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Abstract. A simple approximation formula, valid to the high degree of accuracy of the 
Toronto approximation, is given for both the off-diagonal and diagonal matrix elements 
of the K matrices which transform the bosonic realisations of the symplectic algebra into 
an orthonormal basis for a unitary irreducible representation of Sp(6, R). 

In the past few years the mathematics of the non-compact symplectic groups Sp(24 R )  
has been fully developed through the use of a generalised coherent state theory (Rowe 
et a1 1984, Rowe 1984, Deenen and Quesne 1982, 1984, 1985, Kramer et a1 1983) or 
through thz use of boson realisations of the symplectic algebras (Moshinsky et a1 1984, 
Moshinsky 1985, Castafios et a1 1985a, b) which have led to very explicit constructions 
for the tiscrete infinite-dimensional unitary irreducible representations of Sp(24 R ) .  
The case of Sp(6, R )  is of particular interest since Sp(6, R )  has emerged as the 
appropriate dynamical group for a many-body theory of nuclear collective motion 
(Rosensteel and Rowe 1977, 1980). Since Sp(6, R )  is also the dynamical group for 
the three-dimensional harmonic oscillator, symplectic symmetry has also established 
a powerful link between the nuclear shell model and the collective model and has led 
to the possibility of fully microscopic calculations of nuclear collective phenomena 
(for a review, see Rowe 1985). Despite the powerful mathematical advances the 
applications have been somewhat limited. In this connection the work of the Toronto 
group is particularly relevant. It has been shown that a very simple analytical formula 
for the matrix elements of the Sp(6, R )  generators, which is exact for all states of an 
irreducible representation which are multiplicity free with respect to the U(3) subgroup, 
is also a remarkably good approximation formula, in general, for the Sp(6, R )  irreduc- 
ible representations of actual interest in deformed nuclei (Rowe et a1 1984). 

For detailed applications to nuclear spectroscopy a similar approximation formula 
would be useful for the matrix elements of the K matrices which are central for the 
Sp(24 R) state construction. These are the matrices which transform the states of the 
associated boson algebras from a mere labelling scheme into an orthonormal basis for 
a unitary representation of Sp(6, R). Very recently it has been shown that the operator 
K~ can be evaluated from a coherent state generating kernel for which a closed analytic 
expression can be given (Castafios et a1 1985, Kramer 1985, Quesne 1985). To obtain 
the needed matrix elements of K' it is necessary to expand this kernel in the appropriate 
basis polynomials of the associated Bargmann space of complex variables. Although 
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specific results have been given for Sp(4, R )  (Casta5os et al 1985, Moshinsky et a1 
1985), results for the general states of Sp(6, R )  irreducible representations can be 
expected to be complicated and final analytical expressions can be given only in terms 
of formulae involving a number of summations. Although exact values of K' matrix 
elements can be evaluated either by these elegant new techniques or the older numerical 
methods of solving recursion relations, the process is somewhat complicated. 
Moreover, the needed matrix elements are those of K. Their evaluation, in the general 
case, requires a further process of square root taking involving prior diagonalisation 
of the K' matrices. It is the purpose of this letter to show that the powerful Toronto 
approximation formula can be extended for a direct evaluation of the matrix elements 
of K, both off -diagonal and diagonal. The high degree of accuracy of this approximation 
transcends the requirements of nuclear spectroscopy and should thus facilitate the 
practical applications. 

The states of the Sp(6, R )  3 U(3) basis are labelled by three types of U(3), or SU(3), 
quantum numbers: r, the symplectic bandhead or Sp(6, R )  lowest weight U(3) sym- 
metry, which labels the Sp(6, R )  irreducible representation, r, the U(3) symmetry of 
the raising polynomial, and I', the U(3) symmetry of the final state. It will be convenient 
to use the general shorthand label, r, for a U(3) or SU(3) representation label, and a 
for a convenient set of U(3) subgroup labels. Otherwise the notation follows that of 
Rowe et al. Thus 

~ n ~ [ n l n 2 n 3 ] ' ( A n ~ n ) N = ( n l - n z ,  n z - n 3 ) N =  n , + n , + n , ,  

r, = [g1~2u31 = ( A , ~ ~ ) N ,  = (a ,  - uz, u2 - g 3 )  N ,  = 

r, ' [ w 1 w 2 w 3 ]  = (A,p,)N,  = (U1 - w 2 , 0 2  - O J N ,  = wl  + w2+ w3. 

+ g 2  + (+,, (1) 

where ( A F )  are Elliott SU(3) labels (Elliott 1958) and the N's give the numbef of 
squares in the U(3) Young tableaux. The familiar realisation of the symplectic algebra 
is given by the raising generators, At, of SU(3) symmetry (20), the Hermitian conjugate 
lowering operators, A, and the U(3) generators, C, which can be expressed in terms 
of oscillator creation and annihilation operators (b:,, b,,); with A: = Z, b:,b:J, A, = 
E, b,,bsJ, and C,, = t 2,  (bj,b, + b,b;,), where i, j = 1, 2, 3. In the nuclear applications 
the s variables stand for a convenient set of Jacobi relative motion variables with 
s = 1, . . . , A - 1, where A = nucleon number. The Sp(6, R )  state construction proceeds 
via the states 

lWrurnpr,a,)) = [ P r n ( A f )  x lrJl:f' 

where the square bracket denotes SU(3) coupling, and the multiplicity quantum number 
p which distinguishes multiple occurrences of r, in the SU(3) coupling [r, x r,] is 
indicated by a subscript on the SU(3) Wigner coefficient. The raising polynomials can 
be given by the expansions 

with 
(3) 

(4) 
which follows from the bosonic character of the totally symmetric raising polynomials 

[At'20' x Prn-2(At)Irn=n = Z't;(At) X ( n ) ) ~ ~ \ )  n - 2 ) ,  ( 5 )  
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where the boson SU(3)-reduced matrix elements are given, e.g., by equation (12) of 
Rowe et a1 and have the property E,,, (nllutlln’)’ = N. 

The non-orthonormal states lll(T,T,pI‘,a,)) lead to the overlap matrix which is 
the matrix K’ (Le Blanc and Rowe 1985), central for the Sp(6, R )  state construction, 

(*(rurfl,pfr,a,))ty(rurflpr,a,)) = ( K ’ ( r m  rw))nf,pf,np, ( 6 )  

where K’ is diagonal in r, and r, and independent of U(3) subgroup labels a,, with 
rows and columns labelled by r,, and p. For actual calculations it is also useful to 
define normalised states 

l W u ~ n ~ r , ~ w ) )  = ~unp, Iwu~n~~w~, ) )  (7 )  

with overlap matrices 

(9 ( r , rfl,prrw )a ,  I@ ( r , r npr’wa, 1) = ( M (r m r , , , fpf,  np, ( 8 )  

with diagonal elements of unity, Ma, = 1. Off-diagonal matrix elements Mob, a # b, 
are of order (3/2a), the parameter of smallness of the Toronto approximation formula 
(Rowe 1984), with (+= hu+2p,+3(U3+ 1 / 2 ( A -  1)) (cf equation (1)). Although small, 
these off -diagonal matrix elements are by no means negligible to the high degree of 
accuracy of the Toronto approximation. 

Finally, the states I*) of (2) are related to the orthonormal basis states of the 
unitary irreducible representation of Sp(6, R )  (Le Blanc and Rowe 1985) by 

I * ( r u r n , P i r w a o  1) = C ( K ( rm r, )).,,,,, IrurnJpjrwa,>, (9) 
j 

where IrJn,pjrwaw), without the symbol *, denotes the orthonormal basis states. Due 
to the smallness of the off-diagonal matrix elements of K’ the orthonormal basis states 
can also be tagged by the labels rflJpj which correspond to the dominant values of T,p 
in these states. It is in this orthonormal basis that the SU(3) reduced matrix elements 
of the raising generators are given by the simple Toronto approximation formula 

(r,r,.pir,.IIAtllr,rflpr,) = [ Q ( u n ’ w r )  - R(ano)]”’(n’l lu+ll  n )  

x ( - 1 prM, U( (2o)r r ,.r , ; r , , . -pi;  r +). ( loa )  

The U coefficient is an SU(3) Racah coefficient (Hecht 1965), readily available through 
the computer code of Akiyama and Draayer (1973a, b). The phase factor (-l)r is an 
abbreviation for (-l)A+p. The eigenvalues n ( u n w )  are given by (13) of Rowe et al. 
For ready calculation it is convenient to put the difference in the form 

[ R ( u n ’ w ’ ) - l l ( u n w ) ]  

= [ $ ( A o : + A w ; +  A w i )  + (A, +p,  - l ) A w l  + (p,  - 2 ) A w ,  

-3Aw3 + 2 ~ 3  + ( A  - 1) + X (  a ) ] ,  

with 

Anl = 2  

and where A& = 0: - wi, Ani = ni - n ,  A, = w1 - w2, p, = w2 - m3. 



L1006 Letter to the Editor 

Using the orthonormality of the states ( T , r n , p I T w a w )  (9) leads to 

( K ( r m  r, ))n,p,,n,p, 

= ( T , T n , p , T , ~ , l y ( ~ , r n , ~ I ~ , ~ , ) )  
= A(r,,.) C u((20)rfl.,r,r,; rn,-PI; r,&) 

rnm rynpn 

x (r ,r n,p, r , 11 r ,r .,++’r - 1 )ry-ry-, (11) 

where (2) and (3) were substituted into the right-hand side, and the standard definition 
of the SU(3) reduced matrix element required a change in the order of the SU(3) 
coupling [(20) x r , , , ]rm. Using the transformation (9) for the state ~ ~ ( F u ~ f l , ~ p ” I ‘ , f , ) )  with 
N” = N - 2 and the basic approximation formula, ( lo),  leads to the final approximation 
formula for the transformation coefficients, K,  

( K ( r m ‘ r u ) ) n , p , , n , p ,  

X [ a ( U n j W )  - a ( U n ” ’ W ” ) ] 1 / 2 ( K ( r m  rw”)n”p”,n”’p”’ 
x u((20)rfl..r,r,; rn,-Pi; r,,.p”-) u((20)rflj,,r,r,; rfl,-pj; ofspy. (12) 

From this formula the K matrix elements for a particular value of N can be evaluated 
directly if the K matrix elements for states with N”= N-2 are known. (Note that K 

is a unit matrix for the symplectic bandhead state with N = 0 and r, = r,) A very 
straightforward recursive process thus gives an approximate evaluation of the K matrix 
elements. If separate evaluations of the normalisation constants X and the overlaps 
Mob of (7) and (8) are needed these follow from the above since K,b = (&f”’),b/X,. 

To the degree of approximation of (12), ( M”’),, = 1, and ( M1”).b = f( M ) a b  with a # b. 
To illustrate the high degree of accuracy of the Toronto approximation for the 

nuclear applications table 1 shows a few examples in which the exact values are 

Table 1. Examples of K matrices 

~ ( ( 8 0 ) ,  (lo,  2))Exaet 
(60) (22) 

214.448 22 -3.655 45 
-3.655 45 225.340 27 

K ((go), ( 8 2 ) ) ~ ~ ~ ~ ~ ~  
(02) 

32.588 44 -0.559 02 
-0.559 02 33.710 06 

(Ampm) = (80) ~ 3 +  1/2(A- 1) = 13.5. 
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compared with those given by the approximation formula, (12). The examples chosen 
involve Sp(6, R )  excitations of relevance in ”Ne with r, = (Amp,) = (80) and U,+ 

$(A - 1)  = 13.5; that is, with the smallness parameter (3/2a) = (1/32.333). This is one 
of the lightest nuclei with strong intrinsic deformation and therefore a high degree of 
symplectic symmetry. The approximations are even better in heavier deformed nuclei, 
with larger values of U. Moreover, the approximation formula, (12), is so simple that 
explicit analytic expressions can be given for the simpler symplectic excitations of 
greatest interest in the actual nuclear applications. As an example, with N = 4, and 
(hopu) = ( A m  p, +2),  with r n  = ( h n p n )  = (40) or (02), the off-diagonal matrix eleements 
of K are given by 

[2a1+(A-  1) ]1 /2[2~2+ ( A  - 1)1:]”’ (A,-l)(A,+3) 

[ 2 ~ 2  + (A - 1 )  - 211’’[2a1 + ( A  - 1)  +(- 
- 2[ U~ + U* + (A - 1 )  -211/’[~1 + a,+ (A - 1)Tl]1’2 (13) 

It is clear from this example that the approximation formula, (12), does not preserve 
the predicted symmetry of the K matrix. The off-diagonal elements shown for ( K ) ~ ~ ~ ~ ~ ~  

of table 1 are the averages of K,b and Kb,. The differences between K,b and Kba can 
be used to give a quantitative measure of the accuracy of the approximation formula, 
(12), in any specific case. For the first entry of table 1 with (Amp,) = (80), (Amp,) = (82), 
(13) gives 

~ ( 4 0 ) ( 0 2 )  = -0.546 196, ~ ( o 2 ) ( 4 0 )  = -0.571 853, 

so that K,,,,,~~ = -0.559 02. The errors inherent in the approximations of (12) are 
expected to be of order 1 / 2 ( 3 / 2 ~ ) ~  compared with the dominant diagonal matrix 
elements (cf Rowe 1984). Table 1 shows that actual numbers are well within these 
limits and the 1 part in lo4 accuracy actually achieved transcends the usual requirements 
of nuclear spectroscopy. 
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