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AN APPROXIMATION OF INTEGRABLE FUNCTIONS

BY STEP FUNCTIONS WITH AN APPLICATION

M. G. CRANDALL1 AND A. PAZY

Abstract. Let / e L'(0, oo), S > 0 and (GJ^t) = «_1 /»«<'-'V^i)<&.

Given a partition P = {0 = t0 </,<•• • </,<<, + ,<••• } of [0, oo)

where /, -» oo, we approximate/by the step function Apf defined by

ApfO) = (&W, • - • Gs,/)(0)   for /,_, < / < t„

where 5, = r, - f,._,. The main results concern several properties of this

process, with the most important one being that APf-*f in L'(0, oo) as

n(P) " sup,fi, -> 0. An application to difference approximations of evolu-

tion problems is sketched.

Introduction. This note is concerned with an interesting method of ap-

proximating an integrable function /: (0, oo) -» R by step functions. The

approximation process involves the integral transformation Gs: Lx(0, oo)-»

L'(0, oo) defined for 5 > 0 by

(Gsf)(t)=lf¡0°e<-^*f(s)ds. (1)

Equivalently, g = GJ is the unique function g E Lx(0, oo) which satisfies

g-8g'= f
Let P = {0 = t0 </,<•• • <',<',+ !<••• } be a partition of [0, oo)

with lim/_>00i,/ = oo. The step sizes of the partition are denoted by S¡: S¡ = t¡ —

í,_[. Each partition P determines a piecewise constant approximation APf off

defined by

Apf(t) = (GsGSi , • • • G5,/)(0)   for f,_, </</,,/= 1, 2, ... .     (2)

The mesh of the partition is denoted by ¡i(P); p(P) = sup,<1<K15,. The main

results are summarized in the following theorem.

Theorem. Let P be as above, f E Lx(0, oo) and AP be defined by (2). Then

APf E Lx(0, oo), (3)

/    \Apf(s)\ ds< f   \f(s)\ ds, (4)
■'O •'0

APf(s) ds=f f(s) ds, (5)
0 ■'o
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AN APPROXIMATION OF INTEGRABLE FUNCTIONS 75

and

lim    C\APf(s)-f(s)\ds = 0. (6)
lx(P)^0J0

The definition of the transformation f'-» APf as well as the questions

resolved by the theorem arose naturally from considering difference ap-

proximations of certain nonlinear evolution problems. While this motivation

is not relevant for the statement or the proof (given in §1) of the theorem, we

do explain it briefly in §2.

We are indebted to Carl de Boor for his advice on this problem.

1. Proof of the Theorem. Let h,k E Lx(-oo, 0) and / E L'(0, oo). We

define k ° f E L'(0, oo) and h * k E Lx(- oo, 0) according to

(k o f)(t) = r k(t - S)f(s) ds (l.i)

h * k(r) = f°h(r - s)k(s) ds. (1.2)

and

The convolution operator "*" is commutative and associative, while

ho(kof) = (h*k)°f. (1.3)

For 8 > 0 we set

ks(r) = 8-xexp(r/8). (1.4)

The transformation Gs in (1) is

G&f=ksof. (1.5)

Let P = {0 = r0 < r, < • • • < t¡ < ti+x < • • • } and 5, = r, - *,_, be as in

the introduction and AP be given by (2). For simplicity of notation we will set

k¡ = ks¡    and   K¡ = k¡ * K¡_x = k¡* k¡_x* • • •   * kx

for i- 1,2, ....     (1.6)

Since k¡ > 0, AP clearly satisfies

\APf]<AP\f\. (1.7)

Moreover by (2), (1.5), (1.6) and (1.3)

¡''AP\J\(s) ds=t 8,{k, o(*,_,o ( . • •   o (k2 o (*, o j/))) . . . )))(0)
•'O 1=1

= ¿ «/(A, » IJIXO) = C 2 SM-m^l ds- (1-8)
/=1 •'O     l-\

Since each of the summands 8,K,(-s) in the last integrand is nonnegative, we

can establish (3) and (4) of the theorem by showing that

00

2 B,K,(r) < 1    for - oo < r < 0 (1.9)
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76 M. G. CRANDALL AND A. PAZY

while (5) requires

oo

2 8,K,(r) = 1    a.e. on - oo < r < 0. (1.10)
/=i

The following lemma implies (1.9) since K}, * 1 > 0.

Lemma 1. For eachj — 1,2, .. .

j

2 Ó,*, + Ä, * 1 = 1. (1.11)

Proof of Lemma 1. We proceed by induction. If / = 1 the claim is that

8xkx + kx * 1 = 1. Indeed, for any 8,

1 r°
8k, + ks * 1 - e''* + j;f ¿r-»/* ds=\. (1.12)

o J r

We now assume the claim is true for j = / and verify it for j = / + 1. By

(1.12) we have

*i+i * 1 = *»+. **,*! = ki+x . 1 • K, - (1 - 8i+xki+x) * Ki

= K¡*l-8¡+xK¡+l = \-'?18¡K¡ (1.13)
/=i

where the last equality follows from the induction hypothesis. Rearranging

(1.13) yields (1.11) withy = / + 1 and the proof is complete.    □

We verify (1.10) indirectly. Let

/.(') = e-°> (1.14)

If a >0

(GJa)(t) = IjTV-)/»*— ds = Y^e-« (1.15)

from which it follows that

(APfa)(t) = u (1 + oo,)'1    for /,._, < r < tt (1.16)
i=i

and hence

J oo i
(APfa)(s)ds= S 5, II (1 + a«,)"1. (1.17)

0 i=l     /=i

Setting r, = (1 + arS,)-1 we claim that

8xrx + 82r2rx + ■ ■ ■ +0^., • • • r2rx + o"V/-i " ' " Vi = CT"'      Í1-18)

for / = 1,2, ... . The proof parallels the proof of Lemma 1. Since 2°l]ô, =

oo, we have /-,/-,_, • • • rx -*0 as i' -> oo and (1.17), (1.18) together imply

Jf 00 yoo
(APfa)(s) ds - - - /   /„(i) A.

0 a     •'o

Setting/ = /, in (1.8), letting i —» oo and using the above implies (1.10).
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AN APPROXIMATION OF INTEGRABLE FUNCTIONS 77

It remains to verify (6). (We remark that the previous results did not

require ¡x(P) < oo.) In view of (4), which is independent of P, it suffices to

verify (6) for a dense subset F of Lx(0, oo). It is convenient to choose

F = span{/0: a > 0). (In fact, span{e~"': n = 1,2, . . . } is dense in L'(0, oo),

as is well known. To see this, use the change of variables x = e~' which

exchanges (0, oo) and (0, 1) while e~"' becomes x".) To proceed, we estimate

\Apfa - /J in terms of n(P). For convenience of future referencing the simple

lemma which does so is stated without using the notation above.

Lemma 2. Let (5,}°1, be a sequence of positive numbers satisfying 2°li^i =

oo and a > 0. Let t0 = 0, t¡ = 8X + 82 + • • • + 5, for i = 1,2, . . . and ¡i =

suPi<,<005,//

1

g(t)= 11(1 -Has,)"'     forti_x <í<í,
i=i

then

\g(t) - e-°'\ < e-^maxie^'e'V - 1, 1 - e^}.

Proof of Lemma 2. It is enough to treat a = 1, for then the general result

follows upon replacing {5,} by {o8¡} and t by at. Elementary calculus yields

e~* < (1 + 5)-' <e~s+sl   forS>0. (1.19)

Multiplying these inequalities yields

i
e-(*,+ "-+*)< T[ (i + ô/)-' K e-(sí+■ ■ ■+s,)e(s?+■ ..+tf)    (120)

l=\

Using (1.20) and the inequalities

ó\2 + ■ • • +82 < n(8x + ■ ■ ■ +5,.)   and   t <«, + ••• +8, < t + p,

for r,_, < r < f, establishes

e-'(e-" - 1) < g(i) - e"' < e-'(«M(r+M) _ j)

and hence Lemma 2 in the case a ■» 1.   D

End of proof of the Theorem. By (1.16) and Lemma 2

/""W* -/.| * < rV~max{e'"V'V - 1, 1 - e^} ds

where ¡jl = n(P). The right-hand side above tends to zero as ¡i -^ 0, and the

proof is complete.

Remark. If m E Lx(-oo, 0) n L°°(-oo, 0), mÄ(r) = 8~xm(r/8) and (1) is

replaced by GJ = ms ° /, the first part of the above proof adapts to establish

that

r\APf(s)\ds<cr\j(s)\ds
Jo Jo

provided C > 0 can be chosen to satisfy

r°
\m(r)\+ C     \m(s)\ds<C   a.e. -oo<r<0.

-V
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78 M. G. CRANDALL AND A. PAZY

This last estimate is equivalent to \ms\ + \ms\ * C < C. If H»^^^^ < 1 we

may set

c =Hk-(-oo,o)/0 -Mkc-^o)).

(Consideration of the case m(r) = 2er shows some such restriction is neces-

sary.) By contrast, our proof of (5) and (6) used special properties of the

exponential kernel.

Motivation. Let Ibea Banach space and A be an accretive operator in

A'(see, e.g., [1], [2] for terminology). If / E L'(0, oo; X) and x E X, we say

that

u' + Au3f,

u(0) = x K     '

has an e-approximate solution on [0, T] if there are finite sequences 0 = t0 <

?,<••• <tN, and {/„/2, . . . ,fN), {x0, xx, . . . , xN] c X such that

Xi- + Axi+l3fi+l,       i = 0,l,...,N, (2.2)

and

'i+i

tN > T,    ti+x — r, < e,    ||x0 - x|| < e    and

"i! f''+lU+l-Äs)\\ds<e.
;=o Jt,

(2.3)

In this case, the step function whose value on (t¡, r1 + 1] is xi+x is called an

e-approximate solution of (2.1). It is shown in [3] that if (2.1) has an

e-approximate solution on [0, T] for each e > 0, then these solutions converge

uniformly as ejO to a unique limit u E C([0, T]; X) which is the solution (in a

certain sense) of (2.1). The estimates which prove this are considerably more

involved in the case that / ^ 0 than in the simpler case / = 0. The approxi-

mation theorem proved in this note allows us to reduce the problem (2.1) with

a general/ E Lx(0, oo; X) to the case/ = 0 in the following way: Define an

operator 6E in X X Lx(0, oo; X) by

D(&) = D(A)X Wx>x(0, oo; X)

and

&(x, g) = {(y - g(0), -g'):yEAx).

We show below that & is accretive. Given an e-approximate solution of (2.1)

on [0, T] as above, define {g0, gx, . . . , gN] C W xx(0, oo; X) by g0 = /,

5, = t¡ — r,_,, gi+x = Gs + ¡g¡. Then the function whose value on (f,, r,+1] is

(*,+i> &+i) is an

N-l

e + S P'+ïk,+,(o)-/(v>||*
/=0 Jt¡
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AN APPROXIMATION OF INTEGRABLE FUNCTIONS 79

approximate solution of

(%' + &% 3 0,

\%(0) = (*,/). (¿A)

By the (clearly valid) version of Theorem 1 in which L'(0, oo) is replaced by

L'(0, oo ; X) the term

s r,+ïiA+1(o)-/i*)ii*
i=0   Jt¡

tends to zero as ju, = max, 8¡ —» 0.

We now briefly sketch the proof that & is accretive. If Z is any Banach

space, set

[Ptq] =limll^^lU-Hz=infll^^l|z-Hz-
1 Jz       AJ.0 A \>0 X

If Y = X X Lx(0, oo; A1) is equipped with the norm

\\(x,g)\\Y=\\x\\x + r°°||g(j)||^    for(x,g)EX

then one computes that

[(x,g),(y,h)]y=[x,y]x+ r[g(s),h(s)]xds.

It follows that & is accretive in Y if for every (x, y), (x, y) E A and g,

g E Wxx(0, oo; A') we have

[(x-x,g- g), ((y - g(0)) - (y -g(0)),-g' + g')]Y

= [x-X,(y-y)-(g(0)-g(0))]x

+ ("[gis) - g(s),-g'(s) + g'is)]^ > 0. (2.5)
■'o

The first term in (2.5) is estimated by

[x-x,(y-y)-(g(0)-g(0))]x

>[x-x,(y-y)]x-\\g(0)-g(0)\\x

> ~\\g(0) - g(0)\\x, (2.6)

where the first inequality is due to the fact that [p,q]z is Lipschitz in a with

constant 1 and the second inequality is because (x, y), (x, y) E A and A is

accretive. The second term in (2.5) is given by

r[g(s)-g(s),-g'(s) + g'(s)]xds
Jo

= C~ís l|g(5) " é(í)|1^ = l|g(0) " mh (2J)
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80 M. G. CRANDALL AND A. PAZY

since

i\\k(s)\\x=[k(s),k'(s)]x

wherever ||a(í)||^ and k(s) are both differentiable.Together, (2.6) and (2.7)

imply (2.5) and hence that & is accretive.

The system (2.4) was introduced in [4] for another purpose. The results we

have just obtained reduce many questions concerning (2.1) to the same

questions for / = 0.

References

1. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff,

Leiden, 1976.
2. M. G. Crandall, An introduction to evolution governed by accretive operators, Dynamical

Systems: An International Symposium, Vol. 1, Academic Press, New York, 1976, pp. 131-165.

3. M. G. Crandall and L. C. Evans, On the relation of the operator d/ds + 9/óV to evolution

governed by accretive operators, Israel J. Math. 21 (1975), 261-278.

4. C. M. Dafermos and M. Slemrod, Asymptotic behaviour of nonlinear contraction semigroups,

J. Functional Analysis 13 (1973), 97-106.

Mathematics Department and Mathematics Research Center, University of

Wisconsin-Madison, Madison, Wisconsin 53706

Department of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


