
An Approximation Algorithm for a Bottleneck Traveling

Salesman Problem∗

Ming-Yang Kao † Manan Sanghi ‡

Abstract
Consider a truck running along a road. It picks up a load Li at point βi and delivers it

at αi, carrying at most one load at a time. The speed on the various parts of the road in one
direction is given by f(x) and that in the other direction is given by g(x). Minimizing the
total time spent to deliver loads L1, . . . , Ln is equivalent to solving the Traveling Salesman
Problem (TSP) where the cities correspond to the loads Li with coordinates (αi, βi) and the
distance from Li to Lj is given by

∫ βj

αi
f(x)dx if βj ≥ αi and by

∫ αi

βj
g(x)dx if βj < αi. This

case of TSP is polynomially solvable with significant real-world applications.
Gilmore and Gomory obtained a polynomial time solution for this TSP [5]. However, the

bottleneck version of the problem (BTSP) was left open. Recently, Vairaktarakis showed
that BTSP with this distance metric is NP-complete [9].

We provide an approximation algorithm for this BTSP by exploiting the underlying
geometry in a novel fashion. This also allows for an alternate analysis of Gilmore and
Gomory’s polynomial time algorithm for the TSP. We achieve an approximation ratio of
(2 + γ) where γ ≥ f(x)

g(x) ≥ 1
γ ∀x. Note that when f(x) = g(x), the approximation ratio is 3.

1 Introduction

Consider n cities C1, C2, . . . , Cn. Let cij be the distance from Ci to Cj . The problem of finding
a tour that visits each city exactly once and minimizes the total travel distance is known as the
traveling salesman problem (TSP). The bottleneck traveling salesman problem (BTSP) is to find
a tour that visits each city exactly once and minimizes the maximum distance traveled between
any two adjacent cities on the tour. Both the TSP and the BTSP are NP-hard in general
[4]. We consider the distance metric first proposed by Gilmore and Gomory in [5] which has
widespread practical applications [2, 6, 8, 10] and for which the TSP is polynomial time solvable.
Unfortunately, the BTSP remains NP-hard for this distance metric [9].

Let each city Ci be specified by the coordinates (αi, βi) for i = 1, 2, . . . , n. The distance
metric considered in this paper is given by:

d(Ci, Cj) = c(αi, βj) =

{ ∫ βj

αi
f(x)dx if βj ≥ αi∫ αi

βj
g(x)dx if βj < αi

where f(·) and g(·) are integrable and f(x), g(x) ≥ 0. Note that if f(x) = g(x) = 1, then
c(αi, βj) = |αi − βj |. Also note that in [5], Gilmore and Gomory solve the TSP with a less
restrictive condition viz. f(x) + g(x) ≥ 0 for all x.

∗Supported in part by NSF Grant EIA-0112934.
†Department of Computer Science, Northwestern University. Email: kao@cs.northwestern.edu.
‡Department of Computer Science, Northwestern University. Email: manan@cs.northwestern.edu.

1

Problem 1 (Gilmore-Gomory’s Traveling Salesman Problem (GG-TSP)).
Input: n pairs of numbers (α0, β0), (α1, β1), . . . , (αn−1, βn−1).
Output: A permutation π : {0, . . . , n−1} → {0, . . . , n−1} such that

∑n−1
i=0 c(απ(i+1 mod n), βπ(i))

is minimized.

Problem 2 (Gilmore-Gomory’s Bottleneck Traveling Salesman Problem (GG-BTSP)).
Input: n pairs of numbers (α0, β0), (α1, β1), . . . , (αn−1, βn−1).
Output: A permutation π : {0, . . . , n−1} → {0, . . . , n−1} such that maxn−1

i=0 c(απ(i+1 mod n), βπ(i))
is minimized.

Results GG-TSP can be solved in O(n log n) time [5, 10]. GG-BTSP can also be solved
in O(n log n) time if either f(x) = 0 or g(x) = 0 [5, 10]. However, in general GG-BTSP is
NP-hard [9]. In fact, the reduction used in [9] proves NP-hardness for the special case when
f(x) = g(x) = 1.

In this paper, we give a (2 + γ)-approximation algorithm for GG-BTSP where γ ≥ f(x)
g(x) ≥

1
γ ∀x. Note that this result immediately implies the following:

1. a 3-approximation algorithm when c(αi, βj) = |αi − βj |.
2. a (2 + max{ b

a , a
b})-approximation algorithm when f(x) = a and g(x) = b.

3. a 3-approximation algorithm when f(x) = g(x).

4. a (2 + b
a)-approximation algorithm when a ≤ f(x), g(x) ≤ b.

Further, we uncover some interesting properties of the underlying geometry of the problem
that shed new light on the structure of an optimal solution and hence allows for an alternate
analysis of the polynomial time TSP algorithm presented in [5, 10].

Paper Layout Section 2 discusses some applications of GG-TSP and GG-BTSP. Section 3
formulates an equivalent problem of GG-BTSP, called BBCA, on bipartite graphs and defines
some concepts and notations used in the paper. Section 4 derives a lower bound on the optimum
bottleneck cost. Finally, Section 5 presents the approximation algorithm for GG-BTSP. Most of
the proofs omitted from the main paper in the interest of space are presented in Appendix ??.

2 Applications

The original motivation for the formulation of GG-TSP and GG-BTSP was job sequencing on a
single state variable machine [5]. Consider a furnace and let temperature be its state variable.
A number of jobs are to be given a heat treatment in the furnace. The ith job will be started
at temperature βi and taken out of the furnace at temperature αi. The temperature is then
changed for the next job. Heating the furnace requires f(x) amount of energy while cooling
requires g(x) when the temperature is x. The furnace is at temperature α0 to start with and
is required to be in state β0 at the end. Sequencing the jobs to minimize the total energy
is equivalent to GG-TSP. Sequencing to minimize the maximum energy required for changing
between two jobs is equivalent to GG-BTSP.

Another application of the GG-TSP is in minimizing makespan in a two-machine flowshop
with no-wait-in-process which is a building block for more general no-wait production systems [8].

2

Ball et al [2] consider an interesting special case of GG-TSP that arises in the context of optimal
insertion of chips on a printed circuit board.

Another application of this problem formulation is in reconstructing sequential order from
inaccurate adjacency information. Consider n women standing in a circle with each facing the
clockwise direction. Each woman reports her own height αi, and the height βi of the one in
front of her. Given this information, we want to reconstruct the order of the women in the
circle. When the women make some errors in estimating heights, we may want to construct
an ordering which minimizes the maximum of the differences between the height αj reported
by the jth woman from the height βi reported by the ith woman for each pair of women i and
j such that j is in front of i in the ordering. This problem is equivalent to GG-BTSP with
f(x) = g(x) = 1.

One practical field where the problem of reconstructing such sequential order arises naturally
is in interpreting nuclear magnetic resonance (NMR) spectroscopy data for solving a NMR
protein structure. When exposed to an oscillating radio frequency field, the individual nuclei
in a protein sample respond at specific resonance frequencies, called chemical shifts. These
chemical shifts serve as identifiers of the corresponding atoms. The data from NMR experiments
consists of spectral peaks where a peak can correspond to a pair of chemical shifts of atoms in
adjacent amino acids on the protein backbone. The goal is to determine the correct order of
these chemical shifts from such adjacency information provided in NMR spectral data. For
NMR data interpretation, corresponding to the women in the aforementioned example we have
spectral peaks, and corresponding to the pairs of reported heights we have pairs of chemical
shifts associated with each peak. Some good references for extracting the adjacency information
from NMR experiments can be found in [11, 12]. There is also extensive work in automatic
resonance frequency assignment algorithms [1, 3, 7, 11–13].

Note that though we discuss the problem in terms of reconstructing a circular order, the
transformation to reconstructing linear order, as is required for NMR data interpretation, is
achieved in polynomial time. If the first and the last element in the linear order are known, the
linear order problem can be reduced to GG-BTSP in linear time by assigning the first element
and the front neighbor of the last element the identifier ∞, i.e., if f is the index for the first
element and ` is the index for the last one, then αf = β` = ∞. This forces a minimum cost
circular order to place the last element before the first one. If the first and the last element are
not known, then there are 2

(
n
2

)
options for them and hence if the time complexity of GG-BTSP

is T , we can solve this linear order problem in O(n2T) time. Similarly, if either the first element
or the last element is given, then we can solve the linear order problem in O(nT) time. In this
paper, we provide an approximation algorithm for GG-BTSP with a runtime of O(n log n); i.e.,
T = O(n log n).

3 Preliminaries

We first define an equivalent problem of GG-BTSP on bipartite graphs in Section 3.1. The rest
of the paper focusses on solving this equivalent problem. Then we define some notations in
Section 3.2, discuss some concepts in Section 3.3 and present basic lemmas in Section 3.4.

3.1 Problem Definition

Problem 3 (Bottleneck Bipartite Cyclic Augmentation (BBCA)).
Input: A bipartite graph G = (U, V,H) where H is a perfect matching, and a function φ :
U ∪ V → R.

3

Output: A set of edges M such that the bipartite graph G′ = (U, V, H ∪M) is a hamiltonian
cycle and max(u,v)∈M c(φ(u), φ(v)) is minimized.

For w ∈ U ∪V , φ(w) is called the potential of w. The cost of an edge (u, v) where u ∈ U and
v ∈ V is given by c((u, v)) = c(φ(u), φ(v)). The cost of a matching M is given by cM = maxe∈M

c(e). A set of edges M such that G′ = (U, V, H ∪M) is a cycle is called a cyclic augmentation
of G = (U, V,H).

Lemma 1. GG-BTSP and BBCA can be reduced to each other in linear time.

Proof. For reducing GG-BTSP to BBCA, given an instance I of GG-BTSP, (α0, β0), (α1, β1),
. . ., (αn−1, βn−1), let U = {u′0, u′1, . . . , u′n−1}, V = {v′0, v′1, . . . , v′n−1}, φ(u′i) = αi, φ(v′j) = βj ,
H = {(u′0, v′0), (u′1, v

′
1), . . ., (u′n−1, v

′
n−1)}, to form an instance I ′ of BBCA. Conversely, an

instance I of GG-BTSP can be similarly derived from an instance I ′ of BBCA.
Next, as shown below, there is a 1-1 correspondence between a cyclic augmentation for I ′

and a permutation for I, and the costs of the two are equal. Therefore, a minimum cost cyclic
augmentation for I ′ will be a minimum cost permutation for I.

Given a cyclic augmentation M for I ′, we can construct a permutation π of I as follows.
Let π(0) = 0. If π(k) = i and (u′j , v

′
i) ∈ M , then π(k + 1 mod n) = j. Since M is a cyclic

augmentation, π is a permutation.
Similarly, given a permutation π for I, the corresponding cyclic augmentation for I ′ is given

by
M = {(u′j , v′i) | ∃ k such that π(k) = i, π(k + 1 mod n) = j}.

3.2 Notations

For the remainder of the paper, let u0, u1, . . . , un−1 be the n vertices in U such that φ(u0) ≤
φ(u1) ≤ · · · ≤ φ(un−1). Similarly, let v0, v1, . . . , vn−1 be the n vertices in V such that φ(v0) ≤
· · · ≤ φ(vn−1).

If M is a matching between U and V , then let GM denote the graph G(U, V, H ∪M). Note
that for any matching M , GM is a set of simple cycles. If GM contains exactly one cycle, then
M is a cyclic augmentation. For g ∈ U ∪ V , let eM

g denote the edge adjacent to vertex g in M .

3.3 Concepts

It is useful to visualize the vertices in U as being arranged on the horizontal axis with their
abscissa being the potential φ(ui). Similarly the vertices in V can be visualized as being at a
higher ordinate and with their abscissa being their corresponding potential. An edge (ui, vj) is
a straight line connecting φ(ui) and φ(vj). See Figure 1 for an example visualization.

In our figures, we will represent the edges in H by dashed lines and the edges in M by solid
lines.

Left, Right and In-between Edges For any three edges e1 = (ua, vb), e2 = (uc, vd) and
e3 = (up, vq). If a < c, then e1 is said to be on the left and e2 is said to be on the right. The
edge e2 is said to be in-between e1 and e3 if a < c < p and b < d < q. Let ηe1,e2 be the number
of edges in-between e1 and e2.

ηe1,e2 = | { (ur, vs) | a < r < c, b < s < d} |.

4

1 3 5 7 8 11 12 15

2 5 7 9 10 13 14 17

Figure 1: A visual representation of G(U, V,H) where the potentials of the vertices in U are
1, 3, 5, 7, 8, 11, 12, 15, the potentials of the vertices in V are 2, 5, 7, 9, 10, 13, 14, 17, and H consists
of 8 edges connecting the potential pairs (1, 5), (3, 10), (5, 14), (7, 9), (8, 13), (11, 2), (12, 7) and
(15, 17).

Cross State and Straight State Given two edges (ua, vb) and (uc, vd) such that a < c, the
edges are said to be in a straight state if b < d and in a cross state if b > d. In our visualization,
the edges in a cross state will intersect while those in a straight state will not (see Figure 2).
An edge e1 is said to cross e2 if e1 and e2 are in a cross state. Note that if e1 crosses e2, then
ηe1,e2 = 0.

Cross Number The cross number of a matching M , denoted by ΓM , is the number of pairs
of edges which are in a cross state in M . Observe that

ΓM =
| {(g, h) | g, h ∈ U and eM

g crosses eM
h } |

2
.

Note that the cross number of M is the number of intersections in its visualization (see Figure
2 for an example).

u0 u1 u2 u3 u4 u5 u6 u7

v0 v1 v2 v3 v4 v5 v6 v7

Figure 2: The cross number of this matching M is 5. The edges eM
u2

and eM
u3

are in a straight
state. The edges eM

u5
and eM

u7
are in a cross state.

Exchange Given a matching M with two edges e1 = (ua, vb) and e2 = (uc, vd), an exchange on
e1 and e2 returns a matching M ′ such that M ′ = M⊗(e1, e2) = (M\{e1, e2})∪{(ua, vd), (uc, vb)}.
Note that if e1 and e2 are in a straight state in M , then their replacement edges are in a cross
state in M ′. Such exchanges are called straight-to-cross exchanges. Similarly, cross-to-straight
exchanges are the ones on two edges in a cross state to result in two in a straight state. A null
exchange on M is defined to be the operation which returns matching M .

Direct Pair The set of vertices {ui, vi} is called the ith direct pair. For any i (0 ≤ i ≤ n− 2),
the ith and the (i + 1)th direct pairs are said to be consecutive.

5

Let MD = {(u0, v0), (u1, v1), ..., (un−1, vn−1)}. Note that MD is a matching with the mini-
mum cost over all possible matchings. However, MD may not be a cyclic augmentation.

Cluster A cluster is the union of consecutive direct pairs which belong to the same cycle in
GMD

. The ith cluster from the left is denoted by ψi. Therefore, ψ1 is the cluster containing the
leftmost direct pair and ψj is the cluster containing the leftmost direct pair in U ∪ V \ (ψ1 ∪
· · · ∪ ψj−1).

Note that the clusters define a partition of U ∪ V . All the vertices in a cluster belong to
the same cycle in GMD

but all the vertices in the same cycle in GMD
need not be in the same

cluster. See Figure 3 for an illustration of clusters.

u0 u1 u2 u3 u4 u5 u6 u7

v0 v1 v2 v3 v4 v5 v6 v7

Figure 3: For this graph, GMD
has three cycles C1 = u0v0u1v1u4v4, C2 = u2v2u6v6u3v3 and

C3 = u5v5u7v7. The vertices in C1 are marked by a triangle, the ones in C2 by a circle and
those in C3 by a square. Therefore, the clusters are ψ1 = {u0, v0, u1, v1}, ψ2 = {u2, v2, u3, v3},
ψ3 = {u4, v4}, ψ4 = {u5, v5}, ψ5 = {u6, v6}, and ψ6 = {u7, v7}.

Exchange Graph The exchange graph X for G = (U, V, H) is a multigraph whose vertices
correspond to the cycles in GMD

. There is an edge between two cycles C and C ′ for every pair
of consecutive clusters ψi and ψi+1 such that ψi has vertices in C and ψi+1 has vertices in C ′.
The weight of this edge is max{c(φ(uψi

right), φ(vψi+1

left)), c(φ(uψi+1

left), φ(vψi

right))}, where (uψi

right, v
ψi

right)

are the rightmost direct pair in ψi and (uψi+1

left , v
ψi+1

left) are the leftmost direct pair in ψi+1. If
(uψi

right, v
ψi

right) = (uk, vk), then the label of the corresponding edge is (k, k + 1).

3.4 Lemmas

Lemma 2. Given matchings M and M ′ between U and V , there exist a sequence of exchanges
x0, x1, . . . , xm for m < n which transforms M to M ′.

Proof. We will construct a sequence of exchanges x0, . . . , xn−1 which transforms M to M ′. Let
Mk = MD ⊗x0⊗ · · ·⊗xk. A vertex y in Mk is said to be satisfied if its adjacent vertex in Mk is
the same as its adjacent vertex in M ′. If u0 is satisfied, then x0 is a null exchange. Else if the
vertex adjacent to u0 in M ′ is adjacent to ui in M , then let x0 be the exchange between eM

u0
and

eM
ui

. Now u0 is satisfied in M0. We can repeat the same process iteratively so that u0, u1, . . . , uk

are satisfied in Mk. Therefore, Mn−1 = M ′ and the exchanges x0, . . . , xn−1 transforms M to
M ′.

In Lemmas 3 through 6 below, for any two edges e1 = (ua, vb) and e2 = (uc, vd) such that
e1, e2 ∈ M and a < c, let M ′ = M ⊗ (e1, e2).

6

Lemma 3. If e1 and e2 are in a straight state, then cM ′ ≥ cM .

Proof. We have the following 6 cases (see Figure 4):
Case 1 : φ(vd) ≤ φ(ua). c((uc, vb)) ≥ max{c((ua, vb)), c((uc, vd))}.
Case 2 : φ(vb) ≤ φ(ua), φ(ua) ≤ φ(vd) < φ(uc). c((uc, vb)) ≥ max {c((ua, vb)), c((uc, vd))}.
Case 3 : φ(vb) ≤ φ(ua), φ(uc) ≤ φ(vd). c((uc, vb)) ≥ c((ua, vb)) and c((ua, vd)) ≥ c((uc, vd)).
Case 4 : φ(ua) ≤ φ(vb) < φ(uc), φ(ua) ≤ φ(vd) < φ(uc). c((ua, vd)) ≥ c((ua, vb)) and c((uc, vb)) ≥
c((uc, vd)).
Case 5 : φ(ua) ≤ φ(vb) < φ(uc), φ(uc) ≤ φ(vd). c((ua, vd)) ≥ max {c((ua, vb)), c((uc, vd))}.
Case 6 : φ(uc) ≤ φ(vb). c((ua, vd)) ≥ max{c((ua, vb)), c((uc, vd))}.

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

ua uc

vb vd

Case 1 Case 2

Case 3 Case 4

Case 5 Case 6

Figure 4: Case analysis for Lemma 3.

Lemma 4.

1. If e1 and e2 are in the same cycle in GM , then their replacement edges are in different
cycles in GM ′.

2. If e1 and e2 are in different cycles in GM , then their replacement edges are in a same cycle
in GM ′.

Proof. Statement 1: Let C be the cycle containing e1 and e2. Note that because GM is bipartite,
the path from ua to uc goes through either vb or vd but not both (see Figure 5(a)). GM ′ contains
edges (ua, vd) and (uc, vb) in place of (ua, vb) and (uc, vd) and therefore eM ′

ua
is in a different cycle

from eM ′
uc

.
Statement 2: See Figure 5(b).

7

ua

ucvb

vd ua

ucvb

vd

(a)

ua

ucvb

vd ua

ucvb

vd

(b)

Figure 5: (a) An exchange between edges in a same cycle splits the cycle in two. (b) An exchange
between edges in two different cycles joins the cycles.

Lemma 5. If e1 crosses e2 and for some up ∈ U , eM ′
up

crosses eM ′
ua

, then eM
up

crosses at least one
of e1 and e2. By symmetry, if e1 crosses e2 and for some up ∈ U , eM ′

up
crosses eM ′

uc
, then eM

up

crosses at least one of e1 and e2.

Proof. Note that eM ′
ua

= (ua, vd), eM ′
uc

= (uc, vb) and d < b. Let eM ′
up

= eM
up

= (up, vq). If eM ′
up

crosses eM ′
ua

, then we have two possible cases:
Case 1: p < a and q > d. In this case eM

up
crosses eM

uc
.

Case 2 : p > a and q < d. In this case eM
up

crosses eM
ua

.

Lemma 6.

1. If e1 and e2 are in a straight state, then ΓM ′ = ΓM + 1 + 2ηe1,e2.

2. If e1 and e2 are in a cross state, then ΓM ′ = ΓM − 1− 2ηeM′
ua ,eM′

uc
.

Proof. Statement 1: To determine the difference in the cross numbers for M and M ′, we will
consider the change in contribution to the cross number for each pair of vertices up and uq in U .

If up and uq are different from ua and uc, their incident edges cross in M ′ if and only if they
cross in M . Hence, the contribution of (up, uq) to the cross number is unchanged.

If up and uq are ua and uc, then e1 does not cross e2 while eM ′
ua

does cross eM ′
uc

. Hence, ΓM ′

increases by one due to (ua, uc).
Otherwise, we may assume without loss of generality that up is different from ua and uc but

uq is either ua or uc. We consider the total contribution of (up, ua) and (up, uc) to the cross
number as follows.

If eM
up

is in-between e1 and e2, then while eM
up

crosses neither eM
ua

nor eM
uc

, eM ′
up

crosses both
eM ′
ua

and eM ′
uc

. Since there are ηe1,e2 edges in-between e1 and e2, ΓM ′ increases by 2ηe1,e2 due to
(up, ua) and (up, uc).

If eM
up

crosses neither e1 nor e2 and eM
up

is not in-between e1 and e2, then eM ′
up

also crosses
neither eM ′

ua
nor eM ′

uc
. Hence, the cross number does not change due to (up, ua) and (up, uc).

If eM
up

crosses both eM
ua

and eM
uc

, then eM ′
up

also crosses both eM ′
ua

and eM ′
uc

. Hence, the cross
number does not change due to (up, ua) and (up, uc).

If eM
up

crosses exactly one of e1 and e2, then eM ′
up

also crosses exactly one of eM ′
ua

and eM ′
uc

.
Hence, the cross number does not change due to (up, ua) and (up, uc).
Statement 2: This follows immediately from Statement 1.

8

4 Lower Bound on the Optimum Bottleneck Cyclic Augmenta-
tion

As observed in Section 3.2, for any perfect matching M between U and V , the graph GM is a
collection of simple cycles. Note that MD is the minimum cost matching of G(U, V, H). However,
MD may not be a cyclic augmentation i.e., H∪MD may not be a hamiltonian cycle. Our strategy
for solving BBCA is to begin with GMD

and transform MD into a cyclic augmentation by means
of exchanges.

Recall from Lemma 4(2) that an exchange between two edges in different cycles, say C1

and C2, yields a graph in which all the vertices in C1 and C2 are in one cycle (see Figure 5).
Alternately, from Lemma 4(1), an exchange between two edges in the same cycle yields a graph
in which the vertices in that cycle are split into two distinct cycles. Furthermore, from Lemma
2, we know that for any two matchings M and M ′, M can be converted to M ′ by a sequence
of exchanges. In this section we present Lemma 7 which identifies some useful properties of
a minimum cost cyclic augmentation which allows us to restrict the search space for suitable
exchanges to convert MD to an approximately optimal cyclic augmentation. Then, using Lemma
8, we reduce our search space to exchanges corresponding to the edges in the exchange graph
X . As will be shown in Lemma 9, this allows us to derive a good lower bound on the cost of
the optimal cyclic augmentation.

Lemma 7. There exists a minimum bottleneck cost cyclic augmentation M∗ for G = (U, V, H)
such that the following properties hold true:
(P1) Any edge e ∈ M∗ crosses either some edges on its left or some on its right but not both.
(P2) For e1, e2, e3 ∈ M∗, if e1 crosses e2 and e3, then no other edge in M∗ crosses both e2 and
e3.
(P3) If two vertices up, uq ∈ U are in the same cycle in GMD

, then eM∗
up

and eM∗
uq

do not cross.
(P4) If two vertices up, uq ∈ U are in the same cycle in GMD

and up is on the left of uq, then

1. eM∗
up

cannot cross any edge to the right of eM∗
uq

; and

2. eM∗
uq

cannot cross any edge to the left of eM∗
up

.

Proof. The proof is by construction. Given a minimum cost cyclic augmentation M ′, we show
that it can be transformed to a minimum cost cyclic augmentation M∗ which satisfies the above
4 properties.

For each property Pi, given the smallest set of vertices W ⊆ U ∪V for which Pi does not hold
in M ′, we give a transformation Ti for constructing a new matching of cost no more than that
of M ′ and a cross number smaller than that of M ′. The algorithm for the construction begins
with any minimum cost cyclic augmentation and repeatedly finds the smallest i such that Pi

does not hold. Use Ti to correct this violation till a matching for which all the properties hold
true is obtained. For the correctness and termination of this algorithm, we ensure that each
of the transformations Ti satisfies the following two conditions. Assuming that Pj holds for all
j < i, given any cyclic augmentation M ′ and the smallest set of vertices W ∈ M ′ such that the
edges incident to W do not satisfy Pi, Ti(M ′,W) returns a matching M ′′ such that

1. M ′′ is a cyclic augmentation of cost no more than that of M ′; and

2. ΓM ′′ < ΓM ′ .

9

The first condition above ensures that after every transformation, we get a cyclic augmentation
of the minimum cost. The second condition ensures that the total number of crosses decreases
monotonically. Hence, we terminate either with a minimum cost cyclic augmentation which
either satisfies all the properties or has no crosses. Since the only matching with no crosses is
MD and all the 4 properties do hold for MD, in either case we are guaranteed to construct M∗.

Transformation T1: Let W = {ua, ub, uc} ⊆ U and e1 = (ua, vq), e2 = (ub, vp), e3 = (uc, vd) such
that e2 crosses e1 and e3; e1 is to the left of e2 and e3 is to the right of e2. This implies that
a < b < c and d < p < q.

Let M ′′ = M ′ ⊗ {e1, e3}. Since, M ′ was a cyclic augmentation, M ′′ will contain two cycles
with e′1 = (ua, vd) and e′3 = (uc, vq) in different cycles. Therefore, e2 will be in the same cycle
as either e′1 or e′3. Suppose e2 is in the same cycle as e′1. Let M ′′′ = M ′′ ⊗ {eM ′′

ub
, e′3}. Now M ′′′

is a cyclic augmentation and the edges eM ′′′
ua

, eM ′′′
ub

and eM ′′′
uc

do not violate P1. The other case
when e2 is in the same cycle as e′3 is symmetric.

We have transformed M ′ to M ′′′ using one cross-to-straight exchange and one straight-to-
cross exchange. However, M ′ can be transformed to M ′′′ using only cross-to-straight exchanges
(see Figure 6). Therefore, the cost of M ′′′ is no more than that of M ′ (using Lemma 3). Further,
using Lemma 6(2) we have ΓM ′′′ < ΓM ′ .

Transformation T2: Let W = {ua, uc, up, ur} and e1 = (ua, vb), e2 = (uc, vd), e3 = (up, vq), e4 =
(ur, vs) such that e1 crosses e2 and e3 and so does e4. Using P1 we can conclude that e2 and e3

should be in a straight state and so do e1 and e4. Then without loss of generality d < q < b < s
and a < r < c < p (see Figure 7). Let M ′′ = M ′ ⊗ ((ua, vb), (up, vq)). Again GM ′′ contains two
cycles C1 and C2 such that (ua, vq) ∈ C1 and (up, vb) ∈ C2. We will now show that there exists
a cross-to-straight exchange that combines C1 and C2. We have the following three cases:
Case 1 : (ur, vs) and (uc, vd) belong to different cycles. We exchange (ur, vs) and (uc, vd).
Case 2 : (ur, vs), (uc, vd) ∈ C1. We exchange (ur, vs) and (up, vb).
Case 3 : (ur, vs), (uc, vd) ∈ C2. We exchange (ua, vq) and (uc, vd).

Since all of these exchanges are cross-to-straight exchanges, the resultant matching between
U and V is a minimum cost cyclic augmentation for G = (U, V, H) with a smaller cross number
than M ′.

Transformation T3: Let W = {up, uq} ⊆ U such that both are in the same cycle in GMD
and

eM ′
up

crosses eM ′
uq

. Consider M ′′ = M ′ ⊗ (eM ′
up

, eM ′
uq

). GM ′′ contains two cycles, and eM ′′
up

and eM ′′
uq

are in different cycles in GM ′′ , say, C1 and C2. Now we claim that there exist two edges e1 ∈ C1

and e2 ∈ C2 in a cross state. If the claim is true, then consider M ′′′ = M ′′ ⊗ (e1, e2). M ′′′ is a
cyclic augmentation for G = (U, V, H) with cost no more than that of M ′ and with ΓM ′′′ < ΓM ′

because we have only performed cross-to-straight exchanges.
To prove the claim by contradiction, suppose that the claim did not hold. Then we can

perform a sequence of cross-to-straight exchanges till no two edges are in a cross state. Note
that if there were no cross between C1 and C2 to begin with, using Lemma 5 we can conclude that
none of these exchanges is between an edge incident to C1 and one incident to C2. Therefore,
in the resultant graph the edges adjacent to up and uq are in different cycles. But the resultant
matching is MD, and eMD

up
and eMD

uq
are in the same cycle in GMD

, hence reaching a contradiction.
Therefore, the claim holds true.

Transformation T4: Suppose the first condition of P4 is not satisfied. The transformation for
the other condition is similar. Let W = {up, uq} such that both up and uq are in the same cycle

10

ua ub uc

vqvpvd

asdjhakjsdhl

straight
to cross

cross to
straight

cro
ss

 to

str
aight

cross to

straight

cross tostraight

cr
os

s t
o

str
aig

ht

cross to

straight

ua ub uc

vqvpvd

ua ub uc

vqvpvd

ua ub uc

vqvpvd

ua ub uc

vqvpvd

ua ub uc

vqvpvd

Figure 6: Illustration of transformation T1.

in GMD
. Let eM ′

up
= (up, va) and eM ′

uq
= (uq, vb). Since the first condition of P4 does not hold,

there exists (ud, vc) ∈ M ′ such that eM ′
up

crosses eM ′
ud

and ud is to the right of uq, i.e., p < q < d.
Using P3 we have c < a < b. Let M ′′ = M ′ ⊗ (eM ′

up
, eM ′

ud
). GM ′′ contains two cycles; and (up, vc)

and (ud, va) in GM ′′ are in different cycles, say, C1 and C2. Now (uq, vb) is in either C1 or C2. If
(uq, vb) ∈ C1, then we can exchange (uq, vb) and (ud, va). If (uq, vb) ∈ C2, then there must exist
a cross between an edge in C1 and an edge in C2 by a similar argument to that used for T3.

Hence, there exists another cross-to-straight exchange to combine C1 and C2 such that in
the resultant matching M ′′′, eM ′′′

up
and eM ′′′

ud
do not cross, and M ′′′ is constructed form M ′ using

only cross-to-straight exchanges. Therefore, the cost of M ′′′ is no more than that of M ′, and
ΓM ′′′ < ΓM ′ .

The next lemma uses the properties established in Lemma 7 to restrict the space of ex-
changes required for transforming MD to an optimum bottleneck cyclic augmentation M∗ to
the exchanges corresponding to edges in X .

11

cross to
straight

ua upucur

vd vsvbvq

ua upucur

vd vsvbvq

ua upucur

vd vsvbvq

ua upucur

vd vsvbvq

ua upucur

vd vsvbvq

Case 1

Case 2

Case 3

Figure 7: Illustration of transformation T2.

Lemma 8. M∗ can be constructed by performing a series of exchanges on GMD
where each

exchange corresponds to a unique edge in the exchange graph X .

Proof. We will construct a sequence of exchanges x0, . . . , xn−1 where each xi is either a null
exchange or corresponds to a unique edge in the exchange graph X . Let Mk = MD⊗x0⊗· · ·⊗xk.
It suffices to show that Mn−1 = M∗. A vertex in Mk is said to be satisfied if its adjacent vertex
in Mk is the same as its adjacent vertex in M∗.

Let H(k) denote the statement that in Mk either all the vertices in the first k + 1 direct
pairs are satisfied or exactly two are not, and that at least one of those two, h, is in the (k+1)th

direct pair and the other is the one adjacent to it, g, in Mk such that φ(g) ≤ φ(h).
The proof of this lemma is by induction on H(k) as follows. Note that if H(n − 1) is true,

then all the vertices in Mn−1 must be satisfied, i.e. Mn−1 is the same as M∗.
Base Case: k = 0. Let x0 be a null exchange. Either the vertices of first direct pair are

satisfied or they are not. In either case, H(0) is true.
Induction Step: H(k− 1) holds for some k, where 0 ≤ k− 1 ≤ n− 2. Then, if all of the first

k direct pairs are satisfied, let xk be a null exchange and H(k) will be true.
However, if two vertices of the first k direct pairs are not satisfied, let the two vertices be g

and h such that φ(g) ≤ φ(h) and h belongs to the kth direct pair. Note that in this case Mk−1

must contain the edge (g, h). Without loss of generality, let g ∈ U and h ∈ V . Since all the first
k direct pairs except g and h are satisfied, the vertices adjacent to g and h in M∗ must be to
the right of the kth direct pair.

Now let xk be the exchange between (g, h) and (uk+1, vk+1). Using P3 and P4 we can conclude

12

that h and uk+1 (or vk+1) cannot belong to same clusters. So the exchange xk corresponds to
an edge labeled (k, k + 1) in the exchange graph X .

We need to show that either (g, vk+1) ∈ M∗ or (h, uk+1) ∈ M∗. To prove this by contradic-
tion, suppose this is not so. That is (g, vk+1) /∈ M∗ and (h, uk+1) /∈ M∗. Then let the vertex
adjacent to g in M∗ be g′ and that adjacent to vk+1 be v′k+1. Similarly, let the vertex adjacent
to h in M∗ be h′ and that adjacent to uk+1 be u′k+1. We know now that g′ should be to the right
of vk+1 and h′ should be right of uk+1. By P1, v′k+1 should be to the right of h′, and u′k+1 should
be to the right of g′. But by P2 this is not possible. Hence, we have reached a contradiction.

Therefore, by induction we can conclude that H(n− 1) is true.

Let cMST be the weight of the heaviest edge in a minimum spanning tree over X and let
cLB = max{cMD

, cMST}. Let the cost of the optimal bottleneck cyclic augmentation M∗ be
cOPT.

Lemma 9. cOPT ≥ cLB.

Proof. We first prove cOPT ≥ cMD
and then cOPT ≥ cMST.

Since MD contains no edges in cross state, it is the minimum cost matching of G(U, V, H)
and hence cOPT ≥ cMD

.
From Lemma 8, there exists a series of exchanges x0, . . . , xn−1 such that Mk = MD ⊗ x0 ⊗

· · · ⊗ xk and M∗ = Mn−1 and each xi is either a null exchange or corresponds to a unique edge
ei in X . Let the set of edges in X corresponding to these exchanges be EOPT.

Note that cMk
is at least the weight of ek, and since each of the xi is a straight-to-cross

exchange, cMn−1 ≥ cMn−2 ≥ · · · ≥ cM0 . Therefore, cM∗ = cMn−1 is at least the maximum
weighted edge in EOPT. Using Lemma 4, since M∗ = Mn−1 is a cyclic augmentation, EOPT

should form a spanning tree of X . Therefore, cOPT ≥ cMST.

5 Approximation Algorithm for GG-BTSP

For finding the minimum bottleneck cost augmentation, we first construct a minimum spanning
tree of the exchange graph and then perform exchanges corresponding to the edges of the span-
ning tree such that no exchange exceeds the weight of the heaviest edge in the spanning tree by
a factor of (2 + γ).

From Lemma 8, there exists a set of exchanges corresponding to the edges of exchange graph
such that the resulting augmentation is of optimum cost. Furthermore, as observed in proof to
Lemma 9, these edges form a spanning tree. However, note that the spanning tree corresponding
to the optimal augmentation need not be the minimum spanning tree over the exchange graph.
Furthermore, the cost of the augmentation is only lower bounded by the heaviest weighted
edge in the corresponding spanning tree. Hence, there is scope for improving the analysis by
tightening the lower bound.

Lemma 10. At Step 5b of Approx-BTSP, either c(eM
uai

) ≤ cLB or c(eM
vai

) ≤ cLB.

Proof. This is proven by induction on H(k) where H(k) denotes the statement that after k
iterations of the algorithm

1. Either c(eM
uak

) ≤ cLB or c(eM
vak

) ≤ cLB; and

2. For all x > ak, eM
ux

= eM
vx

= (ux, vx).

13

Algorithm 1 Approx-BTSP

1. Let M ← MD.

2. Construct the exchange graph X .

3. Find a minimum spanning tree T of X .

4. Sort the edges in T in the increasing order of their label. Let the ordered edges be
e1, . . . , em.

5. For i = 1 to m,

(a) Let the label of ei be (ai, ai + 1).

(b) if c(eM
uai

) ≤ cLB,
then M ← M ⊗ (eM

uai
, eM

u(ai+1)
);

else M ← M ⊗ (eM
vai

, eM
u(ai+1)

).

6. Output MOUT = M .

Base Case: k = 1, M = MD and hence all the edges in M have cost at most cLB. Therefore,
H(1) is true.

Induction Step: H(k − 1) holds for some k, where 0 ≤ k − 1 ≤ m − 1. Note that, ak ≥
ak−1 + 1 since the edges were sorted according to their labels. Without loss of generality,
assume that at (k − 1)th iteration c(eM

uak−1
) ≤ cLB. Therefore after the (k − 1)th iteration,

eM
uak−1

= (uak−1
, vak−1+1) and for all x > ak−1 + 1, eM

ux
= eM

vx
= (ux, vx). Note that weight of the

edge labeled (ak−1, ak−1 + 1) is at least c(uak−1
, vak−1+1) and since ek−1 ∈ T , c(eM

vak−1+1
) ≤ cLB.

Therefore at the kth iteration, c(eM
vak−1+1

) ≤ cLB and for all x > ak−1+1, eM
ux

= eM
vx

= (ux, vx).
Since ak ≥ ak−1 + 1, H(k) holds.

Lemma 11. If γ ≥ f(x)
g(x) ≥ 1

γ ∀x, then c(b, a) ≤ γ·c(a, b).

Proof. We have the following three cases.
Case 1 : a < b. Then c(a, b) =

∫ b
a f(x)dx and c(b, a) =

∫ b
a g(x)dx ≤ ∫ b

a γ·f(x)dx = γ·c(a, b).
Case 2 : a > b. Then c(a, b) =

∫ a
b g(x)dx and c(b, a) =

∫ a
b f(x)dx ≤ ∫ a

b γ·g(x)dx = γ·c(a, b).
Case 3 : a = b. Then c(a, b) = c(b, a).

Theorem 1. Running time of Algorithm Approx-BTSP is O(n log n).

Proof. Steps 1, 2 and 5 take O(n) time while Steps 3 and 4 take O(n log n) time. Therefore, the
time complexity of the algorithm is O(n log n).

Theorem 2. If γ ≥ f(x)
g(x) ≥ 1

γ ∀x, then MOUT is a cyclic augmentation of cost no more than
(2 + γ)·cOPT

Proof. We need to prove the following two parts:

1. MOUT is a cyclic augmentation.

2. cMOUT
≤ (2 + γ)·cOPT.

14

Note that every exchange performed in the algorithm is between edges belonging to two
different cycles. Therefore, using Lemma 4, the number of cycles in M decreases with every
iteration. If MD has m + 1 cycles, the minimum spanning tree T contains m edges and hence
after m iterations M consists of just one cycle and is hence a cyclic augmentation. This completes
the proof of Part 1.

For Part 2, we will show that the following invariant holds true for the algorithm: cM ≤
(2 + γ)·cLB. Consider the ith iteration of the algorithm. Let the matching before the ith

iteration be M ′ and the one after be M ′′. Assuming cM ′ ≤ (2 + γ)·cLB, we need to show that
cM ′′ ≤ (2 + γ)·cLB. From Lemma 10, either c(eM ′

uai
) ≤ cLB or c(eM ′

vai
) ≤ cLB. Without loss of

generality, assume c(eM ′
uai

) ≤ cLB. Let eM ′
uai

= (uai , h). M ′′ = (M ′ \ {(uai , h), (uai+1, vai+1)}) ∪
{(uai , vai+1), (uai+1, h)}. Clearly c((uai , vai+1)) ≤ cLB because weight of edge labeled (ai, ai +1)
is at least c((uai , vai+1)).

So all we need to show is that c((uai+1, h)) ≤ (2 + γ)·cLB.

c(φ(uai+1), φ(vai)), c(φ(uai), φ(vai)), c(φ(uai), φ(h)) ≤ cLB

c(φ(uai+1), φ(uai)) ≤ c(φ(uai+1), φ(vai)) + c(φ(vai), φ(uai))
≤ c(φ(uai+1), φ(vai)) + γ·c(φ(uai), φ(vai)) (using Lemma 11)
≤ (1 + γ)·cLB

c((uai+1, h)) = c(φ(uai+1), φ(h))
≤ c(φ(uai+1), φ(uai)) + c(φ(uai), φ(h))
≤ (1 + γ)·cLB + cLB

= (2 + γ)·cLB

References

[1] C. Bailey-Kellogg, S. Chainraj, and G. Pandurangan, A Random Graph Approach
to NMR Sequential Assignment, in Proceedings of the 8th Annual International Conference
on Computational Molecular Biology, 2004, pp. 58–67.

[2] M. O. Ball and M. J. Magazine, Sequencing of Insertions in Printed Circuit Board
Assembly, Operations Research, 36 (1988), pp. 192–201.

[3] Z.-Z. Chen, T. Jiang, G. Lin, J. Wen, D. Xu, J. Xu, and Y. Xu, Approximation
Algorithms for NMR Spectral Peak Assignment, Theoretical Computer Science, 299 (2003),
pp. 211–229.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[5] P. C. Gilmore and R. E. Gomory, Sequencing a One State-Variable Machine: A Solv-
able Case of the Traveling Salesman Problem, Operations Research, 12 (1964), pp. 655–679.

15

[6] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and Its Variations,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

[7] T. K. Hitchens, J. A. Lukin, Y. Zhan, S. A. McCallum, and G. S. Rule, MONTE:
An Automated Monte Carlo Based Approach to Nuclear Magnetic Resonance Assignment
of Proteins, Journal of Biomolecular NMR, 25 (2003), pp. 1–9.

[8] S. S. Reddi and C. V. Ramamoorthy, On the Flow-Shop Sequencing Problem with No
Wait in Process, Operational Research Quarterly, 23 (1972), pp. 323–331.

[9] G. L. Vairaktarakis, On Gilmore-Gomory’s open question for the bottleneck TSP, Op-
erations Research Letters, 31 (2003), pp. 483–491.

[10] , Simple Algorithms for Gilmore-Gomory’s Traveling Salesman and Related Problems,
Journal of Scheduling, 6 (2003), pp. 499–520.

[11] O. Vitek, J. Vitek, B. Craig, and C. Bailey-Kellogg, Model-Based Assignment
and Inference of Protein Backbone Nuclear Magnetic Resonances, Statistical Applications
in Genetics and Molecular Biology, 3 (2004), pp. 1–22.

[12] X. Wan, D. Xu, C. M. Slupsky, and G. Lin, Automated Protein NMR Resonance As-
signments, in Proceedings of the 2nd IEEE Computer Society Conference on Bioinformatics,
2003, pp. 197–208.

[13] Y. Xu, D. Xu, D. Kim, V. Olman, J. Razumovskaya, and T. Jiang, Automated
Assignment of Backbone NMR Peaks Using Constrained Bipartite Matching, Computing in
Science and Engineering, 4 (2002), pp. 50–62.

16

