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We consider the problem of maximizing the revenue
raised from tolls set on the arcs of a transportation net-
work, under the constraint that users are assigned to
toll-compatible shortest paths. We first prove that this
problem is strongly NP-hard. We then provide a polyno-
mial time algorithm with a worst-case precision guaran-
tee of 1

2 log2 mT + 1, where mT denotes the number of
toll arcs. Finally, we show that the approximation is tight
with respect to a natural relaxation by constructing a fam-
ily of instances for which the relaxation gap is reached. ©
2005 Wiley Periodicals, Inc. NETWORKS, Vol. 46(1), 57–67 2005
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1. INTRODUCTION

This article focuses on a bilevel problem that arises natu-
rally when tariffs, tolls, or devious taxes are to be determined
over a network, and is relevant to applications encountered
in the transportation, telecommunication, and airline indus-
tries. Our aim in this work is twofold. First, we show that
the problem is NP-hard. Next, we present a polynomial
time approximation algorithm, and prove the tightness of
the approximation factor.
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Bilevel programming is the relevant framework for mod-
eling situations where one player (the “leader”) integrates
within its optimization schedule the reaction of a second
player (the “follower”) to its own course of action. These
problems are closely related to static Stackelberg games
and mathematical programs with equilibrium constraints (or
MPECs (see [12]), in which the lower level solution charac-
terizes the equilibrium state of a physical or social system.
Various problems that arise in operations research, eco-
nomics, and finance can be modeled as bilevel programs. For
instance, one may consider the maximization of social wel-
fare, taking into account the selfish behavior of consumers.
Indeed, it is well known that the taxation of resources and
services at marginal cost (Pigovian taxes, see [15]) maxi-
mizes global welfare. However, when some resources fall
outside the control of the leader, the social optimum might
not be reachable, yielding a “second-best” problem of true
Stackelberg nature (see [5, 9, 20] for traffic examples). In
constrast with these studies, we adopt the point of view of a
firm involved in the management of the network but oblivious
to social welfare; the firm’s only goal is to maximize its own
revenue.

Bilevel programs are generally nonconvex and nondif-
ferentiable, that is, to all practical extent, intractable. In
particular, it has been shown by Jeroslow [7] that linear
bilevel programming is NP-hard. This result has been refined
by Vicente et al. [21], who proved that obtaining a mere
certificate of local optimality is strongly NP-hard. Actually,
Audet et al. [1] unveiled a close relationship between bilevel
programming and integer programming. This “intractabil-
ity” has prompted the development of heuristics that are
adapted to the specific nature of the instance under consider-
ation, together with their worst-case analysis. Such analysis
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was first performed for a network design problem with
user-optimized flows by Marcotte [13], who proved worst-
case bounds for convex optimization based heuristics. More
recently, worst-case analysis of Stackelberg problems has
been applied to job scheduling and to network design by
Roughgarden [17, 18], to network routing by Korilis et al. [8]
and to pricing of computer networks by Cocchi et al. [3].
All these works focus on “soft” Stackelberg games, where
the objectives of both players are nonconflicting, and where
heuristics are expected to perform well in practice, although
their worst-case behavior may turn out to be bad.

In this article, we analyze an approximation algorithm for
the toll optimization problem (MaxToll in this work) for-
mulated and analyzed by Labbé et al., [10]. In this game,
which is antagonistic, a leader sets tolls on a subset of arcs of
a transportation network, while network users travel on short-
est paths with respect to the cost structure induced by the tolls.
Labbé et al. [10] proved that the Hamiltonian path problem
can be reduced to a version of MaxToll involving nega-
tive arc costs and positive lower bounds on tolls. (It was also
shown recently by Marcotte et al., [14] that the TSP is a spe-
cial case of MaxToll.) In this article, we improve this result
by showing that MaxToll, without lower bound constraints
on tolls, is strongly NP-hard. Next, in the single-commodity
case, we provide a polynomial time algorithm with a per-
formance guarantee of 1

2 log2 mT + 1, where mT denotes the
number of toll arcs in the network. We then use this result
and specially constructed instances to prove the tightness of
our analysis, as well as the optimality of the approximation
factor obtained with respect to a natural upper bound.

The rest of the article is organized as follows. In Section 2,
we state the problem and prove that it is NP-hard. In Section 3
we propose an approximation algorithm whose performance
is analyzed in Section 4.

2. THE MODEL AND ITS COMPLEXITY

2.1. The Model

The generic bilevel toll problem can be expressed as

max
T

Tx

where x is the partial solution of the parametric linear program

min
x,y

(c1 + T)x + c2y

s.t. A1x + A2y = b

x, y ≥ 0.

In the above, T represents a toll vector, x the vector of toll
commodities and y the vector of toll-free commodities.

We shall consider a combinatorial version of this prob-
lem. Let G = (V , A) be a directed multigraph with two
distinguished vertices: the origin s ∈ V and the destina-
tion t ∈ V . The arc set A is partitioned into subsets AT and
AU of toll and toll-free arcs, of respective cardinalities mT

and mU . Arcs are assigned fixed costs c : AT → NmT and

INSTANCE: – a directed graph G = (V , AT ∪ AU)

– fixed cost vectors c : AT → NmT and
d : AU → NmU

– distinguished vertices s, t ∈ V such that
there exists a simple path from s to t
in (V , AU)

SOLUTION: – a nonnegative toll vector T on AT

– a simple s − t path P of minimal length
w.r.t. the cost structure (c + T , d)

MEASURE: – maximize
∑

e∈AT ∩P T(e)

FIG. 1. MaxToll.

d : AU → NmU (in the sequel, N = {0, 1, . . .}). Once tolls
are added to the fixed costs of AT , we obtain a toll network
NT = (G, c + T , d, s, t). Denoting by SP[NT ] the set of
shortest paths from s to t, we can then formulate MaxToll
as the combinatorial optimization problem (see also Fig. 1):

max
T≥0

P∈SP[NT ]

∑
e∈AT ∩P

T(e). (1)

This is a single-commodity instance of the toll setting
problem analyzed by Labbé et al. [10].

In this framework, the leader must strike the right balance
between low toll levels, which generate low revenue, and
high levels, which could also result in low revenue, as the
follower would select a path with few toll arcs, or even none.
An instance of MaxToll is illustrated in Figure 2.

Several remarks are in order. Firstly, to avoid a trivial sit-
uation, we posit the existence of at least one toll-free path
from s to t. Second, our formulation implies that, given ties
at the lower level (the user’s level), the leader can choose,
among the toll-compatible shortest paths, the one to be trav-
elled by the follower. Indeed, the leader could always force
the use of the most profitable path by subtracting a small
amount from every toll on that path. Third, once a path P has
been selected by the leader, toll arcs outside P become irrel-
evant. In practice, the removal of these arcs can be achieved
by setting tolls to an arbitrarily large value on toll arcs out-
side P. We denote by NT (P) the network where these arcs
have been removed. Finally, our central results also hold in a
version of MaxToll where T is unconstrained; in this case,
negative tolls can be interpreted as subsidies. Actually, Labbé
et al. [11] have constructed instances where the optimal solu-
tion involves negative tolls. Nevertheless, throughout most
of the article we focus on nonnegative tolls because (1) this
case is interesting in its own sake, (2) intermediate results are
easier to interpret when tolls are thought to be nonnegative.

A natural upper bound on the leader’s revenue has been
derived by Labbé et al. [10] using duality arguments from
linear programming theory. It also follows from Theorem 4
of Section 3.1. Let L∞ be the length of a shortest toll-free path
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FIG. 2. This network contains two toll arcs (represented by dashed arcs).
Fixed costs are given by numbers close to each arc. The optimal path is
(s, v2, v3, v4, t), with a revenue of 4 when T1 = 2 and T2 = 2.

and let L(P) be the length of a given path P with T(e) ≡ 0
for all toll arcs e.

Theorem 1. Let P be a path. Then the optimal revenue
associated with P is bounded above by

B(P) ≡ L∞ − L(P). (2)

Because L∞ does not depend on P, it follows that the
largest upper bound corresponds to the path with smallest
value of L(P); that is, P is a shortest path when tolls are set
to 0. We denote the length of such a path by L0 and by

LP = L∞ − L0 (3)

the value of a path-independent upper bound. This bound
is simply the difference between the costs of shortest paths
corresponding to infinite and null tolls, respectively. Note
that, if the set of toll arcs is a singleton, the upper bound can
always be achieved.

2.2. NP-Hardness of MaxToll

The purpose of this section is to show that MaxToll is
strongly NP-hard. We also prove that a version of MaxToll
where the toll vector is unconstrained shares this property,
thus settling a conjecture of Labbé et al. [10] about the
complexity status of the generic toll setting problem.

Theorem 2. MaxToll is strongly NP-hard.

Proof. Let C denote the sum of all fixed costs. It is not
difficult to show that there exists an optimal toll vector T that
is integer-valued and less than C + 1; in particular, optimal
solutions are of polynomial size.

Now, consider a reduction from 3-SAT to MaxToll (see
[4]). Let x1, . . . , xn be n Boolean variables and

F =
m∧

i=1

(li1 ∨ li2 ∨ li3) (4)

FIG. 3. Subnetwork for clause (li1 ∨ li2 ∨ li3).

be a 3-CNF formula consisting of m clauses with literals
(variables or their negations) lij. For each clause, we construct
a subnetwork comprising one toll arc for each literal as shown
in Figure 3.

The idea is as follows: if the optimal path goes through
toll arc Tij, then the corresponding literal lij is true (note: if
lij = xk , then xk = false). The subnetworks are connected
by two arcs, a toll-free arc of cost 2 and a toll arc of cost 0,
as shown in Figure 4.

If F is satisfiable, we want the optimal path to go through
a single toll arc per subnetwork (i.e., one true literal per
clause) and simultaneously want to make sure that the corre-
sponding assignment of variables is consistent; that is, paths
that include a variable and its negation must be ruled out. For
that purpose, we assign to every pair of literals correspond-
ing to a variable and its negation an interclause toll-free arc
between the corresponding toll arcs (see Fig. 4). As we will
see, this implies that inconsistent paths, involving a variable
and its negation, are suboptimal.

Because the length of a shortest toll-free path is m +
2(m − 1) = 3m − 2 and that of a shortest path with zero
tolls is 0, 3m −2 is an upper bound on the revenue. We claim
that F is satisfiable if and only if the optimal revenue is equal
to that bound.

Assume that the optimal revenue is equal to 3m−2. Obvi-
ously, the length of the optimal path when tolls are set to 0
must be 0, otherwise the upper bound cannot be reached. To
reach the upper bound, the optimal path has to go through
one toll arc per subnetwork (it cannot use interclause arcs)
and tolls have to be set to 1 on selected literals, C +1 on other
literals and 2 on tolls Tk , ∀ k. We claim that the optimal path
does not include a variable and its negation. Indeed, if that
were the case, the interclause arc joining the corresponding
toll arcs would impose a constraint on the tolls between its
endpoints. In particular, because the fixed cost of the inter-
clause arc is 1, the toll Tk immediately following the initial
vertex of this interclause arc would have to be set at most to 1,
instead of 2. This yields a contradiction. Therefore, the opti-
mal path must correspond to a consistent assignment, and F
is satisfiable (note: if a variable and its negation do not appear
on the optimal path, this variable can be set to any value).
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FIG. 4. Network for the formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨
x3 ∨ x4). Interclause arcs are bold. Path through T12, T22, T32 is optimal
(x2 = x3 = true).

Conversely, if F is satisfiable, at least one literal per clause
is true in a satisfying assignment. Consider the path going
through the toll arcs corresponding to these literals. Because
the assignment is consistent, the path does not simultaneously
include a variable and its negation, and no interclause arc
limits the revenue. Thus, the upper bound of 3m−2 is reached
on this path.

Finally, note that the number of arcs in the reduction is
less than

10m + 2(m − 1) + (3m)2

and that all constants are polynomially bounded in m. ■

It is not difficult to prove that the same NP-hardness
reduction works when negative tolls are allowed.

Theorem 3. MaxToll is still strongly NP-hard when
negative tolls are allowed.

Proof. We use the same reduction as in the nonnegative
case. The proof rests on two results proved in [10]. First, the
upper bound is valid when T is unrestricted. Second, there
exists optimal solutions of polynomial size. The latter result
follows from a polyhedral characterization of the feasible set.

From the first result, we know that the 3m−2 upper bound
on the revenue is unchanged. On the other hand, if F is satisfi-
able, the feasible solution considered in the nonnegative case
still yields a 3m − 2 revenue. We only have to make sure that
negative tolls cannot produce a 3m−2 revenue when F is not
satisfiable. Again, to reach the upper bound, one has to use
a path of length 0 when tolls are set to 0. Consequently, the
optimal path comprises exactly one literal per clause. Now
the toll-free arcs of length 1 and 2 limit the Tijs on the path
to 1 and the Tks to 2, so negative tolls are useless in this case.
Indeed, inconsistent paths will see their revenue limited by
interclause arcs without any possibility to make up for the
loss incurred from negative tolls. ■

3. ALGORITHM

In this section, we devise a polynomial-time approxima-
tion algorithm for MaxToll. Such an algorithm is guaranteed
to compute a feasible solution with objective at least OPT/α,
where OPT is the optimal revenue and α, which depends on
the number mT of toll arcs, denotes the approximation factor.
For a survey of recent results on approximation algorithms,
the reader is referred to Hochbaum [6], Vazirani [19], and
Ausiello et al. [2].

3.1. Preliminaries

The leader is only interested in paths that have the poten-
tial of generating positive revenue. This remark warrants the
following definitions. Recall that NT (P) is the network NT

in which toll arcs outside the path P have been removed.

Definition 1. Let mP
T denote the number of toll arcs in a

path P from s to t. We say that P is valid if mP
T ≥ 1 and P

is a shortest path with respect to a null toll vector T, i.e.,
P ∈ SP[N0(P)].

It is clear that nonvalid paths cannot generate revenue. Any
valid path P can be expressed as a sequence

P = (
υ0,1, τ1, υ1,2, τ2, . . . , τmP

T
, υmP

T , mP
T +1

)
(5)

where τi is the i-th toll arc of P (in the order of traversal) and
υi,i+1 is the toll-free subpath of P from the terminal vertex
term(τi) of τi to the initial vertex init(τi+1) of τi+1. Accord-
ing to this notation, υ0,1 starts in s and υmP

T , mP
T +1 ends in t.

Because P ∈ SP[N0(P)], υi,i+1 is a shortest toll-free path
from term(τi) to init(τi+1). We extend this notation to υi, j, a
shortest toll-free path from term(τi) to init(τj), with length
Ui, j. For k < l, let Lk,l be the length of P (i.e., the sum of
costs) from term(τk) to init(τl) with tolls set to 0, and Tk,l
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FIG. 5. Equivalent representation of the example of Figure 2. All arcs have
been replaced by shortest paths between toll arcs and origin/destination.

be the sum of tolls between term(τk) and init(τl) on P,

Lk,l =
l−1∑
i=k

Ui,i+1 +
l−1∑

i=k+1

c(τi) Tk,l =
l−1∑

i=k+1

T(τi), (6)

with the convention that
∑l

i=k xi = 0 if l < k.

Definition 2. Let P be a valid path. The toll vector T is
consistent with P if P ∈ SP[NT (P)]; that is, P remains a
shortest path when tolls outside P are removed and tolls on
P are set according to the vector T.

The following result, which characterizes consistent tolls,
is the starting point of our algorithm.

Theorem 4. Let P be a valid path. Then, the toll vector T
is consistent with P if and only if

Li, j + Ti, j ≤ Ui, j ∀ 0 ≤ i < j ≤ mP
T + 1. (7)

Before providing the proof of this theorem, we give an
example of its application. Consider again the network of
Figure 2. Take the path P = (s, v2, v3, v4, t). Using the
renumbering system introduced above, we have that τ1 =
(s, v2), τ2 = (v4, t), v0,1 is empty, v1,2 = (v2, v3, v4) and
v2,3 is also empty. Other toll-free subpaths that play a role
in Theorem 4 are v0,2 = (s, v1, v4), v1,3 = (v2, v3, v5, t),
and v0,3 = (s, v6, t). The corresponding lengths are U0,1 =
U1,2 = U2,3 = 0, U0,2 = 11, U1,3 = 7, and U0,3 = 4. Thus,
the inequalities in Theorem 4 are

T(τ1) ≤ 11, T(τ2) ≤ 7, T(τ1) + T(τ2) ≤ 4.

From this we conclude that one possible set of optimal taxes
is T(τ1) = T(τ2) = 2 as claimed in Figure 2. Figure 5 pro-
vides an equivalent representation of this example according
to Theorem 4.

Proof of Theorem 4. [=⇒] Obvious from the very def-
inition of consistent tolls.

[⇐=] We need to check that the length of P remains
smaller than or equal to the length of any other path when tolls
satisfy (7). This looks rather obvious. However, one must be

careful about paths that borrow a subset of the toll arcs of P,
possibly in a different sequence (note that toll-free paths are
taken care of by setting i = 0 and j = mP

T +1 above). Assume,
by contradiction, that such a path P̃ is strictly shorter than P
in NT (P), and that conditions (7) are satisfied. We note

P̃ = (
υ̃0,1, τ̃1, υ̃1,2, . . . , τ̃mP̃

T
, υ̃mP̃

T ,mP̃
T +1

)
(8)

with corresponding Ũi, j, L̃k,l, and T̃k,l for all i, j, k, l, with
k < l. For all i, τ̃i = τδ(i) for some injective function δ (toll
arcs outside P are irrelevant). To derive a contradiction, we
will construct a path that is shorter than P̃ by modifying the
“backward” toll-free subpaths of P̃. This improved path will
happen to be P. See Figure 6 for an illustration.

Let j1 = 1 and jk = min{ j > jk−1 : δ( j) > δ( jk−1)}, as
long as such jk exists, the last one being denoted jK . We further
define δ(0) = j0 = 0 and δ(mP̃

T + 1) = jK+1 = mP̃
T + 1. We

claim that

Lδ( jk−1),δ( jk) + Tδ( jk−1),δ( jk) ≤ L̃jk−1,jk + T̃jk−1,jk ,

for all k. This implies that we can replace the subpath of
P̃ between term(τ̃jk−1) and init(τ̃jk ), by the subpath of P
between term(τδ(jk−1)) and init(τδ(jk)) without increasing its
length. But after doing this for all k, we obtain P, which is a
contradiction. We divide the claim above in two cases. First,
if jk − 1 = jk−1 (i.e. P̃ “goes in the direction of P”, e.g. ṽ0,1

in Fig. 6), then

L̃jk−1, jk + T̃jk−1, jk = Uδ( jk−1),δ( jk) ≥ Lδ( jk−1),δ( jk) + Tδ( jk−1),δ( jk),

where we have used (7) (note that in this case, there are no
toll arcs on P̃ between term(τ̃jk−1) and init(τ̃jk )). Otherwise,
jk − 1 �= jk−1 (i.e. P̃ “goes in the direction opposite to P”,
e.g. ṽ1,2 → τ̃2 → ṽ2,3 in Fig. 6). By definition of jk , we have
δ(jk − 1) ≤ δ(jk−1) for all 1 ≤ k ≤ K + 1. For example, in
Figure 6, we have τδ(j2−1) = τ̃2, which clearly comes before
τδ(j1) = τ̃1 on P. From this and (7), we get

L̃jk−1,jk + T̃jk−1,jk = L̃jk−1,jk−1 + T̃jk−1,jk−1 + c(τδ(jk−1))

+ T(τδ(jk−1)) + Uδ(jk−1),δ(jk)

≥ Uδ(jk−1),δ(jk) ≥ Lδ(jk−1),δ(jk) + Tδ(jk−1),δ(jk)

≥ Lδ(jk−1),δ(jk) + Tδ(jk−1),δ(jk).

■

FIG. 6. The thick path is P̃, while the straight thin path is P. An example
of the “backward” toll-free subpaths referred to in the proof of Theorem 4
is ṽ1,2 → τ̃2 → ṽ2,3. This gets replaced by the section of P between τδ(j1)

and τδ(j2), which is clearly shorter.
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Algorithm ExploreDescendants

Input: a path P

Output: a path P, tolls T and objective value V

• Compute maximum revenue VP achievable on P and cor-

responding toll vector TP:
(

VP, TP, {(i′(k), j′(k))}mP
T

k=1

)
:=

MaxRev(P)

• If VP < B(P) then
— Derive new paths from P :

(P1, P2) := TollPartition
(

P, {(i′(k), j′(k))}mP
T

k=1

)
— For i = 1, 2 : (Vi, Ti, Pi) := ExploreDescen-

dants(Pi)

— Return V := max{VP, V1, V2} and corresponding
toll vector T and path P

• Else return (V , T , P) := (VP, TP, P)

FIG. 7. Algorithm ExploreDescendants.

Remark. There always exists an optimal solution with tolls
less than C +1 (see Theorem 2 for a definition of C). Indeed,
Ui,j < C + 1, ∀ i, j implies that optimal tolls on P have to be
lower than C + 1. Therefore, fixing tolls to C + 1 outside P
generates no additional active constraints on the tolls of P.

3.2. Description of the Algorithm

ExploreDescendants is an approximation algorithm
motivated by the previous characterization of consistent tolls.
Initially, the algorithm computes the optimal revenue associ-
ated with a shortest path in SP[N0], that is, a path with the
largest upper bound B(P). (As shown in the next section, this
can be achieved in polynomial time.) If revenue is smaller
than the upper bound LP, Theorem 4 implies that there exists
a toll-free subpath υk,l k < l whose short length forces some
tolls in P to be small. To relax this constraint, it makes sense
to skip the subpath of P between term(τk) and init(τl) and
to replace it by υk,l. This yields a new path whose length will
not be much larger than the length of P, and for which some
constraints (7) have been removed. This path is a natural can-
didate for improved revenue. By repeating this process, we
will show that Algorithm ExploreDescendants can find, in
polynomial time, a path with good approximation properties.

Algorithm ExploreDescendants is presented in Fig-
ure 7. It comprises two subroutines, MaxRev and TollPar-
tition. MaxRev computes the largest revenue compatible
with the shortest path P. Starting from P, TollPartition
generates two descendants of path P. The algorithm is
initialized with P0 in N0, the shortest path of length L0.

3.3. Maximizing Path-Compatible Revenue

Let P be a valid path in N denoted by

P = (
υ0,1, τ1, υ1,2, . . . , τmP

T
, υmP

T ,mP
T +1

)
(9)

Algorithm MaxRev

Input: a path P

Output: tolls TP, objective value VP, and sequence of

indices {(i′(k), j′(k))}mP
T

k=1

• Denote P = (
υ0,1, τ1, υ1,2, τ2, . . . , τmP

T
, υmP

T ,mP
T +1

)
, and

set k := 1
• While k < mP

T + 1, do
— Compute

TP(τk) := tk ≡ min
0≤i<k<j≤mP

T +1

{
Ui,j − Li,j −

k−1∑
l=i+1

tl

}

— Let (i′(k), j′(k)) be the pair of indices for which the
minimum above is attained, breaking ties by selecting
the largest j′(k) and corresponding smallest i′(k)

— Set (i′(l), j′(l)) := (i′(k), j′(k)) for all k < l < j′(k)

— Set k := j′(k)

• Let TP be +∞ outside P and VP := ∑mP
T

k=1 tk

• Return TP, VP and {(i′(k), j′(k))}mP
T

k=1

FIG. 8. Algorithm MaxRev.

with corresponding values ofUi,j,Lk,l, andTk,l for all i, j, k, l,
with k < l. The optimal tolls compatible with P’s shortest
path status can be obtained from a simple greedy algorithm
(see Fig. 8): consider each toll arc in order of traversal, and fix
its value to the largest value allowed by Theorem 4, taking into
account the tolls previously set. This leads to the recursion

T(τk) := tk ≡ min
0≤i<k<j≤mP

T +1

{
Ui,j − Li,j −

k−1∑
l=i+1

tl

}
. (10)

The validity of the above formula rests on Theorem 5 where
we construct a sequence of toll-free subpaths such that (1)
every toll of P is bounded from above by at least one path in
the sequence [condition (13) below], (2) the sum of the tolls
defined by (10) is equal to the sum of the bounds imposed by
the paths of the sequence [condition (14) below].

Labbé et al. [10] give another polynomial time algorithm
for this task, but it does not provide the information we
need regarding the active toll-free subpaths. This informa-
tion will be instrumental in generating new paths from P and
in obtaining an approximation guarantee.

Theorem 5. Let υi,j , 0 ≤ i < j ≤ mP
T + 1, be the toll-free

subpaths defined in Section 3.1 and let tk, 1 ≤ k ≤ mP
T be as

in (10). Then, there exists a sequence of paths

υi(1), j(1), υi(2), j(2), . . . , υi(q), j(q) (11)

with i(1) = 0 and j(q) = mP
T + 1 such that for all h (see

Fig. 9)

i(h + 1) < j(h) ≤ i(h + 2) < j(h + 1) (12)
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FIG. 9. A section of a path P, showing toll arcs τk with k =
i(h + 1), j(h), i(h + 2), j(h + 1).

and for all k

|{h : i(h) + 1 ≤ k ≤ j(h) − 1}| ≥ 1 (13)

with equality if tk �= 0. This implies that for all h′, h′′ with
h′ ≤ h′′

j(h′′)−1∑
k=i(h′)+1

tk =
h′′∑

h=h′

[
Ui(h),j(h) − Li(h),j(h)

]
. (14)

Proof of Theorem 5. This proof is rather cumbersome,
so we start by giving an intuitive description. By Theorem 4,
we know that tolls are constrained by toll-free subpaths. To
obtain the corollary above—which is the ultimate purpose of
this theorem—we need to find a subset of constraints such
that each toll arc is covered by at least one constraint and such
that the sum of the slacks of the constraints is the same as the
sum of the tks. Natural candidates for saturated constraints
are derived from (10): when we fix tk , at least one constraint
becomes saturated. These constraints will be denoted by the

sequence of indices {(i′(k), j′(k))}mP
T

k=1 below. The problem
with them is that they might be redundant. For example, in
setting t1 we might saturate the path v0,3 and then in set-
ting t3 we might saturate the path v0,5 which “supersedes”
v0,3. This situation makes it impossible to obtain equality
in (14). To remove redundant constraints, a natural strategy

is to first compute the sequence {(i′(k), j′(k))}mP
T

k=1, then to
start from t1 and choose among all constraints in this sub-
set the one that “goes furthest” (say v0,5 above). Then go
to t5 and do the same; and so on. This allows the redun-
dant constraints to be skipped. Still, this is not quite what we
want because there might be nonzero tks in the “overlaps”
of the chosen constraints (in Fig. 9, this would correspond
to nonzero tks between τi(h+1) and τj(h)), which again would
give strict inequality in (14). It turns out that using the above
strategy but starting from the end gives the desired proper-
ties. The result of this will be denoted by {(i(k), j(k))}q

k=1
below. To see why this works, consider Figure 9. Say that
at some point in our choice of saturated constraints we get
to toll arc τi(h+2). We then choose the constraint cover-

ing τi(h+2) [among {(i′(k), j′(k))}mP
T

k=1] which reaches furthest
in the direction of s, here denoted vi(h+1),j(h+1). All arcs
between τi(h+2) and τi(h+1) are now covered (some of those
are not represented in Fig. 9), so we go to τi(h+1). Like-
wise, we choose the path vi(h),j(h). Now note that when we

set ti(h+1) in the recursion (10), the constraint corresponding
to vi(h),j(h) became saturated (or it had been saturated by a
previous toll), so that all toll arcs between τi(h+1) and τj(h)

(not represented here) have been set to 0, as claimed. The
heart of the proof that follows is to check that this is indeed
the case.

Consider the following construction. Start with k = 1. In
the recursive formula (10), let (i′(k), j′(k)) denote the index
for which the minimum is attained when setting tk . This
makes sense, because we assumed that there exists a toll-
free path from s to t. In case of nonuniqueness, select the
largest index j and the corresponding smallest index i. Note
that there holds

tl = 0, ∀ k + 1 ≤ l ≤ j′(k) − 1. (15)

Then rather than evaluating (10) for tk+1, we jump from tk to
tj′(k) and set

(i′(l), j′(l)) = (i′(k), j′(k)), ∀ k + 1 ≤ l ≤ j′(k) − 1.
(16)

Recursing gives a sequence of indices {(i′(k), j′(k))}mP
T

k=1.
In view of Theorem 4, which implies that

j(h)−1∑
k=i(h)+1

T(τk) ≤ Ui(h),j(h) − Li(h),j(h), (17)

we say that υi(h),j(h) covers the toll arcs τk for i(h)+ 1 ≤ k ≤
j(h)−1. To derive (14), we look for a subset of {υi′(k),j′(k)}mP

T

k=1
that covers all toll arcs of P and such that tk = 0 for all arcs
τk covered by more than one subpath.

We proceed backwards. Select l1 = mP
T and recursively

compute lk = i′(lk−1) until lq+1 = 0 for some index q. There
follows:

j′(l1) = mP
T + 1 and i′(lq) = 0. (18)

Now, reverse the sequence by setting (i(k), j(k)) =
(i′(lq+1−k), j′(lq+1−k)), 1 ≤ k ≤ q, to obtain a sequence
that satisfies the assumptions of Theorem 4:

1. i(1) = 0, j(q) = mP
T + 1: This follows from (18).

2. i(h) < i(h + 1): This follows from the construction of
the backwards sequence {li}q

i=1.
3. i(h + 1) < j(h): By contradiction, assume that j(h) ≤

i(h + 1). This implies that τj(h) is not covered by a toll-
free subpath. This is impossible by the very construction
of {(i(k), j(k))}q

k=1.
4. j(h) ≤ i(h + 2): by contradiction, assume that j(h) >

i(h + 2). Then (i′(lq+1−h), j′(lq+1−h)) = (i(h), j(h))

implies that i′(l) = i(h) for all indices lq+1−h < l <

j′(lq+1−h) = j(h) and, in particular, for index l =
lq+1−h−1 = i′(lq+1−h−2) = i(h + 2) [<j(h) by assump-
tion]. This implies the contradiction i′(lq+1−h−1) =
i(h + 1) = i(h).

5. (13) and (14): by construction, every arc is covered by
at least one path. By the preceding inequalities, the only
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arcs covered by more than one path must belong to the
interval k = i(h + 1) + 1, . . . , j(h) − 1, for some index
h. By (15), their tolls must be zero, and (13) is satisfied;
(14) then follows from (13).

■

Corollary 1. The toll assignment defined by (10) is optimal
for P.

Proof of Corollary 1. For every toll assignment T ′ con-
sistent with P

mP
T∑

k=1

T ′(τk) ≤
q∑

h=1

[
Ui(h),j(h) − Li(h),j(h)

]
, by (7) and (13)

=
mP

T∑
k=1

tk , by (14).

■

3.4. Partitioning the Set of Toll Arcs

The approximation algorithm progressively removes toll
arcs from the network. It makes use of the following
definition.

Definition 3. A descendant P′ of a valid path P ∈ N0 is
a simple path from s to t in N0(P) that traverses a subset of
the toll arcs of P in the same order as does P.

Let P be a valid path in N0. Theorem 5 suggests a way
of constructing a descendant of P that stands a chance of
achieving a high revenue, whenever P’s revenue is low. Let
us consider the set

υi(1), j(1), υi(2), j(2), . . . , υi(q), j(q) (19)

of toll-free paths such that

0 = i(1) < i(2) < j(1) ≤ i(3) < j(2) ≤ i(4) < j(3)

≤ · · · ≤ i(q) < j(q − 1) < j(q) = mP
T + 1 (20)

and equality (14) holds. If the maximum revenue on P is
B(P) then descendants need not be considered, because their
upper bounds are smaller than or equal to B(P). This happens
in particular if q = 1. We can therefore assume that q is larger
than 1.

We now consider two descendants: P1 contains all υi(h),j(h)

with h odd and is composed of arcs of P between them; P2

is constructed in a similar manner, with even values of the
index h. For instance, P1 may start in s, borrow υi(1),j(1),
take path P between init(τj(1)) and term(τi(3)), bifurcate on
υi(3),j(3), return to P, and so on. Such a pattern, which is
allowed by (20), is performed by procedure TollPartition
(see Fig. 10). Note that P1 and P2 have no toll arcs in common,
and that some toll arcs of P belong neither to P1 nor to P2.

Algorithm TollPartition

Input: a path P and sequence of indices {(i′(k), j′(k))}mP
T

k=1

Output: two paths P1, P2

• Set l := mP
T , r := 1

• (Backwards selection of constraints) While l > 0, do
— Set (i′′(r), j′′(r)) := (i′(l), j′(l))
— Set l := i′(l), r := r + 1

• Let q be the last index in the loop above
• (Reversing the order of the sequence) For all 1 ≤ k ≤ q,

set

(i(k), j(k)) := (i′′(q − k + 1), j′′(q − k + 1))

• (Constructing the descendants) Let P1 contain all υi(h),j(h)

with h odd and be composed of arcs of P between them;
let P2 be constructed in a similar manner, with even values
of the index h

• Return P1, P2

FIG. 10. Algorithm TollPartition.

The rationale behind this construction is the relationship
between the maximum revenue achievable on P and the upper
bounds on the tolls of P1 and P2 given by Theorem 5.

Both these descendants are valid paths. If this were not
the case for P1, there would exist a subpath υi(h),j(h′) (h < h′
both odd) such that Ui(h),j(h′) is strictly smaller than the length
of P1 between term(τi(h)) and init(τj(h′)) (indeed, a path is
valid if and only if the null toll vector is consistent with it).
Because this length is equal to Li(h),j(h′) + Ti(h),j(h′) by (14)
we obtain that the toll assignment on P is not consistent, a
contradiction. A similar argument applies to P2.

A detailed example of the workings of the algorithm can
be found in the online version of the article available on the
arXiv e-print archive [16].

4. ANALYSIS OF THE ALGORITHM

4.1. Approximation Bound

We shall prove that ExploreDescendants is an
1
2 log2 mT + 1-approximation algorithm for MaxToll. The
exact approximation factor is given by the recursion

α(k) = 1

2
max
i+j≤k

0<i≤j<k

{1 + α(i) + α(j)}, (21)

with α(1) = 1. It can be shown by induction that for all k,

α(k) ≤ 1

2
log2 k + 1

Definition 4. The maximum revenue VP induced by path P
is sufficient if

VP ≥ 1

α(mP
T )

B(P). (22)
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Theorem 6. Let P be a valid path on N0. If the maximum
revenue achievable on P is not sufficient, then either path P1

or P2 (say P′) returned by TollPartition satisfies

1

α(mP′
T )

B(P′) ≥ 1

α(mP
T )

B(P) (23)

Proof. Let

P = (
υ0,1, τ1, υ1,2, . . . , τmP

T
, υmP

T ,mP
T +1

)
with corresponding values of Ui,j, Lk,l, and Tk,l for all i, j, k,
l, k, < l. Similarly, for r = 1, 2,

Pr = (
υr

0,1, τ r
1 , υr

1,2, . . . , τ r
mPr

T
, υr

mPr
T ,mPr

T +1

)
with corresponding values of U r

i,j, Lr
k,l and T r

k,l for all i, j, k,
l, k < l. Let

υi(1), j(1), υi(2), j(2), . . . , υi(q), j(q)

be the sequence of toll-free paths obtained from Theorem 5.
For all h > 1, one of the paths Pr contains υi(h−1),j(h−1),

while the other contains υi(h),j(h). Therefore, the subpath of
P between term(τi(h)) and init(τj(h−1)) is in neither P1 nor
P2. The remaining arcs of P belong to either P1 or P2. This
implies that

L1
0,m

P1
T +1

+ L2
0,m

P2
T +1

=
q∑

h=1

Ui(h),j(h) + L0,mP
T +1

−
q∑

h=2

Li(h),j(h−1)

=
q∑

h=1

[
Ui(h),j(h) − Li(h),j(h)

] + 2L0,mP
T +1

By Theorem 5, the first term on the right-hand side is equal

to
∑mP

T

k=1 tk , and is strictly smaller than B(P)/α(mP
T ) by

hypothesis. Multiplying by (−1) and adding 2U0,mP
T +1 =

U0,m
P1
T +1 + U0,m

P2
T +1 on both sides, we get

B(P1) + B(P2) >

(
2 − 1

α
(
mP

T

))
B(P).

By definition of α:

α(mP
T ) ≥ 1

2

[
1 + α(mP1

T ) + α(mP2
T )

]
=⇒

(
2 − 1

α
(
mP

T

))

≥ α(mP1
T ) + α(mP2

T )

α(mP
T )

.

By substituting in the preceding inequality, we obtain

α(mP1
T )

(
1

α(mP1
T )

B(P1)

)
+ α(mP2

T )

(
1

α(mP2
T )

B(P2)

)

≥ (α(mP1
T ) + α(mP2

T ))

(
1

α(mP
T )

B(P)

)
,

which yields the desired result. Indeed, if we had

1

α(mPr
T )

B(Pr) <
1

α(mP
T )

B(P) for r = 1, 2,

this would imply the opposite inequality. ■

As a corollary, we obtain the main result of this section.

Corollary 2. Let APP denote the revenue obtained from
the application of the procedure ExploreDescendants to a
path P0 of shortest length L0 in N0. Then,

APP ≥ 1

α(mP0
T )

LP ≥ 1

α(mT )
OPT . (24)

Proof. Let P be a valid path and (V , T , P) the output
of ExploreDescendants(P). It is sufficient to show, by
induction on mP

T that

V ≥ 1

α(mP
T )

B(P). (25)

This statement is true if mP
T = 1, because the upper bound

B(P) is always achievable on a path with a single toll arc.
Now assume that the property holds when the number of toll
arcs is less than mP

T > 1. Let (VP, TP) := MaxRev(P). If
VP is sufficient, (25) is satisfied. If VP is not sufficient then,
by Theorem 6, TollPartition returns a path P′ with

1

α(mP′
T )

B(P′) ≥ 1

α(mP
T )

B(P).

Because the number of toll arcs in P′ is less than that in P,
property (25) is satisfied for P′, and the preceding inequality
implies that (25) is satisfied for P as well. ■

Note that this result applies to the case of negative tolls
as well, because the upper bound (2) is the same. Indeed,
ExploreDescendants allows only nonnegative tolls, but it
computes a feasible solution with a revenue at least LP/α,
where LP is unchanged in the unbounded case.

The approximation algorithm determines, in a construc-
tive manner, an upper bound α(mT ) on the ratio OPT/LP. It
can be shown through a family of instances that this bound
is tight. A proof of the following theorem can be found in
the online version of the article available on the arXiv e-print
archive [16].

Theorem 7. Let I(mT ) denote the set of instances of Max-
Toll corresponding to a fixed number of toll arcs mT . Then
for all mT ≥ 1, the relaxation gap on I(mT ) is α(mT ), that is

α(mT ) = max
I∈I(mT )

{
LP[I]

OPT [I]
}

, (26)
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where LP[I] and OPT [I] denote respectively the upper bound
and optimal value for instance I.

4.2. Running Time Analysis

MaxToll is initialized with a shortest path P0, which
can be computed in O(n2) time. The toll arcs of the descen-
dants constitute a subset of the toll arcs in P0, and their
traversal order is the same. Therefore, the values Ui,j, i < j
computed for P0 can be reused for all descendants, under
an appropriate renumbering. This operation is achieved in
O(mP0

T n2) = O(mT n2) time. The time required to evaluate
Li,j, i < j, as the algorithm proceeds, is much smaller.

Within ExploreDescendants, MaxRev requires at most
O((mP

T )3) to compute the maximal revenue induced by

path P. Based on the indices {(i′(k), j′(k))}mP
T

k=1 obtained
from MaxRev, TollPartition generates two descen-
dants in O(mP

T ) time. It follows that the running time of
ExploreDescendants on a path P is determined by the
recursion

T(mP
T ) = T(mP1

T ) + T(mP2
T ) + O((mP

T )3) (27)

where mP1
T + mP2

T ≤ mP
T . Therefore, the worst-case com-

plexity, achieved when mP1
T is always equal to mP

T − 1,
is O((mP

T )4). The worst-case running-time of the entire
algorithm is O(mT (m3

T + n2)).

5. CONCLUSION

Our algorithm can also be applied to the multicommodity
extension of MaxToll considered in [10], where each com-
modity k ∈ K is associated with an origin-destination pair.
Given a demand matrix, users solve shortest path problems
parameterized by the toll vector T . If distinct tolls Tk could be
assigned to distinct commodities, the multicommodity exten-
sion would reduce to a |K|-fold version of the basic problem.
Otherwise, the interaction between commodity flows on the
arcs of a common transportation network complicates the
problem, both from a theoretical and algorithmical point of
view. Of course, we can obtain an O(|K| log mT ) guarantee by
applying MaxToll to each commodity separately and then
selecting, among the |K| commodity toll vectors, the one that
generates the highest revenue. However bad this bound is, we
conjecture that it is tight with respect to the relaxation, which
is the sum of the single-commodity bounds, weighted by their
respective demands.

Other generalizations of MaxToll involve capacity con-
straints and lower bounds on tolls. In the latter case, the
relaxation gap becomes infinite for any value of mT , and
our approach fails, as procedure ExploreDescendants
becomes irrelevant. A completely different line of attack is
then required.

Finally, we raise the following important issue: Can our
1
2 log2 mT + 1 guarantee be improved? Such results would

obviously require a tighter upper bound than the one used in
this article.
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