
Mathematical Programming 62 (1993) 461-474

North-Holland

461

An approximation algorithm for the generalized
assignment problem

David B. Shmoys* and Eva Tardos**
School of Operations Research and Engineering. Cornell University, 232 ET&C Building, Ithaca, NY, USA

Received 10 April 1991
Revised manuscript received 14 January 1993

The generalized assignment problem can be viewed as the following problem of scheduling parallel machines

with costs. Each job is to be processed by exactly one machine; processing job j on machine i requires time pif

and incurs a cost of c,f, each machine / is available for 7", t ime units, and the objective is.t»minimize the total cost

incurred. Our main result is as follows. There is a polynomial-time algorithm that, given a value C, either proves
that no feasible schedule of cost C exists, or else finds a schedule of cost at most C where each machine / is used

for at most 27", time units.
We also extend this result to a variant of the problem where, instead of a fixed processing time p,r there is a

range of possible processing times for each machine-job pair, and the cost linearly increases as (he processing
time decreases. We show that these results imply a polynomial-time 2-approximation algorithm to minimize a

weighted sum of the cost and the makespan, i.e., the maximum job completion time. We also consider the objective
of minimizing the mean job completion time. We show that there is a polynomial-time algorithm that, given values

M and 7", either proves that no schedule of mean job completion time M and makespan /"exists, or else finds a

schedule of mean job completion time at most M and makespan at most 27".

Key words: Approximation algorithms, generalized assignment problem, scheduling unrelated parallel machines.

1. Introduction

The generalized assignment problem can be viewed as the following problem of scheduling

parallel machines with costs. Each of n independent jobs is to be processed by exactly one

of /n unrelated parallel machines; job j takes p^ time units when processed by machine /,

and incurs a cost c,y, /= \,...,m,j= 1,...,/?. For notational simplicity, we shall assume that

n^rn. Given values Cand T,, /= \,...,m, we wish to decide if there exists a schedule of total

cost at most C such that for each machine i, its load, the total processing time required for

Correspondence to: Prof. David B. Shmoys, School of Operations Research and Engineering, Cornell Univer-
sity, 232 ET&C Building, Ithaca, NY 14853, USA.

'Research partially supported by an NSF PYI award CCR-89-96272 with matching support from UPS, and Sun
Microsystems, and by the National Science Foundation, the Air Force Office of Scientific Research, and the Office
of Naval Research, through NSF grant DMS-8920550.

**Research supported in part by a Packard Fellowship, a Sloan Fellowship, an NSF PYI award, and by the

National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research,
through NSF grant DMS-8920550.

462 D. B. Shniovx, E. Turdos / Generalized assignment problem

for the jobs assigned to it, is at most T/,i= 1, ..., m. By scaling the processing times we can

assume, without loss of generality, that the machine load bounds satisfy

7, = T2= • • • =Tm = T. In other words, the generalized assignment problem is to find a

schedule of minimum cost subject to the constraint that the makespan, the maximum

machine load, is at most T. Minimizing the makespan is also an important optimization

criterion, and so we shall study this problem as a bicriteria optimization problem.

Lenstra, Shmoys and Tardos [4] give a polynomial-time 2-approximation algorithm for

the single criterion problem of minimizing the makespan, where a p-asproximation algo-

rithm is one that is guaranteed to produce a solution with objective function value at most

p times the optimum. In this paper, we generalize that result to the bicriteria problem

mentioned above.
Trick [8,9] and Lin and Vitter [5] consider variants of this bicriteria problem. Lin and

Vitter [5] give a polynomial-time algorithm that, given cost C, makespan 7", and £->0,

finds a solution of cost at most (1 + s)C and makespan at most (2+ \/e)T, if there exists

a schedule of cost at most C and makespan at most T. In the variant considered by Trick

[8, 9], there is an interval of possible processing times, rather than a fixed timep,-,-, and the

cost of processing job j on machine / l inearly increases as the processing time decreases.

Trick [9] focuses on the single criterion problem of minimizing a linear objective function

that is a weighted sum of the cost and the makespan, and gives a polynomial-time 2.618-

approximation algorithm.

The main result of our paper is as follows. We present a polynomial-time algorithm that,

given values C and 7, finds a schedule of cost at most C and makespan at most 27. if a

schedule of cost C and makespan T exists. As a corollary, we show a similar result for the

bicriteria problem of minimizing the makespan and the mean job completion time; we also

give a polynomial-time 2-approximation algorithm for the variant considered by Trick.

All of the above algorithms are based on solving linear relaxations of a particular integer

programming formulation, and then rounding the fractional solution to a nearby integer

solution. Whereas the results of Trick [8, 9] and Lin and Vitter [5] invoke the rounding

theorem of Lenstra, Shmoys and Tardos [4], the main contribution of this paper is the

introduction of a new rounding technique. The technique used in [4] requires that the

solution to be rounded must be a vertex of the linear relaxation. One interesting aspect of

the new technique is that it does not have this restriction.

The most time-consuming part of our approximation algorithms is the solution of the

linear relaxations. For our results that separately treat the two criteria, we observe that these

linear programs fall into the class of fractional packing problems considered in [7], and

therefore a slightly further relaxed schedule can be found by a randomized algorithm in

O(Ai2 log w) expected time, ordeterministically, in O(mn
2 log n) time.

Approximation algorithms for special cases of the scheduling problems considered in

this paper have been studied over the last twenty-five years, and for a survey of this literature,

the reader is referred to [3]. Finally, we note that it is likely that our results cannot be too

substantially improved upon, since Lenstra, Shmoys and Tardos [4] have shown the fol-

lowing result for the single criterion problem of minimizing the makespan: for any e< i,

no polynomial-time (1 -he)-approximation algorithm exists, unless P = NP.

D.B. Shmoys. E. Tardos / Generalized assignment problem

2. The main result

463

We first consider the simplest version of our scheduling problem, when there is a fixed

processing time p(j and a cost cy- associated with each machine i= 1, ..., m, and each job

j=\, ..., n. For any t^-T, integer solutions to the following linear program, LP(f), are in

one-to-one correspondence with schedules of cost at most C and makespan at most T.

£/,•/=! f o r y = l n,

YjPijXij^T fori- l
y-i

Xy > 0 for / = 1 , . . . , m, y : = I , . . . , n,

xtj = 0 if PJJ > t, i = 1 , . . . , w, j = 1 /i .

Theorem 2.1. //"LP(0 /las a feasible solution, then there exists a schedule that has mak-

espan at most T+1 and cost at most C.

We will prove the theorem by providing an algorithm that converts a feasible solution .v

of LP(0 to the required schedule. We will construct a bipartite graph B(x) = (V, W, E)

and a value x'(t\ w) for each edge (r, w) e£. One side of the bipartite graph consists of

job nodes

The other side consists of machine nodes

V={c, (: /= 1 m, s= 1 A - , } ,

where k,- = fE/r,:/l; the k, nodes { r,v: s = 1 , . . . , & , •) correspond to machine /', / = 1 , . . . , m.

Edges of the graph B(x) will correspond to machine-job pairs (i , j) such that xtj > 0. For

each positive coordinate of .r, there will be one or two corresponding edges in B (x) . The

vector .v' defined on the edges of B(x) will have the property that, for each /'= 1 m.

j=\ n,

The cost of each edge (<.>,-.„ Wj) e E is c,j.

The graph B(x) and the vector x' are constructed in the following way. To construct the

edges incident to the nodes corresponding to machine/, sort the jobs in order of nonincreas-

ing processing time pu; for simplicity of notation, assume for the moment that

464 D.B. Shmoys. E. Tardos / Generalized assignment problem

Pi\ ^P,2> ••• >Pi,,-

If E"= i^,j< 1, then there is only one node c,, e V corresponding to machine/: in this case,

for each jfy->0, include (un, w;) e£, and set X'(L>,,, Wj) --=x(j.

Otherwise, find the minimum index j, such that Ej'_iJt</> 1. Let £ contain those edges

U' / i . "•>)• j= 1, • • • > 7i ~ 1. f°r which *,7>0, and for each of these set j f ' (i> , - , , w,) — Ay,

Furthermore, add edge (u,-, , w ; i) to £ and set jr'd',-,, vc;i)
 := 1 -E^_~|V(f/i. w;). This

ensures that the sum of the components of x' for edges incident to vn is exactly 1. If

EjL i *y > 1, then a fraction of the value xij{ is still unassigned, and so create an edge

(t',2, Wj,), and set

•(£*«)->•^ , = i '
We then proceed with jobsj>jt, i.e., those with smaller processing times on machine /,

and construct edges incident to r,2, until a total of exactly one job'is assigned to r,2, and so

forth. More precisely, for each 5 = 2, . . . , k / — \ , find the minimum index /, such that

Ej'_ i Jfy > 5. Let £ contain those edges (t',v, vv,),_/ ' =j,_ , + 1 _/', — 1, for which jry > 0, and

for each of these set x'(c,v, Wj) -=x{j. Furthermore, add edge (t' lv, wit) to E and set .v'

U',-,, v^j ;= 1 -Ej'J'y^.-uJf^t',., ^)- If EjL|Jfy>5, then also put edge (i1/.,+ ,, H^) e£,

and set

y' be the last job assigned in this way; that is,/ =jki-\ • For each; >/ for which xtj > 0,

create an edge (i'rti., w^) andsetjr '(t) r t i , v^) :=Xy. For each machine node <,',„ let p,™x denote

the maximum of the processing times p/j corresponding to edges (v/,, w}) e£; let p™"

denote the analogous minimum.

We shall use the following instance to give an example of this construction: /n = 3;

n = m(m— 1) + l;p,, =m, i = 1, ..., m;ptj= 1, /= 1, ..., m,j = 2, ..., n; Cy = 0,' = 1 m,

j= 1, ..., /?; C = 0; T=m. Figure 1 gives a feasible solution X=(x^) to LP(7~), and the

corresponding graph B(x).

l>13

1 / 3 1 1 0 0 0 0

1 / 3 0 0 1 1 0 0

1 / 3 0 0 0 0 1 1

For solid edges, x'(vu,,Wj) = 2/3
For dashed edges, x'(vu,,Wj) = 1/3

Fig. I. Constructing BU

D.B. Shmoyx, £. Tardos / Generalized assignment problem 465

A non-negatfve vector z on the edges of a graph is a fractional matching if, for each node

u, the sum of the components of z corresponding to the edges incident to u is at most 1. The

fractional matching exactly matches a node u if the corresponding sum is exactly 1. A

fractional matching z is a matching if each component of z is 0 or 1. The following lemma

summarizes some simple properties of the above construction.

Lemma 2.2. The vector x' is a fractional matching in B(x) of cost at most C. It exactly

matches each node Wj,j= 1, ..., n, and each node vis, for each i = 1 m, s= 1, k,— 1.

Finally, p™
n
>p™ijor each / = 1 m, s= 1, ...,*,.- 1. D

The algorithm to construct a schedule from a feasible solution x of LP(r) is as follows.

The algorithm.

Step 1. Form the bipartite graph B (x) with costs on its edges.

Step 2. Find a minimum-cost (integer) matching M that exactly matches all job nodes

inflU).

Step 3. For each edge (i1,,, w,) eM, schedule job) on machine /.

Proof of Theorem 2.1. We shall prove that the schedule produced by the algorithm satisfies

the requirements of the theorem. By Lemma 2.2, x' is a fractional matching in B (x) of cost

at most C, which matches all job nodes exactly. This implies there exists an (integral)

matching M in B(x) of cost at most Cthat exactly matches all job nodes (see, for example,

[6]) . Therefore, the matching required in Step 2 exists and has cost at most C. The cost of

the matching is the same as the cost of the schedule constructed. Therefore, the cost of the

schedule constructed is at most C.

Next we show that the makespan of the schedule constructed is at most T+1. Consider

the load of machine /', /'= 1, ..., m. There are k/ nodes corresponding to machine / in B(x),

and for each of these, there will be at most one job scheduled on machine / corresponding

to some incident edge. Therefore, the length of the time required by machine / is at most

£*'- i pJ?ax- Clearly,/?,™11 </. Lemma 2.2 implies that the sum of the remaining terms.

.t-2 . v = l

<E E Pvx'(i>i.*wj)-
.'- I j' (' •„ . wj> ef j—\

which proves the theorem. D

Observe that the algorithm ensures that if x,j= 1, then job j is assigned to be scheduled

on machine /, since each edge incident to Wj in B(x) is of the form (r,,, Wj) for some s. Also

note that the obvious w-machine generalization of the example given in Figure 1 shows that

the analysis of this algorithm is asymptotically tight.

466 D.B. Shmovx, E. Tardos / Generalized assignment problem

Remark. The" rounding technique used to obtain Theorem 2.1 can also be used for integer

programs of a slightly more general form with varying right hand sides. Consider the

extension of the problem of scheduling unrelated parallel machines in which there are «y

jobs of type y, 7= 1 n, and each machine / is available for processing for only 7, time

units, i ' = l , ..., m. Feasible schedules of cost at most C are in one-to-one correspondence

with integer solutions to the following linear program for any f,>7", for /= 1, . . . , m.

El
i - lV-

^pijXij^Ti f o r / = ! m,
;-i

Xjj^Q for / = 1, ..., m, j = I n,

x/j = 0 if p,j> 1^, i = 1, ..., m, j = 1, ..., n,

The natural extension of the proof of Theorem 2.1 shows that if this linear program has a

feasible solution, then there exists a schedule of cost at most C where the load on machine

/ is at most T, + /,, for / = 1 , . . . , m. The immediate extension of the construction of Theorem

2.1 is pseudopolynomial in the job multiplicities nf. there are at least £,-«, machine nodes

i'i, in the bipartite graph B (x) . In order to find a solution in polynomial time we first schedule

the integer part of the fractional schedule*; that is, we assign [.vj jobs of type 7 to machine

/' for each7= 1, . . . , n and /'= 1 m, which leaves fewer than mn jobs unscheduled. We

then used the fractional part of the vector x in the construction of Theorem 2.1 to schedule

the remaining jobs.

Corollary 2.3. In the problem with fixed processing times p^, i= I , ..., m,j= 1, ..., n,for

any given cost C and makespan T, we can find, in polynomial time, a schedule of cost C

and makespan at most 2T, if one of cost C and makespan T exists.

Proof. If there exists a schedule of cost at most C and makespan at most T, then LP(7")

must have a feasible solution. We can use any polynomial-time linear programming algo-

rithm to find a feasible solution to this linear program. The algorithm used to prove Theorem

2.1 can be implemented to run in polynomial time, which implies the claim. D

Corollary 2.4. In the problem with fixed processing times ptj, / = ! , . . . , m,j= 1 n, and

non-negative costs, for any given cost C and makespan T, and for any fixed e>0, we can

find a schedule of cost at most (1 + £•) C and makespan at most (2 + e)T, if a schedule of

cost C and makespan T exist, using a randomized algorithm that runs in expected O (n
2 log

n) time.

Proof. Plotkin, Shmoys and Tardos [7] developed an algorithm that efficiently finds approx-

D.B. Shmovs, E. Tardos / Generalized assignment problem 467

imate solutions to a wide class of linear programming problems, known as fractional packing

problems. If the costs in LP(7) are nonnegative, then this linear program is a fractional

packing problem of the form considered in [7] . The techniques of [7] can be used to

determine that LP(T) is infeasible, or else produce a solution that is nearly feasible, in the

sense that it is feasible if the right-hand sides of the cost constraint and machine load

constraints are relaxed by a factor of 1 + e. Thus, if this algorithm produces such a fractional

solution, we can then use Theorem 2.1 to find the claimed schedule.

To view the linear program LP(7) as a fractional packing problem, we partition the

constraints into two categories: the m machine load constraints and the cost constraint are

the packing constraints, and the remaining constraints are the job assignment constraints.

The algorithms of [7] work by maintaining a solution that satisfies the latter, and iteratively

moving towards a solution that also satisfies the former.

An important parameter of a fractional packing problem is its width, which is the maxi-

mum ratio of the right-hand side to the left-hand side of any packing constraint for any

solution x that satisfies the remaining constraints. The width of the above formulation can

be as high as E/ max, c,//C. This can be improved as follows: add constraints that set xit = 0

if Cjj > C. As a consequence, the width is reduced to at most /;. If there exists a schedule of

makespan at most T and cost at most C then this modified linear program has a feasible

solution. Furthermore, we can use the algorithm of Theorem 2.1 to round a feasible solution

to this linear program to a schedule.

Since the width is at most n and there are m -I- I packing constraints, the packing algorithm

of [7] finds an approximate solution in O(« log n) iterations (see Theorem 2.7 of [7]).

In each iteration, the algorithm first computes a dual variable corresponding to each packing

constraint, which is completely determined by the current primal solution; let v denote the

dual variable corresponding to the cost constraint, and let ̂ correspond to the load constraint

for machine/, i= 1, ...,m. The algorithm then selects a job) uniformly at random, and finds

the machine i on which job; may be scheduled (i.e., p(i < t and c,y < C) for which vc,, + v, ptl

is min imum. A small fraction of job 7 is rescheduled on this machine. Each iteration takes

O(m) time. Therefore, the packing algorithm terminates in O(mn log n) expected time.

The resulting vector* has O(n log n) nonzero coordinates. Therefore, the graph B(.\)

has at most 2n + m = O(n) nodes and Q(n \ogn) edges. The minimum-cost matching that

exactly matches the n job nodes can be found via n shortest path computations; using

the Fredman-Tarjan implementation of Dijkstra's algorithm, the algorithm runs in
O(n

2 log n) time. D

There is also a deterministic version of the algorithm of [7] that yields a running time
of 0(mn

2 log n) .

Next consider the version of the problem where job) can be processed by machine / in

t,j time units, where /,y < ̂ < MI:> and the cost linearly increases as the processing time

decreases. In this model, we are given the minimum cost cj) and the maximum cost c'u of

468 D. B. Shmoys, £. Tardos / Generalized assignment problem

assigning job./' to machine /, for each /'= 1 m,j= 1, ..., n. The cost associated with

processing job j on machine / in time ry- is /icy- + (1 — /i)c}J if the time can be written as
tij = //,/y + (1 - /A)My, where 0 < /j.< 1.

In the linear programming relaxation LPspecd(r) of this problem there are two variables

x'jj andx"j associated with each machine-job pair (i , j) , /=!,. . . , m,j= 1, n. A. feasible

solution to the linear program directly corresponds to a feasible schedule if x'^+x"; is

integral for each machine-job pair (i , j) . /= I >n,j= 1, ..., n. Job j is assigned to

machine / if x"j
j
!-x.\j= 1, where the assigned time is tll = x"juu+x

l
,jlu at a cost of CyjcJJ• +

44-
In the linear program LP(/) , we forced the variable *,-,• to zero if py->r. Analogously, we

want to make sure that no job is processed on a machine at a speed on which it would

require more than t time units to process the whole job. To do this, we revise the upper
bound of the processing times to w , y = m i n j / , «,-,}. The revised cost c|) associated with the

revised upper bound is the cost of processing job j on machine / in time M,-,-, i.e., if

My = fJMij+ (1 - /!)/,>• then we set cy- = /ACJ) + (1 - /A)C V - . The resulting linear program

LPspeed(0 1
s as

 follows.

LP s p eed(t): £ £ (^^5 + CU

us+4)-' for;-!.....«,

(K^ + ̂ Xr f o r / = l ,«,
l

. ^ y - ^ O f o r / = l w, 7=1, ...,

J =Xy- =0 if ltj > t, i=\ m, j =

Theorem 2.5. If the linear program LPspecd(/) has a feasible solution, then there exists a

schedule with makespan at most T+1 and cost at most C.

Proof. We will prove this theorem by constructing a feasible solution to a related linear

program LP(0 and then applying Theorem 2.1. Consider a feasible solution x' and x" to
LPspee.d(r). Define the corresponding feasible solution x, scheduling times p, and costs c as
follows. Let

x =JT" +x' •
(I <J ' • * (/ »

that is, Xjj is the fraction of job j that is scheduled on machine /. For any machine-job pair

(i , j) such thatjfyX), define its processing time as

that is, Pfj is the time it would take to process all of job; on machine i at the speed used in

the fractional schedule; the corresponding cost is defined to be

D.B. Shmov.t. E. Tardos / Generalized assignment problem

= (f "
u

*
 c

469

For machine-job pairs (i , j) such that jc,y = 0, set p,y= +<» (where any value greater than

T+t will suffice) and c,y = 0.
Observe that x,y > 0 implies that /?,-,- ̂ t, lu ̂ p{J ^ utj, and ctj is the cost of assigning job; to

machine / for time ptj. Notice that x is a solution to the linear program LP(t) defined by T,

C, and p/j and c,y for /= 1 m, _/'= 1, ..., n. Therefore, Theorem 2.1 implies that the

claimed schedule exists. D

Notice that the algorithm ensures that integral assignments (i.e., pairs (/, j) with

x'ii + x"j integral) are used in the schedule constructed.

Corollary 2.6. In the problem with variable processing times, for any given cost C and

makespan T, we can find, in polynomial time, a schedule of cost C and makespan at most

2T, if one of cost C and makespan T exists.

Proof. If there exists a schedule of cost at most C and makespan at most 7, then LPspecd(T)

must have a feasible solution. We can use any polynomial-time linear programming algo-

rithm to find a feasible solution to this linear program. By applying Theorem 2.5, we obtain

the corollary. D

Corollary 2.7. In the problem with variable processing times ptj, i= 1, ..., m,j= 1, n,

and non-negative costs, for any given cost C and makespan T, and for any fixed s> 0, we

can find a schedule of cost at most (1 + e) C and makespan at most (2 + s)T,ifa schedule

of cost C and makespan T exists, using a randomized algorithm that runs in expected

Q(n
2 logn) time.

Proof. This proof of this result relies on techniques from [7] in a way analogous to the

proof of Corollary 2.4. To make the width of the corresponding packing problem small, we

must further restrict the allowed speeds for the assignments. We increase the lower bounds

l,j to a modified lower bound /„, if necessary, to ensure that the corresponding cost c'y is at

most C. D

3. Mean job completion time and makespan

In addition to the makespan of the schedule, another important objective is to minimize the

mean job completion time M. In this section we consider the bicriteria problem of minimizing

the makespan and the mean job completion time with fixed processing times.

Horn [2] and Bruno, Coffmann and Sethi [1] showed that a schedule with minimum

mean job completion time can be found by reducing the problem to the minimum-cost

bipartite matching problem. The bipartite graph formed by the reduction is quite similar to

the graph B(x) used in the proof of Theorem 2.1. There is a node w, corresponding to each

470 D.B. Shmtiyx. £. Tardos / Generalized assigpmeni problem

job;' = 1 n, and there aren nodes r,v, s'= I n, corresponding to each machine /, /= 1,

..., m; there is an edge between every job node and machine node, and the cost of the edge

(t ' ,v , Wj) is S'pij. Schedules correspond to matchings in this bipartite graph: a job node wt

matched to machine node c,v is interpreted as job; being scheduled sth-to-last on machine

/. If job; is the Jth-to-last job on machine /', then it contributes p:j to the completion time of

s jobs; hence, there is a one-to-one correspondence between schedules of minimum mean

job completion time and matchings that exactly match all job nodes of minimum cost.

Observe that in an optimal schedule, the jobs processed on each machine i, / = 1 m,

are sequenced in order of nondecreasing processing time. Thus, in the construction used in

Theorem 2.1, we can similarly view r,-, as the ^th-to-last position on machine i.

Theorem 3.1. In the problem with fixed processing times p^, i=\ m,;'= 1 n.for

any given mean job completion time M and makespan T, we can find, in polynomial time,

a schedule of mean job completion time M and makespan at most 2T, if one of mean job

completion time at most M and makespan at most T exists.

Proof. We shall give a polynomial-time algorithm analogous to the one used in the proof

of Theorem 2.1. If there exists a schedule with mean job completion time at most M and

makespan at most T, then the following linear program has a feasible solution by setting

x']j = I if job; is scheduled as the 5th-to-last job on machine /, and setting x*j=Q otherwise.

E E£w —

/- I ;- I

E

for /= I m,

for
'
=
 I. «,

xj, >0 for / = 1, ..., m, s = 1 n, j= \, ..., n,

x]j=Q if pfj>T, i' = I /n. 5 = 1 «,;'=!, .. . , n.

If there exists a schedule of mean job completion time at most M and makespan at most T.

then we can use any polynomial-time linear programming algorithm to find a feasible

solution x*j, i = I, ..., m,j= 1, ..., n, s= 1, ..., n, to this linear program. Consider a vector

x with coordinates^ = £"_, ;cj,-, / = 1,. ..,m,j — l,...,n. Notice that A: satisfies all constraints

of the linear program LP(7"), except for the cost constraint. Use the construction of the

proof of Theorem 2.1 to construct the graph B (x) , but let the cost of the edge (r,t, w}) e £

be s-ptj. The vector x' is a fractional matching of B(x) that matches all job nodes exactly.

We will argue that the total cost of x' is at most nM. If a set of jobs are (integrally)

assigned to be processed on machine /, then the mean job completion time on this machine

D. R. Shuiov.f. E. Tardos/Generalized assignment problem 471

is minimized by scheduling these jobs in order of noridecreasing processing time. The

following fractional analogue wil l suffice to bound the cost of x': each job,/' has a fraction

Xjj assigned to machine /', and the sum of these fractions, £"_,;t,y, 's at most k/; we view

machine / as having k/ slots to process jobs, and each fraction xtj is to be subdivided among

these A:, job slots; each of the k,Job slots can be assigned fractions that sum to at most one:

if a fraction v of job) is assigned to the .yth-to-last job slot, it incurs a cost of ys-p(l\ the

m i n i m u m cost assignment can be found by working from the last job slot to the first,

scheduling the fractions ,v,:/ in nonincreasing order of /?,,, and filling the .rth-to-last slot to

capacity before starting the (s+ 1)th-to-last slot. A simple perturbation argument shows

that this procedure constructs an optimal assignment. This procedure is exactly the one used

to construct x from x. However, since the solution x
s
u is a feasible assignment of cost at

most nM, the total cost of x' is at most nM.

Since x has cost at most nM, there exists a matching in B(x) that exactly matches all job

nodes and has cost at most nM, and such a matching can be found in polynomial time.

Schedule job j as the .rth-to-last job on machine i if the job node w/ is matched to machine

node I'/, in the matching. The sum of the job completion times for this schedule is at most

nM, and therefore the schedule has mean job completion time at most M. The proof of

Theorem 2.1 implies that the makespan of the schedule is at most 27. D

By applying Theorem 3.1. to the min imum mean job completion time M*, we get the

following: if T is the minimum makespan among all schedules with mean job completion

time M*, then we can efficiently find a schedule with mean job completion time M* and

makespan at most 27. A much stronger result would state that it is possible to find a schedule

with mean job completion time M* and makespan at most 27*, where 7* denotes the

minimum makespan. This result is known for the special case when the machines are

identical: a schedule of minimum mean job completion time can be found by sequencing

the jobs in nondecreasing processing time order, and iteratively scheduling the next job on

the machine on which it would finish earliest; the same algorithm is known to be a 2-

approximation algorithm for the minimum makespan problem. We leave the following

question as an interesting open problem: is the makespan of any minimum mean completion

time schedule at most 27*?

4. Minimizing a combined objective function

In this section, we return to the setting with variable processing times, and consider the

problem of minimizing the objective function consisting of a weighted sum of the makespan

and the operating cost,

for some parameter /x > 0, where the desired makespan is no longer a part of the input. We

assume that the operating costs

D.B. Shmovs, £ Tardos / Generalized assignment problem

and for /'= 1, ..., m, j - n.

We shall also assume that the lower and upper bounds on the processing times, /,-,- and w,;,

respectively, are integral, for each machine-job pair (i,j). Let P denote the maximum of

the upper bounds on the processing times. Trick [9] gave a p-approximation algorithm for

this problem, where p is roughly 2.618. Here we use Theorem 2.5 to give a 2-approximation

algorithm.

For each value t > 0, consider the following linear program LPop,(/), where c£, as in the

previous section, is the cost of scheduling job j on machine /' so that it is processed in

My = min{r, «,-,-} time units.

subject to £^(4+4) = ' fory= 1, ..., n,
i- i

£ (My-4 + /y-4) < T for i = 1 m,

x"j, for /= 1, ..., m, ;' = 1 «,

4=4=0 i f / y - > r , / = y = l

To find a schedule with objective function value at most twice optimal, we will perform

a bisection search on the range of possible makespan values, and maintain the following

invariant: all schedules with objective function value less than half the objective function

value of the best schedule found thus far must have makespan within the current range. The

number of iterations of this bisection search can be bounded by using the following lemma

of Trick [9], which follows from a simple perturbation argument.

Lemma 4.1. Among all schedules with minimum objective function value, consider one

with minimum makespan: the makespan of this schedule is integral. D

Since the makespan of any plausible schedule is at most nP, it follows that we can

init ial ize the search by setting the interval to [0, n P] . The core of the bisection search is

given by the following lemma.

Lemma 4.2. For each value t>0, one can, in polynomial time, find a schedule with objective

function value f, and conclude that one of the following holds: (i) each schedule with

objective function value less than {/has makespan less than t, or (i i) each schedule with

objective function value less than {fhas makespan greater than t.

Proof. The algorithm works as follows. First find an optimal solution x to LPopIU) and

compute/(/). Let C and T denote the cost and makespan of this fractional solution; that is.

D.B. Shmoys, E. Tardos/Generalized assignment problem 473

f (t) = C+ /J,T. Since A: is a feasible solution to LPspeed(r) for these values C and T, we can

apply Theorem 2.5 to obtain a schedule. The objective function value of this schedule is at

most C+ p(T+t) =f(t) + /j,t.

We consider two cases: /(/) < /j,t or/(r) > /jit. Suppose that /(?) < fj.t. The schedule

obtained has objective function value /</(/) + ^,/< 2 n,t. Any schedule with objective

function value less than j/< p,/ must clearly have makespan below /. Hence, we can

conclude that alternative (i) holds. Suppose instead that/(f) > /A?. We will show that each

schedule with makespan at most t has objective function value at least %f. The schedule

constructed has objective function value/</(0 + pU<2/(0-Since/(0 is the optimal value

of LPopt(0, each integral schedule with makespan at most t must have objective function

value at least/(f) > \f. Hence, we can conclude that alternative (i i) applies. D

Observe that i f / (f) = /J.t, then the algorithm can halt, since (i) and (i i) together imply

that there does not exist a schedule with objective function value less than if. By combining

Lemma 4. 1 and Lemma 4.2, we obtain the following theorem.

Theorem 4.3. For the problem of minimizing a weighted sum of the cost and the makespan

in scheduling with variable speeds, there exists a 2-approximation algorithm, which needs

to solce the linear program LPopl(f) at most log nP times. D

Note added in proof

The question at the end of Section 3 was answered by G. Rote, who provided an instance

for which all minimum mean completion time schedules have more than twice the optimal

makespan. Based on this construction, C. Hurkens showed that the performance guarantee

is, in fact, no better than log w/log log n.

Acknowledgments

We would like to thank Leslie Hall for prompting this research. Her discovery of an error

in our earlier, trivial, but fallacious proof of Corollary 2.3 led us to find this more interesting,
correct solution.

References

[I] J.L. Bruno. E.G. Coffmann Jr. and R. Sethi. "Scheduling independent tasks lo reduce mean finishing time,"
Communications of the ACM 17 (1974) 382-387.

|2] W.A. Horn. "Minimizing average flow time wi th parallel machines," Operations Research 21 (1973) 846-
847.

474 D.B. Shmtiys, E. Tardos / Generalized assignment problem

[3] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, "Sequencing and scheduling: algorithms

and complexity," in: A.H.G. Rinnooy Kan and P. Zipkin, eds.. Handbooks in Operations Research and

Management Science, Vol. 4: Logistics of Production and Inventory (North-Holland, Amsterdam, 1993)

pp. 445-522.

[4] J.K. Lenstra, D.B. Shmoys and E. Tardos, "Approximation algorithms tor scheduling unrelated parallel
machines," Mathematical Programming 46 (1990) 259-271.

[5] J.-H. Lin and J.S. Vitter, "^-approximations with minimum packing constraint violation," in: Proceedings

of the 24th Annual ACM Symposium on the Theory of Computing (1992) pp. 771-782.

[6] L. Lovaszand M. Plummet,Matching Theory (Akademiai Kiado, Budapest, and North-Holland, Amsterdam,

1986).

17] S.A. Plotkin, D.B. Shmoys and E. Tardos, "Fast approximation algorithms for fractional packing and

covering problems" Technical Report 999, School of Operations Research and Industrial Engineering.

Cornell University (Ithaca, NY. 1992).
[8] M.A. Trick, "Scheduling multiple variable-speed machines," in: Proceedings of the 1st Conference on

Integer Programming and Combinatorial Optimization (1990) pp. 485-494.
[9] M.A. Trick, "Scheduling mult ip le variable-speed machines," unpublished manuscript (1991).

