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Abstract— Routing problems involving heterogeneous
vehicles naturally arise in several civil and military
applications due to fuel and motion constraints of the
vehicles. These vehicles can differ either in their mo-
tion constraints or sensing capabilities. Approximation
algorithms are useful for solving these routing problems
because they produce solutions that can be efficiently
computed and are relatively less sensitive to the noise in
the data. In this paper, we present the first approximation
algorithm for a 2-Depot, Heterogeneous Vehicle Routing
Problem when the cost of direct travel between any pair
of locations is no costlier than the cost of travel between
the same locations and going through any intermediate
location.

I. INTRODUCTION

Surveillance applications involving Unmanned Aer-
ial Vehicles (UAVs) or ground robots require multiple
vehicles with different capabilities to visit a set of
locations. The cost of traveling between two locations
can depend on the type of the vehicle being used.
In these applications, it is reasonable to assume that
the amount of fuel used by a vehicle is directly pro-
portional to the distance traveled by the vehicle. This
paper addresses an important routing problem involving
two heterogeneous vehicles that arises due to fuel
constraints. Specifically, the 2-Heterogeneous Vehicle
Routing Problem (2-HVRP) is as follows: Given a set
of targets and two heterogeneous vehicles, find a tour
for each vehicle such that each target is visited exactly
once and the sum of the costs traveled by both the
vehicles is minimum. The cost of traveling between
two targets depends on the type of vehicle used and
the position of the targets.

There are several applications where routing prob-
lems such as the 2-HVRP could arise. In UAV appli-
cations, it is possible that the vehicles have different
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constraints on their maximum speeds depending on the
vehicle type. Even if we ignore the minimum turning
radius constraints of the vehicles when the targets are
reasonably far apart, the distance travelled between
any two targets is still dependent on the type of the
vehicle. These routing problems could also arise in
applications involving ground robots such as the reed-
shepp vehicles.

The 2-HVRP is a generalization of the single Hamil-
tonian Path Problem (HPP) and is NP-Hard [1]. There-
fore, we are interested in developing approximation
algorithms for the 2-HVRP. An α−approximation al-
gorithm is an algorithm that
• has a polynomial-time running time, and
• returns a solution whose cost is within α times the

optimal cost.
Aiming for approximation algorithms is reasonable
in the context of path planning of unmanned aerial
vehicles with motion constraints because the cost of
traveling between any two targets for an unmanned
aerial vehicle can depend on several factors including
wind disturbances. Hence, it is appropriate to devise
approximation algorithms for these planning problems
that are relatively inexpensive than devise algorithms
that opt for exact solutions.

Currently, there are no algorithms in the literature
with a constant approximation factor for the 2-HVRP.
We will assume that cost of traveling from an origin
to a destination directly is no more expensive than
the cost of traveling from the same origin to the
destination through an intermediate location. We say
that the costs associated with the problem satisfy the
triangle inequality if they satisfy the above property. It
is currently known that there cannot exist a constant
factor approximation algorithm for a single Hamil-
tonian Path Problem or a Traveling Salesman Problem
if the triangle inequality is not satisfied unless P =
NP . In this paper, we present the first 8-approximation
algorithm for the 2-HVRP when the costs satisfy the
triangle inequality.

The 2-HVRP is related to a well known class of
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problems that has received significant attention in the
area of combinatorial optimization. These problems
include the Traveling Salesman Problem (TSP) and the
Hamiltonian Path Problem (HPP) and their generaliza-
tions [1], [2], [3], [4]. There are few approximation
algorithms that are available for the generalizations of
the TSP and the HPP. As this article deals with constant
factor approximation algorithms, henceforth, in this
article, we assume that the costs satisfy the triangle
inequality1. The symmetric TSP has two well known
approximation algorithms - the 2−approximation al-
gorithm obtained by doubling the minimum spanning
tree (MST) and the 1.5−approximation algorithm of
Christofides obtained through the construction of MST
and a weighted non-bipartite matching of nodes of MST
with odd degree [5].

Rathinam et al. have provided 2−approximation al-
gorithms for variants of the homogenous, multiple TSP
and HPP in [7],[8][9]. Currently, there are no approxi-
mation algorithms for any heterogeneous, multiple TSP
or HPP known in the literature. In this paper, we present
the first 8-approximation algorithm for the 2-HTSP
when the cost of the edges joining any two targets
satisfy the triangle inequality.

II. PROBLEM FORMULATION

Let T represent all the targets to be visited and
D = {d1, d2} denote the two depots (initial locations)
corresponding to the first and the second vehicle re-
spectively. Let E be the set of all the edges joining any
two distinct vertices in V = T

⋃
D. Now, consider the

undirected graph G = (V, E). Let the cost of traversing
from vertex i to vertex j for the first (second) vehicle
be C1

ij (C2
ij). The costs are assumed to satisfy the

triangle inequality, i.e., for every i, j, k ∈ V, i 6= j 6= k,
C1

ij + C1
jk ≥ C1

ik and C2
ij + C2

jk ≥ C2
ik.

Let the number of targets visited by the ith vehicle
be ki. In the trivial case where vehicle i does not visit
any target, ki = 0 and the corresponding travel cost for
the ith vehicle is zero. In the general case where ki >
0, let the sequence of vertices visited by vehicle i be
denoted as Si = {di, p

i
1, p

i
2, · · · , pi

ki
} where pi

1, ·, pi
ki
∈

T . The total travel cost corresponding to this sequence
for the ith vehicle is defined as Costi = Ci(di, p

i
1) +∑ki

j=2 Ci(pi
j−1, p

i
j). The objective of 2-HVRP is to find

the sequence of vertices to visited for each vehicle, i.e.,
S1, S2 such that each target is visited at least once and

1If the costs do not satisfy the triangle inequality, we know that
there cannot be constant factor approximation algorithms for the
TSP or the HPP.

the total travel cost of both the vehicles, Cost1+Cost2,
is minimized.

III. APPROXIMATION ALGORITHM via A

2-COMPONENT HETEROGENEOUS MINIMUM

SPANNING FOREST

We adapt the basic approach available for few vari-
ants of the TSPs to devise an approximation algorithm
for the 2-HVRP. The main steps in this approach are
as follows:

• Remove the degree constraints in the given variant
of the TSP to find a suitable relaxation that can be
solved in polynomial time. Solving this relaxation
yields a network that spans all the vertices with
minimum cost. For example, for a TSP, the net-
work is a minimum spanning tree. For a multiple
TSP, the network is a minimum spanning forest
such that no two depots are connected.

• Double the edges in the minimum spanning net-
work to obtain a connected, Eulerian subgraph for
each vehicle.

• Find an Eulerian tour in each connected subgraph.
The Eulerian tour traverses each edge in its con-
nected subgraph exactly once.

• By short cutting each Eulerian tour, a path or a
tour can be obtained for each vehicle such that
each target is visited exactly once.

It has been shown that the above approach yields
a 2-approximation algorithm for few variants of the
TSP [10], [7], [8]. In this paper, we use a similar
approach to develop an approximation algorithm for
the 2-HVRP. The important step in the above approach
is to find an appropriate relaxation of the given TSP or
the routing problem that can can solved in polynomial
time. By removing the degree constraints of the 2-
HVRP, we obtain a relaxation that requires calculating
a Heterogeneous Minimum Spanning Forest (HMSF).

A heterogeneous spanning forest consists of two
disjoint trees rooted at d1 and d2, so that all the targets
in T are spanned and the depots are not connected.
The cost of the tree rooted at d1 is computed with the
edge costs associated with the first vehicle while the
cost of tree rooted at d2 is computed with the edge
costs associated with the second vehicle. A HMSF is a
heterogeneous spanning forest where the sum of the
cost of the two trees is minimum. The problem of
finding the HMSF is referred to as the HMSF problem
in this paper. Though it is not clear whether there is
a polynomial time algorithm that can find a HMSF, in

1731



this paper, we prove that there is a 4-approximation
algorithm for the HMSF problem.

The difficulty in developing an approximation algo-
rithm for the HMSF lies in finding a suitable partition
of the target vertices that must be visited for each of the
vehicles. We do this by posing the HMSF problem as
a multi-commodity flow problem as follows: Suppose
there are n distinct commodities corresponding to each
of the n targets, and at least one unit of each commodity
is required to be delivered to its corresponding target
by either of the vehicles. If the commodity is delivered
by the ith vehicle to a target, then that commodity is
routed through those edges that only carry commodities
from the ith vehicle. The 2-HTSP may be posed as
the construction of trees for the vehicles such that the
combined cost is minimum and at least one unit of
commodity specific to each target is delivered by either
one of the vehicles.

Before we present the approximation algorithm
for the HMSF problem, we formulate this multi-
commodity flow problem as an integer program. Let pk

ij

denote the flow of kth commodity originating from the
first depot and flowing from node i to node j. Let qk

ij be
the corresponding flow from the second depot through
the directed edge (i, j) to the kth target. Though both
the flows, pk

ij , q
k
ij , can flow through (i, j), they are

constrained in amount by the capacity of the arc (i, j).
Let fij denote whether arc (i, j) is used by the first
vehicle in its tour and similarly let gij denote whether
arc (i, j) is used by the second vehicle. It should be
noted that the directionality of arc is important here.
The following capacity constraints naturally arise:

0 ≤ pu
ij ≤ fij ∀i, j ∈ T ∪ d1, (1)

0 ≤ qu
ij ≤ gij ∀i, j ∈ T ∪ d2. (2)

Consider an edge e = (i, j) ∈ E. Vertices i and j are
essentially the endpoints of the edge e. Let xe and ye

represent the variables which decide whether edge e
is present in routes of first vehicle and second vehicle
respectively. Edge e is present in the tour (xe = 1) of
the first vehicle if either there is a directed arc from
i to j (fij = 1) or there is a directed arc from j to i
(fji = 1). These conditions can be stated as follows:

fij + fji = xe ∀e ∈ E, (3)

gij + gji = ye ∀e ∈ E. (4)

A shipment of the uth commodity shipped from either
of the depots can only be delivered to the uth target.
Let ψu be the quantity of the uth commodity shipped

to the uth target from the first depot and let ηu be the
corresponding quantity shipped from the second depot.
The following are the flow balance equations for flows
p and q respectively:

∑

j∈T

pk
ij − pk

ji =





ψk ∀k ∈ T and i = d1,

0 ∀i, k ∈ T and i 6= k,

−ψk ∀i, k ∈ T and i = k.

(5)

∑

j∈T

qk
ij − qk

ji =





ηk ∀k ∈ T and i = d2,

0 ∀i, k ∈ T and i 6= k,

−ηk ∀i, k ∈ T and i = k.

(6)

Since at least one unit of commodity is to be shipped
for each u ∈ T , we have the following relation:

ψu + ηu ≥ 1,∀u ∈ T (7)

The 2−HMSF may thus be posed as the following
integer program:

CHMSF ∗ = min
∑

e∈E

C1
e xe + C2

e ye. (8)

subject to capacity constraints [1, 2], flow balance
constraints [5, 6], directed constraints [3, 4], coupling
constraint [7] and the following restriction on the
domain of the variables:

xe, fij ∈ Z+ pk
ij , ψk ∈ <+ (9)

ye, gij ∈ Z+ qk
ij , ηk ∈ <+ (10)

where Z+ is the set of all positive integers.
The complexity of 2−HMSF is not clear. However,

in this article, we provide a 4-approx algorithm for the
2−HMSF through the following algorithm.

HMSF Algorithm
1) Relax the integrality constraints in the above IP

for the 2-HMSF and solve it. The relaxed pro-
gram (call it LP ∗) can be solved in polynomial
time as the number of variables and constraints
only scale polynomially with the size of V .

2) Find the optimal fractional quantities of each
commodity shipped from both the depots. Parti-
tion the targets into two disjoint groups according
to which depot ships the maximum amount of
commodity to the targets. If both depots ship
equal amount of commodity to a target, it does
not matter to which group it belongs to. In
essence, let X = {k| ψk ≥ 1

2}. X correspond
to those targets who have received maximum
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shipment of their commodity from the first depot,
d1. Let Y be the rest of targets.

3) Find a tree spanning the targets X and the depot
d1 of minimum cost. The minimum cost spanning
tree (MST) is computed according to the cost of
edges associated with the vehicle starting at depot
d1. Similarly find a minimum-cost tree spanning
the targets Y and the depot d2. Clearly, this
is a feasible solution to the formulated integer
program.

Let the optimal cost of the minimum spanning
tree corresponding to the first vehicle be denoted by
C1

MST (R) where R = X ⋃{d1}. Similarly, let the
optimal cost of the second minimum spanning tree be
C2

MST (R′) where R′ = Y⋃{d2}. We now state the
main result of this paper:

Theorem 3.1: The cost of the feasible solution
produced by the HMSF algorithm is within four times
the cost of the relaxed linear program and hence, is
less than 4CHMSF ∗ . That is, the approximation factor
of the HMSF Algorithm is 4.

We first outline the gist of the proof before presenting
the details of the proof. Let the optimal cost of the
relaxed linear program be CLP ∗ . Corresponding to
this cost, let ψ∗k, η∗k be the optimal quantities of kth

commodity shipped from d1 and d2 respectively. We
formulate a new linear program LP1 by replacing the
coupling constraint (7) with the following constraints.

ψk ≥ 1 ∀k ∈ X , (11)

ηk ≥ 1 ∀k ∈ Y. (12)

Let the optimal cost of this new LP be denoted by
CLP1 . The main steps in the proof of theorem 3.1 is as
follows:

1) We first prove that the optimal cost of the LP
relaxation of the HMSF problem is greater than
half the optimal cost of the new linear program,
LP1. That is, CLP ∗ ≥ 1

2CLP1 .
2) In the HMSF problem, note that the only equa-

tions that couple the first set of variables,
{xe, fij , p

k
ij , ψ

2
k ∀e = (i, j) ∈ E, k ∈ T} with

the second set of variables {ye, gij , q
k
ij , η

2
k ∀e =

(i, j) ∈ E, k ∈ T} is through equations (7). After
replacing these coupling equations using (11,12),
there are no constraints that relate both these sets
of variables. Therefore, the new linear program,

LP1, decomposes into two subproblems. In the
first subproblem, LP (X ), the objective is to
minimize

∑
e∈E C1

e xe subject to the constraints
in (1,3,11) and xe, fij , p

k
ij , ψk ∈ <+. Similarly,

in the second subproblem, LP (Y), the objec-
tive is to minimize

∑
e∈E C2

e ye subject to the
constraints in (2,4,12) and ye, gij , q

k
ij , ηk ∈ <+.

Let the optimal cost of these two subproblems
be defined as CLP (X ) and CLP (Y) respectively.
As the linear program, LP1 decouples into two
subproblems LP (X ) and LP (Y), it is relatively
easy to note that

CLP1 = CLP (X ) + CLP (Y). (13)

3) In the final step, we prove the following results:

CLP (X ) ≥ 1
2
C1

MST (R),

CLP (Y) ≥ 1
2
C2

MST (R′).

(14)

Recall that C1
MST (R) (C2

MST (R′)) is the op-
timal cost of the minimum spanning tree for
the set of vertices defined by R = X ⋃{d1}
(R′ = Y⋃{d2}).

Summarizing the results in each of the above steps
gives

CLP ∗ ≥ 1
2
CLP1

≥ 1
2
CLP (X ) +

1
2
CLP (Y)

≥ 1
4
C1

MST (R) +
1
4
C2

MST (R′).

(15)

In words, if the results in the outline of the proof are
correct, then the sum of the cost of the two minimum
spanning trees obtained from the HMSF algorithm is at
most equal to four times the optimal LP relaxation cost
of the HMSF problem. Since this optimal LP relaxation
cost is a lower bound on the optimal cost of the HMSF
problem, it follows that the approximation factor of the
HMSF algorithm is 4. Therefore, to prove theorem 3.1,
it is sufficient to prove the following two lemmas:

Lemma 3.1:

CLP ∗ ≥ 1
2
CLP1 .
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Lemma 3.2:

CLP (X ) ≥ 1
2
CMST (R),

CLP (Y) ≥ 1
2
CMST (R′).

A. Proof of Lemma 3.1

Let the optimal solution of the LP ∗ be denoted by
Sol∗ = {x∗e, y∗e , f∗ij , g∗ij , pk∗

ij , qk∗
ij , ψ∗k, η

∗
k ∀e = (i, j) ∈

E, k ∈ T}. We now prove that 2Sol∗ is also a feasible
solution for the linear program, LP1. This would prove
Lemma 3.1. Note that all the constraints in (1), (3) and
(5) corresponding to the LP1 are trivially satisfied as
scaling the optimal solution, Sol∗, by a factor of 2 will
still satisfy all these constraints. The only constraints
that need to be checked for the LP2 are the ones defined
in (11) and (12). Now, note that for any k ∈ X , ψ∗k ≥
1
2 or 2ψ∗k ≥ 1. Similarly, any k ∈ Y , 2η∗k ≥ 1. We
have shown that 2Sol∗ is a feasible solution for LP1.
Therefore, 2CLP∗ ≥ CLP1 . Hence proved.

B. Proof of Lemma 3.2

To prove this Lemma, we first show that CLP (X ) ≥
1
2C1

MST (R). The proof for CLP (Y) ≥ 1
2C2

MST (R′)
follows exactly the same steps.

To prove CLP (X ) ≥ 1
2C1

MST (R), let us first summa-
rize all the constraints and the objective of LP (X ) as
follows:

CLP (X ) = min
∑

e∈E

C1
exe,

subject to

0 ≤ pu
ij ≤ fij ∀i, j ∈ V, u ∈ V \{d1} (16)

fij + fji = xe ∀e ∈ E, (17)

∑
j pk

ij − pk
ji =





ψk ∀k ∈ V \{d1}, i = d, j ∈ V

0 ∀i, k ∈ V \{d1}, i 6= k, j ∈ V

−ψk ∀i, k ∈ V \{d1}, i = k, j ∈ V

(18)

ψk ≥ 1∀ k ∈ R\{d1} (19)

ψ ≥ 0, f ≥ 0 and xe ∈ R+ for all arcs e ∈ E (20)

Now, consider a target vertex t ∈ R and a set S ⊂ V
such that the depot d1 ∈ S and t /∈ S. The vertex t
must receive at least one unit of commodity from the
depot d1. From the max-flow min-cut theorem [4],[12],
there is a flow of at least one unit from the depot
(d ∈ S) to a terminal node, t, in V \ S if and only
if

∑
e∈δ(S) xe ≥ 1. Since the cut set,

∑
e∈δ(S) xe, is

also equal to
∑

e∈δ(V \S) xe, constraints in (16-19) is
equivalent to the following set of constraints:

∑

e∈δ(S)

xe ≥ 1 for S ⊂ V, S ∩R 6= φ, R\S 6= ∅

.
Therefore, the linear program LP (X ) can be written

as follows:

CLP (X ) = min
∑

e∈E

C1
e xe,

subject to
∑

e∈δ(S)

xe ≥ 1 for S ⊂ V, S ∩R 6= φ,R\S 6= φ

(21)
xe ≥ 0 for e ∈ E (22)

If we define f(S) is equal to one whenever S ⊂
V, S∩R 6= φ,R\S 6= φ and is equal to zero otherwise,
the linear program LP (X ) can be rewritten as follows:

CLP (X ) = min
∑

e∈E

C1
e xe,

subject to
∑

e∈δ(S)

xe ≥ f(S) for S ⊂ V (23)

xe ≥ 0 for e ∈ E (24)

The above formulation of LP (X ) is actually a linear
programming relaxation of a well known problem in
the literature called the steiner tree problem. Given
an undirected graph G = (V, E) with edge costs
and subset of nodes, a set R ⊂ V , the objective of
steiner tree problem is to find a minimum weight tree
spanning all the nodes in R. The resulting tree may
or may not have the optional nodes (i.e, nodes in
V \R). The optional nodes are often referred to as the
Steiner nodes. Now, we use a result due to Goemans
and Williamson [11] that is available for problems
of this type to deduce that CLP (X ) ≥ 1

2C1
MST (R). If

the edge costs satisfy the triangle inequality, Goemans
and Williamson showed that the cost of the minimum
spanning tree over the vertices in R is at most twice
the optimal cost of LP (X ). This result is stated in the
following theorem:

Theorem 3.2: (Goemans and Williamson [11]) If
the costs satisfy the triangle inequality,

C1
MST (R) ≤ (2− 2

|R|)CLP (X ).
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For more details on the above theorem, the readers
are referred to [11],[4]. Using the above theorem it is
clear that CLP (X ) ≥ 1

2C1
MST (R). Hence, Lemma 3.2

is proved.

IV. 8-APPROXIMATION ALGORITHM FOR THE

2-HVRP

The approximation algorithm for the 2-HVRP is as
follows:

1) Construct a feasible solution, HMSF f , for the
HMSF problem using the 4-approximation algo-
rithm presented in the previous section. Let the
two trees in this feasible solution corresponding
to the two vehicles be denoted as HMSF f

1 and
HMSF f

2 respectively.
2) For i = 1, 2, double the edges in HMSF f

i to get
an Eulerian graph for vehicle i.

3) Find an Eulerian tour for each of the vehicles and
short cut these tours to obtain a path for each
of the vehicles such that each target is visited
exactly once. Let the paths obtained for vehicle
i be denoted as PATHi for i = 1, 2.

The above algorithm has an approximation factor of
8. To show this, let C(PATHi) be the total cost of all
the edges present in PATHi for i = 1, 2. Now, since
the costs satisfy the triangle inequality,

∑

i=1,2

C(PATHi) ≤ 2
∑

i=1,2

CHMSF f
i
.

We also know that,

2
∑

i=1,2

CHMSF f
i

= 2CHMSF f

≤ 8CHMSF ∗(using theorem 3.1)

≤ 8C2−HV RP∗

where C2−HV RP∗ is the optimal cost of the 2-HVRP.

V. CONCLUSION

In this work, we have considered the heterogeneous
version of a Vehicle Routing problem with two depots.
Using the procedure adopted in this article, a 4p ap-
proximation algorithm can be obtained for the multiple
depot version of the HVRP where p is the number of
vehicles.
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