cone,

R,_o, = 1.5 in (sb _ 40).
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Figure 9.21. Enthalpy profile comparison for 5° sphere-cone,

Rnos_ = 1.5 in (sb _ 1125).
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Table 9.1. Run-times a for 5° cone, R,_o,_ = 1.5 in.

11VSL I Rel"[29]
stations 643

cPu time 4232

grid pts/sec 15

shock iterations 3.0

grid pts/sec/shock 46

Present

333 209

867 408

39 52

6.5 2.3

252 121

a - Sun Sparcstation 1+
i

than a physical distance, an adequate distribution is difficult to determine. These

wiggles, which are documented in Ref. [27], were repeatedly observed early on in this

research and were the motivation for switching from rt- to rb,-spacing, which is based

on distance across the layer.

Since the nature of this research is to develop an approach for use in preliminary

design, where computational speed is an important consideration, some comparisons

in run time are presented. Table 9.1 shows the overall run times required to generate

the turbulent solution for the 5 ° sphere-cone. The value shown for the VSL results

is the total time required for three shock iterations. However, the CPU requirements

to generate the initial and second shock shapes are not included, so this figure is a

low estimate for the VSL method. It can be seen that the current algorithm yields

a dramatic decrease in total CPU requirements over both the VSL and Ref. [29]

techniques. Since varying numbers of streamwise stations are used by each of these

approaches, the average number of grid points solved per second is also presented. As

shown, three global iterations of the shock shape are required for the VSL solution.

The approximate methods iteratively determine the shock shape as the solution is

advanced from one station to the next. In this case, for a given station, the method

of Grantz [29] rcquires an average of 6.5 iterations to converge the shock shape, while

the present technique averages 2.3 iterations. The last entry in the table takes into

account the number of shock shapes calculated, and gives the processing capabilities of

each approach for a given shock shape. This illustrates that solving the approximate

VSL equations of the present method is inherently 2.5 times as fast as solving the

full VSL equations. The method of Ref. [29] is able to process many more grid

points/see/shock shape than the current approach and this can be attributed to its

more approximate governing equations.

The solution with a nose radius of R,,o,e = 9 in and a body length of sb_,,d = 180

will now be discussed. The transitioa point is an input whose value is sb = 72.

Because of this larger nose radius, bluntness effects are present for the length of the

body. In the interest of brevity, the cortlparisons are limited to surface properties.

The results for this body are similar to the results for the first 200 nose radii of
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Figure 9.22. Heat transfer comparison ['oz"5° sphere-cone, Rno,_ = 9 in.

the first body. Figures 9.22 through 9.24 show that the heating rates, laminar body

pressures, and skin friction distributions follow the same trends cited above. That is,

the results of the approximate approaches are in generally good agreement with the

VSL solution. Likewise, the shock-layer profiles (not shown) follow patterns similar

to those of the R,,o,_ = 1.5 in solutions.
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Figure 9.23. Body pressure comparison for 5 ° sphere-cone, R,_o_ = 9 in.
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Figure 9.24. Skin friction comparison for 5 ° sphere-cone, R,_o,_ = 9 in.
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Figure 9.25. Shock shape comparison for 15° sphere-cone, R,o,_ = 1.1 in.

Case 2

l;br Case 2, Math 10.6 flow over a 15° sphere-cone is calculated using the VSL [9],

Grantz [29], and present approaches. The freestream conditions are p¢¢ - 0.01915

psi and :/_ = 85.2079°R, with a wall temperature of T,o = 540°R. Heating rate

comparisons are made with Cleary's experimental data [71].

First, the solution for R,o, = 1.1 in is calculated for a body length of sb,, d = 20.

Figure 9.25 shows the shock shapes from the three methods. As with the 5° cone, the

two approximate techniques yield a thinner shock layer in the pressure overexpansion

region than tile VSL algorithm. The flare at the end of the shock shape of Ref. [29]

reflects an incorrect interpolation for the last c()mputational station.

In Figure 9.26, the heating results from the three solutions are presented and

are seen to compare well (generally within fifteen percent) with the experimental

data. Figure 9.27 provides more detailed information on the stagnation results. As

before, the heating results from the current method approach the stagnation line more

smoothly than those of either Ref. [29] or the VSL method.

The computed pressure distributions (Figure 9.28) are in excellent agreement

(within five percent) except near the sphere-cone juncture. This deviation is not

as large a.s that seen for the 5 ° cone, where the difference in shock- and body-angles

is greater. As mentioned earlier, Maslen's relation works best when the difference

between these two angles is small, so the above improvement is expected. The skin

friction comparisons of Figure 9.29 show that the VSL and present method are again

in good agreement (generally within fifteen percent).
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Figure 9.26. [feat tr_tnsfcr comparison for 15 ° sphere-cone, Rno_¢ = 1.1 in.
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Figure 9.27. Heat traasfer comparison for 15 ° sphere-cone,

R,_o_,; = 1.1 in (stagnation region).
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Figure 9.28. Body pressure comparison for 15 ° sphere-cone, R,o_ = 1.1 in.
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Figure 9.29. Skin friction comparison fox"15° sphere-cone, R,_o_ = 1.1 in.
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The stagnation line results are very similar to those given in Figures 9.9 through

9.13, so they are not presented here. As before, profiles near the pressure minimum

(sb _ 6) and at the end of the body (s_ ,_ 20) are presented. Figures 9.30 and 9.31

show the pressure profiles at these two stations. Figure 9.30 shows the results from

the two approximate techniques are similar and generally within five percent of the

VSL solution. The agreement is excellent between the approximate results, which

are virtually identical, and the VSL solution as the sharp cone limit is reached (Fig-

ure 9.31). At the pressure minimum region, the Maslen pressures axe generally within

five to ten percent of the VSL results.

The velocity components normal to the body are shown in Figures 9.32 and 9.33.

'File behavior noted for the 5 ° cone is present here, although the difference between

the results of Ref. [29] and the others is not as large as before. The body-tangential

velocity (Figures 9.3,1 and 9.35) and enthalpy profiles (Figure 9.36 and 9.37) also

follow the pattern set ill the previous case.

The solution with a nose radius of R,,os_ = 0.375 in and a body length of sb,, d = 50

is now discussed. Because the nose radius is smaller than above, the bluntness effects

(which are visible for the length of tile body above) are less pronounced at large

values of sb for this case. In the interest of brevity, the comparisons are limited to

surface properties. Figures 9.38 through 9.40 show that the heating rates, laminar

body pressures, and skin fi'iction distributions follow the same trends cited above: the

results of the approximate approaches are in generally good agreement (within five

to ten percent) with the VSL solution. Further, the shock-layer profiles (not shown)

follow patterns similax to the solutions with R,,os¢ = 1.1 in.
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Figure 9.30. Pressure profile comparison for 15° sphere-cone,

R,_o_e = 1.1 in (.sb _ 6.5).
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Figure 9.31. Pressure profile comparison for 15 ° sphere-cone,

R,,o_ = l.l in (,% _ 20).
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Figure 9.32. Normal velocity profile comparison for 15 ° sphere-cone,

R,_o_ : 1.1 in (sb ,_ 6.5).
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Figure 9.33. Norinal velocity profile comparison for 15 ° sphere-cone,

R,_o_ = 1.1 in (.% _ 20).
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Figure 9.34. Tangential velocity profile comparison for 15 ° sphere-cone,

Rno°e = 1.1 in (sb _, 6.5).
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Figure 9.35. Taagential velocity profile comparison for 15 ° sphere-cone,

R,ose = 1.1 in (sb _ 20).
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Figure 9.36. Enthalpy profile comparison for 15 ° sphere-cone,

R,_o_e = 1.1 in (sb _ 6.5).
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Figure 9.37. Enthalpy profile comparison for 15 ° sphere-cone,

R,_o,e = 1.l in (sb _ 20).
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Figure 9.38. Heat transfer comparison fox" 15" sphere-cone, R,_o_e = 0.375 in.
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Figure 9.39. Body pressure comparison for 15° sphere-cone, R,_os_ = 0.375 in.
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Figure 9.40. Skin friction comparison for 15 ° sphere-cone, R,_o,_ = 0.375 in.

9.2 Equilibrium

Two sets of results for equilibrium flow are presented in this section. Both cases

are for fully-laminar flow. The discussion follows the format of the perfect gas section.

Case 1

As a first case, flow over a 5° sphere-cone (R,_o, = 0.114 in) is calculated using the

the VSL [9] and present approaches. Both approaches use Hansen's [35] equilibrium

air model. The freestream conditions are poo = 0.067917 psi and Too = 438°R, with

a variable wall temperature input. Fully-laminar solutions are calculated for a body

length of sbc, d = 1350. tteating comparisons are made with the Reentry F flight

experiment [72]. The VSL heating results are fi'om Ref. [73].

Figure 9.41 shows tile shock shapes from the two methods. The results are analo-

gous to those of the perfect gas, 5 ° cone solution discussed earlier, although the shock

layer is not as thick here. In Figure 9.42, the heating results of the VSL and present

method are in very good agreement with each other (_vithin ten percent), although

they both underpredict the flight data.

The body pressure distributions are in excellent agreement (within five percent)

except in the pressure overexpansion/recompression region, as shown in Figure 9.43.

Figures 9.44 and 9.45 provide more detailed information on the stagnation region,

and show the results approach the stagnation line in a manner similar to the perfect
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Figure 9.41. Shock shape comparison for 5° sphere-cone, R,_os_ = 0.114 in.

gas case. The skin friction results of the two methods are presented in Figures 9.46

and 9.47. The two solutions are in good agreement, generally within ten percent.

The stagnation line results for p,v, fi, h, and p are presented in Figures 9.48

through 9.52, respectively. The two sets of results exhibit better agreement than

is seen for the perfect gas case. Profiles near the pressure minimum (sb _ 50) and at

tile end of the body (sb ,-_ 1350) are presented ill Figures 9.53 and 9.54. The pres-

sure profiles are within ten to fifteen percent of each other at tile pressure minimum,

while they are nearly indistinguishable (less than five percent apart) at the end of the

body. The body-normal velocity components at the pressure minimum (Figure 9.55)

are in agreement near the body, although further out in the layer there are noticeable

differences. At the end station (Figure 9.56), the agreement is excellent. In fact,

the present results are smoother than those of the VSL. The body-tangential veloc-

ity (Figures 9.57 and 9.58) and enthalpy profiles (Figures 9.59 and 9.60) agree quite

well (within approximately five percent of each other). Again note the oscillations

in the VSL results for the end station. These wiggles appear in the present solution

as well, and reflect a grid resolution problem at the boundary-layer edge. Since the

normal distribution for each method is based on physical distance, this problem can

be readily corrected by adjusting the spacing parameters (see Section 7.4).

Table 9.2 shows the overall run times required to generate this solution. The

value shown for the VSL results is tile total time required for three shock iterations.

As with the perfect gas comparison, the apt)roximate algorithm yields a dramatic

decrease in total CPU requirements over the VSL technique. Further, the last entry
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Figure 9.42. Ileat transfer comparison for 5 ° sphere-cone, R,_o_ = 0.114 in.
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Figure 9.43. Body pressure comparison for 5° sphere-cone, R,_o,_ = 0.114 in.
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Figure 9.44. Heat transfer comparison for 5 ° sphere-cone,

R,_o,_ = 0.114 in (stagnation region).
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Figure 9.45. Body pressure comparison for 5 ° sphere-cone,

R,o_e = 0.114 in (stagnation region).
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Figure 9.47. Skin friction comparison for 5° sphere-cone,

R,_o=e = 0.114 in (stagnation region).
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Figure 9.49. Normal velocity protile comparison for 5° sphere-cone,

R,o,_ = 0.114 in (stagnation line).
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Figure 9.51. Enthalpy profile comparison for 5 ° sphere-cone,
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Figure 9.52. Density profile comparison for 5 ° sphere-cone,

R,o_ = 0.114 in (stagnation line).

in the table illustrates that solving the approximate VSL equations for equilibrium

flow is inherently about sixty percent faster than solving the full VSL equations.

This speed-up is not as large as the perfect gas value, which can be attributed to

the complexity of the equilibrium air model relative to the perfect gas relations.

This is because a large percentage of the total run time is dedicated to determining

thermodynamic and transport properties, which are the same in both methods, so

that the benefits of using the time-saving approximate equations are reduced.
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Figure 9.53. Pressure profile comparison for 5° sphere-cone,

R_os_ = 0.114 in (sb ,_, 50).
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Figure 9.54. Pressure profile comparison for 5 ° sphere-cone,

Rnos_ = 0.114 in (sb _ 1350).
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Figure 9.56. Normal velocity profile comparison for 5° sphere-cone,

R,,ose = 0.114 in (_b _ 1350).
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Figure 9.57. Tangential velocity profile comparison for 5° sphere-cone,

R,,o_e = 0.114 in (s_ ,._ 50).
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Figure 9.58. Tangential velocity profile comparison for 5° sphere-cone,

R,,ose = 0.11,1 i_ (sb _ 1350).
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Figure 9.59. Enthalpy profile comparison for 5° sphere-cone,

R,,o,_ = 0.114 in (sb _ 50).
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Figure 9.60. Enthalpy profile comparison for 5 ° sphere-cone,

R,,os_ = 0.114 in (.sb _ 1350).
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Table 9.2. Run-tinms _ h_r 5 ° cone, Rno_e = 0.114 in.

stations

CPU time

grid pts/sec

Shock iterations

grid pts/sec/shock

Present

667 206'"

4539 714

15 29

3.0 2.5

45 72

a - Sua Sparcstation 1+

Case 2

As a second case, comparisons between the VSL [9] and current method are made

for Mach 22 flow over a 35.5 ° hyperboloid. The nose radius is R_o,, = 3.46457 ft

and the fully-laminar solution is computed for a body length of sb,,,d = 24.5. The

freestream conditions are p_ = 0.00094 psi and Too = 400°R, with a wall temperature

of T_ = 1998 ° R.

Figure 9.61 shows that the shock shapes from the two methods lie virtually atop

one another. In Figure 9.62, the heating rate comparisons are very good ( within five

to ten percent) for the entire length of the body. Likewise, the computed pressure

distributions (Figure 9.63) are in excellent agreement (within two to five percent)

everywhere. Referring to Figure 9.61, these excellent results can be attributed to the

fact that with the large body angle, the shock- and body-angles are nearly equal for

the entire length of the body (which more closely matches Maslen's assumptions).

The skin friction comparisons of Figure 9.64 show that the VSL and present method

are again in good agreement (generally within ten percent).

Since the stagnation line results are similar to those given in Figures 9.48 through

9.52, and the agreement between the solutions of the two methods is still excellent,

they are not presented here. Again, profiles near the pressure minimum (sb _ 15.5)

and at the end of the body (sb _ 25.5) are presented. Figures 9.65 and 9.66 show

that the pressure profiles at these two stations are nearly indistinguishable (less than

five percent apart). The only major differences in the body-normal velocity compo-

nents (Figures 9.67 and 9.68) are near the shock, and thus have minimal impact on

the surface properties. Further, the body-tangential velocity profiles (Figures 9.69

and 9.70) and enthalpy profiles (Figures 9.71 and 9.72) are within approximately five

percent of each other.
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Figure 9.61. Shock shape comparison for 35.5 ° hyperboloid, R,o_ = 3.46457 ft.
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Figure 9.62. Heat transfer comparison for 35.5 ° hyperboloid, P_o,, = 3.46457 ft.
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Figure 9.63. Body pressure conaparison for 35.5 ° hyperboloid, R_o_e -- 3.46457 ft.
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Figure 9.64. Skill fi-iction comparison f(,r 35.5 ° hyperboloid, R,_o,c = 3.46457 ft.
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Figure 9.65. Pressure profile comparison for 35.5 ° hyperboloid,

R,,o,_ = 3.46457 ft (sb _ 15.5).
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Figure 9.66. Pressure profile comparison for 35.5 ° hyperboloid,

R,,o,_ = 3.46457 fi (,_b _ 24.5).
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Figure 9.67. Normal velocity profile comparison for 35.5 ° hyperboloid,

R,_os_ = 3.46457 ft (sb ,-_ 15.5).
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Figure 9.68. Normal velocity profile comparison for 35.5 ° hyperboloid,

R,o,_ = 3.46457 ft (sb _ 24.5).
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Figure 9.69. Tangential velocity profile comparison for 35.5 ° hyperboloid,

R,,o,e = 3.46457 fl (sb ,,_ 15.5).
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Figure 9.70. Tangential velocity profile comparison for 35.5 ° hyperboloid,

R,,o,e = 3.46457 fl (sb -_ 24.5).
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Figure 9.71. I']nthalpy i)rolile comt)arisoi_ for 35.5 ° hyperboloid,

it,,o.,,_= :_.,J(_,,Jr,7it (._ _ 15.5).
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Figure 9.72. I",,1,he_lpy prolil(, collq)arisoll for 35.5 ° hyperboloid,

1_,,,,_ --:- 3.,!(i.157 fl (_b _ 24.5).
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Figure 9.73. Shock shape comparison for 6 ° sphere-cone, Rno,_ = 1.5 in.

9.3 Nonequilibrium

Three sets of results for nonequilibrium llow are presented in this section. The

first is flow over a 5 ° sphere-cone with a noucatalytic wall. The next case is a longer

20 ° cone, where two solutions are computed: noncatalytic wall and fully-catalytic

wall. The VSL [14] and current method are employed for this analysis. The discussion

follows the format of the previous sections, although additional profile comparisons are

made. As a final case, the present method is used to calculate tlow over a hyperboloid

with both noncatalytic and fully-catalytic wall (omlitior,s. The results for this case

are compared with Sht, ttle ttight data.

Case 1

/r *

As the first case, comparisons between the _ SL [14] and current method are made

for Mach 25 flow over a 6 ° sphere-cone. The nose radius is R,,o,, = 1.5 in and the

- 5. The' freestream conditionssolution is computed for a body length of _b_, d -

are p_ = 0.00794 psi and Too = 486°R, with a wall temperature of T_ = 2260°R.

Nonequilibrium flowfield calculations require additional boundary conditions for the

species mass fractions, and a noncatalytic wall boundary condition (see Section 5.5.1)

is specified here. The VSL heating results are from Ref. [70].

Figure 9.73 shows the shock shapes from the two methods. As with the perfect

gas and equilibrium results, the computed shock shal)es begin to deviate from one
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another in the overexpansion region. Figures 9.74 anti 9.75 show that the surface

heating results are within fifteen percellt of ('ach other and approach the stagnation

value quite smoothly. The pressure expansion is still underway at the end of this body,

and Figure 9.76 clearly shows the differences between the VSL and present body pres-

sures. Note that the pressures are al)proachillg each other as the solution progresses.

Figure 9.77 displays the same smooth behavior seen previously for stagnation region

pressure distributions. The skin friction results of the two methods are presented in

Figures 9.78 and 9.79. The two solutions are in good agreement (generally within ten

percent).

The stagnatioi_ line results for p, v, fl, T, and p are presented in Figures 9.80

through 9.84, respectively. The pressure predictions (Figure 9.80) are within approx-

imately one percent of each other, while the normal velocity profiles (Figure 9.81)

agree to within five percent. The tange_tial velocity profiles (Figure 9.82) are not

as close, but as explained earlier, this may be due to differences in the streamwise

momentum equation on the stagnation line. Agreement between the temperature,

as well as density, profiles (Figures 9.83 and 9.84) is excellent. The species mass

fraction profiles are presented in Figure 9.85. Note that for this figure, the dependent

variables are assigned to the vertical axis, rather than to the horizontal axis as is done

for the other profiles. Again the agreement between the two methods is very good.

Only trace amounts of NO + are present for this case, so its mass fraction profile is

not included in the figure.

Since the flow solution does not enconq)ass the pressure minimum (see Figure 9.76),

only profiles at the end of the body (_b = 5) are presented. Figure 9.86 shows that

the pressure profiles differ by twenty per'cent of each other at the end of the body.

The body-normal velocity components (Figure 9.87) are in good agreement through-

out the shock layer at this station. Notice that this velocity component is negative

at this station, which is indicative of the streamlines spreading away from the body

surface (see Figure 7.1). Although this behavior has not been shown previously, the

same situation exists in this region for perfect gas and equilibrium flows about slen-

der cones. The body-tangential velocity (Figure 9.88) profiles are in agreement near

the body and shock, but deviate from one another (by as much as ten percent) in

the interior of the shock layer. On the other hand, the temperature (Figure 9.89)

and mass fraction profiles (Figure 9.90) agree quite well (within approximately five

percent of each other).

As a final comparison for this case, the electron density is considered. Figure 9.91

displays the profiles for the stagnation line and the end station. Note the good

agreement between the solutions. As the sharp-cone limit is reached, the normal

spacing for the two methods are virtually identical. Thus, the oscillations near the

shock for the end station (which are present in both solutions) are possibly due to

grid resolution. Since they occur far away from the body, they have little effect on

the surface properties.

'Fable 9.3 shows the overall run times required to generate this solution. The value
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Figure 9.74. Heat transt'cr comparison for sphere-cone, R,_o,_ 1.5 /n.
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Figure 9.75. tlcat transfcr coml)arison for 6° sphere-cone,
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Figure 9.76. Body pressure co,nparison for 6 ° sphere-cone, Rnos_ = 1.5 in.
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Figure 9.77. Body pressur,_ comparison for 6 ° sphere-cone,

Rno_ = 1.5 i_ (stagnation region).
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Figure 9.78. Skirl friction comparison for 6 ° sphere-cone, R,os_ = 1.5 in.
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Figure 9.79. Skin friction comparison for 6 ° sphere-cone,

Rn,,s_ = 1.5 in (stagnation region).
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Figure 9.80. Pressure profile comparison for 6 ° sphere-cone,

R,_os_ = 1.5 in (stagnation line).
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Figure 9.83. Temperature profile comparison for 6° sphere-cone,

R,,os_ = 1.5 in (stagnation line).
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Figure 9.84. Density profile comparison for 6 ° sphere-cone,

R,,o_e = 1.5 in (stagnation line).
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Figure 9.85. Mass fraction profile comparison for 6 ° sphere-cone,

Rno_e = 1.5 in (stagnation line).
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Figure 9.86. Pressure, profile comparison for 6 ° sphere-cone,

Rnose = 1.5 in (_b = 5).
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Figure 9.87. Normal velocity profile comparison for 6 ° sphere-cone,

Rno,_ = 1.5 in (sb = 5).
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Figure 9.88. Tangential velocity profile comparison for 6 ° sphere-cone,

R,,o_ = 1.5 in (sb = 5).
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Figure 9.89. Temperature profile comparison for 6 ° sphere-cone,

R,,o,_= 1.5 in (s6 = 5).
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Figure 9.90. Mass fraction profile comparison for 6° sphere-cone,
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Table 9.3. Run-times _ for 6° cone, R,_o3_ = 1.5 in.

_ Present

46! 38stations

CPU time

grid pts/sec

shock iterations

grid pts/sec/shock

759 273

3 7
3.0 4.2

9 30

a - Sun Sparcstation 1+

shown for the VSL results is the total time required for three shock iterations. As with

the perfect gas comparison, the approximate algorithm yields a dramatic decrease in

total CPU requirements relative to tile VSL technique. Further, the last entry in the

table shows that the the present method can process approximately three times as

many grid points per second (for a given shock shape) as the VSL technique.
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Figure 9.92. Shock shape comparison for 20 ° sphere-cone, R,_o,, = 1.5 in.

Case 2

As a second case, calculations are performed for the Mach 25 flow over a 20 °

sphere-cone (R,o, = 1.5 in) with the same freestream conditions as the previous case.

Comparisons between the VSL [14] and current method are made for a body length of

sb,, d = 250. The freestream conditions are p,_ = 0.00794 psi and To_ = 486°R, with

a wall temperature of 7w = 2260°R. Solutions are generated for both a noncatalytic

and fully-catalytic wall condition (see Section 5.5.1).

Figure 9.92 shows that the shock shapes l'rom the two methods are indistinguish-

able, once the flow has reached sharp cone conditions. Figure 9.93 shows that with

this larger cone angle, the difference between the shock shapes is still very small in

the overexpansion region. From Figures 9.94 and 9.95, the 'approximate and VSL

surface heating results are generally within five percent of each other for both wall

conditions and approach the stagnation value quite smoothly. Note that in the nose

region the effects of wall catalysis are large (more than fifty percent), while further

downstream this difference diminishes (to approximately twenty percent). The results

of the present method do appear to satisfy dq,o/dsb = 0 at the stagnation line more

closely than the VSL approach. The catalytic botmdary condition has little effect on

the pressure, so only the fully-catalytic results for the body pressure distribution are

presented in Figure 9.96. In this figure, the values from the two methods are nearly

identical for sb > 20. At the pressure minimum, the difference between results is

approximately twenty percent. The behavior of the pressure in the stagnation region

is ide_ltical to that of the previous case (Figure 9.77). The skin friction results of the
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Figure 9.93. Shock shape comparison for 20 ° sphere-cone,

R,_o,_ = 1.5 in (overexpansion region).

two methods for both catalytic conditions are presented in Figure 9.97. The two so-

lutions are in good agreement for both wall conditions (generally within five percent),

and show only a ten percent difference due to the wall catalysis.

Since the freestream conditions are the same as the previous case, and the geome-

try is still spherically-capped, the noncatalytic wall profiles for the stagnation line are

identical to Figures 9.80 through 9.85. For tile fully-catalytic wall solution, the pro-

files of p, v, and it are nearly indiscernible from those of Figures 9.80 through 9.82, so

they are not shown here. The temperature arid mass fractions (Figures 9.98 and 9.99)

are visibly different from their noncatalytic-wal[ counterparts, although agreement

between the two methods is still within five to ten percent. The mass fraction profile

of NO + is not included in Figure 9.99, since only trace amounts are present for this

case.

Again, profiles near the pressure minimum (sb _ 3) and at the end of the body

(sb _ 250) are presented. Because the pressure and velocity profiles axe not greatly

affected by the wall catalytic condition, only tile fully-catalytic wall results for the

profiles of p, v, and _5are presented. Figures 9.100 and 9.101 show that at the pressure

minimum the pressure profiles are withi_ ten to fifteen percent of each other while at

the end station, the profiles arc nearly iudistinguishable. At the pressure minimum,

the body-normal velocity components differ by twenty percent (Figure 9.102). Fig-

ure 9.103 shows these components to be in excellent agreement (within five percent)
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Figure 9.94. Heat transfer comparison fin' 20 ° sphere-cone, R,_o,_ - 1.5 in.
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Figure 9.95. Heat transfer compariso,_ for 20 ° sphere-cone,

R,ose = 1.5 in (stagnation region).
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Figure 9.96. Body pressure comparison for 20 ° sphere-cone, P_os_ = 1.5 in.
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Figure 9.97. Skin friction comparison for 20 ° sphere-cone, Rnos_ = 1.5 in.
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Figure 9.98. Temperature profile comparison for 20 ° sphere-cone,
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Figure 9.99. Mass fraction profile comparison for 20 ° sphere-cone,

Rnosc = 1.5 in (stagnation line).
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Figure 9.100. Pressure profile comparison for 20 ° sphere-cone,

/_o,_ = 1.5 in (sb "_ 3).
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Figure 9.101. Pressure prolile comparison for 20 ° sphere-cone,

R,,os_ = 1.5 i', (sb _ 250).
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Table 9.4. Run-times" for 20 ° cone, t?.,_o_e= 1.5 in.

Present 1]

stations 587 157

CPU time 7961 525

grid pts/sec 4 15

shock iterations 3.0 2.1

grid pts/sec/shock 11 33

a - Sun Sparcstation 1+

at the end station. The body-tangential velocity profiles at the pressure minimum

(Figure 9.104) are in agreement near the body and shock, but deviate from one an-

other in the interior of the shock layer. Figure 9.105 shows that at the end station

these profiles axe virtually identical. Temperature profiles at the two stations given

above are shown in Figures 9.106 and 9.107 for the noncatalytic wall, and in Fig-

ures 9.108 and 9.109 for the fully-catalytic wall. At the pressure minimum, both

sets of profiles are within approximately five percent of one another. The profiles at

the end of the body are practically identical.

Mass fraction profiles at these two stations are shown in Figures 9.110 and 9.111

for the noncatalytic wall, and in Figures 9.112 and 9.113 for the fully-catalytic wall.

At the pressure minimum, both sets of profiles are within approximately five percent

of one another. Differences in the profiles at the end of the body are indistinguishable,

with the chemistry effects concentrated in the near-wall region. Only trace amounts

of NO + are present, so those profiles are excluded t¥om The figures.

As a final comparison for this case, the electron density profiles for the three

stations discussed above are considered. Figure 9.114 and 9.115 show generally good

agreement between the methods for the noncatalytic and fully-catalytic wall solutions,

respectively. The wiggles in the end station profiles at, the boundary-layer edge are

probably due to poor grid resolution there.

Table 9.4 shows the overall run times required to generate this solution. The value

shown for the VSL results is the total time required for three shock iterations. Trends

from the previous case are observed again here.
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Figure 9.102. Normal velocity profile comparison for 20 ° sphere-cone,

R,o,_ = 1.5 in (.% ,._ 3).
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Figure 9.103. Normal velocity profile comparison for 20 ° sphere-cone,

R,o,_ = 1.5 in (Sb ,_ 250).
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Figure 9.104. Tangential velocity profile comparison for 20 ° sphere-cone,

R,,o,e = 1.5 iu (,_ _ 3).
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Figure 9.105. Tangential velocity profile comparison for 20 ° sphere-cone,

R,,o,e = 1.5 in (sb _ 250).



9.3. NONEQUILIBRIUM 129

1.00

0.75

11n

0.50

0.25

p. = 1.14 psf

T. = 486 °R

M_=25

T w = 2260 °R

noncatalytic

VSL

Present

0.oo , , '
10"2

T

i i i i | | i i | |

10-I

Figure 9.106. Temperature profile comparison for 20 ° sphere-cone,

R,,o_ = 1.5 in (sb _ 3).
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Figure 9.107. Temperature profile comparison for 20 ° sphere-cone,

R,,o_ = 1.5 in (sb _ 250).
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Figure 9.109. Temperature profile comparison for 20 ° sphere-cone,

R,,o_e = 1.5 in (_ _ 250).
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Figure 9.110. Mass fraction profile comparison for 20 ° sphere-cone,
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Figure 9.111. Mass fraction profile comparison for 20 ° sphere-cone,
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Figure 9.112. Mass fraction profile comparison for 20 ° sphere-cone,
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Figure 9.113. Mass fraction profile comparison for 20 ° sphere-cone,

R,,o,_ = 1.5 iu (_b _ 250).
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Figure 9.115. Comparison of electron concentration profiles for 20 ° sphere-cone,

R,,o_ = 1.5 {n.
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Figure 9.116. tleat transfer calculations for 42.75 ° hyperboloid, R,_os_ = 4.489 ft.

Case 3

In tile past, hyperboloids have been used to model the windward symmetry plane

of the Shuttle at angle of attack (see Ref. [74], for example). As a final case, the present

method is used to calculate the Mach 15.7 flow over a 42.75 ° hyperboloid, which

approximates the windward symmetry plane of the Shuttle at an angle of attack of

42 °. The nose radius is R,o,e = 4.489 fl and the solution is computed for a body length

of "%e,,d = 25. The freestream conditions for all altitude of 60.56 krn are p_, = 0.00276

psi and T_ = 455°R, with a variable wall temperature input. Solutions are calculated

for noncatalytic and fully-catalytic wall conditioas. Figure 9.116 compares the two

heating rate distributions with Shuttle windward center]ine measurements from STS-

2 [31]. As expected these two calculations bracket the measured values. Note that

the flight data is closest to the fully-catalytic result. Results presented in Ref. [74]

also show the flight data falls closer to the fully-catalytic solution. Those results are

for a hyperboloid geometry as well, and the solution is calculated from VSL method

of Ref. [8].
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10 Conclusions

A new approximate VSL approach to solving hypersonic flowfields about axisym-

metric blunt bodies has been developed. The method is applied to sphere-cones and

hyperboloids, over a freestream Mach uumber range of 10 to 25. The shock layer

profiles, when compared to VSIJ solutions, are seen to be smooth and accurate for

perfect gas and reacting flows. This is an improvement over the results of Grantz [27],

and can be at least partially attributed to differences in the transformation variable

for the normal direction.

Using Maslen's pressure relation in lieu of numerically integrating the normal mo-

mentum equation is shown to give accurate pressure profiles outside of the pressure

overexpansion/recompression region. As a result, predicted body pressures are gen-

erally within five percent of the VSL values. Not surprisingly, computing the normal

component of velocity from the continuity equation, instead of using the approximate

relation of Ref. [29], is shown to yield profiles which are more consistent with a full

VSL solution. Because this component is small relative to the tangential velocity,

the impact of the approximate normal velocity expression on the tangential velocity

profiles is minimal except in the near-wall region.

Turning to heat transfer calculations for perfect gas flows, excellent agreement

between the VSL and approximate _pproach_,s is seen in the nose region. Within the

pressure overexpansion/recoml_ression rcgi(m, the Grantz [29] and present methods

yield comparable results which deviate from the VSL solution. Further downstream,

as the sharp-cone limit is approached, the present technique shows good agreement

with the VSL solution, while the results of llef. [29] are higher. This deviation appears

to be due to the normal velocity inaccuracies (mentioned above) having an effect on

the near-wall enthalpy profiles. For reacting flows, both equilibrium and nonequi-

librium, results from the present approach consistently exhibit good agreement with

VSL solutions. The Reynolds analogy relates the heating rate to the skin friction,

so it is not surprising to see that the skin friction results from the present and VSL

approaches are in good agreement in those regions where the heating results agree

well.

In the present method, a limiting form of the governing equations can be obtained

for use on the stagnation line. A dilferent approach is used in Ref. [29], with only

limited success. As a direct result of the formulation used here, the surface properties

calculated with the present method approach their stagnation values more smoothly

than those of Ref. [29] or the VSL solution.

Run time comparisons between the Ire'sent aud VSL [9, 14] approaches for perfect

gas and reacting flows show typically an order of magnitude reduction in overall

CPU requirements. Further analysis shows that for a given shock shape and time

interval, the present technique can process two to three times more grid points than
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the VSL algorithm. Based on the accuracy of tile computed surface properties, this

new approach could be useful in the preliminary design environment. Alternately,

it could be used to gcne,'ate an initial shock shape t'o1" more exact methods which

require starting solutions.
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11 Recommendations

For this new approach to be most useful in the design environment, its extension to

three-dimensional flows is required. The approximate approach of Ref. [29] does not

provide the desired accuracy, so tile transverse momentum equation (or an approxi-

mate form of it) probably would need to be included in the governing equation set.

In addition, certain facets of the ongoing research by Riley and DeJarnette [69] con-

cerning the inviscid solution of three-dimensional flows might be extended to viscous

flows.

Run-time comparisons show the present technique is significantly faster than the

VSL approach. However, especially for nonequilibrium flows, it is unclear whether this

is due primarily to Maslen's approximate relation or to other techniques developed

herein to increase computational cfficiency. It would be interesting to see if the run

time would be increased by a large amount with the normal momentum equation

included. In this scenario, the full VSL equations would be solved in a shock-normal

system.

The present method employs a lnarching procedure without global iterations in

the region where the outer portion of the shock layer is supersonic. As a result,

the physically correct phenomenon of information propagating upstream through the

subsonic portion of the boundary layer is neglected. With the VSL approach, global

passes followed by shock-shape smoothing allow information to propagate upstream.

An investigation into the effect of this omission in the current approach is warranted.

Currently, calculations cannot be made for very blunt bodies (greater than ap-

proximately 45°). This limitation prevents the calculation of flowfields over many

ASTV-type vehicles. The shock shape equation for the subsonic-transonic region

would require modification before such computations could be performed.

As a final comment, a more sophisticated procedure for determining the stream-

wise step size in the marching region would yield significant improvements in overall

computational requirements. Such improvements would be most noticeable in the

pressure overexpansion/recompression region.
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A Reference Quantities

The governing equations are nondimensionalized according to the following rela-

tions:

S* 7l*

8 -- n --

R_.ose R*_ose

Z* 7"*

Z -- I' --

U* 'V*

?2 = _ V --

v= v_

p* h*
h-

P-- .

P_4 It_4

q* /_.*
q=-- k=_

* l%_sq_4

n* c;
_=c---:- c_- c,

pc_ poo

T* ' "*

r = -- (Vi -- wi

rr_ _i,:,s

K s = t_sR*uose

*

p----
Pgo

*

tl -- .

tt T4

*

T-

C*
poo

The reference quantities are

P .4 = P_o h"_4 =

T*
_4- C*

poo

, = • V.3 ., PooP'*

qre] floo " c_ Wre.f -- R.nose

_:'J- n*.o.. J;;s- R:o,.

and #*_4 is the coefficient of viscosity evaluated at T*re J"

In addition, the following dimensionless parameters appear in the equations:
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Lez2i = p _Pl i,,,,
k*

Units for the dimensional quantities used al)ovc are

/_o_e = [fl]

.p,# =

q_# = Lf t2-s ]

h_j= L_._J

BTU

_./= LZ3H

BTU
C* =

- p_ .slug'°R_

T;_: [°R]
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B Fluid Equations
The development of the Navier-Stokes cquations can be found in a variety of

sources within the literature, so in the interest of brevity, this derivation is not re-

peated here. In particular, Ref. [75] presents the Navier-Stokes equations written in

an orthogonal curvilinear coordinate system. Restricting ourselves to axisymmetric

flow, these equations are written below in dimensional form.

continuity:
0

0 (p.u,h,a) + (p*v*h,h*a) 0
Os* On* i

S* - momentum:

{ U* OU*

p*

1 Or;*

hi Os*

_* - momentum:

1 Or*

hi Os*

energy:

. Ou* u*v* Ohl _ lop*

---- + v On---;+ ht On*] + hl Os*

(B._)

1 .
or:. r:. - r* Oh; 2Oh, _Oh; )

_¢ + On* h_On*]an* + h,l,,_ O," /-_-- + r,,, (B.2)

p_ (u*Ov* ,Ov" u*2Oh,_ Op* (B.3)
\EaT*+_ o.. h, b-_/+ On--v=

* * ( l r*

ar_,_____!, + rg, Oh_ 1 Oh, Oh_ _ r;, I, Oh; r_, aht
_ + On* Iqh_ Os* + h--7_On---7 + hl On*,] '_" h; On* hx On*

p. ( u* Oh* . Oh*)h-TOs--:+v _) h,o_*

1 [ 0 flt;#'Oh*_ 0 [ ,,,_Oh*\]

. Ou* Or*

+ q. _ + _.*.On---v +

u* Op* v* 03-[ =
On*

_:.Ion,. .Oh,1
+ -g, tos. +v g-_z..J

% [_*ah; .Oh;1
h_ t_ +" _n-;.*]

r. [0_* .Oh,1
11-" Sn

h, [gTs, "bTq
stress terms:

. [lj7,°""ro, = 2#* 0s* [ ° ]v*ah,] 2 _,* o (h;u*)+--(h,h;,,*)
--_+ h,--ff_n*J 3h,lt._ _ On*

0,* 2_,* [o o ]On* 3hit,; -67*(h>*)+ On--z(h_h>*)

--_+ hah_&*J 3h, h_ -_s* (h;u*)+_n " (h'h;v*)

* 2#*rn n --

. [ v* Oh_
r_ - 2#*[_ 0-;7,*

(B.4)

(B.5)
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%* = h-'_lOs--7 + h l

Using the definitions of Appendix A, Eqs. (B.1) through (B.5) are rewritten below

in nondimensional form.

continuity:
0 0

0-_ (pub3) + On (pvh,h3) = 0 (B.6)

s - momentum:

(u__Ou Ou uvOhl) 10pP\ h, o_ + _ + h--[o,---;.+ h, o_ -

? 1 Or., Or,. r_. - r_, Oh._ 2 Oh, Oh3_
h--io-V+-Y-#+ h,h_ o_ + h--,O,--7+h_O.) *'"

n - momentum:

(B.7)

(,_o.o oo ._Oh,) @ (B.S)P _+vOnn h_On +On=

c2{ l O'rsn OTnn Tsn Oh3 (lOb1 l Oh3) r¢¢ Oh3 r_Ohl}h--(O---Y+ _ + h,h_O_+ h7o---Z+ h-_o--Y_"" h_ o. h, o.

energy:

+ _,, ._ + -bVj

+_""_ + _°"N + _ h_o--2_+ o_ l

( u Oh Oh_ u Op

+_.. [Ov uOh,]h, _--_,,J

(B.9)

stress terms:

r'=2_[h, Os+ h, OnJ 3hih3 -_s(h3")+-_n (h'h3v)

where

r¢_ = 2/1

_2 -- re]

(B.10)
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By assumingthat v and n are of tile or(h'r tJf _ and neglecting terms of higher order

than _, the standard viscous shock-layer C¢luations are obtained:

continuity:
0 8

0---_"(puh3) + _ (pvhlh3) = 0 (B.11)

s - momentum:

{ u Ou Ou .v Ohz) 10p _

_ _ h, O,,11 +' 0.--_-+ --E#h_] _ h, _ ) (B.12)

n - momentum:

energy:

(& Ov Ov u20ha) OpP \h, Os +''on t,, 0. + _ = 0 (B.13)

{ _ Oh Oh'_ u Op Op

tP_a.J + p,.o,, i,, o,-,+ h--_0,----_
(B.14)

Ou Ohl'_ (10u

Note: In order to keep the equations parabolic in nature, the right-hand

side of the n-momentum equation is ouly of order 1.
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C Maslen's Method

Maslen's pressure relation is an approximate solution to tile normal momentum

equation. Briefly, some terms are observed to be negligible ii1 certain regions, while

others are assumed to deviate little from their shock values. The resulting closed-form

expression for p is a function of shock properties and stream function. The details of

this derivation are given below, since some of the intermediate results are used in the

present method.

Recall from the continuity equation, Eq. (B.II), that

0 0 (pvh]h3) = 0o%(p, h3)+ N

This expression is satisfied by the stream function _, where

0_ O_

0---_= pvhlhz On
- puh3

Maslen works in a(_, q) coordinate system, where

_=s 7/- %
(c.1)

The chain rule of differentiation gives

0 0_ 0 07 0 0 O_ 0

Os Os O_ Os Ort On On O_

071 0

On Oq
(C.2)

From Eq. (C.1)

O( 0,_ ] OO

O_ Os % Os
0( 07 1 0o

On On % On

rI d_,

_s d_

For axisymmetric flow,

2 dq_
qj = r_ --=resinP_

2 ds

Thus,

where

0

Os

0 071 0 0 puh3 0

O_ + Os O-_ Or, - _, 0,7

OTI 1

Os %
[pvhlh3 - qrs sin F,]

(c.3)

(C.4)
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From Eq. (B.13), the normal momentum equation is

( u Ov Ov u 2ohm) Op
P I,h, Os + vo-nn h, On ] + -_n = 0

(c.5)

Applying the transformations of Eq. (C.3) to Eq. (C.5), substituting

Ohl

On

and rearranging gives the normal momentmn equation in this coordinate system:

 p_l{ ]Orl hlh3 _)s [-_ + UtCs -
(C.6)

Apply Eq. (C.3) to n to get

V --

u On rlr, sin F_ On _
+

hi O_ ph,h3 Orl puh3

Using the approximation

along with Eq. (C.7) gives

n= (r/- 1)

l

Differentiate with respect to { to get

I' 8

(l-.)
2p, u_

(c.7)

Maslen neglects the last term in this expression to get

0n (' -,I) ,,_ [ _.,'. ]1 (c.9)
_: 2 cosr_ t _LJ

By substituting this expression into Eq. (C.7) and evaluating the remaining dependent

variables at the shock, the following relation for v is obtained

Ksrs ]
v. 1+--(_-1)

v = v_ + '-5" cos F_J
(C.10)

Differentiate with respect to q to get

O'v v, [ n_r_ ]o7:-_ _+ _o-7-_.j
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Substitute this expression into Eq. (C.6) and evaluate the remaining dependent vari-

ables at the shock so that

where the partial derivative of v with respect to _ has been neglected. Integrate this

expression to get Maslen's second-order pressure equation:

eft.,) =p. + p..(,-l) + p._ (c.12)

where

and

_sT"s'll s

PMz -- 2

v, sin F, [ x,r, ]PM2 -- 2 1 + cos I-----_J

This result is essentially a truncated Taylor's series expansion of p about its shock

value:

p(_,r/) = po(_) + p,(() [q --1] + P2(_)['/_! 112z (C.13)

where

1)o = P, Pl -- PM1 + PM2 P2 = PM2

i

The streamwise derivative of p along lines of constant r/,_ appears in the governing

equations. Differentiating Eq. (C.12) with respect to ( gives an expression for the

streamwise derivative along lines of constant )/:

0p @s

0_ d_

dK, &, ]

+v, ,l-(+

Recall that

v, sillP, co_]_ d_ + cosF, d_ cosr,

(C.14)

dr__.__ du, 0 (sin [',) = -t% cos F,
d_ - sin F, d--_-= _' sin F, 0---_

Make these substitutions to obtain

O_l,7- d_ + --7 u,,,,si,,r', + ,,?,--_- + ,_],-,sinr',
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4 ( _?-: ,s +_.si_,rs 1 cosr_,

+[1 + cosF,] [sin F_ _--_ 'o_n, cos Ps (C.15)

Eq. (C.15) is the partial derivative of p along lines of constant 7?. However, the desired

quantity is the partial derivative of p along lines of constant r/,_. Recall from Eq. (C.3)

that

Op _ Op] OqOp Op _ puha Op
Tj

and fi'om Eq. (2.1.7)

Op _ Op ] _ 71.- l dnb Op

Os O_].. nb d_ 0_,,

Op 10p

On nb Orl,_

Equate these expressions to get

op] op] o,7op ,I. - 1dn_o7,
I = o_1,+ o_o_ +.,, nb d_ 07.

Op puhanb Op

It turns out that the expression for OqlOs, Eq. (C.4), is not well-behaved near the

stagnation line. By making use of Eq. (C.7), this expression may be rewritten as

&l puh3 On

Os _, O_
(c.16)

where On/O_ is defined in Eq. (C.9). Equation Eq. (C.16) is well-behaved near the

stagnation line so this form is used everywhere.
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D Shock Layer Thickness

With each iteration in the solution of the governing equations, a calculated value

of the shock layer thickness, nb, may be determined from the continuity equation. As

explained in Chapters 7 and 8, this thickness is compared with the geometric thickness

given by the shock and body equations. When these two values are in agreement,

the solution is advanced to the next station. This appendix provides the expression

for determining this calculated shock layer thickness. Inherently, this expression also

provides the relationship between q and q..

The continuity equation, Eq. (2.1.10), carl be rewritten as

0 dnb 0

0---_(nbp,#u,fih3) - p,u, d_ O_l_

0
[(q.- 1)#(_hz]-psw---(#vhlh3)=0 (D.1)

uq,

Integrate across the shock layer to obtain

dnb

(ps#vh,h3), - (ps#vh,h3)_ + p,u, d---( {[(7In - 1) #fih3]_ - [(qn - 1) #fih3],,}

Recall that

' 0= _ (nbpspus_h3)d,l_

sinF,
Us -- Uw _ Uw "-- 0

P_

Make these substitutions into Eq. (D.2) to get

o_

Integrate with respect to ( to obtain

nbp.us [K_hadq. = rs sin F_d_ =

Since

this call be rewritten as

drs

-- - sin P_
d_

ths = 1 h3s = rs

= "s sin Fs

d_

f0 _' rs sin rs_rdrs

r s 2
#fih.jdy_ = rsdrs - r_ _ _

2

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)
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Substitute for h3 to get

/0' /0'nbp, usrs pf_drl,, -k nbpsu_nb cos F, pfi {r/n -- 1) dr/,, -- _o (D.7)

This yields the following quadratic for rib, the normal distance from the shock to the

body:

An alternate approach for calculating the shock-layer thickness is given below.

For a given station (where s is a constant), utilizing Eq. (C.3) gives

drI OrI pu h 3

dn On d)_

Similarly, Eq. (2.1.7) shows that along a given shock-normal line

drl O0 1 OrI 1 dq

dn - On nb Orl,_ nb drl,_

Equate these relations to get

Integrate to obtain

dT/
q)_-r-- = puh.:_n_ = p_[rusfth3nb

arln

/ r3 fO r_n
_ s d71 = p,'u fl_b fifth3don

Substitute for h3 to get

At the shock, r/= 1 and _1,, = 1 so that

which is equivalent to Eq. (D.8). Eq. (I).9) defines the relationship between r/and

7in. As a result, it must be used in conjunction with Maslen's pressure equation in

order to find p for a given value of (_, _I,,)-
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E Geometric Limits

When the governing equations are applied oil the stagnation line, their limiting

forms (as ( ---, O) are required. These limiting expressions contain fractions in inde-

terminant form which must be evaluated through the use of l'Hopital's rule. This

appendix provides the finite, nonzero values of these quantities.

As_O,

drt b

uo = cos Fe _ 0 r, _ 0 d--'( --* 0 (E.1)

and

Thus,

du_ d cos r, dr,

de d_ - a, sinre -- mo d_ -sinL -* 1 (E.2)

Applying l'Itopital's rule,

ue cos F_ 0

rs re 0

(}lim cos I_______

_.--*0 r e

Since from Eq. (2.1.4)

= lim{d(cosPe)/d_}_-..o dr,/d_ = X_o

ha=r,(l_n c°sl'_)
?'s /

as(_0,

In addition to these fundamental quantities, two other terms merit attention. The

first appears in Eq. (2.4.12), the limiting form of the streamwise pressure derivative:

v-,o -_ ff_ ,_ (._,O l u, d_ +_s0(r/-a) (E.4)

4 Veo Laso _-,o(

Applying l'tIopital's rule:

lira { cos Fe- re':e },_--,'0 " 3"
'U.s

L_--'" uZ--d-(J -%,_o

3u_, sin l s Ke sin F, - rs d---( -
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so that

T]lllS_

lira - - - (E.5)
_-o ,_3 3,% 2 _, d_

_-o u--_0--_,_lim1 01, = _-olim ,[_ d_ + x, o (r/- 1) (E.6)

2 1

A second term to be evaluated appears in Eq. (2.4.16), the limiting form of the

streamwise derivative of n:

Note that

lira _ cos F_, -- ,',_s }_--.oL u_r, k rs _-_0 U a

so that

(--*0 rs

(E.8)
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F Shock Properties

Boundary conditions along the body and at the shock wave (in the form of jump

conditions) are required for the solution of the governing equations. The jump con-

ditions across the shock vary according to the chemical nature of the flowfield. This

appendix l)rovides tile jump co,lditions for l)crfect gas, equilibrium, and nonequilib-
rium flows.

In the shock-normal system

voo = V£ sin I', tt_ _---/t s _ cOSFs

From the conservation equation

From the momentum equation

P_ + po+V_ = Ps + PJ'_ = p, + p<_v_'t_

From the energy equation

h* + 5- = h:+ 5-

Writing these equations in nondimensional form (see Appendix A) yields

u. = cos F_ (F.1)

p_t,_ = sin l's (F.2)

p_ + vs sin F, = p¢¢ + sin 2 [', (F.3)
i

• 2 sin 2 F_
v, (F.4)h_+ 9T-= h+++ ---y-

Substituting Eq. (F.2) into Eq. (F.3) gives

p_=p_+sin:F_(1 -1) (F.5)

Substituting Eq. (F.2) into Eq. (F.4) gives

h" = h°_ + sin'_ I'_ (l - -_,)--2 (F.6)

The derivative of the u, with respect to _ appears in the streamwise momentum

equation, while Maslen's relation for the streamwise pressure gradient requires the
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_-derivatives of p, and v,. First, differentiate Eqs. (F.1), (F.2), (F.3), and (F.4) with

respect to _ to obtain
dus

d--(- = _ sin P_ (F.7)

- _,cosre + v, / (F.S)d_ p,

dp___t_= , dvs
-2_s sin r_ cos I, + v_ cos r_- sin F_-57 (F.9)

d_ a¢

and
dh_ dv_

--d_= -_,si,, rs cosr_ - v,_ (F.10)

respectively.

The closure of tile above two sets of equations requires the use of the equation

of state and the definition of enthalpy. It is advantageous to use different forms of

these two expressions for various flowfield regimes. Thus, at this point the discussion

branches into three such areas: perfect, thermally perfect, and chemically reacting

gases,

F.1 Perfect Gas

a_

For a perfect gas, the specific heats are constant so that enthalpy can be expressed

h; = C,*T:

which gives

From the equation of state

where

hs = C_,7; = T, (F.11)

p, = p,_o,_T, (F.12)

C*
poe

Eqs. (F.2), (F.3), (F.4), (F.II), and (F.12) provide five equations for five un-

knowns. They may be solved algebraically (see [76] for details) to get

2 sin 2 l',. 7 - 1
(F.13)

3' + I _(? + 1)M£

(_ + 1)M£sin2F, (F.14)
2 + (7 - 1) M_ sin 2 F_

T_ - p' 7 (F.15)
Ps_ - 1
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"1

sin 1
Us

P._

Further, since differentiating Eq. (F.14) with respect to _ gives

(F.16)

dps -4x_p_ cos F_

7( = (_ + 1)ML sin:'r, (F.17)

equations Eqs. (F.8) and (F.9) become

dp,, 4 .tt_, sin Fs cos F,

d_ - 7 + 1 _'sinFs cosl's = - (F.19)7+1

F.2 Nonequilibrium Flow

As noted in Chapter 5, for a chemically reacting mixture, the enthalpy is given by

N$

h = _'_f;,h,_
i=1

so that
N.,

I f

dh = CpldT + Y]_hidci
i=1

For nonequilibrium flowfield calculations, it is assumed that the flow is chemically

frozen through the shock wave. Thus, behind the shock

dc i _- 0

so that

where

In addition,

From tile equation of state

where

dh, = Cp_d'l; (F.20)

c,,. = ,::o_C,,o_(Ts)+ CN_,_C,,N." (:I;)

h., = co_ho.,, (T.,) + CN2.,_hN2 (T.,)

p, = p_-_,:7', (F.21)
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Differentiating Eqs. (F.20) aa_d (F.21) with respect to ( gives

dhs , dI's

d_ - (_'"' d_ (F.22)

dp_ n_ [ dr_ ___]d---_= .M,i--_r [ps-_ + Ts (F.23)

Combining Eqs. (F.22) and (F.10), substituting the result into Eq. (F.23), and

using that expression with Eq. (F.8) gives

M ,,,,. dp_ ^:_
cos P_ (vs - p, sin F,)

dp_ R,, d_ (;p_ (F.24)

d_ T_+ v---2--_

G,

Substituting Eq. (F.8) into Eq. (F.9) yields

de - v 2 l, de - 2_, cos F, [v, - sin F,] (F.25)

Equating Eqs. (F.24) and (F.25) gives

dp, _'c°sF" { (v" - p_sin F') [v_ C---_] }Cp_ - 2 + (v, - sin F,)
-- = (F.26)

Substituting Eq. (F.25) into Eq. (F.8) gives

d--(= 2_ cosr_ - l - -- _ cosr. + -- (F.27)
i

F.3 Equilibrium Flow

For an equilibrium chemically reacting mixture of perfect gases, the definition of

enthalpy is

Typically, equilibrium air models must be employed in the form of "table look-up"

or "curve fit" procedures. Since the energy equation is cast in terms of h, the model

used here is of the form

T, = T,(p,, h,) Z_

From the equation of state

= Z,(p,,h_) (F.2S)

(F.29)

In general, algebraic expressions for tile derivatives of p_ and v_ with respect to _ are

difficult to obtain in the manner applied in the previous two regimes. The approach

taken in this work is detailed in Section 4.3.
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G Chemically Reacting'Flows

The governing equations as presented in Appendix B may be applied to equilib-

rium flows, as will be discussed later in this appendix. For chemical nonequilibrium

flows, expressing the energy equation in terms of T, rather than h is beneficial since

the chemical finite rate equations are dependent on T. First, rewrite Eq. (B.14) as

( u Oh Oh) u Op Op (G.1)P h--_O---_+V-_n h, Os YOn-

{( 1Oq l Ohl Oh3_
-0--_+c 2 -q _-T--+ +tLOn h3 On]

For perfect gas flow, the heat flux in tile n-direction is

u 0hi) 2}hi On

q*=-k*OT* =q*c (G.2)
On*

so that in nondimensional form (see Appendix A),

q = -_2k_n- n = qc (G.3)

where the subscript c denotes the energy flux due to conduction in the normal direc-

tion. Since

dh = CpdT

this may be written as

q = qc = -e2 P Oh
Pr On

which is the representation used in Eq. (B.14).

For chemically reacting flow, the effect of (liffusion must be included. Thus,

(G.4)

q* = q: + q_ (G.5)

where q_ is the energy flux due to diffusion in the normal direction. This term can

be expressed as
N,

q_ =-P _"_79i'mhi (-_n* (G.6)
t= 1

where 79.*,,mis the multicomponent diffusion coefficient, N, is the number of species

present in the mixture, and ci is the mass fraction of species i. Define the Lewis

number, which is the ratio of the mass diffusivity to the thermal diffusivity, as

-*C *79*
Lei,m - V V f i,mk, (G.7)
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Now Eq. (G.6) nmy be rewritten as

-_ k* Lei,,n . , Oci
qj = - _ h i

i=1 Cp]*

(c.s)

Written in nondimensional form,

q = qc + q,t (0.9)

and

_c2_-_,kl.ei,,,,. Oci
= t_,_ (o.10)q" _ Gs

In the case of equilibrium flow, tile conduction and diffusion quantities are com-

bined through the following procedure. From Eqs. (G.4), (G.9), and (G.10),

f OT _kLei,,, Oc_'_

For a gas in local chemical equilibrium,

Oci Idci- OT
P

dT + OPlTdP (G.12)

and

I OhldP (G.13)or, dT + _ Tdh = -_ p

where the subscripts p and T denote constant pressure and temperature, respectively.

Assuming constant pressure in the normal direction gives

Oci Oci OT
_ (G.14)

On OT On

Oh Oh OT _ OT

0--_- OT 0,_ - C:'_-_n

and Eq. (G.11) can be rewritten as

(G.15)

f OT .-_kLei,,_h OTOci (O.16)

or

(G.17)
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where the reaction conductivity (due to diffusion) is

_ k Lei,m . Oci
- h,-_f (G.18)ks _=l Cp!

This definition of total conductivity (kT) can be used to define an equilibrium Prandtl

number:

,cp
Prcq- kT (G.19)

This quantity is also referred to as the total or reaclive Prandtl number. Substituting

into Eq. (G.16) gives

=-_2I_CpOT- _2 _ Oh (G.20)q
ProqOn P% On

By combining Eqs. (G.20) and (G.1), it is seen that Eq. (B.14) can be used for both

perfect gas and equilibrium flows (provided P_q is used).

For nonequilibrium flows, substituting Eq. (G.11) into Eq. (G.1) gives

( u Oh Oh ] u Op Op

P \h, Os+'_] h, as von -

On ---_n ) + I_ (0.21)

+_nn I.i= 1 --Cp, i --Onj + i=lLkLei'mh--cP,i .-:<----OCionhi - +Oh lOn O h 3 _h3 On ]

Tile variable h still appears on the left hand side of the above equation. Note that

for a mixture of thermally perfect gases

N_

h = h(_,,T) = __c,h,(7')
i=1

Therefore,

Ns Ns N, tL.ALi ,, Ns

dh= Ec,dh,+ Eh,d_,= E_.,_d'1 + Eh,d_,
i=1 i=l i=1 i=l

Thus,

Oh OT U'-_"cC _ Oc,
- _ _, ",,,+ Z,,=,h,--o_

Since the frozen specific heat is given by

Nj

o.I = Ec,C.,
i=1
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this can be written as

Similarly,

Substituting into Eq.

Oh OT ._. Oci

o--;= c; j N + i_.LJ" ---,o_

Oh OT @, Oci

I=1

(G.21) gives

P

+ 0,, 0h, +--- +.o,, h,_O,, ko_ h, _]

+ 0-@" [£ t_TLCi'rn" Oci]hi_ll,] "4- £kLeim" Oci (10hl' OT/ --"b"_--nlOh3_ })
On Li=i (Yp[ i=1 Cp] hi-onn hi _-_ h3

If the assumption of binary diffusion is made,

(G.22)

(_[ o_' __ Oc,_ roOT &h Oc,1) u@ v@p _ c;j _ + )_2h,=-I + _ [ ,_o,, + -- =

[k j + 0. h.0-z+ +"

+ "_n h i -_n -}- 2-' -- n i _-;-c- ---- +
i=_ QV On hl On h3 On ]

(G.23)

Based on the binary mass diffusivity, 7)['2, the definition of the binary Lewis number

is

Le12 - p* Cv; *Z>_2
k* (G.24)

In addition to modifications to the energy equation, calculating flowfields with

finite-rate chemistry requires the solution of the species conservation equation for

each chemical species in the mixture. An excellent derivation of this equation is

presented in [77]. The final result is repeated here:

_.(,*0_, .0_,x . 04* (t _0h;)t_+_) =_' o,,.. 4* oh,+On* h;On* ] (G.25)

where 527 is the rate of production term for species i and fli* is the diffusion mass flux

term of species i. This binary diffusion mass flux term is defined by Fick's law to be

OCi

Jg = - p*'P';2On* (G.26)
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which can I,e written ;_s

k* Oq # * . Oq

J,* - (, . I.cr2 - --l.,:t2--- (G.27)
;'I On" l'r On*

I lsing tile definitions of Al)lwndix A, Eq. ((_.25) is rewritten below ill nondimen-

sional tk)rn_:

( { ( , }P _-- + -- i)u b l O, ha On )0,_ "_ ) ';"- '_ --- -_J' --- + (G.28)

wJlcrt'

k Oq
J, - Lq,., ---

1

(.'pf J'tt

Substituting Eq. ((L29) into F,q. ((1.23) and rearranging yields

(G.29)

2 O kO__n + ----+h3 O'u /q Ono,, h. o,, -7_/+ ;,

e2V, q..r _ OT

-Y_h'e_ L-_-I_ + J' \/j_--+Ou .....h3On z_..,,-,,_'pi On
i=1 ' i=1

Co, d,ining Eq. (G.28) and Eq. ((1.30) gives

(G.30)

, u 07' 07"_ u Op Op

Pc'v (V, o_ +''_) ;,,o,_ "o,,

_{;;fa_,,] o,t,(, , o;,.:,'_;,,,.[__J+_:;,,,;7,o;`'+;,:.-- O,, --_1
+ tt

N, 07' N,

-' _3;C'"i 0,,
i=1 i:1

2} (0.31)
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H Reaction Rates

In nonequi]ibrium flows, the chemical reactions proceed at a finite rate. The

production terms (tb_ for each species i in the mixture) appear in the energy equation

(when formulated in terms of temperature) and in the species continuity equations.

A discussion of these production terms is presented below.

Consider as an example, the dissociation of diatomic oxygen:

02 + M, --_ 2 0 + M, (H.1)

where M_ is a collision partner (or catalytic third body). Catalytic bodies are those

collision partners which do not undergo a chemical change during the reaction. From

empirical results, the rate of formation of O can be written as

d

dr* [O] = 2k} [02] [M_] (H.2)

where k} is the ibrward reaction rate coefficient which is a function of T* only, and

each bracketed term represents the concentration of that substance (in moles/cm3).

The reverse (backward) reaction is

02+M_Y--20+M_ (H.3)

so that the rate of reduction of 0 is

d

dt. [O] = -2k_ [O]2 [M.] (H.4)

Combining these two elements gives

02+M_=eO+Mr (H.5)

so that the net rate of 0 formation is

d

dt--7 [0] = 2k} [02] [M,.] - 2k_ [0] 2 [Mr] (H.6)

For the more general case of a multicomponent gas with N_ distinct reacting

chemical species and N_ simultaneous chemical reactions, the stoichiometric relations

for the overall change from reactants to products are:

Nt Nt

_-'_,,,.,,.X* = _/3,.,_X* (H.7)
i=1 i=1
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where r = 1,2, •.., Nr and Nt is equal to the total number of the reacting species (N,)

and catalytic third bodies (No). The quantities ai,r and fli,r are the stoichiometric

coefficients for reactants and products, respectively• The variable X_ denotes the

concentration of species i (or catalytic third body i - N,):

, ci [moles]

x; = p, ,q, , t cm3] (H.8)

In the above example,

ao2 = 1 no=O aMr = 1

_o_ = 0 /30 = 2 3Mr = 1

For the r-th reaction of Eq. (H.7), the forward rate of production is

( dX* _ Nc
I, II (T/p*)a''' (H.9)

k dr* 1, = (fll,r - eli,_) k* i=,

while the backward rate is

k dr* ], -(_i,r-oi,_)k* i=,
(H.10)

so that the net rate of production [78] is

= br1-I(_ip*)_'"
\Mi]_ \ dr* ] = (Ni,r-_i,_) k_ (-rip*)_',_- k*

r i=1 i=1

(H.11)

where p* is in gm/em a. The net mass rate of production of the i-th species may be

obtained by summing (Eq. H.11) over all the reactions N_:

(o*=p _ = _dt.] = Mi _,e,t. '
r=l r r=l r

(H.12)

or

where

• * Nr

w_,= (. )e* Mi _ (_i,_- _i,_) R_,,_- RL (H.13)
r=l

Nc Nc

= l__rR_,r k*p. II ('_/p*)°"_= h_, *a_II ('_,)°""
i=1 i=1

k* Nc Nc
br

" = -- =/%p II ('y/)_""R_,, e* lI ("1i#1_''_ "* *'_
i=l i=1

N¢

= _ Oq, r -- 1Ot r
i

i=1
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Table H.1. (',[tenli('_tll(ea('tions

r Reaction

1 02+U,= 20+M,

2 N.2+M_ 2N+M2

3 N2+ M3_ 2N+ M3

4 NO+M4_-- N+O+M4

5 NO + 0 _ 02 + N

6 N2+O _ NO+N

7 N+O _NO++e -

Mr

N2, 02, 0, NO, N

N2, 02, 0, NO

N

N2, 02, O, NO, N

N_

i=l

The mole-mass ratio (or mole number), _ti, is defined as

= .¥;

M_ p*

")'i = N,

E Zi-Ns,n'_'n

n=l

for i = 1,2,...,N_

for i- N_ + l,...,Nt

(H.14)

where Zi-N,.,, is the catalytic efficiency of third body Mi-N, for specie n. Written in

modified Arrhenius form, the reaction r_tes are

k*=AI'"T*_'_exI'(-TDs"/T*)I'_ , ' [ l(cm3_'_]_mole] (H.15)

k*b_= Ab,_T*B_"exp(--'ID_,_/ ) ' \mole] (H.16)

where T* is in K.

In this study, a seven-species model [15] for air is used. Table H.1 lists the reactions

and third bodies which are considered. The efficiencies of the catalytic third bodies

are given in Table H.2 for the various reactions. Finally, the forward and backward

rate coefficients are presented in Table H.3.
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Table H.2. Third Body Efficiencies Relative to Argon

Catalytic i - N,

Bodies

M, 1

M2 2
M4 3
e- 4

Efficiencies

N2 02 N 0 'NO NO +

i=1 i=2 i=3 i=4 i=5 i=6

2 9 1 25 1 0

2.5 1 0 1 1 0

1 1 2O 20 20 0

0 0 0 0 0 1

10 " •Table H.3. Chemical Rate (, effioents

]r

1 3.61×101ST-l"°exp( -5.94× IO4/T)

2 1.92×1017T-°'Sexp(-1.131×lOS/T)

3 4.15×1022T-l%xp(-1.131×lOS/T)

4 3.97x102°T-l'Sexp(-7.56×104/T)

5 3.18x109 T 1"° exp(-1.97×104/T)

6 6.75×1013 exp(-3.75×10a/T)

17 9.03×109 T °'5 exp(-3.24x104/T)

[,:,.:V,,_ol_-s_]or [c_/,,_ot__ -sec]
3.01 × 101ST -°'s

1.09× 1016T -o.s

2.32× 1021T -l"s

1.01 × 102°T -1"5

9.63x1011T °'s exp(-3.6 x 10a/T)

1.50×1013

1.80× 1019T -1"°
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I Species Thermodynamic

Properties

For nonequilibrium flows, species thermodynamic properties are required for each

species present in the fluid. Ref. [60] has provided curve fits for C_ and h7 for the

temperature range of 300K <_ T* _< 30000K:

specific heat:

CP----L= Ml + M2T* -_ `43._]'.2 + A4T .3 + `45T .4 (I.1)
"R,,u*

static enthalpy:

M A2T* A_T .2 A4T .3 A_T .4 `4e, (I.2)
,29s.15 _ Al + __ + __ +_ + __ + T--7T_.*T* 2 3 4 5

The subscript i denotes the i-th species as given in Table 5.1. The temperature range

cited has been divided into five sub-ranges with each sub-range curve fit with the

above polynomials. Coefficients ,41 through ,45 are presented in Table 1.1, grouped

according to these sub-ranges. The ,46 coefficients are related to the heats of forma-

tion of their respective species (and therefore invariant with temperature). They are

located in Table 1.2, along with the species heats of formation.

Note that the enthalpy from Eq. (I.2) is referenced to a temperature of 298.15K.

The specific enthalpy for a reference temp_,rature of OK is desired. This can be

calculated using tile relation

* 2 *h i=h* =h 7, +Ah.*,o 29s.15 ,o - AhT_gs.15 + 98.15C_pg (I.3)

where the first term on the right hand side is obtain?d from the above curve fits.

Tile second and third terms (which are the heats of formation at OK and 298.151(,

respectively) are provided in Table 1.2, while the perfect gas values of C_*/are presented
in Table 5.1.
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Table 1.1. Constants for Polynomial Curve-fits of Thermodynamic Properties

Species

N2

O2
N

0

NO

NO +

e-

02
N

0

NO

NO+

e-

02

N

0

NO

NO +

e-

N2

O_

N

0

NO

NO+
e-

N2

02

N

0

NO

NO +

C-

A1 A_ A3 A4 A5

300K< T* _< IO00K

.36748x 101 -.12081 xlO -'2 .23240× 10-s -.63218×10 -9 -.22577x 10 -12

.36146×101 -.18598x 10 -e .70814×10 -5 -.68070x 10 -s .21628x 10 -11

.25031 x 101 -.21800x 10 -4 .54205×10 -7 -.56476x 10 -l° .20999x 10 -is

.28236x 101 -.89478x 10 -3 .83060×10 -6 -.16837x 10 -9 -.73205x 10 -t3

.35887x 101 -.12479x 10 -_ .39786×10 -5 -.28651 x 10 -s .63015x10 -1_

.35294x101 -.30342×10 -2 .38544×10 -6 .10519x10 -s -.72777x10 -12

.25000×101 .O0000xlO ° .00000× 1O° .00000×10 ° .00000×10 °

1000K< T* < 6000K

.32125×101 .10137x10 -2 -.30467×10 -6 .41091×10 -lo -.20170x10 -14

.35949×101 .75213×10 -3 -.18732x10 -6 .27913×10 -1o -.15774×10 -14

.24820×101 .69258×10 -4 -,63065×10 -z .18387×10 -1° -.11747×10 -14

.25421x101 -.27551x10 -4 -.31028x10 -s .45511×10 -ll -.43681x10 -15

.32047x101 .12705×10 -2 -.46603×10 -8 .75007x10 -xo -.42314x10 -14

.32152×10 ! .99742×10 -a -.29030×10 -6 .36925×10 -lo -.15994x10 -14

.25000 x 101 .00000 x 10 ° .00000 × 10 ° .00000 x 10 ° .00000 x 10 °

6000K< 7'* < 15000K

.31811×101 .89745×10 -a -.20216x10 -6 .18266x10 -1° -.50334x10 -15

.38599×101 .32510×10 -3 -.92131×10 -8 -.78684×10 -12 .29426x10 -lo

.27480× 101 -.39090x 10 -a .13380×10 -6 -,11910×10 -1° .33690x 10 -15

.25460×101 -.59520× 10 -4 .27010×10 -7 -.27980× 10-n .93800x 10 -16

.38543x101 .23409x10 -3 -.21354x10 -7 .16689×10 -n -.49070×10 -16

.26896x101 .13796x10 -2 -.33985x10 -6 .33776×10 -1o -.10427x10 -14

.25000×10 t .00000×10 ° .00000× 10 ° .00000×10 ° .00000×10 °

15000K< 7'* < 25000K

.96377× 101 -.25728× 10 -: .33020× 10 -'_ -.14315x10 -1o .20333× 10 -15

.34867×101 .52384x10 -3 -.39123x10 -7 .10094×10 -11 -.88718x10 -17

-.12280x101 .19268×10 -_ -.24370x10 -6 .12193×10 -1° -.19918x10 -1_

-.97871×10 -_ .12450x10 -2 -.16154× 10-6 .80380x10 -al -.12624x10 -x5

.43309× 101 -.58086x 10 -4 .28059x 10 -7 -.15694× 10 -H .24104x10 -le

.59346x 101 -.13178x10 -2 .23297× 10 -6 -.11733×10 -l° .18402x10 -15

.25000x101 .00000xl0 ° .00000x 10 ° .00000xl0 ° .00000xl0 °

25000K_< 7* _< 30000K

-.51681x101 .23337x10 -_ -.12953×10 -6 .27872×10 -11 -.21360x10 -le

.39620×10 x .39446×10 -a -.29506x10 -7 .73975×10 -12 -.64209x10 -17

.15520x10 _ -.38858 x 10 -'_ .32288× 10 -6 -.96053× 10 -n .95472x 10 -l_

.16428×10 _ -.39313× 10 -_ .29840x 10 -6 -.81613× 10 -n .75004x 10 -1_

.23507×101 .58643x10 -a -.31316×10 -7 .60495×10 -_ -.40557x10 -xv

-.51595×10 _ .26290x10 -°- -.16254×10 -6 .39381×10 -1_ -,34311x10 -_6

.25000× 101 .00000×10 ° 20000×100 20000×10 o .00000×10 °
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Table 1.2. Heats of Formation

Specms h* Ah_, .,46"_ " _k {298.15 0

[k.cal/gm-,,,ol_]
N2 -.10430× 104

O2
N

O

NO

NO +

C-

0.0

0.0

112.973

59.553

21.580

236.660

0.0

0.0

0.0

112.529

58.984

21.457

235. 180

0.0

-.10440× 104

.56130× 105

.29150×105

.97640× 104

.11840× l06

-.74542× l03
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J Species Transport Properties

For nonequilibrium flows, species transport properties are required for each species

present in the fluid. For the temperature range of 1000K < T* < 30000K, the species

transport properties are defined by the curve fits of Ref. [60]. The expression for

viscosity is

#i = e

where the species coefficients are given in Table J. 1. ]'he frozen thermal conductivity

is given by
i

Ecol/cm- -, l
with the species coefficients located in Table J.2.

The ionic species viscosities and frozen thermal conductivities as defined by the

tabulated coefficients are for the limiting electron pressure, which is defined as

• Tcr _ 4

These values should be corrected by employing the following tbrmula [61]:

tq (P't) ki (P't)

pi (p*.,._,:) - ki (p*.,.,,.._) In

The local electron pressure is

T* _4 T* _8/3]

'0209(100_pp:t.25 ] +l'52(100_p--p:{2s ] J

p" = NeKBT* [aim]el

(J.4)

0.5)

Table J.1. Constants for Viscosity Curve-Fits

Species A u B, C_,

O2
N

0

NO

NO +

f-

0.0203 0.4329 -11.8153

0.0484 -0.1455 -8.9231

0.0120 0.5930 -12.3805

0.0205 0.4257 -11.5803

0.0452 -0.0609 -9.4596

0.0 2.5 -32.0453

0.0 2.5 -37.4475
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Table J.2. Constantsfor FrozenThermal Conductivity Curve-Fits

Species Ak Bk Ck Dk Ek

0.03607 -1.07503 11.95029 -57.90063 9'3.21782N2
O2
N

0

NO

NO +

e-

0.07987 -2.58428 31.25959 -166.76267 321.69820

0.0 0.0 0.01619 0.55022 -12.92190

0.0 0.0 0.03310 0.22834 -1i.58116

9"0.0._92 -0.87133 10.17967 -52.03466 88.67060

-0.06836 2.57829 -35.72737 219.09215 -519.00261

0.0 0.0 0.00032 2.49375 -27.89805

where Nc is the electron number density and KB is Boltzmann's constant. In the

present work, all electron pressure of 1 atm is assumed everywhere so that the above

correction reduces to

pi _ ki _ 2 (J.6)

tti (P**t.,..) - ki (p**tm_=) In
•0209[ - 6) + 1.52v]-0- / j
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K Conic Shock Shape

Define the shock shape with a conic equation:

22 2Csz s [sZ sr s _

Differentiating Eq. (K.1) with respect to _ gives

drs cos l's
- (C_ - b,z_) - sin I',

d_ r,

Differentiate Eq. (K.2) with respect to _ and rearrange to get

_srs _ sin2 re + b_cos_r_
COS P 8

Now differentiate Eq. (K.3) with respect to ( to get

_,_2 = 2m sinr, cosr,(b,- 1)

Utilizing the product rule of differentiation,

so that

dt_ s COS P [
- _ 2xssinI',[d_ r,

cos F, (b_ - 1) - n_ (tan P, x. sin F,)]

That is,

d---(=_" 2 sin r,-- (b, -1) 1re re cos2I', ] J

Substituting Eq. (K.3) and rearranging gives

dx, cos 2 P,
-- = 3x, sin F_-- (be - 1)
d_ r_

On the stagnation line, Eq. (K.7) has the following limiting form:

(-.o cos r_ d_ = 3x_°2 (b_ - 1)

(K.1)

(K.2)

(K.3)

(K.4)

(K.5)

(K.6)

(K.7)

(K.8)
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L Cubic Shock Shape

Define the shock shape in the region between the previous and current marching

stations with the following cubic equation:

÷2 ÷3(Azs)a,', = ÷o+ ÷, (_x_-s)+ ,,_.(Azs)2+ (L.1)

where

/_k Z s Z s
-- ZSk- 1

The axial position of the current station is z_ = z_k, while the previous station is at

z_ = -o Differentiating Eq. (L.1) with respect to z, gives the shock slope:
~k-l"

--_drs_ ÷3÷, + ÷_ (Az_)+ = (Az,) 2 = tan F, (L.2)
(Iza Z

Differentiating Eq. (I,.2) with respect to z_ gives

d2r---A= ÷2 + ÷3 (Az,) = -n, cos -3 F_ (L.3)
dz_

One more differentiation yields

d 3re
-i'a (L.4)

dz_

Now focus on the previous station (k- l), where this current shock segment meets

the previous segment (between stations k - 2 and k- 1). The shock geometry here

was determined from this previous segment. Requiring a continuous position, slope,

and curvature across this juncture (where z_ = z,k. 1) gives

I d2r_ Idr, ÷2- dz 2 k-1÷0 = rsk_ 1 ÷1 _ _ k-I

However, from Eq. (L.4), note that the curvature derivative is not continuous between

shock segments. In fact, the derivative's value is invariant along the length of a given

segment.

Eq. (L.3) can be rewritten as

÷3- Az. [ dz_ dz_ k-,

so that Eq. (L.4) becomes
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which is simply a two-poiilt backward difference rcl)rcsentation of d2r,/dz_. Substitute

this definition of ÷3 into Eq. (lJ.1) to get

which defines the shock segment in terms of values at the previous station. Similarly,

Eq. (L.2) can be written as

- + T _ + (L.8)
dz, dz, k-i dz; [k-1 dz_ ]

to yield an expression for tile shock slope between stations k - 1 and k.
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