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1. INTRODUCTION

The vertices of any spanning tree can be naturally partitioned into two types:
leaves and internal vertices. A natural question is then to find a spanning tree
T in a undirected graph G containing the maximum number of leaves. This is
know as the Maximum Leaf Spanning Tree (mlst) problem and has applications
in communication network design [Guha and Khuller 1996], circuit layouts [Storer
1981], and distributed systems [Payan et al. 1984]. This problem, however, is hard;
Galbiati et al [Galbiati et al. 2004] proved it to be maxsnp-complete.

Given this, there has been much work on designing approximation algorithms.
Interestingly, it turns out that the mlst problem is one of those select problems for
which many of the standard tools give good approximation guarantees. In partic-
ular, Lu and Ravi have shown that both local improvement and greedy techniques
can be applied successfully. First, they gave constant-factor approximation algo-
rithm using a local improvement algorithm [Lu and Ravi 1992]. Specifically, they
analysed a k-exchange algorithm. This involves taking a spanning tree T and ex-
haustively searching for a spanning tree T ′ that differs from T in at most k edges
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and has more leaves; the search is then repeated until no improved tree can be
found. Lu and Ravi proved that this produced approximation guarantees of 5 and
3, respectively, for the cases k = 1 and k = 2.

Later, Lu and Ravi [Lu and Ravi 1998] proved that greedy algorithms also per-
form well. They presented a nearly linear time algorithm with a factor 3 guarantee.
The basic approach is to greedily grow a forest (according to specific expansion

rules) with many leaves. Using the structural properties of the resulting forest,
they show that the forest can then be extended to a spanning tree with a relatively
small cost in terms of leaves. Solis-Oba [Solis-Oba 1998] subsequently refined this
approach to produce a factor 2 approximation algorithm.

In this paper we consider directed graphs. The analog of spanning tree in a
directed graph is called an arborescence; more precisely an arborescence is a directed
graph G that contains a unique vertex r such that there is exactly one directed path
in G from r to each vertex u ∈ G.

Our problem then becomes the Maximum Leaf Spanning Arborescence (mlsa)
problem: Given a directed graph G, find a spanning arborescence T containing the
maximum number of leaves. Here, we will assume that we are also given a specified
root vertex r for the arborescence. Clearly, an algorithm for this case can be used
to solve the mlsa problem by applying it on each possible choice of root.

As with many graph problems, the directed version seems trickier than its undi-
rected counterpart. For example, the techniques developed for the mlst problem
cannot be applied to the mlsa problem. Figure 1 gives a spanning arborescence
T on which a k-exchange algorithm performs poorly. To improve T requires ex-
changing more than half of the arcs of the arborescence; that is, we need k > 1

2n.
Moreover doing so enables us to find the optimal arborescence T ′ which contains 1

2n
leaves compared to just two in T . Consequently, the k-exchange algorithm gives a
trivial θ(opt)-approximation guarantee. Similarly, in the directed setting, it is easy
to construct bad examples for all obvious types of greedy algorithm. For example,
greedily growing a forest will fail as the arc directions may then prohibit the forest
from being connected up efficiently.

1.1 Related Work.

Very recently, Alon et al. [Alon et al. 2007a], [Alon et al. 2007b] examined the
parameterised complexity of mlsa. They showed that mlsa is fixed parameter
tractable for a large class of directed graphs. Specifically, their algorithm applies
to the family F of digraphs for which the maximum leaf arborescence has the same
number of leaves as the maximum leaf spanning arborescence. For example, F
includes all strongly connected digraphs; it does not, however, contain the digraph
D = (V,A), where V = [n] and A = {(i, i + 1) : 1 ≤ i ≤ n − 1} ∪ {(n, j) : 2 ≤ j ≤
n − 1}. Their approach is to show that a digraph D ∈ F either has a spanning
arborescence with at least k leaves or the underlying graph has pathwidth at most
f(k). For fixed k, dynamic programming can be applied in the latter case, giving
a polynomial time algorithm that decides whether or not a digraph D ∈ F has a
spanning arborescence with at least k leaves. We remark that they left as an open
problem the parameterized complexity of mlsa for all digraphs, which was even
more recently settled in [Bonsma and Dorn 2007].

Although the problem of determining the parameterized complexity and the prob-
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Fig. 1. (a) Initial spanning arborescence with 2 leaves. (b) After an arbitrarily high number of

edge swaps we have a new spanning arborescence with an arbitrarily high number of leaves.

lem of finding an approximation algorithm for MLSA are quite different, there are
common techniques that have proved to be successful for both problems. The pa-
rameterized algorithms in [Alon et al. 2007a] are based on local improvements. In
this paper, we introduce a special class of directed graphs which we call “willow”
graphs. Both the parameterized algorithms of [Alon et al. 2007a], [Alon et al. 2007b]
implicitly make use of “willow” graphs in their proof on bounds of pathwidth.

1.2 Our Contribution.

Our approach is motivated by the example in Figure 1. How can we deal with the
difficulty inherent in this simple directed graph? To do this, we consider a spe-
cific family of directed graphs, called willow graphs, which contains the structures
causing the problems in Figure 1. We first present a constant factor approximation
algorithm for the mlsa problem in willow graphs.
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4 · M. Drescher and A. Vetta

The key observation then is that, in a directed graph, paths in an arborescence T
must induce willow-like graphs; otherwise we can easily obtain local improvements
to T . Consequently, we can apply the algorithm for willow graphs as a subroutine
in a O(

√
opt)-approximation algorithm for the mlsa problem in directed graphs,

where opt is the number of leaves in an optimal spanning arborescence.

2. AN APPROXIMATION ALGORITHM FOR WILLOW GRAPHS

We begin with some terminology. Let G be a directed graph with arc set E. We
define the out-degree of a vertex v, denoted by deg+(v), to be the number of arcs in
E emanating from v; more formally deg+(v) := |{u ∈ G : (v, u) ∈ E}|. Let T be an
arborescence in G and i ∈ N. We denote by Ti the set of vertices with out-degree i
in T ; similarly, T≥i denotes the set of vertices with out-degree at least i.

We now state some general observations that apply to any directed graph G.
Observe that if a vertex v is an internal (non-leaf) vertex in an arborescence T ⊆ G,
then adding any outgoing arc from v does not reduce the number of leaf vertices.
It follows that we wish to select a subset R of vertices such that R is spanned by
an arborescence rooted at r and every vertex u ∈ V −R has an incoming arc whose
tail is in R.

2.1 Willows.

An ordering {v1, v2, . . . , vn} of the vertices of a directed graph partitions the arc set
into two groups; up arcs (vi, vj) satisfy i < j and down arcs (vi, vj) satisfy i > j. A
directed graph W = (V,A) is called a willow if V has a vertex ordering for which
the down arcs are precisely a Hamiltonian path H.

For vertices vi, vj ∈ H, we say that vi is lower than vj if i < j. We denote
this using the “ < ” operator and write vi < vj . We define a closed interval

[vi, vj ] := {v ∈ W : vi ≤ v ≤ vj}; an open interval can be defined analogously.
Observe that in Figure 1, our bad example for the k-exchange algorithm, the

induced subgraph on v1, v2, . . . vn contains an induced willow. Consequently, being
able to deal with willows is a necessary attribute of any good algorithm. Conversely,
we will show in Section 3 that an approximation algorithm for the maximum leaf
arborescence problem in a willow gives an approximation algorithm for the general
case (albeit with a weaker approximation guarantee). Ergo, in this section we
present an approximation algorithm for willows.

2.2 Pitchforks.

An important structure for our algorithm is a pitchfork. A pitchfork consists of

(i) A directed path {w0, w1, . . . , wk} with tail w0 and head wk. The arcs of
the path form a handle. (The handle needs not be non-empty; in this case
w0 = wk).

(ii) A set of at least two arcs emanating from the head wk, called prongs, that
point to vertices (called prong vertices or just prongs if there is no confusion)
disjoint from the handle.

Figure 2 illustrates a pitchfork. To understand why pitchforks will be useful,
consider the following simple result.
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Fig. 2. A 3-prong pitchfork with a 5-arc handle.

Lemma 2.1. In any arborescence T , the number of leaves is greater than the

number of vertices with out-degree at least two.

Proof. The number of leaves in T is

|T0| = 1 +
∑

v:deg+(v)≥2

(deg+(v) − 1) ≥ 1 + |T≥2|.

Hence, an arborescence with a large number of nodes of out-degree at least two
has a large number of leaves. This observation motivates our algorithm. The idea
is to grow an arborescence T by adding one pitchfork at a time; the tail of the
pitchfork should be in the current arborescence with all of its other vertices lying
outside the current arborescence. Intuitively, if the handles of the pitchforks are
small then the constructed arborescence will not have too many internal nodes of
degree one and will thus have a large number of leaves by Lemma 2.1.

Of course, such an approach faces two immediate difficulties. First, what happens
if the algorithm finds pitchforks with long handles? Secondly, what if the algorithm
cannot find any pitchfork at all? The latter problem is easy to deal with: If the
algorithm “gets stuck” we will obtain a certificate showing that the optimal solution
cannot do much better at that point. We have to deal with the former problem
in a similar fashion; the need for the output of long handles implies an improved
upper bound. However, showing this is not quite as straightforward and requires a
more careful examination of the structure of the algorithm. Consequently, we will
now describe the algorithm formally and then see how it provides a constant factor
approximation algorithm for willow graphs.

2.3 An Algorithm for Willow Graphs.

Take a willow W with Hamilton path H := vn, vn−1, ..., v1. We remark that it is
easy to determine in polynomial time if W has a spanning arborescence rooted at
v1. Therefore, we may assume that W does contain such an arborescence.
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From here on, we will use the words “tree” and “arborescence” interchangeably
since the latter is cumbersome. We hope there is no confusion as we will only be
considering directed graphs.

Recall that our algorithm constructs T , beginning with v1, by finding and adding
pitchforks. In order to obtain an upper bound on the performance of the algorithm
we will colour the vertices of the graph when we add them to the arborescence. We
color the head of a pitchfork red, the internal vertices on the handle yellow, and
the prong vertices blue.

We will attempt to colour the vertices of G in a roughly contiguous fashion from
v1 up to vn. To do this we begin, at time t = 0, by colouring the root vertex
v1 blue. Subsequently, at time t, we focus on the lowest uncoloured interval, say
It = [vi+1, vj−1]. We let Pt denote the set of pitchforks whose tail vertices lie in
the current tree, whose handles lie in It ∪ {vj}, and whose prongs are uncoloured.
We search for a minimal pitchfork Ft ∈ Pt whose highest handle vertex vk ≤ vj is
minimised. By “minimal” we mean that the handle of Ft does not properly contain
the handle of another pitchfork in Pt. If such a pitchfork exists, we add it to the
current tree. Note that the tail of the handle of such a pitchfork must be either a
blue vertex in {v1, . . . , vi} or the blue vertex vj . Then the head of the pitchfork
either coincides with its tail or is in the interval It∪{vj} if the handle is non-empty.

If such a pitchfork does not exist then we have two possibilities. If j ≤ n then
we add the downpath from vj to vi+1; the endpoints vi+1 and vj are coloured blue
and the vertices in the interior of the downpath are coloured yellow. If vi+1 is
not a leaf at the end of the algorithm, then this downpath must, at some point
in the algorithm, have been followed by a pitchfork with tail at vi+1; that is, two
downpaths cannot be joined consecutively. If j = n+1 then we add a path through
all the remaining uncoloured vertices; again the endpoints of this path are coloured
blue and the interior vertices are coloured yellow. We then repeat and consider the
next uncoloured interval.

Our algorithm also partitions the vertices into intervals by marking certain ver-
tices. The set of marked vertices is denoted by K, and K is initially empty at
time t = 0. When we attach a pitchfork to the current tree, we add its highest
handle vertex to K if it is higher than all vertices in K. Similarly, when we attach
a downpath starting at vj , we add vj to K if vj is higher than all vertices in K.
If the algorithm is forced to terminate by attaching a final path through all the
uncoloured vertices then we add the vertex vn to K. The following table formalizes
the algorithm and Figure 3 illustrates an example.

Observe that requiring our pitchforks to be “minimal” gives the following char-
acterization of yellow vertices.

Observation 2.2. The yellow vertices are those vertices that are not blue and

have exactly one uncoloured out-neighbor when they are added to the tree.

Proof. By construction we see that a yellow vertex must have at least one uncol-
ored out-neighbor when it is added to the tree as an internal vertex in some path.
A vertex y is coloured yellow by the algorithm either at stage 3(ii) or 4(ii). In the
latter case, y can have have no more than one uncoloured out-neighbor or else it
is easy to see that this would violate the condition of step (4) that Pt = ∅. In
the former case, y was coloured yellow and added to the tree as part of a minimal
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pitchfork Ft. However it is easy to see that taking y’s uncolored neighbors as the
prongs, y as the head, and the handle of Ft up to y gives a pitchfork in Pt whose han-
dle is properly contained in the handle of Ft, contradicting the minimality of Ft.

Willow(G)

(1) Initialize t := 0, colour v1 blue, T := v1,K := ∅; t := 1.

(2) Given T and t, let It := [vi+1, vj−1] be the lowest uncoloured interval.
—Let Pt denote the set of pitchforks whose tail vertices lie in the

current tree T , whose handles lie in It ∪ {vj}, and whose prongs are
uncoloured.

—If no such pitchforks exist then set Pt := ∅.
(3) If Pt 6= ∅ then

(i) Let Ft ∈ Pt be a minimal pitchfork whose highest handle vertex
is minimized. [By “minimal” we mean that the handle of Ft does not

properly contain the handle of another pitchfork in Pt.]

(ii) Set T := T ∪ Ft.
—Colour Ft. Colour the head ht red, the internal handle vertices

yellow and the prongs blue.
(iii) Let kt be the highest handle vertex of Ft. If kt > max{k ∈ K}

then set K := K ∪ kt.

(4) If Pt = ∅ then
(i) If j ≤ n then

—Add the downpath Ft := {vj , vj−1, . . . , vi+1} to T .
—Colour the vertices [vi+2, vj−1] yellow, and colour vi+1 blue.
—If vj > max{k ∈ K} then set K := K ∪ vj .

(ii) If j − 1 = n then extend T to a spanning arborescence as follows:
—Find a path P that starts at somevertex of T and goes through

every remaining uncoloured vertex.
—Colour the last vertex of P blue, and colour all internal vertices

of P yellow.
—Set K := K ∪ vn.

(5) Terminate if all vertices are coloured; otherwise set t := t + 1, and
goto (2).

We remark that both the colouring and marking are not required by the algo-
rithm; they will be used solely to guide the analysis of the algorithm’s performance.
Some comments are in order here. First observe that when we add a pitchfork the
tail vertex will have already been coloured blue. Consequently, a vertex may receive
more than one colour; for example, a vertex could first be added to the tree as a
prong vertex, and later could be the head of a pitchfork with an empty handle (and,
is thus also the tail of the pitchfork); such a vertex will be coloured both blue and
red. The set of yellow vertices, however, intersects neither the set of red vertices
nor the set of blue vertices. Secondly, the set K of markers naturally partition the
vertices into intervals. The markers also possess the following useful property.
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Fig. 3. (a) Time t = 0 and the willow W . (b) At time t = 1, we have I2 = [v2, v13] and add the
pitchfork with head v1 and prongs v4, v5, v9; K = {v1}. (c) At time t = 2, we have I2 = [v2, v3]
and P2 = ∅ so the algorithm adds the downpath; K = {v1, v3}. (d) At time t = 3, we have

I3 = [v6, v7, v8] and the algorithm adds a pitchfork with tail v2, handle v8, v7, head v7, and
prongs v6, v10; K = {v1, v3, v8}. (e) At time t = 4, we have I4 = [v11, v12, v13] and P4 = ∅ so T

is extended to a spanning tree using path P = {v10, v12, v11, v13}; K = {v1, v3, v8, v13}.

Observation 2.3. At the time vertex ki is added to K, there are no yellow or

red vertices higher than ki−1.

Now that we have described our algorithm, we will prove that it is indeed a constant
factor approximation algorithm. We will show that the algorithm outputs a span-
ning arborescence, runs in polynomial time, and has a constant factor worst-case
guarantee.
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Lemma 2.4. The algorithm produces a spanning arborescence.

Proof. Clearly, step (3) adds a pitchfork and step 4(i) adds a directed path to
T , and by construction these objects do exist when they are added. It remains to
prove that the path P added in step 4(ii) does exist. Suppose that at time t, the
lowest uncoloured interval is It = [vi+1, vn] and that Pt = ∅. As there is a spanning
arborescence of W rooted at v1, there is a path P̂ in W from v1 to vn. Let y be
the last vertex of P̂ in [v1, vi]. Let P1 be the segment of P̂ from y to vn.

If P1 = (y, vn) then adding the downpath from vn to vi+1 gives the desired path
through all the uncoloured vertices. Otherwise, consider the vertices V (P1) \ {y, vn}
that form the interior of the path P1. We claim these interior vertices form an
interval; specifically, V (P1) \ {y, vn} = [vi+1, vj ] for some j such that i+1 < j < n.
Suppose, for a contradiction, that the interior of P1 is not an interval. This implies
that, for some s 6= 1, there exists a vertex vi+s in the interior of P1 such that vi+s−1

is not in the interior of P1. Let w be the vertex following vi+s in P1. Observe that
the vertices vi+s−1 and w are uncoloured at time t because they lie in It = [vi+1, vn].
Moreover, vi+s−1 and w do not lie on the subpath of P1 from y to vi+s, denoted

y
P1−→ vi+s, because vi+s−1 is not in the interior of P1 and w follows vi+s. We then

have a pitchfork with tail y, head vi+s, handle y
P1−→ vi+s, and prongs vi+s−1 and

w. This contradicts the assertion that Pt = ∅.
Now define P2 to be the downpath from vn to vj+1. The path P is the concate-

nation of P1 and P2, and is thus a path through all the uncoloured vertices.

Lemma 2.5. The algorithm runs in polynomial time.

Proof. First let’s see that step (2) can be carried out in polynomial time. It is easy
to find It = [vi+1, vj−1], so we just need to find a minimal pitchfork Ft with highest
handle vertex kt ≤ vj minimised. This we can do by exhaustively searching over all
possible choices for the tail vertex, head vertex, sets of two prongs, and kt. Given
such choices it is easy to check if the desired pitchfork exists in polynomial time.
Similarly, it easy to find the path P of step 4(ii) in polynomial time as outlined in
Lemma 2.4

We now obtain an approximation guarantee for the algorithm. To do this, we
utilise the markings and colouring made by the algorithm. Let R, B and Y be the
set of red, blue and yellow vertices, respectively. (Recall that the sets R and B may
intersect.)

Lemma 2.6. The algorithm outputs an arborescence with more than 1
5 (|R|+ |B|)

leaves.

Proof. Observe that the set of red vertices is exactly the set of vertices in T with
out-degree at least 2. Consequently, |R| < |T0| by Lemma 2.1.

We now prove that |B| ≤ 4|T0|. First consider B \ T0, the blue vertices that are
not leaves in T . We show that |B \ T0| ≤ 3|T0|. Let b 6= v1 be a blue vertex that is
not a leaf in T . We consider two cases.

(i) The vertex b has a red descendant.

Let r be b’s closest red descendant in T . We show that at most one other
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blue vertex can have r as a closest red descendant. In a pitchfork the red
head is immediately followed by a blue prong. Therefore the consecutive blue
nodes in the arborescence are separated by a red vertex unless they were added
in a downpath. Recall there can not be two consecutive downpaths in the
arborescence; moreover a downpath containing b cannot be followed by the
final path of Step 4(ii) because b has a red descendent. Thus, no more than
two vertices in B\T0 can share a closest red descendant. Therefore, the number
of vertices in B \ T0 with a red descendant is at most 2|R|.

(ii) The vertex b does not have a red descendant.

We show that the number of vertices in B \ T0 without a red descendant is at
most |T0| + 1. Suppose that b is the prong of a pitchfork F . Since b ∈ B \ T0

does not have a red descendant, b must be the first vertex of a downpath P .
Now the last vertex of P is either a leaf or the first vertex of the final downpath.
Since the last vertex of the final downpath is a leaf, the number of vertices in
B \ T0 without a red descendant is at most T0 + 1.

Therefore, by Lemma 2.1 and noting that v1 is also blue, we obtain

|B \ T0| ≤ 2|R| + (T0 + 1) + 1 ≤ 2(T0 − 1) + (T0 + 1) + 1 = 3|T0|.
Consequently we obtain an upper bound on the number of blue vertices:

|B| = |B \ T0| + |B ∩ T0| ≤ 3|T0| + |T0| = 4|T0|.
Hence,

|R| + |B| < |T0| + 4|T0| = 5|T0|
so the algorithm outputs a tree with more than (1/5)(|R| + |B|) leaves.

Next consider the set of yellow vertices. If we can show that only a small number
of yellow vertices can be leaves in the optimal arborescence T ∗ then we would be
done. To do this, we consider the interval partition produced by the set K of
markers. Let K := {k1, ..., kl} be ordered according to the time the vertices were
marked by the algorithm. Note that, by construction, for i < j, we have ki < kj .

Notice that an optimal solution T ∗ contains at most one leaf in (ki, ki+1] on a
path in T ∗ that contains ki+1, by the definition of “willow”. Hence, we can bound
the number of these types of leaves by the number of such intervals. Other leaves
of T ∗ in (ki, ki+1] must be on a path in T ∗ whose vertices are all lower than ki+1.
To bound these types of leaves, we notice two of them cannot share a closest blue
ancestor at the time when they were colored because this would give a pitchfork
whose highest handle vertex is lower than ki+1, contradicting the definition of ki+1.

Theorem 2.7. The number of yellow vertices that are leaves in the optimal so-

lution is at most 2|B| + |R|.
Proof. Let T ∗ denote the optimal arborescence. For each 1 ≤ i ≤ l, define a subset
Ai of T ∗

0 ∩ Y as:

Ai := {y ∈ T ∗
0 ∩ Y ∩ (ki−1, ki] : the path from v1 to y in T ∗ uses ki.}.

Next let A =
⋃l

i=1 Ai. We will show that |A| ≤ |K| ≤ |B| + |R| and that |(T ∗
0 ∩

Y ) − A| ≤ |B|; from this, the statement of the theorem follows.
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We first prove that |Ai| ≤ 1. Suppose, for a contradiction, that y1, y2 ∈ Ai.
Without loss of generality, we can assume y1 < y2. Recall that by the definition
of “willow” there is only one directed path from a vertex to any vertex lower than
it. Since the path from v1 to y1 in T ∗ goes through ki ≥ y2 > y1, the vertex y2

is on the path from v1 to y1 in T ∗, which contradicts the fact that y2 is a leaf
in T ∗. Hence, there can be at most one vertex of A in each interval (ki−1, ki] so
|A| ≤ |K| = l. Now |K| ≤ |B| + |R| because each marked vertex either belongs to
the handle of a distinct pitchfork found in Step 3 or a path found in Step 4 of the
algorithm.

We now show that |(T ∗
0 ∩ Y ) − A| ≤ |B|. Let y1, y2 ∈ (T ∗

0 ∩ Y ) − A. Without
loss of generality, assume that y1 < y2 and that y1 ∈ (kj−1, kj ]. We will prove
that y1 and y2 cannot share a common closest blue ancestor in T ∗. Suppose, for a
contradiction, that b is the closest blue ancestor in T ∗ of y1 and y2. Let P1 and P2

be the paths in T ∗ from v1 to y1 and y2, respectively. Let t(j) be the time at which
vertex kj is coloured, and let w be the last vertex on P1 that was coloured by the
start of time t(j). Since v1 is coloured blue at time t = 0, the vertex w exists. Also,
w 6= y1 by Observation 2.3 since y1 is yellow and higher than kj−1.

We will show that the vertex w must be blue. Let x be the vertex after w on
P1. Suppose first, for a contradiction, that w is red. Since x is an out-neighbor
of w, either x was coloured before w or x was coloured blue when w was coloured
red; both possibilities contradict the definition of w. Now suppose that w is yellow.
By Observation 2.2, this implies that when w was coloured, it had exactly one un-
coloured out-neighbor. This out-neighbor must be x so x must have been coloured
at the same time as w, a contradiction. Thus, w must be blue and, because b is
the closest blue ancestor of y1, either w = b or w occurs before b on P1. A similar
argument shows that w is the last vertex on P2 that is coloured blue at the start
of time t(j), since b is the closest blue ancestor of y2 and y2 > y1 > kj−1.

Consider the tree P1 ∪P2. Since y1 and y2 are leaves in T ∗, there exists a unique
vertex h whose out-degree is two in P1 ∪ P2. Clearly, h occurs after b on P1;
otherwise b would not be an ancestor of y1 and y2. Since y1 ∈ (T ∗

0 ∩ Y ) − A, all
vertices on P1 must be lower than kj . Now kj lies in It(j), the lowest uncoloured
interval at time t(j). By the definition of w, the vertices on P1 after w and up to h
are uncoloured at time t(j) and are lower than kj , so they must lie in It(j) as well.
Observe that the vertex kj−1 is not in It(j) so the vertices on P1 after w are higher
than kj−1.

Now let p1 and p2 denote the children of h on the paths P1 and P2, respectively.
Since p1 and p2 occur after w on these paths, they are uncoloured at time t(j).
Therefore, at the start of time t(j), we have a pitchfork F ∈ Pt(j) with tail w,

handle w
P1−→ h, head h, and prongs p1, p2. Since the highest handle vertex of F is

lower than kj and higher than kj−1, this contradicts the definition of kj .
We have shown that that two vertices in T ∗

0 ∩ Y − A cannot share a common
closest blue ancestor in T ∗. Therefore, |T ∗

0 ∩ Y − A| ≤ |B| so

|T ∗
0 ∩ Y | = |A| + |T ∗

0 ∩ Y − A| ≤ (|B| + |R|) + |B| = 2|B| + |R|.
Putting Lemma 2.6 and Theorem 2.7 together gives a constant factor approxi-

mation algorithm for the mlsa problem in willow graphs.
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Theorem 2.8. The algorithm gives a factor 14 approximation guarantee for wil-

low graphs.

Proof. We have that

|T ∗
0 | ≤ |(B ∩ T ∗

0 )| + |R ∩ T ∗
0 | + |Y ∩ T ∗

0 |
≤ |B| + |R| + |Y ∩ T ∗

0 |
≤ |B| + |R| + (2|B| + |R|) (by Theorem 2.7)
= 3|B| + 2|R|
< 14|T0| (by the proof of Lemma 2.6.)

Therefore, we have a factor 14 approximation algorithm for willow graphs.

3. AN APPROXIMATION ALGORITHM FOR GENERAL GRAPHS

We are now ready to present an approximation algorithm for general graphs. The
algorithm is a glorified local improvement algorithm. It is an iterative algorithm
with up to two phases in each iteration. The first phase is a simple 1-exchange
algorithm with a clean-up step. The clean-up step allows us to partition the graph
into willow-like pieces; the second phase then looks for improvements by applying
our willow algorithm on each piece.

To guide our algorithm, we will use a colouring scheme similar to that utilized
by our willow algorithm. At any point, we will colour our current arborescence T
as follows.

—If v has out-degree at least two in T , then colour v red.

—If v is the child of a red vertex or is a leaf then colour v blue.

—Colour all other vertices yellow.

We denote the sets of red, blue and yellow vertices by R,B and Y , respectively.
Again, the sets R and B may intersect whereas Y ∩ R = Y ∩ B = ∅. Observe also
that the set of yellow vertices consists of all the vertices of out-degree exactly one
in T except for those that are coloured blue.

3.1 Phase I

Let T be a spanning arborescence in a directed graph G = (V,A). In order to
describe our local improvement algorithm the following fact will be useful.

Observation 3.1. Given a = (u, v) ∈ A, let â = (x, v) ∈ T be the unique

arborescence arc entering v. Then (T − â) ∪ a is a spanning arborescence if and

only if v is not an ancestor of u.

Proof. First suppose v is an ancestor of u in T and let P be the path from v to u
in T . The graph (T − â)∪ a has a directed cycle P ∪ {u, v}, so (T − â)∪ a is not a
spanning arborescence. On the other hand, if v is not an ancestor of u then clearly
(T − â) ∪ a is a spanning arborescence.

This observation will be of use in describing our local improvement algorithm
where we will attempt to improve our current tree by substituting a non-tree arc
a for its exchange partner â. In general, let Q be a set of arcs that form a forest.
Then let Q̂ consist of all the arcs in T that are exchange partners for arcs in Q.
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The process of setting T := (T − Q̂) ∪ Q will be called a k-exchange, where k
is the number of arcs in Q, provided that it produces a valid arborescence. In
particular, Phase I of the algorithm is a 1-exchange algorithm (this is similar to the
method applied by Lu and Ravi on undirected graphs). Our input is any spanning
arborescence T .

Phase I: Local Improvement.

(1) [1-exchange]
While there is an arc a ∈ G−T such that (T − â)∪ a is an arborescence
with more leaves than T :
(a) Set T := (T − â) ∪ a.

(2) [tree-shortening]
While there is a vertex u and arc a = (u, v) with v a descendant of u:
(a) Set T := (T − â) ∪ a, where â = (x, v) ∈ T .
(b) Recolour T .

Phase I is repeated until the tree T is unchanged throughout a whole iteration;
namely, no 1-exchange or tree-shortening modifications are possible. We now show
that Phase I runs in polynomial time.

Lemma 3.2. Phase I runs in polynomial time.

Proof. The conditions for Steps (1) and (2) can easily be tested in polynomial
time. The 1-exchange step adds an extra leaf each time it is applied, so clearly this
happens at most n times. After a tree-shortening step the depth of vertex v and
its descendants decrease. Therefore this step can only be carried out at most n2

times between successive 1-exchange applications .

We call a tree on which no Step (1) or Step (2) modifications can be applied a
short-tree. Note that Step (2) does not change the number of leaves; otherwise it
would have been carried out in Step (1). This implies the parent of v must be red
since if v is the only child of its parent then the parent would become a new leaf
after Step (2).

In order to see why short-trees are useful, take a maximal yellow path P =
{p1, . . . , pj} in a short-tree T . By maximality, p1 must be the descendant of a blue
vertex, say p0. We call the path W = {p0, p1, . . . , pj} a closed maximal yellow
path and denote the set of all closed maximal yellow paths in a short-tree T by P.
Observe that the child of pj in T is either a red vertex or a leaf; we will refer to
this vertex as rW .

Observation 3.3. Any closed maximal yellow path in a short-tree T induces a

willow graph in G.

This observation will be of value as we would like to isolate these yellow paths
and attack them with the willow algorithm from the previous section. This we will
do in the second phase of the algorithm.
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3.2 Phase II

We wish to apply our willow algorithm on the paths in P. As we have seen, these
paths induce willows in G. However, we cannot just use the willow algorithm on
some W ∈ P as there may be other arcs, for example with heads in W and tails
in V − W , that may be of use to us. Therefore, we transform our tree into a
form on which the willow algorithm can be applied successfully. In particular, we
will use the algorithm to try to obtain a spanning arborescence that has a “large”
number of leaves from W . If we succeed on some W then we will have an improved
arborescence; if we fail on every W ∈ P then we will obtain a certificate that our
current tree is approximately optimal.

We now formally describe the procedure for transforming our tree. Our input is
a closed maximal yellow path W ∈ P in a short-tree T such that W ∪ rW contains
at least one vertex which is reachable from r by a path whose interior does not
intersect W . If no vertex on W satisfies this property, then any path from r to rW

must contain W and we cannot hope to find a spanning arborescence of G rooted
at r with a large number of leaves in W .

To see this, let L = {l0, ..., ls} be a path from r to some pi = ls ∈ W . Let
p̂ ∈ L ∩ W be the last vertex in the interior of L that is in W before the interior
of L leaves W for the last time. Let Tp0

be the subtree of T rooted at p0. Finally
let lk be the last vertex in L that is not in W . By the tree-shortening property of
T and the definition of p̂, the vertex l following p̂ on L must be in T \ Tp0

. The
concatenation of the path in T from r to l with the subpath from l to lk+1 in L
gives a path from r to lk+1, a vertex in W , whose interior does not intersect W .

Therefore, we restrict our attention to closed maximal yellow paths with this
property; we then define zW to be the lowest vertex in W ∪ rW that can be reached
from r by a path whose interior does not intersect W . Assume zW = pi and let
P = {p0, p1, . . . , pi−1} be the segment of W above pi.

Swap(W ): Willowfication

—Let zW be the lowest vertex in W ∪ rW reachable from r by a path Q
whose interior does not intersect W .

—Set T := (T − Q̂) ∪ Q provided that (T − Q̂) ∪ Q is an arborescence.
[Note that zW is no longer a child of pi−1 after this |Q|-exchange.]

—Contract T − P into zW and call it z̃; add an arc from pi−1 ∈ P to z̃.

—We have now built a willow W̃ = {p0, p1, . . . , pi−1, z̃} with root z̃ = pi.

Observe that, since there is a path in T −W from r to p0, there is an arc from z̃
to p0 in W̃ . Consequently, the willow W̃ always contains a spanning arborescence.
Figure 4 illustrates the Swap procedure used by the algorithm.

The key property of the willow W̃ is that no spanning arborescence T of G can
have more leaves in W than the optimal arborescence in W̃ . As a first step towards
proving this, we show that all the leaves of any spanning arborescence T that are
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Fig. 4. (a) Find path Q to zW . (b) Add edges of the path Q and drop the exchange partners
from the tree. (c) Contract the rest of the tree V − P into zW and call it z̃. (d) Add an arc from
pi−1 ∈ P to z̃ creating a willow W̃ .
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in W must lie above the vertex zW . We will need the following notation: For any
closed maximal yellow path W in a short-tree T , let TW denote the subtree of T
rooted at the first vertex p0 of W .

Notice that in the Willowification procedure W̃ does not contain any vertices
lower than zW in W . The next lemma shows that we need not worry about these
vertices as they could not contribute to the number of leaves in any spanning tree
of G which includes any optimal solution.

Lemma 3.4. Take a closed maximal yellow path W in a short-tree T , and let T
be a spanning arborescence of G. If x is a leaf of T that lies in W then x > zW .

Proof. Let W be a closed maximal yellow path in a short-tree T . Now suppose,
for a contradiction, that x ≤ zW is a leaf in T . Consider the path P from r to rW

in T . If rW = zW then the statement holds and there is nothing to prove. So we
assume rW < zW , which implies by the definition of zW that the interior of path P
must intersect W . Let u be the last vertex of P that is not on W and let (u, v) be
an arc in P . Then v ∈ W and P must end with the downpath [v, rW ]. Therefore,
we must have v < x ≤ zW because x is a leaf in T .

We claim that u is a descendant of rW in T . If not, there exists a path P ′ from
r to u in T that does not intersect W . Thus, adding (u, v) to the path P ′ gives
a path from r to v in G whose interior does not intersect W . Since v < zW , this
contradicts the definition of zW .

Let y be the last vertex preceding u on P that is not a descendant of rW . As T
is a short-tree, we know that y is not in W because there are no arcs in G from
W to the subtree of T rooted at rW . Hence, y is not in TW and so there is a path
P ′′ in T from r to y whose interior does not intersect W . Then the path P ′′ from
r to y followed by the subpath of P from y to v is a path in G from r to v whose
interior doesn’t intersect W . This contradicts the definition of zW since v < zW .
Thus, x is not a leaf in T .

We now show no spanning arborescence T of G can have more leaves in W than
the optimal arborescence in W̃ . Therefore applying our algorithm for willow graphs
on W̃ produces a spanning arborescence of W̃ which contains to within a constant
factor the number of leaves from W̃ in an optimal solution.

Lemma 3.5. Let W = {p0, . . . , pj} be a closed maximal yellow path in a short-

tree T . Then no spanning arborescence T of G can have more leaves in W than the

optimal arborescence in W̃ .

Proof. We prove the result by showing that, given any spanning arborescence T of
G with l leaves in W , we can construct a spanning tree T̃ of W̃ with l leaves. Let
Q be the path from r to zW in G whose interior does not intersect W . Take the
short-tree T and exchange Q with its exchange partners; call this new tree T̂ . Let
zW = pi and observe that P := {p0, . . . , pi−1} is a path in T̂ all of whose vertices
have out-degree one except for the vertex pi−1, which is a leaf.

By Lemma 3.4, all the leaves of T in W must lie on P . Note that T [P ], the
restriction of T to P , is a forest. Thus, since T is a spanning arborescence, there
must be a set of arcs X ⊆ T from V − P to the root of each component of P . In
addition, T̂ [V − P ], the restriction of T̂ to V − P , is a spanning arborescence of
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V − P because all vertices of P have degree at most one.
Add the forest T [P ] and the arcs X to T̂ [V − P ] to form a new tree T

′

:=
T̂ [V − P ] ∪ X ∪ T [P ]. Observe that leaves of T in W are leaves of T

′

. Form a
new graph T̃ by contracting T̂ [V − P ] in T

′

to a root r′ and adding an arc from
the vertex pi−1 ∈ P to r′. Then T̃ is a spanning arborescence of W̃ with l leaves.

We are finally ready to describe the second phase of the algorithm. It applies
the algorithm Willow(G) to the maximal yellow paths after they have been “wil-
lowficated” by the Swap procedure.

Phase II: Greedy.

(1) Given a short-tree T and closed maximal yellow path set P.

(2) For each willow W ∈ P consider W̃ = Swap(W): If T̃ =Willow(W̃ )
has more leaves than |T0| then improve T as follows:
—Un-contract V −P in T̃ , where P = {p0, p1, . . . , pi−1} is the segment

of W above zW = pi.

If an improved tree is found then the algorithm returns to Phase I to turn this
new tree into a short-tree. If Phase II finds no improvements then the algorithm
terminates.

3.3 Analysis.

We now analyse the performance guarantee of our algorithm. We begin with some
simple observations. Let T be the tree returned by our algorithm. The vertices of
T1 are either blue or yellow. Any vertex v ∈ T1 lies in a maximal path Pv whose
vertices are all contained in T1. If Pv 6= v, then Pv is a closed maximal yellow path;
otherwise v is a blue vertex followed by a leaf or a red vertex. Let M be the set of
all distinct maximal paths Pv ⊆ T1, namely M = {Pv ⊆ T1 : v ∈ T1}. Since every
path Pv must end with a leaf or a red vertex, we obtain the following simple bound
on the size of M.

Observation 3.6. We have |M| ≤ |R| + |T0| ≤ 2|T0| − 1.

Lemma 3.7. The optimal tree T ∗ has at most 14|T0| leaves in any path W ∈ P.

Proof. Let T be the tree returned by our algorithm. Suppose, for a contradiction,
that T ∗ contains at least 14|T0| + 1 leaves in W ∈ P. By Lemma 3.5, the optimal
spanning arborescence in W̃ contains at least 14|T0|+ 1 leaves. Since Willow(G)
is a 14-approximation algorithm, it returns a spanning arborescence T̃ of W̃ with
at least ⌈ 1

14 (14|T0| + 1)⌉ = |T0| + 1 leaves. Thus T̃ has more leaves than T and we
would have used W to improve T in Phase II, a contradiction.

We now put Observation 3.6 and Lemma 3.7 together to obtain our main result,
an O(

√
opt)-approximation algorithm for the mlsa problem in general directed

graphs.
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Theorem 3.8. The algorithm is an O(
√

opt)-approximation algorithm.

Proof. Partition T ∗
0 as

T ∗
0 = (T ∗

0 ∩ T0) ∪ (T ∗
0 ∩ T1) ∪ (T ∗

0 ∩ T≥2).

By Lemma 2.1, we have

|T ∗
0 | ≤ |T0| + |T ∗

0 ∩ T1| + (|T0| − 1)

= 2|T0| + |T ∗
0 ∩ T1| − 1.

Hence, it suffices to bound |T ∗
0 ∩ T1|. We have

|T ∗
0 ∩ T1| =

∑
Pv∈M |T ∗

0 ∩ Pv|
≤ ∑

Pv∈M 14|T0| (By Lemma 3.7)
≤ (2|T0| − 1) · 14|T0| (By Observation 3.6)
= 28|T0|2 − 14|T0|

This gives

opt = |T ∗
0 | ≤ 2|T0| + 28|T0|2 − 14|T0| ≤ 28|T0|2,

which proves that our algorithm is an O(
√

opt)-approximation algorithm.

4. HARDNESS

The mlst problem, and thus the mlsa problem, is maxsnp-complete [Galbiati et al.
2004] and is np-hard to approximate within 1 + (1/244) [Chlebik and Chlebikova
2004]. Clearly, there is a huge gap between this lower bound and our upper bound
and closing this gap is the key open problem here.

For the weighted versions of mlst and mlsa, good approximation algorithms are
unlikely to exist. These problems are at least as hard to approximate as stable
set. To see this, take a graph G = (V,E) and construct a graph G′ = (V ′, E′) as
follows:

—V ′ = {r} ∪ V ∪ E.

—The node r is connected to each node corresponding to a vertex v ∈ V .

—The node e = {u, v} is connected to the nodes corresponding to u, v ∈ V .

—A node corresponding to an edge e ∈ E has weight 0.

—A node corresponding to a vertex v ∈ V has weight 1.

In a spanning tree of G′ rooted at r, there must be a path from r to the node
corresponding to e = {u, v}; hence, it is not possible for both u and v to be leaves.
The set of leaves of weight 1 in a spanning tree of G′ rooted at r therefore forms a
stable set in G.
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